|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright 2020 Xillybus Ltd, http://xillybus.com | 
|  | * | 
|  | * Driver for the XillyUSB FPGA/host framework. | 
|  | * | 
|  | * This driver interfaces with a special IP core in an FPGA, setting up | 
|  | * a pipe between a hardware FIFO in the programmable logic and a device | 
|  | * file in the host. The number of such pipes and their attributes are | 
|  | * set up on the logic. This driver detects these automatically and | 
|  | * creates the device files accordingly. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/usb.h> | 
|  |  | 
|  | #include "xillybus_class.h" | 
|  |  | 
|  | MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core"); | 
|  | MODULE_AUTHOR("Eli Billauer, Xillybus Ltd."); | 
|  | MODULE_ALIAS("xillyusb"); | 
|  | MODULE_LICENSE("GPL v2"); | 
|  |  | 
|  | #define XILLY_RX_TIMEOUT		(10 * HZ / 1000) | 
|  | #define XILLY_RESPONSE_TIMEOUT		(500 * HZ / 1000) | 
|  |  | 
|  | #define BUF_SIZE_ORDER			4 | 
|  | #define BUFNUM				8 | 
|  | #define LOG2_IDT_FIFO_SIZE		16 | 
|  | #define LOG2_INITIAL_FIFO_BUF_SIZE	16 | 
|  |  | 
|  | #define MSG_EP_NUM			1 | 
|  | #define IN_EP_NUM			1 | 
|  |  | 
|  | static const char xillyname[] = "xillyusb"; | 
|  |  | 
|  | static unsigned int fifo_buf_order; | 
|  |  | 
|  | #define USB_VENDOR_ID_XILINX		0x03fd | 
|  | #define USB_VENDOR_ID_ALTERA		0x09fb | 
|  |  | 
|  | #define USB_PRODUCT_ID_XILLYUSB		0xebbe | 
|  |  | 
|  | static const struct usb_device_id xillyusb_table[] = { | 
|  | { USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) }, | 
|  | { USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) }, | 
|  | { } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(usb, xillyusb_table); | 
|  |  | 
|  | struct xillyusb_dev; | 
|  |  | 
|  | struct xillyfifo { | 
|  | unsigned int bufsize; /* In bytes, always a power of 2 */ | 
|  | unsigned int bufnum; | 
|  | unsigned int size; /* Lazy: Equals bufsize * bufnum */ | 
|  | unsigned int buf_order; | 
|  |  | 
|  | int fill; /* Number of bytes in the FIFO */ | 
|  | spinlock_t lock; | 
|  | wait_queue_head_t waitq; | 
|  |  | 
|  | unsigned int readpos; | 
|  | unsigned int readbuf; | 
|  | unsigned int writepos; | 
|  | unsigned int writebuf; | 
|  | char **mem; | 
|  | }; | 
|  |  | 
|  | struct xillyusb_channel; | 
|  |  | 
|  | struct xillyusb_endpoint { | 
|  | struct xillyusb_dev *xdev; | 
|  |  | 
|  | struct mutex ep_mutex; /* serialize operations on endpoint */ | 
|  |  | 
|  | struct list_head buffers; | 
|  | struct list_head filled_buffers; | 
|  | spinlock_t buffers_lock; /* protect these two lists */ | 
|  |  | 
|  | unsigned int order; | 
|  | unsigned int buffer_size; | 
|  |  | 
|  | unsigned int fill_mask; | 
|  |  | 
|  | int outstanding_urbs; | 
|  |  | 
|  | struct usb_anchor anchor; | 
|  |  | 
|  | struct xillyfifo fifo; | 
|  |  | 
|  | struct work_struct workitem; | 
|  |  | 
|  | bool shutting_down; | 
|  | bool drained; | 
|  | bool wake_on_drain; | 
|  |  | 
|  | u8 ep_num; | 
|  | }; | 
|  |  | 
|  | struct xillyusb_channel { | 
|  | struct xillyusb_dev *xdev; | 
|  |  | 
|  | struct xillyfifo *in_fifo; | 
|  | struct xillyusb_endpoint *out_ep; | 
|  | struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */ | 
|  |  | 
|  | struct mutex in_mutex; /* serialize fops on FPGA to host stream */ | 
|  | struct mutex out_mutex; /* serialize fops on host to FPGA stream */ | 
|  | wait_queue_head_t flushq; | 
|  |  | 
|  | int chan_idx; | 
|  |  | 
|  | u32 in_consumed_bytes; | 
|  | u32 in_current_checkpoint; | 
|  | u32 out_bytes; | 
|  |  | 
|  | unsigned int in_log2_element_size; | 
|  | unsigned int out_log2_element_size; | 
|  | unsigned int in_log2_fifo_size; | 
|  | unsigned int out_log2_fifo_size; | 
|  |  | 
|  | unsigned int read_data_ok; /* EOF not arrived (yet) */ | 
|  | unsigned int poll_used; | 
|  | unsigned int flushing; | 
|  | unsigned int flushed; | 
|  | unsigned int canceled; | 
|  |  | 
|  | /* Bit fields protected by @lock except for initialization */ | 
|  | unsigned readable:1; | 
|  | unsigned writable:1; | 
|  | unsigned open_for_read:1; | 
|  | unsigned open_for_write:1; | 
|  | unsigned in_synchronous:1; | 
|  | unsigned out_synchronous:1; | 
|  | unsigned in_seekable:1; | 
|  | unsigned out_seekable:1; | 
|  | }; | 
|  |  | 
|  | struct xillybuffer { | 
|  | struct list_head entry; | 
|  | struct xillyusb_endpoint *ep; | 
|  | void *buf; | 
|  | unsigned int len; | 
|  | }; | 
|  |  | 
|  | struct xillyusb_dev { | 
|  | struct xillyusb_channel *channels; | 
|  |  | 
|  | struct usb_device	*udev; | 
|  | struct device		*dev; /* For dev_err() and such */ | 
|  | struct kref		kref; | 
|  | struct workqueue_struct	*workq; | 
|  |  | 
|  | int error; | 
|  | spinlock_t error_lock; /* protect @error */ | 
|  | struct work_struct wakeup_workitem; | 
|  |  | 
|  | int num_channels; | 
|  |  | 
|  | struct xillyusb_endpoint *msg_ep; | 
|  | struct xillyusb_endpoint *in_ep; | 
|  |  | 
|  | struct mutex msg_mutex; /* serialize opcode transmission */ | 
|  | int in_bytes_left; | 
|  | int leftover_chan_num; | 
|  | unsigned int in_counter; | 
|  | struct mutex process_in_mutex; /* synchronize wakeup_all() */ | 
|  | }; | 
|  |  | 
|  | /* FPGA to host opcodes */ | 
|  | enum { | 
|  | OPCODE_DATA = 0, | 
|  | OPCODE_QUIESCE_ACK = 1, | 
|  | OPCODE_EOF = 2, | 
|  | OPCODE_REACHED_CHECKPOINT = 3, | 
|  | OPCODE_CANCELED_CHECKPOINT = 4, | 
|  | }; | 
|  |  | 
|  | /* Host to FPGA opcodes */ | 
|  | enum { | 
|  | OPCODE_QUIESCE = 0, | 
|  | OPCODE_REQ_IDT = 1, | 
|  | OPCODE_SET_CHECKPOINT = 2, | 
|  | OPCODE_CLOSE = 3, | 
|  | OPCODE_SET_PUSH = 4, | 
|  | OPCODE_UPDATE_PUSH = 5, | 
|  | OPCODE_CANCEL_CHECKPOINT = 6, | 
|  | OPCODE_SET_ADDR = 7, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple | 
|  | * calls to each on the same FIFO is not allowed) however it's OK to have | 
|  | * threads calling each of the two functions once on the same FIFO, and | 
|  | * at the same time. | 
|  | */ | 
|  |  | 
|  | static int fifo_write(struct xillyfifo *fifo, | 
|  | const void *data, unsigned int len, | 
|  | int (*copier)(void *, const void *, int)) | 
|  | { | 
|  | unsigned int done = 0; | 
|  | unsigned int todo = len; | 
|  | unsigned int nmax; | 
|  | unsigned int writepos = fifo->writepos; | 
|  | unsigned int writebuf = fifo->writebuf; | 
|  | unsigned long flags; | 
|  | int rc; | 
|  |  | 
|  | nmax = fifo->size - READ_ONCE(fifo->fill); | 
|  |  | 
|  | while (1) { | 
|  | unsigned int nrail = fifo->bufsize - writepos; | 
|  | unsigned int n = min(todo, nmax); | 
|  |  | 
|  | if (n == 0) { | 
|  | spin_lock_irqsave(&fifo->lock, flags); | 
|  | fifo->fill += done; | 
|  | spin_unlock_irqrestore(&fifo->lock, flags); | 
|  |  | 
|  | fifo->writepos = writepos; | 
|  | fifo->writebuf = writebuf; | 
|  |  | 
|  | return done; | 
|  | } | 
|  |  | 
|  | if (n > nrail) | 
|  | n = nrail; | 
|  |  | 
|  | rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | done += n; | 
|  | todo -= n; | 
|  |  | 
|  | writepos += n; | 
|  | nmax -= n; | 
|  |  | 
|  | if (writepos == fifo->bufsize) { | 
|  | writepos = 0; | 
|  | writebuf++; | 
|  |  | 
|  | if (writebuf == fifo->bufnum) | 
|  | writebuf = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int fifo_read(struct xillyfifo *fifo, | 
|  | void *data, unsigned int len, | 
|  | int (*copier)(void *, const void *, int)) | 
|  | { | 
|  | unsigned int done = 0; | 
|  | unsigned int todo = len; | 
|  | unsigned int fill; | 
|  | unsigned int readpos = fifo->readpos; | 
|  | unsigned int readbuf = fifo->readbuf; | 
|  | unsigned long flags; | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * The spinlock here is necessary, because otherwise fifo->fill | 
|  | * could have been increased by fifo_write() after writing data | 
|  | * to the buffer, but this data would potentially not have been | 
|  | * visible on this thread at the time the updated fifo->fill was. | 
|  | * That could lead to reading invalid data. | 
|  | */ | 
|  |  | 
|  | spin_lock_irqsave(&fifo->lock, flags); | 
|  | fill = fifo->fill; | 
|  | spin_unlock_irqrestore(&fifo->lock, flags); | 
|  |  | 
|  | while (1) { | 
|  | unsigned int nrail = fifo->bufsize - readpos; | 
|  | unsigned int n = min(todo, fill); | 
|  |  | 
|  | if (n == 0) { | 
|  | spin_lock_irqsave(&fifo->lock, flags); | 
|  | fifo->fill -= done; | 
|  | spin_unlock_irqrestore(&fifo->lock, flags); | 
|  |  | 
|  | fifo->readpos = readpos; | 
|  | fifo->readbuf = readbuf; | 
|  |  | 
|  | return done; | 
|  | } | 
|  |  | 
|  | if (n > nrail) | 
|  | n = nrail; | 
|  |  | 
|  | rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | done += n; | 
|  | todo -= n; | 
|  |  | 
|  | readpos += n; | 
|  | fill -= n; | 
|  |  | 
|  | if (readpos == fifo->bufsize) { | 
|  | readpos = 0; | 
|  | readbuf++; | 
|  |  | 
|  | if (readbuf == fifo->bufnum) | 
|  | readbuf = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These three wrapper functions are used as the @copier argument to | 
|  | * fifo_write() and fifo_read(), so that they can work directly with | 
|  | * user memory as well. | 
|  | */ | 
|  |  | 
|  | static int xilly_copy_from_user(void *dst, const void *src, int n) | 
|  | { | 
|  | if (copy_from_user(dst, (const void __user *)src, n)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xilly_copy_to_user(void *dst, const void *src, int n) | 
|  | { | 
|  | if (copy_to_user((void __user *)dst, src, n)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xilly_memcpy(void *dst, const void *src, int n) | 
|  | { | 
|  | memcpy(dst, src, n); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fifo_init(struct xillyfifo *fifo, | 
|  | unsigned int log2_size) | 
|  | { | 
|  | unsigned int log2_bufnum; | 
|  | unsigned int buf_order; | 
|  | int i; | 
|  |  | 
|  | unsigned int log2_fifo_buf_size; | 
|  |  | 
|  | retry: | 
|  | log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT; | 
|  |  | 
|  | if (log2_size > log2_fifo_buf_size) { | 
|  | log2_bufnum = log2_size - log2_fifo_buf_size; | 
|  | buf_order = fifo_buf_order; | 
|  | fifo->bufsize = 1 << log2_fifo_buf_size; | 
|  | } else { | 
|  | log2_bufnum = 0; | 
|  | buf_order = (log2_size > PAGE_SHIFT) ? | 
|  | log2_size - PAGE_SHIFT : 0; | 
|  | fifo->bufsize = 1 << log2_size; | 
|  | } | 
|  |  | 
|  | fifo->bufnum = 1 << log2_bufnum; | 
|  | fifo->size = fifo->bufnum * fifo->bufsize; | 
|  | fifo->buf_order = buf_order; | 
|  |  | 
|  | fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL); | 
|  |  | 
|  | if (!fifo->mem) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < fifo->bufnum; i++) { | 
|  | fifo->mem[i] = (void *) | 
|  | __get_free_pages(GFP_KERNEL, buf_order); | 
|  |  | 
|  | if (!fifo->mem[i]) | 
|  | goto memfail; | 
|  | } | 
|  |  | 
|  | fifo->fill = 0; | 
|  | fifo->readpos = 0; | 
|  | fifo->readbuf = 0; | 
|  | fifo->writepos = 0; | 
|  | fifo->writebuf = 0; | 
|  | spin_lock_init(&fifo->lock); | 
|  | init_waitqueue_head(&fifo->waitq); | 
|  | return 0; | 
|  |  | 
|  | memfail: | 
|  | for (i--; i >= 0; i--) | 
|  | free_pages((unsigned long)fifo->mem[i], buf_order); | 
|  |  | 
|  | kfree(fifo->mem); | 
|  | fifo->mem = NULL; | 
|  |  | 
|  | if (fifo_buf_order) { | 
|  | fifo_buf_order--; | 
|  | goto retry; | 
|  | } else { | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fifo_mem_release(struct xillyfifo *fifo) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!fifo->mem) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < fifo->bufnum; i++) | 
|  | free_pages((unsigned long)fifo->mem[i], fifo->buf_order); | 
|  |  | 
|  | kfree(fifo->mem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When endpoint_quiesce() returns, the endpoint has no URBs submitted, | 
|  | * won't accept any new URB submissions, and its related work item doesn't | 
|  | * and won't run anymore. | 
|  | */ | 
|  |  | 
|  | static void endpoint_quiesce(struct xillyusb_endpoint *ep) | 
|  | { | 
|  | mutex_lock(&ep->ep_mutex); | 
|  | ep->shutting_down = true; | 
|  | mutex_unlock(&ep->ep_mutex); | 
|  |  | 
|  | usb_kill_anchored_urbs(&ep->anchor); | 
|  | cancel_work_sync(&ep->workitem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that endpoint_dealloc() also frees fifo memory (if allocated), even | 
|  | * though endpoint_alloc doesn't allocate that memory. | 
|  | */ | 
|  |  | 
|  | static void endpoint_dealloc(struct xillyusb_endpoint *ep) | 
|  | { | 
|  | struct list_head *this, *next; | 
|  |  | 
|  | fifo_mem_release(&ep->fifo); | 
|  |  | 
|  | /* Join @filled_buffers with @buffers to free these entries too */ | 
|  | list_splice(&ep->filled_buffers, &ep->buffers); | 
|  |  | 
|  | list_for_each_safe(this, next, &ep->buffers) { | 
|  | struct xillybuffer *xb = | 
|  | list_entry(this, struct xillybuffer, entry); | 
|  |  | 
|  | free_pages((unsigned long)xb->buf, ep->order); | 
|  | kfree(xb); | 
|  | } | 
|  |  | 
|  | kfree(ep); | 
|  | } | 
|  |  | 
|  | static struct xillyusb_endpoint | 
|  | *endpoint_alloc(struct xillyusb_dev *xdev, | 
|  | u8 ep_num, | 
|  | void (*work)(struct work_struct *), | 
|  | unsigned int order, | 
|  | int bufnum) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | struct xillyusb_endpoint *ep; | 
|  |  | 
|  | ep = kzalloc(sizeof(*ep), GFP_KERNEL); | 
|  |  | 
|  | if (!ep) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&ep->buffers); | 
|  | INIT_LIST_HEAD(&ep->filled_buffers); | 
|  |  | 
|  | spin_lock_init(&ep->buffers_lock); | 
|  | mutex_init(&ep->ep_mutex); | 
|  |  | 
|  | init_usb_anchor(&ep->anchor); | 
|  | INIT_WORK(&ep->workitem, work); | 
|  |  | 
|  | ep->order = order; | 
|  | ep->buffer_size =  1 << (PAGE_SHIFT + order); | 
|  | ep->outstanding_urbs = 0; | 
|  | ep->drained = true; | 
|  | ep->wake_on_drain = false; | 
|  | ep->xdev = xdev; | 
|  | ep->ep_num = ep_num; | 
|  | ep->shutting_down = false; | 
|  |  | 
|  | for (i = 0; i < bufnum; i++) { | 
|  | struct xillybuffer *xb; | 
|  | unsigned long addr; | 
|  |  | 
|  | xb = kzalloc(sizeof(*xb), GFP_KERNEL); | 
|  |  | 
|  | if (!xb) { | 
|  | endpoint_dealloc(ep); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | addr = __get_free_pages(GFP_KERNEL, order); | 
|  |  | 
|  | if (!addr) { | 
|  | kfree(xb); | 
|  | endpoint_dealloc(ep); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | xb->buf = (void *)addr; | 
|  | xb->ep = ep; | 
|  | list_add_tail(&xb->entry, &ep->buffers); | 
|  | } | 
|  | return ep; | 
|  | } | 
|  |  | 
|  | static void cleanup_dev(struct kref *kref) | 
|  | { | 
|  | struct xillyusb_dev *xdev = | 
|  | container_of(kref, struct xillyusb_dev, kref); | 
|  |  | 
|  | if (xdev->in_ep) | 
|  | endpoint_dealloc(xdev->in_ep); | 
|  |  | 
|  | if (xdev->msg_ep) | 
|  | endpoint_dealloc(xdev->msg_ep); | 
|  |  | 
|  | if (xdev->workq) | 
|  | destroy_workqueue(xdev->workq); | 
|  |  | 
|  | kfree(xdev->channels); /* Argument may be NULL, and that's fine */ | 
|  | kfree(xdev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @process_in_mutex is taken to ensure that bulk_in_work() won't call | 
|  | * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all | 
|  | * @read_data_ok entries, which will make process_bulk_in() report false | 
|  | * errors if executed. The mechanism relies on that xdev->error is assigned | 
|  | * a non-zero value by report_io_error() prior to queueing wakeup_all(), | 
|  | * which prevents bulk_in_work() from calling process_bulk_in(). | 
|  | * | 
|  | * The fact that wakeup_all() and bulk_in_work() are queued on the same | 
|  | * workqueue makes their concurrent execution very unlikely, however the | 
|  | * kernel's API doesn't seem to ensure this strictly. | 
|  | */ | 
|  |  | 
|  | static void wakeup_all(struct work_struct *work) | 
|  | { | 
|  | int i; | 
|  | struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev, | 
|  | wakeup_workitem); | 
|  |  | 
|  | mutex_lock(&xdev->process_in_mutex); | 
|  |  | 
|  | for (i = 0; i < xdev->num_channels; i++) { | 
|  | struct xillyusb_channel *chan = &xdev->channels[i]; | 
|  |  | 
|  | mutex_lock(&chan->lock); | 
|  |  | 
|  | if (chan->in_fifo) { | 
|  | /* | 
|  | * Fake an EOF: Even if such arrives, it won't be | 
|  | * processed. | 
|  | */ | 
|  | chan->read_data_ok = 0; | 
|  | wake_up_interruptible(&chan->in_fifo->waitq); | 
|  | } | 
|  |  | 
|  | if (chan->out_ep) | 
|  | wake_up_interruptible(&chan->out_ep->fifo.waitq); | 
|  |  | 
|  | mutex_unlock(&chan->lock); | 
|  |  | 
|  | wake_up_interruptible(&chan->flushq); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&xdev->process_in_mutex); | 
|  |  | 
|  | wake_up_interruptible(&xdev->msg_ep->fifo.waitq); | 
|  |  | 
|  | kref_put(&xdev->kref, cleanup_dev); | 
|  | } | 
|  |  | 
|  | static void report_io_error(struct xillyusb_dev *xdev, | 
|  | int errcode) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool do_once = false; | 
|  |  | 
|  | spin_lock_irqsave(&xdev->error_lock, flags); | 
|  | if (!xdev->error) { | 
|  | xdev->error = errcode; | 
|  | do_once = true; | 
|  | } | 
|  | spin_unlock_irqrestore(&xdev->error_lock, flags); | 
|  |  | 
|  | if (do_once) { | 
|  | kref_get(&xdev->kref); /* xdev is used by work item */ | 
|  | queue_work(xdev->workq, &xdev->wakeup_workitem); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures | 
|  | * the previous pointer is never used after its return. | 
|  | */ | 
|  |  | 
|  | static void safely_assign_in_fifo(struct xillyusb_channel *chan, | 
|  | struct xillyfifo *fifo) | 
|  | { | 
|  | mutex_lock(&chan->lock); | 
|  | chan->in_fifo = fifo; | 
|  | mutex_unlock(&chan->lock); | 
|  |  | 
|  | flush_work(&chan->xdev->in_ep->workitem); | 
|  | } | 
|  |  | 
|  | static void bulk_in_completer(struct urb *urb) | 
|  | { | 
|  | struct xillybuffer *xb = urb->context; | 
|  | struct xillyusb_endpoint *ep = xb->ep; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (urb->status) { | 
|  | if (!(urb->status == -ENOENT || | 
|  | urb->status == -ECONNRESET || | 
|  | urb->status == -ESHUTDOWN)) | 
|  | report_io_error(ep->xdev, -EIO); | 
|  |  | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  | list_add_tail(&xb->entry, &ep->buffers); | 
|  | ep->outstanding_urbs--; | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | xb->len = urb->actual_length; | 
|  |  | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  | list_add_tail(&xb->entry, &ep->filled_buffers); | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  |  | 
|  | if (!ep->shutting_down) | 
|  | queue_work(ep->xdev->workq, &ep->workitem); | 
|  | } | 
|  |  | 
|  | static void bulk_out_completer(struct urb *urb) | 
|  | { | 
|  | struct xillybuffer *xb = urb->context; | 
|  | struct xillyusb_endpoint *ep = xb->ep; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (urb->status && | 
|  | (!(urb->status == -ENOENT || | 
|  | urb->status == -ECONNRESET || | 
|  | urb->status == -ESHUTDOWN))) | 
|  | report_io_error(ep->xdev, -EIO); | 
|  |  | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  | list_add_tail(&xb->entry, &ep->buffers); | 
|  | ep->outstanding_urbs--; | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  |  | 
|  | if (!ep->shutting_down) | 
|  | queue_work(ep->xdev->workq, &ep->workitem); | 
|  | } | 
|  |  | 
|  | static void try_queue_bulk_in(struct xillyusb_endpoint *ep) | 
|  | { | 
|  | struct xillyusb_dev *xdev = ep->xdev; | 
|  | struct xillybuffer *xb; | 
|  | struct urb *urb; | 
|  |  | 
|  | int rc; | 
|  | unsigned long flags; | 
|  | unsigned int bufsize = ep->buffer_size; | 
|  |  | 
|  | mutex_lock(&ep->ep_mutex); | 
|  |  | 
|  | if (ep->shutting_down || xdev->error) | 
|  | goto done; | 
|  |  | 
|  | while (1) { | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  |  | 
|  | if (list_empty(&ep->buffers)) { | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | xb = list_first_entry(&ep->buffers, struct xillybuffer, entry); | 
|  | list_del(&xb->entry); | 
|  | ep->outstanding_urbs++; | 
|  |  | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  |  | 
|  | urb = usb_alloc_urb(0, GFP_KERNEL); | 
|  | if (!urb) { | 
|  | report_io_error(xdev, -ENOMEM); | 
|  | goto relist; | 
|  | } | 
|  |  | 
|  | usb_fill_bulk_urb(urb, xdev->udev, | 
|  | usb_rcvbulkpipe(xdev->udev, ep->ep_num), | 
|  | xb->buf, bufsize, bulk_in_completer, xb); | 
|  |  | 
|  | usb_anchor_urb(urb, &ep->anchor); | 
|  |  | 
|  | rc = usb_submit_urb(urb, GFP_KERNEL); | 
|  |  | 
|  | if (rc) { | 
|  | report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM : | 
|  | -EIO); | 
|  | goto unanchor; | 
|  | } | 
|  |  | 
|  | usb_free_urb(urb); /* This just decrements reference count */ | 
|  | } | 
|  |  | 
|  | unanchor: | 
|  | usb_unanchor_urb(urb); | 
|  | usb_free_urb(urb); | 
|  |  | 
|  | relist: | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  | list_add_tail(&xb->entry, &ep->buffers); | 
|  | ep->outstanding_urbs--; | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  |  | 
|  | done: | 
|  | mutex_unlock(&ep->ep_mutex); | 
|  | } | 
|  |  | 
|  | static void try_queue_bulk_out(struct xillyusb_endpoint *ep) | 
|  | { | 
|  | struct xillyfifo *fifo = &ep->fifo; | 
|  | struct xillyusb_dev *xdev = ep->xdev; | 
|  | struct xillybuffer *xb; | 
|  | struct urb *urb; | 
|  |  | 
|  | int rc; | 
|  | unsigned int fill; | 
|  | unsigned long flags; | 
|  | bool do_wake = false; | 
|  |  | 
|  | mutex_lock(&ep->ep_mutex); | 
|  |  | 
|  | if (ep->shutting_down || xdev->error) | 
|  | goto done; | 
|  |  | 
|  | fill = READ_ONCE(fifo->fill) & ep->fill_mask; | 
|  |  | 
|  | while (1) { | 
|  | int count; | 
|  | unsigned int max_read; | 
|  |  | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Race conditions might have the FIFO filled while the | 
|  | * endpoint is marked as drained here. That doesn't matter, | 
|  | * because the sole purpose of @drained is to ensure that | 
|  | * certain data has been sent on the USB channel before | 
|  | * shutting it down. Hence knowing that the FIFO appears | 
|  | * to be empty with no outstanding URBs at some moment | 
|  | * is good enough. | 
|  | */ | 
|  |  | 
|  | if (!fill) { | 
|  | ep->drained = !ep->outstanding_urbs; | 
|  | if (ep->drained && ep->wake_on_drain) | 
|  | do_wake = true; | 
|  |  | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ep->drained = false; | 
|  |  | 
|  | if ((fill < ep->buffer_size && ep->outstanding_urbs) || | 
|  | list_empty(&ep->buffers)) { | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | xb = list_first_entry(&ep->buffers, struct xillybuffer, entry); | 
|  | list_del(&xb->entry); | 
|  | ep->outstanding_urbs++; | 
|  |  | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  |  | 
|  | max_read = min(fill, ep->buffer_size); | 
|  |  | 
|  | count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy); | 
|  |  | 
|  | /* | 
|  | * xilly_memcpy always returns 0 => fifo_read can't fail => | 
|  | * count > 0 | 
|  | */ | 
|  |  | 
|  | urb = usb_alloc_urb(0, GFP_KERNEL); | 
|  | if (!urb) { | 
|  | report_io_error(xdev, -ENOMEM); | 
|  | goto relist; | 
|  | } | 
|  |  | 
|  | usb_fill_bulk_urb(urb, xdev->udev, | 
|  | usb_sndbulkpipe(xdev->udev, ep->ep_num), | 
|  | xb->buf, count, bulk_out_completer, xb); | 
|  |  | 
|  | usb_anchor_urb(urb, &ep->anchor); | 
|  |  | 
|  | rc = usb_submit_urb(urb, GFP_KERNEL); | 
|  |  | 
|  | if (rc) { | 
|  | report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM : | 
|  | -EIO); | 
|  | goto unanchor; | 
|  | } | 
|  |  | 
|  | usb_free_urb(urb); /* This just decrements reference count */ | 
|  |  | 
|  | fill -= count; | 
|  | do_wake = true; | 
|  | } | 
|  |  | 
|  | unanchor: | 
|  | usb_unanchor_urb(urb); | 
|  | usb_free_urb(urb); | 
|  |  | 
|  | relist: | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  | list_add_tail(&xb->entry, &ep->buffers); | 
|  | ep->outstanding_urbs--; | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  |  | 
|  | done: | 
|  | mutex_unlock(&ep->ep_mutex); | 
|  |  | 
|  | if (do_wake) | 
|  | wake_up_interruptible(&fifo->waitq); | 
|  | } | 
|  |  | 
|  | static void bulk_out_work(struct work_struct *work) | 
|  | { | 
|  | struct xillyusb_endpoint *ep = container_of(work, | 
|  | struct xillyusb_endpoint, | 
|  | workitem); | 
|  | try_queue_bulk_out(ep); | 
|  | } | 
|  |  | 
|  | static int process_in_opcode(struct xillyusb_dev *xdev, | 
|  | int opcode, | 
|  | int chan_num) | 
|  | { | 
|  | struct xillyusb_channel *chan; | 
|  | struct device *dev = xdev->dev; | 
|  | int chan_idx = chan_num >> 1; | 
|  |  | 
|  | if (chan_idx >= xdev->num_channels) { | 
|  | dev_err(dev, "Received illegal channel ID %d from FPGA\n", | 
|  | chan_num); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | chan = &xdev->channels[chan_idx]; | 
|  |  | 
|  | switch (opcode) { | 
|  | case OPCODE_EOF: | 
|  | if (!chan->read_data_ok) { | 
|  | dev_err(dev, "Received unexpected EOF for channel %d\n", | 
|  | chan_num); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A write memory barrier ensures that the FIFO's fill level | 
|  | * is visible before read_data_ok turns zero, so the data in | 
|  | * the FIFO isn't missed by the consumer. | 
|  | */ | 
|  | smp_wmb(); | 
|  | WRITE_ONCE(chan->read_data_ok, 0); | 
|  | wake_up_interruptible(&chan->in_fifo->waitq); | 
|  | break; | 
|  |  | 
|  | case OPCODE_REACHED_CHECKPOINT: | 
|  | chan->flushing = 0; | 
|  | wake_up_interruptible(&chan->flushq); | 
|  | break; | 
|  |  | 
|  | case OPCODE_CANCELED_CHECKPOINT: | 
|  | chan->canceled = 1; | 
|  | wake_up_interruptible(&chan->flushq); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(dev, "Received illegal opcode %d from FPGA\n", | 
|  | opcode); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_bulk_in(struct xillybuffer *xb) | 
|  | { | 
|  | struct xillyusb_endpoint *ep = xb->ep; | 
|  | struct xillyusb_dev *xdev = ep->xdev; | 
|  | struct device *dev = xdev->dev; | 
|  | int dws = xb->len >> 2; | 
|  | __le32 *p = xb->buf; | 
|  | u32 ctrlword; | 
|  | struct xillyusb_channel *chan; | 
|  | struct xillyfifo *fifo; | 
|  | int chan_num = 0, opcode; | 
|  | int chan_idx; | 
|  | int bytes, count, dwconsume; | 
|  | int in_bytes_left = 0; | 
|  | int rc; | 
|  |  | 
|  | if ((dws << 2) != xb->len) { | 
|  | dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n", | 
|  | xb->len); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (xdev->in_bytes_left) { | 
|  | bytes = min(xdev->in_bytes_left, dws << 2); | 
|  | in_bytes_left = xdev->in_bytes_left - bytes; | 
|  | chan_num = xdev->leftover_chan_num; | 
|  | goto resume_leftovers; | 
|  | } | 
|  |  | 
|  | while (dws) { | 
|  | ctrlword = le32_to_cpu(*p++); | 
|  | dws--; | 
|  |  | 
|  | chan_num = ctrlword & 0xfff; | 
|  | count = (ctrlword >> 12) & 0x3ff; | 
|  | opcode = (ctrlword >> 24) & 0xf; | 
|  |  | 
|  | if (opcode != OPCODE_DATA) { | 
|  | unsigned int in_counter = xdev->in_counter++ & 0x3ff; | 
|  |  | 
|  | if (count != in_counter) { | 
|  | dev_err(dev, "Expected opcode counter %d, got %d\n", | 
|  | in_counter, count); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | rc = process_in_opcode(xdev, opcode, chan_num); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bytes = min(count + 1, dws << 2); | 
|  | in_bytes_left = count + 1 - bytes; | 
|  |  | 
|  | resume_leftovers: | 
|  | chan_idx = chan_num >> 1; | 
|  |  | 
|  | if (!(chan_num & 1) || chan_idx >= xdev->num_channels || | 
|  | !xdev->channels[chan_idx].read_data_ok) { | 
|  | dev_err(dev, "Received illegal channel ID %d from FPGA\n", | 
|  | chan_num); | 
|  | return -EIO; | 
|  | } | 
|  | chan = &xdev->channels[chan_idx]; | 
|  |  | 
|  | fifo = chan->in_fifo; | 
|  |  | 
|  | if (unlikely(!fifo)) | 
|  | return -EIO; /* We got really unexpected data */ | 
|  |  | 
|  | if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) { | 
|  | dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | wake_up_interruptible(&fifo->waitq); | 
|  |  | 
|  | dwconsume = (bytes + 3) >> 2; | 
|  | dws -= dwconsume; | 
|  | p += dwconsume; | 
|  | } | 
|  |  | 
|  | xdev->in_bytes_left = in_bytes_left; | 
|  | xdev->leftover_chan_num = chan_num; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bulk_in_work(struct work_struct *work) | 
|  | { | 
|  | struct xillyusb_endpoint *ep = | 
|  | container_of(work, struct xillyusb_endpoint, workitem); | 
|  | struct xillyusb_dev *xdev = ep->xdev; | 
|  | unsigned long flags; | 
|  | struct xillybuffer *xb; | 
|  | bool consumed = false; | 
|  | int rc = 0; | 
|  |  | 
|  | mutex_lock(&xdev->process_in_mutex); | 
|  |  | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  |  | 
|  | while (1) { | 
|  | if (rc || list_empty(&ep->filled_buffers)) { | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  | mutex_unlock(&xdev->process_in_mutex); | 
|  |  | 
|  | if (rc) | 
|  | report_io_error(xdev, rc); | 
|  | else if (consumed) | 
|  | try_queue_bulk_in(ep); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | xb = list_first_entry(&ep->filled_buffers, struct xillybuffer, | 
|  | entry); | 
|  | list_del(&xb->entry); | 
|  |  | 
|  | spin_unlock_irqrestore(&ep->buffers_lock, flags); | 
|  |  | 
|  | consumed = true; | 
|  |  | 
|  | if (!xdev->error) | 
|  | rc = process_bulk_in(xb); | 
|  |  | 
|  | spin_lock_irqsave(&ep->buffers_lock, flags); | 
|  | list_add_tail(&xb->entry, &ep->buffers); | 
|  | ep->outstanding_urbs--; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xillyusb_send_opcode(struct xillyusb_dev *xdev, | 
|  | int chan_num, char opcode, u32 data) | 
|  | { | 
|  | struct xillyusb_endpoint *ep = xdev->msg_ep; | 
|  | struct xillyfifo *fifo = &ep->fifo; | 
|  | __le32 msg[2]; | 
|  |  | 
|  | int rc = 0; | 
|  |  | 
|  | msg[0] = cpu_to_le32((chan_num & 0xfff) | | 
|  | ((opcode & 0xf) << 24)); | 
|  | msg[1] = cpu_to_le32(data); | 
|  |  | 
|  | mutex_lock(&xdev->msg_mutex); | 
|  |  | 
|  | /* | 
|  | * The wait queue is woken with the interruptible variant, so the | 
|  | * wait function matches, however returning because of an interrupt | 
|  | * will mess things up considerably, in particular when the caller is | 
|  | * the release method. And the xdev->error part prevents being stuck | 
|  | * forever in the event of a bizarre hardware bug: Pull the USB plug. | 
|  | */ | 
|  |  | 
|  | while (wait_event_interruptible(fifo->waitq, | 
|  | fifo->fill <= (fifo->size - 8) || | 
|  | xdev->error)) | 
|  | ; /* Empty loop */ | 
|  |  | 
|  | if (xdev->error) { | 
|  | rc = xdev->error; | 
|  | goto unlock_done; | 
|  | } | 
|  |  | 
|  | fifo_write(fifo, (void *)msg, 8, xilly_memcpy); | 
|  |  | 
|  | try_queue_bulk_out(ep); | 
|  |  | 
|  | unlock_done: | 
|  | mutex_unlock(&xdev->msg_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that flush_downstream() merely waits for the data to arrive to | 
|  | * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart, | 
|  | * it does nothing to make it happen (and neither is it necessary). | 
|  | * | 
|  | * This function is not reentrant for the same @chan, but this is covered | 
|  | * by the fact that for any given @chan, it's called either by the open, | 
|  | * write, llseek and flush fops methods, which can't run in parallel (and the | 
|  | * write + flush and llseek method handlers are protected with out_mutex). | 
|  | * | 
|  | * chan->flushed is there to avoid multiple flushes at the same position, | 
|  | * in particular as a result of programs that close the file descriptor | 
|  | * e.g. after a dup2() for redirection. | 
|  | */ | 
|  |  | 
|  | static int flush_downstream(struct xillyusb_channel *chan, | 
|  | long timeout, | 
|  | bool interruptible) | 
|  | { | 
|  | struct xillyusb_dev *xdev = chan->xdev; | 
|  | int chan_num = chan->chan_idx << 1; | 
|  | long deadline, left_to_sleep; | 
|  | int rc; | 
|  |  | 
|  | if (chan->flushed) | 
|  | return 0; | 
|  |  | 
|  | deadline = jiffies + 1 + timeout; | 
|  |  | 
|  | if (chan->flushing) { | 
|  | long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT; | 
|  |  | 
|  | chan->canceled = 0; | 
|  | rc = xillyusb_send_opcode(xdev, chan_num, | 
|  | OPCODE_CANCEL_CHECKPOINT, 0); | 
|  |  | 
|  | if (rc) | 
|  | return rc; /* Only real error, never -EINTR */ | 
|  |  | 
|  | /* Ignoring interrupts. Cancellation must be handled */ | 
|  | while (!chan->canceled) { | 
|  | left_to_sleep = cancel_deadline - ((long)jiffies); | 
|  |  | 
|  | if (left_to_sleep <= 0) { | 
|  | report_io_error(xdev, -EIO); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | rc = wait_event_interruptible_timeout(chan->flushq, | 
|  | chan->canceled || | 
|  | xdev->error, | 
|  | left_to_sleep); | 
|  |  | 
|  | if (xdev->error) | 
|  | return xdev->error; | 
|  | } | 
|  | } | 
|  |  | 
|  | chan->flushing = 1; | 
|  |  | 
|  | /* | 
|  | * The checkpoint is given in terms of data elements, not bytes. As | 
|  | * a result, if less than an element's worth of data is stored in the | 
|  | * FIFO, it's not flushed, including the flush before closing, which | 
|  | * means that such data is lost. This is consistent with PCIe Xillybus. | 
|  | */ | 
|  |  | 
|  | rc = xillyusb_send_opcode(xdev, chan_num, | 
|  | OPCODE_SET_CHECKPOINT, | 
|  | chan->out_bytes >> | 
|  | chan->out_log2_element_size); | 
|  |  | 
|  | if (rc) | 
|  | return rc; /* Only real error, never -EINTR */ | 
|  |  | 
|  | if (!timeout) { | 
|  | while (chan->flushing) { | 
|  | rc = wait_event_interruptible(chan->flushq, | 
|  | !chan->flushing || | 
|  | xdev->error); | 
|  | if (xdev->error) | 
|  | return xdev->error; | 
|  |  | 
|  | if (interruptible && rc) | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | while (chan->flushing) { | 
|  | left_to_sleep = deadline - ((long)jiffies); | 
|  |  | 
|  | if (left_to_sleep <= 0) | 
|  | return -ETIMEDOUT; | 
|  |  | 
|  | rc = wait_event_interruptible_timeout(chan->flushq, | 
|  | !chan->flushing || | 
|  | xdev->error, | 
|  | left_to_sleep); | 
|  |  | 
|  | if (xdev->error) | 
|  | return xdev->error; | 
|  |  | 
|  | if (interruptible && rc < 0) | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | done: | 
|  | chan->flushed = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* request_read_anything(): Ask the FPGA for any little amount of data */ | 
|  | static int request_read_anything(struct xillyusb_channel *chan, | 
|  | char opcode) | 
|  | { | 
|  | struct xillyusb_dev *xdev = chan->xdev; | 
|  | unsigned int sh = chan->in_log2_element_size; | 
|  | int chan_num = (chan->chan_idx << 1) | 1; | 
|  | u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1; | 
|  |  | 
|  | return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh); | 
|  | } | 
|  |  | 
|  | static int xillyusb_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct xillyusb_dev *xdev; | 
|  | struct xillyusb_channel *chan; | 
|  | struct xillyfifo *in_fifo = NULL; | 
|  | struct xillyusb_endpoint *out_ep = NULL; | 
|  | int rc; | 
|  | int index; | 
|  |  | 
|  | rc = xillybus_find_inode(inode, (void **)&xdev, &index); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | chan = &xdev->channels[index]; | 
|  | filp->private_data = chan; | 
|  |  | 
|  | mutex_lock(&chan->lock); | 
|  |  | 
|  | rc = -ENODEV; | 
|  |  | 
|  | if (xdev->error) | 
|  | goto unmutex_fail; | 
|  |  | 
|  | if (((filp->f_mode & FMODE_READ) && !chan->readable) || | 
|  | ((filp->f_mode & FMODE_WRITE) && !chan->writable)) | 
|  | goto unmutex_fail; | 
|  |  | 
|  | if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) && | 
|  | chan->in_synchronous) { | 
|  | dev_err(xdev->dev, | 
|  | "open() failed: O_NONBLOCK not allowed for read on this device\n"); | 
|  | goto unmutex_fail; | 
|  | } | 
|  |  | 
|  | if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) && | 
|  | chan->out_synchronous) { | 
|  | dev_err(xdev->dev, | 
|  | "open() failed: O_NONBLOCK not allowed for write on this device\n"); | 
|  | goto unmutex_fail; | 
|  | } | 
|  |  | 
|  | rc = -EBUSY; | 
|  |  | 
|  | if (((filp->f_mode & FMODE_READ) && chan->open_for_read) || | 
|  | ((filp->f_mode & FMODE_WRITE) && chan->open_for_write)) | 
|  | goto unmutex_fail; | 
|  |  | 
|  | kref_get(&xdev->kref); | 
|  |  | 
|  | if (filp->f_mode & FMODE_READ) | 
|  | chan->open_for_read = 1; | 
|  |  | 
|  | if (filp->f_mode & FMODE_WRITE) | 
|  | chan->open_for_write = 1; | 
|  |  | 
|  | mutex_unlock(&chan->lock); | 
|  |  | 
|  | if (filp->f_mode & FMODE_WRITE) { | 
|  | out_ep = endpoint_alloc(xdev, | 
|  | (chan->chan_idx + 2) | USB_DIR_OUT, | 
|  | bulk_out_work, BUF_SIZE_ORDER, BUFNUM); | 
|  |  | 
|  | if (!out_ep) { | 
|  | rc = -ENOMEM; | 
|  | goto unopen; | 
|  | } | 
|  |  | 
|  | rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size); | 
|  |  | 
|  | if (rc) | 
|  | goto late_unopen; | 
|  |  | 
|  | out_ep->fill_mask = -(1 << chan->out_log2_element_size); | 
|  | chan->out_bytes = 0; | 
|  | chan->flushed = 0; | 
|  |  | 
|  | /* | 
|  | * Sending a flush request to a previously closed stream | 
|  | * effectively opens it, and also waits until the command is | 
|  | * confirmed by the FPGA. The latter is necessary because the | 
|  | * data is sent through a separate BULK OUT endpoint, and the | 
|  | * xHCI controller is free to reorder transmissions. | 
|  | * | 
|  | * This can't go wrong unless there's a serious hardware error | 
|  | * (or the computer is stuck for 500 ms?) | 
|  | */ | 
|  | rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false); | 
|  |  | 
|  | if (rc == -ETIMEDOUT) { | 
|  | rc = -EIO; | 
|  | report_io_error(xdev, rc); | 
|  | } | 
|  |  | 
|  | if (rc) | 
|  | goto late_unopen; | 
|  | } | 
|  |  | 
|  | if (filp->f_mode & FMODE_READ) { | 
|  | in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL); | 
|  |  | 
|  | if (!in_fifo) { | 
|  | rc = -ENOMEM; | 
|  | goto late_unopen; | 
|  | } | 
|  |  | 
|  | rc = fifo_init(in_fifo, chan->in_log2_fifo_size); | 
|  |  | 
|  | if (rc) { | 
|  | kfree(in_fifo); | 
|  | goto late_unopen; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_lock(&chan->lock); | 
|  | if (in_fifo) { | 
|  | chan->in_fifo = in_fifo; | 
|  | chan->read_data_ok = 1; | 
|  | } | 
|  | if (out_ep) | 
|  | chan->out_ep = out_ep; | 
|  | mutex_unlock(&chan->lock); | 
|  |  | 
|  | if (in_fifo) { | 
|  | u32 in_checkpoint = 0; | 
|  |  | 
|  | if (!chan->in_synchronous) | 
|  | in_checkpoint = in_fifo->size >> | 
|  | chan->in_log2_element_size; | 
|  |  | 
|  | chan->in_consumed_bytes = 0; | 
|  | chan->poll_used = 0; | 
|  | chan->in_current_checkpoint = in_checkpoint; | 
|  | rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1, | 
|  | OPCODE_SET_CHECKPOINT, | 
|  | in_checkpoint); | 
|  |  | 
|  | if (rc) /* Failure guarantees that opcode wasn't sent */ | 
|  | goto unfifo; | 
|  |  | 
|  | /* | 
|  | * In non-blocking mode, request the FPGA to send any data it | 
|  | * has right away. Otherwise, the first read() will always | 
|  | * return -EAGAIN, which is OK strictly speaking, but ugly. | 
|  | * Checking and unrolling if this fails isn't worth the | 
|  | * effort -- the error is propagated to the first read() | 
|  | * anyhow. | 
|  | */ | 
|  | if (filp->f_flags & O_NONBLOCK) | 
|  | request_read_anything(chan, OPCODE_SET_PUSH); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | unfifo: | 
|  | chan->read_data_ok = 0; | 
|  | safely_assign_in_fifo(chan, NULL); | 
|  | fifo_mem_release(in_fifo); | 
|  | kfree(in_fifo); | 
|  |  | 
|  | if (out_ep) { | 
|  | mutex_lock(&chan->lock); | 
|  | chan->out_ep = NULL; | 
|  | mutex_unlock(&chan->lock); | 
|  | } | 
|  |  | 
|  | late_unopen: | 
|  | if (out_ep) | 
|  | endpoint_dealloc(out_ep); | 
|  |  | 
|  | unopen: | 
|  | mutex_lock(&chan->lock); | 
|  |  | 
|  | if (filp->f_mode & FMODE_READ) | 
|  | chan->open_for_read = 0; | 
|  |  | 
|  | if (filp->f_mode & FMODE_WRITE) | 
|  | chan->open_for_write = 0; | 
|  |  | 
|  | mutex_unlock(&chan->lock); | 
|  |  | 
|  | kref_put(&xdev->kref, cleanup_dev); | 
|  |  | 
|  | return rc; | 
|  |  | 
|  | unmutex_fail: | 
|  | mutex_unlock(&chan->lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static ssize_t xillyusb_read(struct file *filp, char __user *userbuf, | 
|  | size_t count, loff_t *f_pos) | 
|  | { | 
|  | struct xillyusb_channel *chan = filp->private_data; | 
|  | struct xillyusb_dev *xdev = chan->xdev; | 
|  | struct xillyfifo *fifo = chan->in_fifo; | 
|  | int chan_num = (chan->chan_idx << 1) | 1; | 
|  |  | 
|  | long deadline, left_to_sleep; | 
|  | int bytes_done = 0; | 
|  | bool sent_set_push = false; | 
|  | int rc; | 
|  |  | 
|  | deadline = jiffies + 1 + XILLY_RX_TIMEOUT; | 
|  |  | 
|  | rc = mutex_lock_interruptible(&chan->in_mutex); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | while (1) { | 
|  | u32 fifo_checkpoint_bytes, complete_checkpoint_bytes; | 
|  | u32 complete_checkpoint, fifo_checkpoint; | 
|  | u32 checkpoint; | 
|  | s32 diff, leap; | 
|  | unsigned int sh = chan->in_log2_element_size; | 
|  | bool checkpoint_for_complete; | 
|  |  | 
|  | rc = fifo_read(fifo, (__force void *)userbuf + bytes_done, | 
|  | count - bytes_done, xilly_copy_to_user); | 
|  |  | 
|  | if (rc < 0) | 
|  | break; | 
|  |  | 
|  | bytes_done += rc; | 
|  | chan->in_consumed_bytes += rc; | 
|  |  | 
|  | left_to_sleep = deadline - ((long)jiffies); | 
|  |  | 
|  | /* | 
|  | * Some 32-bit arithmetic that may wrap. Note that | 
|  | * complete_checkpoint is rounded up to the closest element | 
|  | * boundary, because the read() can't be completed otherwise. | 
|  | * fifo_checkpoint_bytes is rounded down, because it protects | 
|  | * in_fifo from overflowing. | 
|  | */ | 
|  |  | 
|  | fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size; | 
|  | complete_checkpoint_bytes = | 
|  | chan->in_consumed_bytes + count - bytes_done; | 
|  |  | 
|  | fifo_checkpoint = fifo_checkpoint_bytes >> sh; | 
|  | complete_checkpoint = | 
|  | (complete_checkpoint_bytes + (1 << sh) - 1) >> sh; | 
|  |  | 
|  | diff = (fifo_checkpoint - complete_checkpoint) << sh; | 
|  |  | 
|  | if (chan->in_synchronous && diff >= 0) { | 
|  | checkpoint = complete_checkpoint; | 
|  | checkpoint_for_complete = true; | 
|  | } else { | 
|  | checkpoint = fifo_checkpoint; | 
|  | checkpoint_for_complete = false; | 
|  | } | 
|  |  | 
|  | leap = (checkpoint - chan->in_current_checkpoint) << sh; | 
|  |  | 
|  | /* | 
|  | * To prevent flooding of OPCODE_SET_CHECKPOINT commands as | 
|  | * data is consumed, it's issued only if it moves the | 
|  | * checkpoint by at least an 8th of the FIFO's size, or if | 
|  | * it's necessary to complete the number of bytes requested by | 
|  | * the read() call. | 
|  | * | 
|  | * chan->read_data_ok is checked to spare an unnecessary | 
|  | * submission after receiving EOF, however it's harmless if | 
|  | * such slips away. | 
|  | */ | 
|  |  | 
|  | if (chan->read_data_ok && | 
|  | (leap > (fifo->size >> 3) || | 
|  | (checkpoint_for_complete && leap > 0))) { | 
|  | chan->in_current_checkpoint = checkpoint; | 
|  | rc = xillyusb_send_opcode(xdev, chan_num, | 
|  | OPCODE_SET_CHECKPOINT, | 
|  | checkpoint); | 
|  |  | 
|  | if (rc) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bytes_done == count || | 
|  | (left_to_sleep <= 0 && bytes_done)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Reaching here means that the FIFO was empty when | 
|  | * fifo_read() returned, but not necessarily right now. Error | 
|  | * and EOF are checked and reported only now, so that no data | 
|  | * that managed its way to the FIFO is lost. | 
|  | */ | 
|  |  | 
|  | if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */ | 
|  | /* Has data slipped into the FIFO since fifo_read()? */ | 
|  | smp_rmb(); | 
|  | if (READ_ONCE(fifo->fill)) | 
|  | continue; | 
|  |  | 
|  | rc = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (xdev->error) { | 
|  | rc = xdev->error; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (filp->f_flags & O_NONBLOCK) { | 
|  | rc = -EAGAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!sent_set_push) { | 
|  | rc = xillyusb_send_opcode(xdev, chan_num, | 
|  | OPCODE_SET_PUSH, | 
|  | complete_checkpoint); | 
|  |  | 
|  | if (rc) | 
|  | break; | 
|  |  | 
|  | sent_set_push = true; | 
|  | } | 
|  |  | 
|  | if (left_to_sleep > 0) { | 
|  | /* | 
|  | * Note that when xdev->error is set (e.g. when the | 
|  | * device is unplugged), read_data_ok turns zero and | 
|  | * fifo->waitq is awaken. | 
|  | * Therefore no special attention to xdev->error. | 
|  | */ | 
|  |  | 
|  | rc = wait_event_interruptible_timeout | 
|  | (fifo->waitq, | 
|  | fifo->fill || !chan->read_data_ok, | 
|  | left_to_sleep); | 
|  | } else { /* bytes_done == 0 */ | 
|  | /* Tell FPGA to send anything it has */ | 
|  | rc = request_read_anything(chan, OPCODE_UPDATE_PUSH); | 
|  |  | 
|  | if (rc) | 
|  | break; | 
|  |  | 
|  | rc = wait_event_interruptible | 
|  | (fifo->waitq, | 
|  | fifo->fill || !chan->read_data_ok); | 
|  | } | 
|  |  | 
|  | if (rc < 0) { | 
|  | rc = -EINTR; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) && | 
|  | !READ_ONCE(fifo->fill)) | 
|  | request_read_anything(chan, OPCODE_SET_PUSH); | 
|  |  | 
|  | mutex_unlock(&chan->in_mutex); | 
|  |  | 
|  | if (bytes_done) | 
|  | return bytes_done; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int xillyusb_flush(struct file *filp, fl_owner_t id) | 
|  | { | 
|  | struct xillyusb_channel *chan = filp->private_data; | 
|  | int rc; | 
|  |  | 
|  | if (!(filp->f_mode & FMODE_WRITE)) | 
|  | return 0; | 
|  |  | 
|  | rc = mutex_lock_interruptible(&chan->out_mutex); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* | 
|  | * One second's timeout on flushing. Interrupts are ignored, because if | 
|  | * the user pressed CTRL-C, that interrupt will still be in flight by | 
|  | * the time we reach here, and the opportunity to flush is lost. | 
|  | */ | 
|  | rc = flush_downstream(chan, HZ, false); | 
|  |  | 
|  | mutex_unlock(&chan->out_mutex); | 
|  |  | 
|  | if (rc == -ETIMEDOUT) { | 
|  | /* The things you do to use dev_warn() and not pr_warn() */ | 
|  | struct xillyusb_dev *xdev = chan->xdev; | 
|  |  | 
|  | mutex_lock(&chan->lock); | 
|  | if (!xdev->error) | 
|  | dev_warn(xdev->dev, | 
|  | "Timed out while flushing. Output data may be lost.\n"); | 
|  | mutex_unlock(&chan->lock); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf, | 
|  | size_t count, loff_t *f_pos) | 
|  | { | 
|  | struct xillyusb_channel *chan = filp->private_data; | 
|  | struct xillyusb_dev *xdev = chan->xdev; | 
|  | struct xillyfifo *fifo = &chan->out_ep->fifo; | 
|  | int rc; | 
|  |  | 
|  | rc = mutex_lock_interruptible(&chan->out_mutex); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | while (1) { | 
|  | if (xdev->error) { | 
|  | rc = xdev->error; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (count == 0) | 
|  | break; | 
|  |  | 
|  | rc = fifo_write(fifo, (__force void *)userbuf, count, | 
|  | xilly_copy_from_user); | 
|  |  | 
|  | if (rc != 0) | 
|  | break; | 
|  |  | 
|  | if (filp->f_flags & O_NONBLOCK) { | 
|  | rc = -EAGAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wait_event_interruptible | 
|  | (fifo->waitq, | 
|  | fifo->fill != fifo->size || xdev->error)) { | 
|  | rc = -EINTR; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rc < 0) | 
|  | goto done; | 
|  |  | 
|  | chan->out_bytes += rc; | 
|  |  | 
|  | if (rc) { | 
|  | try_queue_bulk_out(chan->out_ep); | 
|  | chan->flushed = 0; | 
|  | } | 
|  |  | 
|  | if (chan->out_synchronous) { | 
|  | int flush_rc = flush_downstream(chan, 0, true); | 
|  |  | 
|  | if (flush_rc && !rc) | 
|  | rc = flush_rc; | 
|  | } | 
|  |  | 
|  | done: | 
|  | mutex_unlock(&chan->out_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int xillyusb_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct xillyusb_channel *chan = filp->private_data; | 
|  | struct xillyusb_dev *xdev = chan->xdev; | 
|  | int rc_read = 0, rc_write = 0; | 
|  |  | 
|  | if (filp->f_mode & FMODE_READ) { | 
|  | struct xillyfifo *in_fifo = chan->in_fifo; | 
|  |  | 
|  | rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1, | 
|  | OPCODE_CLOSE, 0); | 
|  | /* | 
|  | * If rc_read is nonzero, xdev->error indicates a global | 
|  | * device error. The error is reported later, so that | 
|  | * resources are freed. | 
|  | * | 
|  | * Looping on wait_event_interruptible() kinda breaks the idea | 
|  | * of being interruptible, and this should have been | 
|  | * wait_event(). Only it's being waken with | 
|  | * wake_up_interruptible() for the sake of other uses. If | 
|  | * there's a global device error, chan->read_data_ok is | 
|  | * deasserted and the wait queue is awaken, so this is covered. | 
|  | */ | 
|  |  | 
|  | while (wait_event_interruptible(in_fifo->waitq, | 
|  | !chan->read_data_ok)) | 
|  | ; /* Empty loop */ | 
|  |  | 
|  | safely_assign_in_fifo(chan, NULL); | 
|  | fifo_mem_release(in_fifo); | 
|  | kfree(in_fifo); | 
|  |  | 
|  | mutex_lock(&chan->lock); | 
|  | chan->open_for_read = 0; | 
|  | mutex_unlock(&chan->lock); | 
|  | } | 
|  |  | 
|  | if (filp->f_mode & FMODE_WRITE) { | 
|  | struct xillyusb_endpoint *ep = chan->out_ep; | 
|  | /* | 
|  | * chan->flushing isn't zeroed. If the pre-release flush timed | 
|  | * out, a cancel request will be sent before the next | 
|  | * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again). | 
|  | * This is despite that the FPGA forgets about the checkpoint | 
|  | * request as the file closes. Still, in an exceptional race | 
|  | * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT | 
|  | * just before closing that would reach the host after the | 
|  | * file has re-opened. | 
|  | */ | 
|  |  | 
|  | mutex_lock(&chan->lock); | 
|  | chan->out_ep = NULL; | 
|  | mutex_unlock(&chan->lock); | 
|  |  | 
|  | endpoint_quiesce(ep); | 
|  | endpoint_dealloc(ep); | 
|  |  | 
|  | /* See comments on rc_read above */ | 
|  | rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1, | 
|  | OPCODE_CLOSE, 0); | 
|  |  | 
|  | mutex_lock(&chan->lock); | 
|  | chan->open_for_write = 0; | 
|  | mutex_unlock(&chan->lock); | 
|  | } | 
|  |  | 
|  | kref_put(&xdev->kref, cleanup_dev); | 
|  |  | 
|  | return rc_read ? rc_read : rc_write; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Xillybus' API allows device nodes to be seekable, giving the user | 
|  | * application access to a RAM array on the FPGA (or logic emulating it). | 
|  | */ | 
|  |  | 
|  | static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence) | 
|  | { | 
|  | struct xillyusb_channel *chan = filp->private_data; | 
|  | struct xillyusb_dev *xdev = chan->xdev; | 
|  | loff_t pos = filp->f_pos; | 
|  | int rc = 0; | 
|  | unsigned int log2_element_size = chan->readable ? | 
|  | chan->in_log2_element_size : chan->out_log2_element_size; | 
|  |  | 
|  | /* | 
|  | * Take both mutexes not allowing interrupts, since it seems like | 
|  | * common applications don't expect an -EINTR here. Besides, multiple | 
|  | * access to a single file descriptor on seekable devices is a mess | 
|  | * anyhow. | 
|  | */ | 
|  |  | 
|  | mutex_lock(&chan->out_mutex); | 
|  | mutex_lock(&chan->in_mutex); | 
|  |  | 
|  | switch (whence) { | 
|  | case SEEK_SET: | 
|  | pos = offset; | 
|  | break; | 
|  | case SEEK_CUR: | 
|  | pos += offset; | 
|  | break; | 
|  | case SEEK_END: | 
|  | pos = offset; /* Going to the end => to the beginning */ | 
|  | break; | 
|  | default: | 
|  | rc = -EINVAL; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* In any case, we must finish on an element boundary */ | 
|  | if (pos & ((1 << log2_element_size) - 1)) { | 
|  | rc = -EINVAL; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1, | 
|  | OPCODE_SET_ADDR, | 
|  | pos >> log2_element_size); | 
|  |  | 
|  | if (rc) | 
|  | goto end; | 
|  |  | 
|  | if (chan->writable) { | 
|  | chan->flushed = 0; | 
|  | rc = flush_downstream(chan, HZ, false); | 
|  | } | 
|  |  | 
|  | end: | 
|  | mutex_unlock(&chan->out_mutex); | 
|  | mutex_unlock(&chan->in_mutex); | 
|  |  | 
|  | if (rc) /* Return error after releasing mutexes */ | 
|  | return rc; | 
|  |  | 
|  | filp->f_pos = pos; | 
|  |  | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | static __poll_t xillyusb_poll(struct file *filp, poll_table *wait) | 
|  | { | 
|  | struct xillyusb_channel *chan = filp->private_data; | 
|  | __poll_t mask = 0; | 
|  |  | 
|  | if (chan->in_fifo) | 
|  | poll_wait(filp, &chan->in_fifo->waitq, wait); | 
|  |  | 
|  | if (chan->out_ep) | 
|  | poll_wait(filp, &chan->out_ep->fifo.waitq, wait); | 
|  |  | 
|  | /* | 
|  | * If this is the first time poll() is called, and the file is | 
|  | * readable, set the relevant flag. Also tell the FPGA to send all it | 
|  | * has, to kickstart the mechanism that ensures there's always some | 
|  | * data in in_fifo unless the stream is dry end-to-end. Note that the | 
|  | * first poll() may not return a EPOLLIN, even if there's data on the | 
|  | * FPGA. Rather, the data will arrive soon, and trigger the relevant | 
|  | * wait queue. | 
|  | */ | 
|  |  | 
|  | if (!chan->poll_used && chan->in_fifo) { | 
|  | chan->poll_used = 1; | 
|  | request_read_anything(chan, OPCODE_SET_PUSH); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * poll() won't play ball regarding read() channels which | 
|  | * are synchronous. Allowing that will create situations where data has | 
|  | * been delivered at the FPGA, and users expecting select() to wake up, | 
|  | * which it may not. So make it never work. | 
|  | */ | 
|  |  | 
|  | if (chan->in_fifo && !chan->in_synchronous && | 
|  | (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok)) | 
|  | mask |= EPOLLIN | EPOLLRDNORM; | 
|  |  | 
|  | if (chan->out_ep && | 
|  | (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size)) | 
|  | mask |= EPOLLOUT | EPOLLWRNORM; | 
|  |  | 
|  | if (chan->xdev->error) | 
|  | mask |= EPOLLERR; | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static const struct file_operations xillyusb_fops = { | 
|  | .owner      = THIS_MODULE, | 
|  | .read       = xillyusb_read, | 
|  | .write      = xillyusb_write, | 
|  | .open       = xillyusb_open, | 
|  | .flush      = xillyusb_flush, | 
|  | .release    = xillyusb_release, | 
|  | .llseek     = xillyusb_llseek, | 
|  | .poll       = xillyusb_poll, | 
|  | }; | 
|  |  | 
|  | static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev) | 
|  | { | 
|  | xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT, | 
|  | bulk_out_work, 1, 2); | 
|  | if (!xdev->msg_ep) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */ | 
|  | goto dealloc; | 
|  |  | 
|  | xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */ | 
|  |  | 
|  | xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN, | 
|  | bulk_in_work, BUF_SIZE_ORDER, BUFNUM); | 
|  | if (!xdev->in_ep) | 
|  | goto dealloc; | 
|  |  | 
|  | try_queue_bulk_in(xdev->in_ep); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | dealloc: | 
|  | endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */ | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int setup_channels(struct xillyusb_dev *xdev, | 
|  | __le16 *chandesc, | 
|  | int num_channels) | 
|  | { | 
|  | struct xillyusb_channel *chan; | 
|  | int i; | 
|  |  | 
|  | chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL); | 
|  | if (!chan) | 
|  | return -ENOMEM; | 
|  |  | 
|  | xdev->channels = chan; | 
|  |  | 
|  | for (i = 0; i < num_channels; i++, chan++) { | 
|  | unsigned int in_desc = le16_to_cpu(*chandesc++); | 
|  | unsigned int out_desc = le16_to_cpu(*chandesc++); | 
|  |  | 
|  | chan->xdev = xdev; | 
|  | mutex_init(&chan->in_mutex); | 
|  | mutex_init(&chan->out_mutex); | 
|  | mutex_init(&chan->lock); | 
|  | init_waitqueue_head(&chan->flushq); | 
|  |  | 
|  | chan->chan_idx = i; | 
|  |  | 
|  | if (in_desc & 0x80) { /* Entry is valid */ | 
|  | chan->readable = 1; | 
|  | chan->in_synchronous = !!(in_desc & 0x40); | 
|  | chan->in_seekable = !!(in_desc & 0x20); | 
|  | chan->in_log2_element_size = in_desc & 0x0f; | 
|  | chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A downstream channel should never exist above index 13, | 
|  | * as it would request a nonexistent BULK endpoint > 15. | 
|  | * In the peculiar case that it does, it's ignored silently. | 
|  | */ | 
|  |  | 
|  | if ((out_desc & 0x80) && i < 14) { /* Entry is valid */ | 
|  | chan->writable = 1; | 
|  | chan->out_synchronous = !!(out_desc & 0x40); | 
|  | chan->out_seekable = !!(out_desc & 0x20); | 
|  | chan->out_log2_element_size = out_desc & 0x0f; | 
|  | chan->out_log2_fifo_size = | 
|  | ((out_desc >> 8) & 0x1f) + 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xillyusb_discovery(struct usb_interface *interface) | 
|  | { | 
|  | int rc; | 
|  | struct xillyusb_dev *xdev = usb_get_intfdata(interface); | 
|  | __le16 bogus_chandesc[2]; | 
|  | struct xillyfifo idt_fifo; | 
|  | struct xillyusb_channel *chan; | 
|  | unsigned int idt_len, names_offset; | 
|  | unsigned char *idt; | 
|  | int num_channels; | 
|  |  | 
|  | rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0); | 
|  |  | 
|  | if (rc) { | 
|  | dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Phase I: Set up one fake upstream channel and obtain IDT */ | 
|  |  | 
|  | /* Set up a fake IDT with one async IN stream */ | 
|  | bogus_chandesc[0] = cpu_to_le16(0x80); | 
|  | bogus_chandesc[1] = cpu_to_le16(0); | 
|  |  | 
|  | rc = setup_channels(xdev, bogus_chandesc, 1); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | chan = xdev->channels; | 
|  |  | 
|  | chan->in_fifo = &idt_fifo; | 
|  | chan->read_data_ok = 1; | 
|  |  | 
|  | xdev->num_channels = 1; | 
|  |  | 
|  | rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0); | 
|  |  | 
|  | if (rc) { | 
|  | dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n"); | 
|  | goto unfifo; | 
|  | } | 
|  |  | 
|  | rc = wait_event_interruptible_timeout(idt_fifo.waitq, | 
|  | !chan->read_data_ok, | 
|  | XILLY_RESPONSE_TIMEOUT); | 
|  |  | 
|  | if (xdev->error) { | 
|  | rc = xdev->error; | 
|  | goto unfifo; | 
|  | } | 
|  |  | 
|  | if (rc < 0) { | 
|  | rc = -EINTR; /* Interrupt on probe method? Interesting. */ | 
|  | goto unfifo; | 
|  | } | 
|  |  | 
|  | if (chan->read_data_ok) { | 
|  | rc = -ETIMEDOUT; | 
|  | dev_err(&interface->dev, "No response from FPGA. Aborting.\n"); | 
|  | goto unfifo; | 
|  | } | 
|  |  | 
|  | idt_len = READ_ONCE(idt_fifo.fill); | 
|  | idt = kmalloc(idt_len, GFP_KERNEL); | 
|  |  | 
|  | if (!idt) { | 
|  | rc = -ENOMEM; | 
|  | goto unfifo; | 
|  | } | 
|  |  | 
|  | fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy); | 
|  |  | 
|  | if (crc32_le(~0, idt, idt_len) != 0) { | 
|  | dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n"); | 
|  | rc = -ENODEV; | 
|  | goto unidt; | 
|  | } | 
|  |  | 
|  | if (*idt > 0x90) { | 
|  | dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n", | 
|  | (int)*idt); | 
|  | rc = -ENODEV; | 
|  | goto unidt; | 
|  | } | 
|  |  | 
|  | /* Phase II: Set up the streams as defined in IDT */ | 
|  |  | 
|  | num_channels = le16_to_cpu(*((__le16 *)(idt + 1))); | 
|  | names_offset = 3 + num_channels * 4; | 
|  | idt_len -= 4; /* Exclude CRC */ | 
|  |  | 
|  | if (idt_len < names_offset) { | 
|  | dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n"); | 
|  | rc = -ENODEV; | 
|  | goto unidt; | 
|  | } | 
|  |  | 
|  | rc = setup_channels(xdev, (void *)idt + 3, num_channels); | 
|  |  | 
|  | if (rc) | 
|  | goto unidt; | 
|  |  | 
|  | /* | 
|  | * Except for wildly misbehaving hardware, or if it was disconnected | 
|  | * just after responding with the IDT, there is no reason for any | 
|  | * work item to be running now. To be sure that xdev->channels | 
|  | * is updated on anything that might run in parallel, flush the | 
|  | * workqueue, which rarely does anything. | 
|  | */ | 
|  | flush_workqueue(xdev->workq); | 
|  |  | 
|  | xdev->num_channels = num_channels; | 
|  |  | 
|  | fifo_mem_release(&idt_fifo); | 
|  | kfree(chan); | 
|  |  | 
|  | rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops, | 
|  | THIS_MODULE, xdev, | 
|  | idt + names_offset, | 
|  | idt_len - names_offset, | 
|  | num_channels, | 
|  | xillyname, true); | 
|  |  | 
|  | kfree(idt); | 
|  |  | 
|  | return rc; | 
|  |  | 
|  | unidt: | 
|  | kfree(idt); | 
|  |  | 
|  | unfifo: | 
|  | safely_assign_in_fifo(chan, NULL); | 
|  | fifo_mem_release(&idt_fifo); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int xillyusb_probe(struct usb_interface *interface, | 
|  | const struct usb_device_id *id) | 
|  | { | 
|  | struct xillyusb_dev *xdev; | 
|  | int rc; | 
|  |  | 
|  | xdev = kzalloc(sizeof(*xdev), GFP_KERNEL); | 
|  | if (!xdev) | 
|  | return -ENOMEM; | 
|  |  | 
|  | kref_init(&xdev->kref); | 
|  | mutex_init(&xdev->process_in_mutex); | 
|  | mutex_init(&xdev->msg_mutex); | 
|  |  | 
|  | xdev->udev = usb_get_dev(interface_to_usbdev(interface)); | 
|  | xdev->dev = &interface->dev; | 
|  | xdev->error = 0; | 
|  | spin_lock_init(&xdev->error_lock); | 
|  | xdev->in_counter = 0; | 
|  | xdev->in_bytes_left = 0; | 
|  | xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0); | 
|  |  | 
|  | if (!xdev->workq) { | 
|  | dev_err(&interface->dev, "Failed to allocate work queue\n"); | 
|  | rc = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | INIT_WORK(&xdev->wakeup_workitem, wakeup_all); | 
|  |  | 
|  | usb_set_intfdata(interface, xdev); | 
|  |  | 
|  | rc = xillyusb_setup_base_eps(xdev); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | rc = xillyusb_discovery(interface); | 
|  | if (rc) | 
|  | goto latefail; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | latefail: | 
|  | endpoint_quiesce(xdev->in_ep); | 
|  | endpoint_quiesce(xdev->msg_ep); | 
|  |  | 
|  | fail: | 
|  | usb_set_intfdata(interface, NULL); | 
|  | kref_put(&xdev->kref, cleanup_dev); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void xillyusb_disconnect(struct usb_interface *interface) | 
|  | { | 
|  | struct xillyusb_dev *xdev = usb_get_intfdata(interface); | 
|  | struct xillyusb_endpoint *msg_ep = xdev->msg_ep; | 
|  | struct xillyfifo *fifo = &msg_ep->fifo; | 
|  | int rc; | 
|  | int i; | 
|  |  | 
|  | xillybus_cleanup_chrdev(xdev, &interface->dev); | 
|  |  | 
|  | /* | 
|  | * Try to send OPCODE_QUIESCE, which will fail silently if the device | 
|  | * was disconnected, but makes sense on module unload. | 
|  | */ | 
|  |  | 
|  | msg_ep->wake_on_drain = true; | 
|  | xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0); | 
|  |  | 
|  | /* | 
|  | * If the device has been disconnected, sending the opcode causes | 
|  | * a global device error with xdev->error, if such error didn't | 
|  | * occur earlier. Hence timing out means that the USB link is fine, | 
|  | * but somehow the message wasn't sent. Should never happen. | 
|  | */ | 
|  |  | 
|  | rc = wait_event_interruptible_timeout(fifo->waitq, | 
|  | msg_ep->drained || xdev->error, | 
|  | XILLY_RESPONSE_TIMEOUT); | 
|  |  | 
|  | if (!rc) | 
|  | dev_err(&interface->dev, | 
|  | "Weird timeout condition on sending quiesce request.\n"); | 
|  |  | 
|  | report_io_error(xdev, -ENODEV); /* Discourage further activity */ | 
|  |  | 
|  | /* | 
|  | * This device driver is declared with soft_unbind set, or else | 
|  | * sending OPCODE_QUIESCE above would always fail. The price is | 
|  | * that the USB framework didn't kill outstanding URBs, so it has | 
|  | * to be done explicitly before returning from this call. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < xdev->num_channels; i++) { | 
|  | struct xillyusb_channel *chan = &xdev->channels[i]; | 
|  |  | 
|  | /* | 
|  | * Lock taken to prevent chan->out_ep from changing. It also | 
|  | * ensures xillyusb_open() and xillyusb_flush() don't access | 
|  | * xdev->dev after being nullified below. | 
|  | */ | 
|  | mutex_lock(&chan->lock); | 
|  | if (chan->out_ep) | 
|  | endpoint_quiesce(chan->out_ep); | 
|  | mutex_unlock(&chan->lock); | 
|  | } | 
|  |  | 
|  | endpoint_quiesce(xdev->in_ep); | 
|  | endpoint_quiesce(xdev->msg_ep); | 
|  |  | 
|  | usb_set_intfdata(interface, NULL); | 
|  |  | 
|  | xdev->dev = NULL; | 
|  |  | 
|  | kref_put(&xdev->kref, cleanup_dev); | 
|  | } | 
|  |  | 
|  | static struct usb_driver xillyusb_driver = { | 
|  | .name = xillyname, | 
|  | .id_table = xillyusb_table, | 
|  | .probe = xillyusb_probe, | 
|  | .disconnect = xillyusb_disconnect, | 
|  | .soft_unbind = 1, | 
|  | }; | 
|  |  | 
|  | static int __init xillyusb_init(void) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT) | 
|  | fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT; | 
|  | else | 
|  | fifo_buf_order = 0; | 
|  |  | 
|  | rc = usb_register(&xillyusb_driver); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void __exit xillyusb_exit(void) | 
|  | { | 
|  | usb_deregister(&xillyusb_driver); | 
|  | } | 
|  |  | 
|  | module_init(xillyusb_init); | 
|  | module_exit(xillyusb_exit); |