|  | /* | 
|  | * Device probing and sysfs code. | 
|  | * | 
|  | * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software Foundation, | 
|  | * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/bug.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/firewire.h> | 
|  | #include <linux/firewire-constants.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kobject.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mod_devicetable.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/rwsem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/workqueue.h> | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | #include "core.h" | 
|  |  | 
|  | void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) | 
|  | { | 
|  | ci->p = p + 1; | 
|  | ci->end = ci->p + (p[0] >> 16); | 
|  | } | 
|  | EXPORT_SYMBOL(fw_csr_iterator_init); | 
|  |  | 
|  | int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) | 
|  | { | 
|  | *key = *ci->p >> 24; | 
|  | *value = *ci->p & 0xffffff; | 
|  |  | 
|  | return ci->p++ < ci->end; | 
|  | } | 
|  | EXPORT_SYMBOL(fw_csr_iterator_next); | 
|  |  | 
|  | static const u32 *search_leaf(const u32 *directory, int search_key) | 
|  | { | 
|  | struct fw_csr_iterator ci; | 
|  | int last_key = 0, key, value; | 
|  |  | 
|  | fw_csr_iterator_init(&ci, directory); | 
|  | while (fw_csr_iterator_next(&ci, &key, &value)) { | 
|  | if (last_key == search_key && | 
|  | key == (CSR_DESCRIPTOR | CSR_LEAF)) | 
|  | return ci.p - 1 + value; | 
|  |  | 
|  | last_key = key; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) | 
|  | { | 
|  | unsigned int quadlets, i; | 
|  | char c; | 
|  |  | 
|  | if (!size || !buf) | 
|  | return -EINVAL; | 
|  |  | 
|  | quadlets = min(block[0] >> 16, 256U); | 
|  | if (quadlets < 2) | 
|  | return -ENODATA; | 
|  |  | 
|  | if (block[1] != 0 || block[2] != 0) | 
|  | /* unknown language/character set */ | 
|  | return -ENODATA; | 
|  |  | 
|  | block += 3; | 
|  | quadlets -= 2; | 
|  | for (i = 0; i < quadlets * 4 && i < size - 1; i++) { | 
|  | c = block[i / 4] >> (24 - 8 * (i % 4)); | 
|  | if (c == '\0') | 
|  | break; | 
|  | buf[i] = c; | 
|  | } | 
|  | buf[i] = '\0'; | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fw_csr_string() - reads a string from the configuration ROM | 
|  | * @directory:	e.g. root directory or unit directory | 
|  | * @key:	the key of the preceding directory entry | 
|  | * @buf:	where to put the string | 
|  | * @size:	size of @buf, in bytes | 
|  | * | 
|  | * The string is taken from a minimal ASCII text descriptor leaf after | 
|  | * the immediate entry with @key.  The string is zero-terminated. | 
|  | * An overlong string is silently truncated such that it and the | 
|  | * zero byte fit into @size. | 
|  | * | 
|  | * Returns strlen(buf) or a negative error code. | 
|  | */ | 
|  | int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) | 
|  | { | 
|  | const u32 *leaf = search_leaf(directory, key); | 
|  | if (!leaf) | 
|  | return -ENOENT; | 
|  |  | 
|  | return textual_leaf_to_string(leaf, buf, size); | 
|  | } | 
|  | EXPORT_SYMBOL(fw_csr_string); | 
|  |  | 
|  | static void get_ids(const u32 *directory, int *id) | 
|  | { | 
|  | struct fw_csr_iterator ci; | 
|  | int key, value; | 
|  |  | 
|  | fw_csr_iterator_init(&ci, directory); | 
|  | while (fw_csr_iterator_next(&ci, &key, &value)) { | 
|  | switch (key) { | 
|  | case CSR_VENDOR:	id[0] = value; break; | 
|  | case CSR_MODEL:		id[1] = value; break; | 
|  | case CSR_SPECIFIER_ID:	id[2] = value; break; | 
|  | case CSR_VERSION:	id[3] = value; break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void get_modalias_ids(struct fw_unit *unit, int *id) | 
|  | { | 
|  | get_ids(&fw_parent_device(unit)->config_rom[5], id); | 
|  | get_ids(unit->directory, id); | 
|  | } | 
|  |  | 
|  | static bool match_ids(const struct ieee1394_device_id *id_table, int *id) | 
|  | { | 
|  | int match = 0; | 
|  |  | 
|  | if (id[0] == id_table->vendor_id) | 
|  | match |= IEEE1394_MATCH_VENDOR_ID; | 
|  | if (id[1] == id_table->model_id) | 
|  | match |= IEEE1394_MATCH_MODEL_ID; | 
|  | if (id[2] == id_table->specifier_id) | 
|  | match |= IEEE1394_MATCH_SPECIFIER_ID; | 
|  | if (id[3] == id_table->version) | 
|  | match |= IEEE1394_MATCH_VERSION; | 
|  |  | 
|  | return (match & id_table->match_flags) == id_table->match_flags; | 
|  | } | 
|  |  | 
|  | static const struct ieee1394_device_id *unit_match(struct device *dev, | 
|  | struct device_driver *drv) | 
|  | { | 
|  | const struct ieee1394_device_id *id_table = | 
|  | container_of(drv, struct fw_driver, driver)->id_table; | 
|  | int id[] = {0, 0, 0, 0}; | 
|  |  | 
|  | get_modalias_ids(fw_unit(dev), id); | 
|  |  | 
|  | for (; id_table->match_flags != 0; id_table++) | 
|  | if (match_ids(id_table, id)) | 
|  | return id_table; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static bool is_fw_unit(struct device *dev); | 
|  |  | 
|  | static int fw_unit_match(struct device *dev, struct device_driver *drv) | 
|  | { | 
|  | /* We only allow binding to fw_units. */ | 
|  | return is_fw_unit(dev) && unit_match(dev, drv) != NULL; | 
|  | } | 
|  |  | 
|  | static int fw_unit_probe(struct device *dev) | 
|  | { | 
|  | struct fw_driver *driver = | 
|  | container_of(dev->driver, struct fw_driver, driver); | 
|  |  | 
|  | return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); | 
|  | } | 
|  |  | 
|  | static int fw_unit_remove(struct device *dev) | 
|  | { | 
|  | struct fw_driver *driver = | 
|  | container_of(dev->driver, struct fw_driver, driver); | 
|  |  | 
|  | return driver->remove(fw_unit(dev)), 0; | 
|  | } | 
|  |  | 
|  | static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) | 
|  | { | 
|  | int id[] = {0, 0, 0, 0}; | 
|  |  | 
|  | get_modalias_ids(unit, id); | 
|  |  | 
|  | return snprintf(buffer, buffer_size, | 
|  | "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", | 
|  | id[0], id[1], id[2], id[3]); | 
|  | } | 
|  |  | 
|  | static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) | 
|  | { | 
|  | struct fw_unit *unit = fw_unit(dev); | 
|  | char modalias[64]; | 
|  |  | 
|  | get_modalias(unit, modalias, sizeof(modalias)); | 
|  |  | 
|  | if (add_uevent_var(env, "MODALIAS=%s", modalias)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct bus_type fw_bus_type = { | 
|  | .name = "firewire", | 
|  | .match = fw_unit_match, | 
|  | .probe = fw_unit_probe, | 
|  | .remove = fw_unit_remove, | 
|  | }; | 
|  | EXPORT_SYMBOL(fw_bus_type); | 
|  |  | 
|  | int fw_device_enable_phys_dma(struct fw_device *device) | 
|  | { | 
|  | int generation = device->generation; | 
|  |  | 
|  | /* device->node_id, accessed below, must not be older than generation */ | 
|  | smp_rmb(); | 
|  |  | 
|  | return device->card->driver->enable_phys_dma(device->card, | 
|  | device->node_id, | 
|  | generation); | 
|  | } | 
|  | EXPORT_SYMBOL(fw_device_enable_phys_dma); | 
|  |  | 
|  | struct config_rom_attribute { | 
|  | struct device_attribute attr; | 
|  | u32 key; | 
|  | }; | 
|  |  | 
|  | static ssize_t show_immediate(struct device *dev, | 
|  | struct device_attribute *dattr, char *buf) | 
|  | { | 
|  | struct config_rom_attribute *attr = | 
|  | container_of(dattr, struct config_rom_attribute, attr); | 
|  | struct fw_csr_iterator ci; | 
|  | const u32 *dir; | 
|  | int key, value, ret = -ENOENT; | 
|  |  | 
|  | down_read(&fw_device_rwsem); | 
|  |  | 
|  | if (is_fw_unit(dev)) | 
|  | dir = fw_unit(dev)->directory; | 
|  | else | 
|  | dir = fw_device(dev)->config_rom + 5; | 
|  |  | 
|  | fw_csr_iterator_init(&ci, dir); | 
|  | while (fw_csr_iterator_next(&ci, &key, &value)) | 
|  | if (attr->key == key) { | 
|  | ret = snprintf(buf, buf ? PAGE_SIZE : 0, | 
|  | "0x%06x\n", value); | 
|  | break; | 
|  | } | 
|  |  | 
|  | up_read(&fw_device_rwsem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define IMMEDIATE_ATTR(name, key)				\ | 
|  | { __ATTR(name, S_IRUGO, show_immediate, NULL), key } | 
|  |  | 
|  | static ssize_t show_text_leaf(struct device *dev, | 
|  | struct device_attribute *dattr, char *buf) | 
|  | { | 
|  | struct config_rom_attribute *attr = | 
|  | container_of(dattr, struct config_rom_attribute, attr); | 
|  | const u32 *dir; | 
|  | size_t bufsize; | 
|  | char dummy_buf[2]; | 
|  | int ret; | 
|  |  | 
|  | down_read(&fw_device_rwsem); | 
|  |  | 
|  | if (is_fw_unit(dev)) | 
|  | dir = fw_unit(dev)->directory; | 
|  | else | 
|  | dir = fw_device(dev)->config_rom + 5; | 
|  |  | 
|  | if (buf) { | 
|  | bufsize = PAGE_SIZE - 1; | 
|  | } else { | 
|  | buf = dummy_buf; | 
|  | bufsize = 1; | 
|  | } | 
|  |  | 
|  | ret = fw_csr_string(dir, attr->key, buf, bufsize); | 
|  |  | 
|  | if (ret >= 0) { | 
|  | /* Strip trailing whitespace and add newline. */ | 
|  | while (ret > 0 && isspace(buf[ret - 1])) | 
|  | ret--; | 
|  | strcpy(buf + ret, "\n"); | 
|  | ret++; | 
|  | } | 
|  |  | 
|  | up_read(&fw_device_rwsem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define TEXT_LEAF_ATTR(name, key)				\ | 
|  | { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } | 
|  |  | 
|  | static struct config_rom_attribute config_rom_attributes[] = { | 
|  | IMMEDIATE_ATTR(vendor, CSR_VENDOR), | 
|  | IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), | 
|  | IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), | 
|  | IMMEDIATE_ATTR(version, CSR_VERSION), | 
|  | IMMEDIATE_ATTR(model, CSR_MODEL), | 
|  | TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), | 
|  | TEXT_LEAF_ATTR(model_name, CSR_MODEL), | 
|  | TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), | 
|  | }; | 
|  |  | 
|  | static void init_fw_attribute_group(struct device *dev, | 
|  | struct device_attribute *attrs, | 
|  | struct fw_attribute_group *group) | 
|  | { | 
|  | struct device_attribute *attr; | 
|  | int i, j; | 
|  |  | 
|  | for (j = 0; attrs[j].attr.name != NULL; j++) | 
|  | group->attrs[j] = &attrs[j].attr; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { | 
|  | attr = &config_rom_attributes[i].attr; | 
|  | if (attr->show(dev, attr, NULL) < 0) | 
|  | continue; | 
|  | group->attrs[j++] = &attr->attr; | 
|  | } | 
|  |  | 
|  | group->attrs[j] = NULL; | 
|  | group->groups[0] = &group->group; | 
|  | group->groups[1] = NULL; | 
|  | group->group.attrs = group->attrs; | 
|  | dev->groups = (const struct attribute_group **) group->groups; | 
|  | } | 
|  |  | 
|  | static ssize_t modalias_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct fw_unit *unit = fw_unit(dev); | 
|  | int length; | 
|  |  | 
|  | length = get_modalias(unit, buf, PAGE_SIZE); | 
|  | strcpy(buf + length, "\n"); | 
|  |  | 
|  | return length + 1; | 
|  | } | 
|  |  | 
|  | static ssize_t rom_index_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct fw_device *device = fw_device(dev->parent); | 
|  | struct fw_unit *unit = fw_unit(dev); | 
|  |  | 
|  | return snprintf(buf, PAGE_SIZE, "%d\n", | 
|  | (int)(unit->directory - device->config_rom)); | 
|  | } | 
|  |  | 
|  | static struct device_attribute fw_unit_attributes[] = { | 
|  | __ATTR_RO(modalias), | 
|  | __ATTR_RO(rom_index), | 
|  | __ATTR_NULL, | 
|  | }; | 
|  |  | 
|  | static ssize_t config_rom_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct fw_device *device = fw_device(dev); | 
|  | size_t length; | 
|  |  | 
|  | down_read(&fw_device_rwsem); | 
|  | length = device->config_rom_length * 4; | 
|  | memcpy(buf, device->config_rom, length); | 
|  | up_read(&fw_device_rwsem); | 
|  |  | 
|  | return length; | 
|  | } | 
|  |  | 
|  | static ssize_t guid_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct fw_device *device = fw_device(dev); | 
|  | int ret; | 
|  |  | 
|  | down_read(&fw_device_rwsem); | 
|  | ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", | 
|  | device->config_rom[3], device->config_rom[4]); | 
|  | up_read(&fw_device_rwsem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t is_local_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct fw_device *device = fw_device(dev); | 
|  |  | 
|  | return sprintf(buf, "%u\n", device->is_local); | 
|  | } | 
|  |  | 
|  | static int units_sprintf(char *buf, const u32 *directory) | 
|  | { | 
|  | struct fw_csr_iterator ci; | 
|  | int key, value; | 
|  | int specifier_id = 0; | 
|  | int version = 0; | 
|  |  | 
|  | fw_csr_iterator_init(&ci, directory); | 
|  | while (fw_csr_iterator_next(&ci, &key, &value)) { | 
|  | switch (key) { | 
|  | case CSR_SPECIFIER_ID: | 
|  | specifier_id = value; | 
|  | break; | 
|  | case CSR_VERSION: | 
|  | version = value; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); | 
|  | } | 
|  |  | 
|  | static ssize_t units_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct fw_device *device = fw_device(dev); | 
|  | struct fw_csr_iterator ci; | 
|  | int key, value, i = 0; | 
|  |  | 
|  | down_read(&fw_device_rwsem); | 
|  | fw_csr_iterator_init(&ci, &device->config_rom[5]); | 
|  | while (fw_csr_iterator_next(&ci, &key, &value)) { | 
|  | if (key != (CSR_UNIT | CSR_DIRECTORY)) | 
|  | continue; | 
|  | i += units_sprintf(&buf[i], ci.p + value - 1); | 
|  | if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) | 
|  | break; | 
|  | } | 
|  | up_read(&fw_device_rwsem); | 
|  |  | 
|  | if (i) | 
|  | buf[i - 1] = '\n'; | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static struct device_attribute fw_device_attributes[] = { | 
|  | __ATTR_RO(config_rom), | 
|  | __ATTR_RO(guid), | 
|  | __ATTR_RO(is_local), | 
|  | __ATTR_RO(units), | 
|  | __ATTR_NULL, | 
|  | }; | 
|  |  | 
|  | static int read_rom(struct fw_device *device, | 
|  | int generation, int index, u32 *data) | 
|  | { | 
|  | u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; | 
|  | int i, rcode; | 
|  |  | 
|  | /* device->node_id, accessed below, must not be older than generation */ | 
|  | smp_rmb(); | 
|  |  | 
|  | for (i = 10; i < 100; i += 10) { | 
|  | rcode = fw_run_transaction(device->card, | 
|  | TCODE_READ_QUADLET_REQUEST, device->node_id, | 
|  | generation, device->max_speed, offset, data, 4); | 
|  | if (rcode != RCODE_BUSY) | 
|  | break; | 
|  | msleep(i); | 
|  | } | 
|  | be32_to_cpus(data); | 
|  |  | 
|  | return rcode; | 
|  | } | 
|  |  | 
|  | #define MAX_CONFIG_ROM_SIZE 256 | 
|  |  | 
|  | /* | 
|  | * Read the bus info block, perform a speed probe, and read all of the rest of | 
|  | * the config ROM.  We do all this with a cached bus generation.  If the bus | 
|  | * generation changes under us, read_config_rom will fail and get retried. | 
|  | * It's better to start all over in this case because the node from which we | 
|  | * are reading the ROM may have changed the ROM during the reset. | 
|  | * Returns either a result code or a negative error code. | 
|  | */ | 
|  | static int read_config_rom(struct fw_device *device, int generation) | 
|  | { | 
|  | struct fw_card *card = device->card; | 
|  | const u32 *old_rom, *new_rom; | 
|  | u32 *rom, *stack; | 
|  | u32 sp, key; | 
|  | int i, end, length, ret; | 
|  |  | 
|  | rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + | 
|  | sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); | 
|  | if (rom == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | stack = &rom[MAX_CONFIG_ROM_SIZE]; | 
|  | memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); | 
|  |  | 
|  | device->max_speed = SCODE_100; | 
|  |  | 
|  | /* First read the bus info block. */ | 
|  | for (i = 0; i < 5; i++) { | 
|  | ret = read_rom(device, generation, i, &rom[i]); | 
|  | if (ret != RCODE_COMPLETE) | 
|  | goto out; | 
|  | /* | 
|  | * As per IEEE1212 7.2, during initialization, devices can | 
|  | * reply with a 0 for the first quadlet of the config | 
|  | * rom to indicate that they are booting (for example, | 
|  | * if the firmware is on the disk of a external | 
|  | * harddisk).  In that case we just fail, and the | 
|  | * retry mechanism will try again later. | 
|  | */ | 
|  | if (i == 0 && rom[i] == 0) { | 
|  | ret = RCODE_BUSY; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | device->max_speed = device->node->max_speed; | 
|  |  | 
|  | /* | 
|  | * Determine the speed of | 
|  | *   - devices with link speed less than PHY speed, | 
|  | *   - devices with 1394b PHY (unless only connected to 1394a PHYs), | 
|  | *   - all devices if there are 1394b repeaters. | 
|  | * Note, we cannot use the bus info block's link_spd as starting point | 
|  | * because some buggy firmwares set it lower than necessary and because | 
|  | * 1394-1995 nodes do not have the field. | 
|  | */ | 
|  | if ((rom[2] & 0x7) < device->max_speed || | 
|  | device->max_speed == SCODE_BETA || | 
|  | card->beta_repeaters_present) { | 
|  | u32 dummy; | 
|  |  | 
|  | /* for S1600 and S3200 */ | 
|  | if (device->max_speed == SCODE_BETA) | 
|  | device->max_speed = card->link_speed; | 
|  |  | 
|  | while (device->max_speed > SCODE_100) { | 
|  | if (read_rom(device, generation, 0, &dummy) == | 
|  | RCODE_COMPLETE) | 
|  | break; | 
|  | device->max_speed--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now parse the config rom.  The config rom is a recursive | 
|  | * directory structure so we parse it using a stack of | 
|  | * references to the blocks that make up the structure.  We | 
|  | * push a reference to the root directory on the stack to | 
|  | * start things off. | 
|  | */ | 
|  | length = i; | 
|  | sp = 0; | 
|  | stack[sp++] = 0xc0000005; | 
|  | while (sp > 0) { | 
|  | /* | 
|  | * Pop the next block reference of the stack.  The | 
|  | * lower 24 bits is the offset into the config rom, | 
|  | * the upper 8 bits are the type of the reference the | 
|  | * block. | 
|  | */ | 
|  | key = stack[--sp]; | 
|  | i = key & 0xffffff; | 
|  | if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { | 
|  | ret = -ENXIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Read header quadlet for the block to get the length. */ | 
|  | ret = read_rom(device, generation, i, &rom[i]); | 
|  | if (ret != RCODE_COMPLETE) | 
|  | goto out; | 
|  | end = i + (rom[i] >> 16) + 1; | 
|  | if (end > MAX_CONFIG_ROM_SIZE) { | 
|  | /* | 
|  | * This block extends outside the config ROM which is | 
|  | * a firmware bug.  Ignore this whole block, i.e. | 
|  | * simply set a fake block length of 0. | 
|  | */ | 
|  | fw_err(card, "skipped invalid ROM block %x at %llx\n", | 
|  | rom[i], | 
|  | i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); | 
|  | rom[i] = 0; | 
|  | end = i; | 
|  | } | 
|  | i++; | 
|  |  | 
|  | /* | 
|  | * Now read in the block.  If this is a directory | 
|  | * block, check the entries as we read them to see if | 
|  | * it references another block, and push it in that case. | 
|  | */ | 
|  | for (; i < end; i++) { | 
|  | ret = read_rom(device, generation, i, &rom[i]); | 
|  | if (ret != RCODE_COMPLETE) | 
|  | goto out; | 
|  |  | 
|  | if ((key >> 30) != 3 || (rom[i] >> 30) < 2) | 
|  | continue; | 
|  | /* | 
|  | * Offset points outside the ROM.  May be a firmware | 
|  | * bug or an Extended ROM entry (IEEE 1212-2001 clause | 
|  | * 7.7.18).  Simply overwrite this pointer here by a | 
|  | * fake immediate entry so that later iterators over | 
|  | * the ROM don't have to check offsets all the time. | 
|  | */ | 
|  | if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { | 
|  | fw_err(card, | 
|  | "skipped unsupported ROM entry %x at %llx\n", | 
|  | rom[i], | 
|  | i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); | 
|  | rom[i] = 0; | 
|  | continue; | 
|  | } | 
|  | stack[sp++] = i + rom[i]; | 
|  | } | 
|  | if (length < i) | 
|  | length = i; | 
|  | } | 
|  |  | 
|  | old_rom = device->config_rom; | 
|  | new_rom = kmemdup(rom, length * 4, GFP_KERNEL); | 
|  | if (new_rom == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | down_write(&fw_device_rwsem); | 
|  | device->config_rom = new_rom; | 
|  | device->config_rom_length = length; | 
|  | up_write(&fw_device_rwsem); | 
|  |  | 
|  | kfree(old_rom); | 
|  | ret = RCODE_COMPLETE; | 
|  | device->max_rec	= rom[2] >> 12 & 0xf; | 
|  | device->cmc	= rom[2] >> 30 & 1; | 
|  | device->irmc	= rom[2] >> 31 & 1; | 
|  | out: | 
|  | kfree(rom); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void fw_unit_release(struct device *dev) | 
|  | { | 
|  | struct fw_unit *unit = fw_unit(dev); | 
|  |  | 
|  | fw_device_put(fw_parent_device(unit)); | 
|  | kfree(unit); | 
|  | } | 
|  |  | 
|  | static struct device_type fw_unit_type = { | 
|  | .uevent		= fw_unit_uevent, | 
|  | .release	= fw_unit_release, | 
|  | }; | 
|  |  | 
|  | static bool is_fw_unit(struct device *dev) | 
|  | { | 
|  | return dev->type == &fw_unit_type; | 
|  | } | 
|  |  | 
|  | static void create_units(struct fw_device *device) | 
|  | { | 
|  | struct fw_csr_iterator ci; | 
|  | struct fw_unit *unit; | 
|  | int key, value, i; | 
|  |  | 
|  | i = 0; | 
|  | fw_csr_iterator_init(&ci, &device->config_rom[5]); | 
|  | while (fw_csr_iterator_next(&ci, &key, &value)) { | 
|  | if (key != (CSR_UNIT | CSR_DIRECTORY)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Get the address of the unit directory and try to | 
|  | * match the drivers id_tables against it. | 
|  | */ | 
|  | unit = kzalloc(sizeof(*unit), GFP_KERNEL); | 
|  | if (unit == NULL) | 
|  | continue; | 
|  |  | 
|  | unit->directory = ci.p + value - 1; | 
|  | unit->device.bus = &fw_bus_type; | 
|  | unit->device.type = &fw_unit_type; | 
|  | unit->device.parent = &device->device; | 
|  | dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < | 
|  | ARRAY_SIZE(fw_unit_attributes) + | 
|  | ARRAY_SIZE(config_rom_attributes)); | 
|  | init_fw_attribute_group(&unit->device, | 
|  | fw_unit_attributes, | 
|  | &unit->attribute_group); | 
|  |  | 
|  | if (device_register(&unit->device) < 0) | 
|  | goto skip_unit; | 
|  |  | 
|  | fw_device_get(device); | 
|  | continue; | 
|  |  | 
|  | skip_unit: | 
|  | kfree(unit); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int shutdown_unit(struct device *device, void *data) | 
|  | { | 
|  | device_unregister(device); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fw_device_rwsem acts as dual purpose mutex: | 
|  | *   - serializes accesses to fw_device_idr, | 
|  | *   - serializes accesses to fw_device.config_rom/.config_rom_length and | 
|  | *     fw_unit.directory, unless those accesses happen at safe occasions | 
|  | */ | 
|  | DECLARE_RWSEM(fw_device_rwsem); | 
|  |  | 
|  | DEFINE_IDR(fw_device_idr); | 
|  | int fw_cdev_major; | 
|  |  | 
|  | struct fw_device *fw_device_get_by_devt(dev_t devt) | 
|  | { | 
|  | struct fw_device *device; | 
|  |  | 
|  | down_read(&fw_device_rwsem); | 
|  | device = idr_find(&fw_device_idr, MINOR(devt)); | 
|  | if (device) | 
|  | fw_device_get(device); | 
|  | up_read(&fw_device_rwsem); | 
|  |  | 
|  | return device; | 
|  | } | 
|  |  | 
|  | struct workqueue_struct *fw_workqueue; | 
|  | EXPORT_SYMBOL(fw_workqueue); | 
|  |  | 
|  | static void fw_schedule_device_work(struct fw_device *device, | 
|  | unsigned long delay) | 
|  | { | 
|  | queue_delayed_work(fw_workqueue, &device->work, delay); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These defines control the retry behavior for reading the config | 
|  | * rom.  It shouldn't be necessary to tweak these; if the device | 
|  | * doesn't respond to a config rom read within 10 seconds, it's not | 
|  | * going to respond at all.  As for the initial delay, a lot of | 
|  | * devices will be able to respond within half a second after bus | 
|  | * reset.  On the other hand, it's not really worth being more | 
|  | * aggressive than that, since it scales pretty well; if 10 devices | 
|  | * are plugged in, they're all getting read within one second. | 
|  | */ | 
|  |  | 
|  | #define MAX_RETRIES	10 | 
|  | #define RETRY_DELAY	(3 * HZ) | 
|  | #define INITIAL_DELAY	(HZ / 2) | 
|  | #define SHUTDOWN_DELAY	(2 * HZ) | 
|  |  | 
|  | static void fw_device_shutdown(struct work_struct *work) | 
|  | { | 
|  | struct fw_device *device = | 
|  | container_of(work, struct fw_device, work.work); | 
|  | int minor = MINOR(device->device.devt); | 
|  |  | 
|  | if (time_before64(get_jiffies_64(), | 
|  | device->card->reset_jiffies + SHUTDOWN_DELAY) | 
|  | && !list_empty(&device->card->link)) { | 
|  | fw_schedule_device_work(device, SHUTDOWN_DELAY); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (atomic_cmpxchg(&device->state, | 
|  | FW_DEVICE_GONE, | 
|  | FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) | 
|  | return; | 
|  |  | 
|  | fw_device_cdev_remove(device); | 
|  | device_for_each_child(&device->device, NULL, shutdown_unit); | 
|  | device_unregister(&device->device); | 
|  |  | 
|  | down_write(&fw_device_rwsem); | 
|  | idr_remove(&fw_device_idr, minor); | 
|  | up_write(&fw_device_rwsem); | 
|  |  | 
|  | fw_device_put(device); | 
|  | } | 
|  |  | 
|  | static void fw_device_release(struct device *dev) | 
|  | { | 
|  | struct fw_device *device = fw_device(dev); | 
|  | struct fw_card *card = device->card; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Take the card lock so we don't set this to NULL while a | 
|  | * FW_NODE_UPDATED callback is being handled or while the | 
|  | * bus manager work looks at this node. | 
|  | */ | 
|  | spin_lock_irqsave(&card->lock, flags); | 
|  | device->node->data = NULL; | 
|  | spin_unlock_irqrestore(&card->lock, flags); | 
|  |  | 
|  | fw_node_put(device->node); | 
|  | kfree(device->config_rom); | 
|  | kfree(device); | 
|  | fw_card_put(card); | 
|  | } | 
|  |  | 
|  | static struct device_type fw_device_type = { | 
|  | .release = fw_device_release, | 
|  | }; | 
|  |  | 
|  | static bool is_fw_device(struct device *dev) | 
|  | { | 
|  | return dev->type == &fw_device_type; | 
|  | } | 
|  |  | 
|  | static int update_unit(struct device *dev, void *data) | 
|  | { | 
|  | struct fw_unit *unit = fw_unit(dev); | 
|  | struct fw_driver *driver = (struct fw_driver *)dev->driver; | 
|  |  | 
|  | if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { | 
|  | device_lock(dev); | 
|  | driver->update(unit); | 
|  | device_unlock(dev); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fw_device_update(struct work_struct *work) | 
|  | { | 
|  | struct fw_device *device = | 
|  | container_of(work, struct fw_device, work.work); | 
|  |  | 
|  | fw_device_cdev_update(device); | 
|  | device_for_each_child(&device->device, NULL, update_unit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a device was pending for deletion because its node went away but its | 
|  | * bus info block and root directory header matches that of a newly discovered | 
|  | * device, revive the existing fw_device. | 
|  | * The newly allocated fw_device becomes obsolete instead. | 
|  | */ | 
|  | static int lookup_existing_device(struct device *dev, void *data) | 
|  | { | 
|  | struct fw_device *old = fw_device(dev); | 
|  | struct fw_device *new = data; | 
|  | struct fw_card *card = new->card; | 
|  | int match = 0; | 
|  |  | 
|  | if (!is_fw_device(dev)) | 
|  | return 0; | 
|  |  | 
|  | down_read(&fw_device_rwsem); /* serialize config_rom access */ | 
|  | spin_lock_irq(&card->lock);  /* serialize node access */ | 
|  |  | 
|  | if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && | 
|  | atomic_cmpxchg(&old->state, | 
|  | FW_DEVICE_GONE, | 
|  | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { | 
|  | struct fw_node *current_node = new->node; | 
|  | struct fw_node *obsolete_node = old->node; | 
|  |  | 
|  | new->node = obsolete_node; | 
|  | new->node->data = new; | 
|  | old->node = current_node; | 
|  | old->node->data = old; | 
|  |  | 
|  | old->max_speed = new->max_speed; | 
|  | old->node_id = current_node->node_id; | 
|  | smp_wmb();  /* update node_id before generation */ | 
|  | old->generation = card->generation; | 
|  | old->config_rom_retries = 0; | 
|  | fw_notice(card, "rediscovered device %s\n", dev_name(dev)); | 
|  |  | 
|  | old->workfn = fw_device_update; | 
|  | fw_schedule_device_work(old, 0); | 
|  |  | 
|  | if (current_node == card->root_node) | 
|  | fw_schedule_bm_work(card, 0); | 
|  |  | 
|  | match = 1; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&card->lock); | 
|  | up_read(&fw_device_rwsem); | 
|  |  | 
|  | return match; | 
|  | } | 
|  |  | 
|  | enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; | 
|  |  | 
|  | static void set_broadcast_channel(struct fw_device *device, int generation) | 
|  | { | 
|  | struct fw_card *card = device->card; | 
|  | __be32 data; | 
|  | int rcode; | 
|  |  | 
|  | if (!card->broadcast_channel_allocated) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The Broadcast_Channel Valid bit is required by nodes which want to | 
|  | * transmit on this channel.  Such transmissions are practically | 
|  | * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required | 
|  | * to be IRM capable and have a max_rec of 8 or more.  We use this fact | 
|  | * to narrow down to which nodes we send Broadcast_Channel updates. | 
|  | */ | 
|  | if (!device->irmc || device->max_rec < 8) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Some 1394-1995 nodes crash if this 1394a-2000 register is written. | 
|  | * Perform a read test first. | 
|  | */ | 
|  | if (device->bc_implemented == BC_UNKNOWN) { | 
|  | rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, | 
|  | device->node_id, generation, device->max_speed, | 
|  | CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, | 
|  | &data, 4); | 
|  | switch (rcode) { | 
|  | case RCODE_COMPLETE: | 
|  | if (data & cpu_to_be32(1 << 31)) { | 
|  | device->bc_implemented = BC_IMPLEMENTED; | 
|  | break; | 
|  | } | 
|  | /* else fall through to case address error */ | 
|  | case RCODE_ADDRESS_ERROR: | 
|  | device->bc_implemented = BC_UNIMPLEMENTED; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (device->bc_implemented == BC_IMPLEMENTED) { | 
|  | data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | | 
|  | BROADCAST_CHANNEL_VALID); | 
|  | fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, | 
|  | device->node_id, generation, device->max_speed, | 
|  | CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, | 
|  | &data, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | int fw_device_set_broadcast_channel(struct device *dev, void *gen) | 
|  | { | 
|  | if (is_fw_device(dev)) | 
|  | set_broadcast_channel(fw_device(dev), (long)gen); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fw_device_init(struct work_struct *work) | 
|  | { | 
|  | struct fw_device *device = | 
|  | container_of(work, struct fw_device, work.work); | 
|  | struct fw_card *card = device->card; | 
|  | struct device *revived_dev; | 
|  | int minor, ret; | 
|  |  | 
|  | /* | 
|  | * All failure paths here set node->data to NULL, so that we | 
|  | * don't try to do device_for_each_child() on a kfree()'d | 
|  | * device. | 
|  | */ | 
|  |  | 
|  | ret = read_config_rom(device, device->generation); | 
|  | if (ret != RCODE_COMPLETE) { | 
|  | if (device->config_rom_retries < MAX_RETRIES && | 
|  | atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { | 
|  | device->config_rom_retries++; | 
|  | fw_schedule_device_work(device, RETRY_DELAY); | 
|  | } else { | 
|  | if (device->node->link_on) | 
|  | fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", | 
|  | device->node_id, | 
|  | fw_rcode_string(ret)); | 
|  | if (device->node == card->root_node) | 
|  | fw_schedule_bm_work(card, 0); | 
|  | fw_device_release(&device->device); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | revived_dev = device_find_child(card->device, | 
|  | device, lookup_existing_device); | 
|  | if (revived_dev) { | 
|  | put_device(revived_dev); | 
|  | fw_device_release(&device->device); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | device_initialize(&device->device); | 
|  |  | 
|  | fw_device_get(device); | 
|  | down_write(&fw_device_rwsem); | 
|  | minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, | 
|  | GFP_KERNEL); | 
|  | up_write(&fw_device_rwsem); | 
|  |  | 
|  | if (minor < 0) | 
|  | goto error; | 
|  |  | 
|  | device->device.bus = &fw_bus_type; | 
|  | device->device.type = &fw_device_type; | 
|  | device->device.parent = card->device; | 
|  | device->device.devt = MKDEV(fw_cdev_major, minor); | 
|  | dev_set_name(&device->device, "fw%d", minor); | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < | 
|  | ARRAY_SIZE(fw_device_attributes) + | 
|  | ARRAY_SIZE(config_rom_attributes)); | 
|  | init_fw_attribute_group(&device->device, | 
|  | fw_device_attributes, | 
|  | &device->attribute_group); | 
|  |  | 
|  | if (device_add(&device->device)) { | 
|  | fw_err(card, "failed to add device\n"); | 
|  | goto error_with_cdev; | 
|  | } | 
|  |  | 
|  | create_units(device); | 
|  |  | 
|  | /* | 
|  | * Transition the device to running state.  If it got pulled | 
|  | * out from under us while we did the initialization work, we | 
|  | * have to shut down the device again here.  Normally, though, | 
|  | * fw_node_event will be responsible for shutting it down when | 
|  | * necessary.  We have to use the atomic cmpxchg here to avoid | 
|  | * racing with the FW_NODE_DESTROYED case in | 
|  | * fw_node_event(). | 
|  | */ | 
|  | if (atomic_cmpxchg(&device->state, | 
|  | FW_DEVICE_INITIALIZING, | 
|  | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { | 
|  | device->workfn = fw_device_shutdown; | 
|  | fw_schedule_device_work(device, SHUTDOWN_DELAY); | 
|  | } else { | 
|  | fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", | 
|  | dev_name(&device->device), | 
|  | device->config_rom[3], device->config_rom[4], | 
|  | 1 << device->max_speed); | 
|  | device->config_rom_retries = 0; | 
|  |  | 
|  | set_broadcast_channel(device, device->generation); | 
|  |  | 
|  | add_device_randomness(&device->config_rom[3], 8); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reschedule the IRM work if we just finished reading the | 
|  | * root node config rom.  If this races with a bus reset we | 
|  | * just end up running the IRM work a couple of extra times - | 
|  | * pretty harmless. | 
|  | */ | 
|  | if (device->node == card->root_node) | 
|  | fw_schedule_bm_work(card, 0); | 
|  |  | 
|  | return; | 
|  |  | 
|  | error_with_cdev: | 
|  | down_write(&fw_device_rwsem); | 
|  | idr_remove(&fw_device_idr, minor); | 
|  | up_write(&fw_device_rwsem); | 
|  | error: | 
|  | fw_device_put(device);		/* fw_device_idr's reference */ | 
|  |  | 
|  | put_device(&device->device);	/* our reference */ | 
|  | } | 
|  |  | 
|  | /* Reread and compare bus info block and header of root directory */ | 
|  | static int reread_config_rom(struct fw_device *device, int generation, | 
|  | bool *changed) | 
|  | { | 
|  | u32 q; | 
|  | int i, rcode; | 
|  |  | 
|  | for (i = 0; i < 6; i++) { | 
|  | rcode = read_rom(device, generation, i, &q); | 
|  | if (rcode != RCODE_COMPLETE) | 
|  | return rcode; | 
|  |  | 
|  | if (i == 0 && q == 0) | 
|  | /* inaccessible (see read_config_rom); retry later */ | 
|  | return RCODE_BUSY; | 
|  |  | 
|  | if (q != device->config_rom[i]) { | 
|  | *changed = true; | 
|  | return RCODE_COMPLETE; | 
|  | } | 
|  | } | 
|  |  | 
|  | *changed = false; | 
|  | return RCODE_COMPLETE; | 
|  | } | 
|  |  | 
|  | static void fw_device_refresh(struct work_struct *work) | 
|  | { | 
|  | struct fw_device *device = | 
|  | container_of(work, struct fw_device, work.work); | 
|  | struct fw_card *card = device->card; | 
|  | int ret, node_id = device->node_id; | 
|  | bool changed; | 
|  |  | 
|  | ret = reread_config_rom(device, device->generation, &changed); | 
|  | if (ret != RCODE_COMPLETE) | 
|  | goto failed_config_rom; | 
|  |  | 
|  | if (!changed) { | 
|  | if (atomic_cmpxchg(&device->state, | 
|  | FW_DEVICE_INITIALIZING, | 
|  | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) | 
|  | goto gone; | 
|  |  | 
|  | fw_device_update(work); | 
|  | device->config_rom_retries = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Something changed.  We keep things simple and don't investigate | 
|  | * further.  We just destroy all previous units and create new ones. | 
|  | */ | 
|  | device_for_each_child(&device->device, NULL, shutdown_unit); | 
|  |  | 
|  | ret = read_config_rom(device, device->generation); | 
|  | if (ret != RCODE_COMPLETE) | 
|  | goto failed_config_rom; | 
|  |  | 
|  | fw_device_cdev_update(device); | 
|  | create_units(device); | 
|  |  | 
|  | /* Userspace may want to re-read attributes. */ | 
|  | kobject_uevent(&device->device.kobj, KOBJ_CHANGE); | 
|  |  | 
|  | if (atomic_cmpxchg(&device->state, | 
|  | FW_DEVICE_INITIALIZING, | 
|  | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) | 
|  | goto gone; | 
|  |  | 
|  | fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); | 
|  | device->config_rom_retries = 0; | 
|  | goto out; | 
|  |  | 
|  | failed_config_rom: | 
|  | if (device->config_rom_retries < MAX_RETRIES && | 
|  | atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { | 
|  | device->config_rom_retries++; | 
|  | fw_schedule_device_work(device, RETRY_DELAY); | 
|  | return; | 
|  | } | 
|  |  | 
|  | fw_notice(card, "giving up on refresh of device %s: %s\n", | 
|  | dev_name(&device->device), fw_rcode_string(ret)); | 
|  | gone: | 
|  | atomic_set(&device->state, FW_DEVICE_GONE); | 
|  | device->workfn = fw_device_shutdown; | 
|  | fw_schedule_device_work(device, SHUTDOWN_DELAY); | 
|  | out: | 
|  | if (node_id == card->root_node->node_id) | 
|  | fw_schedule_bm_work(card, 0); | 
|  | } | 
|  |  | 
|  | static void fw_device_workfn(struct work_struct *work) | 
|  | { | 
|  | struct fw_device *device = container_of(to_delayed_work(work), | 
|  | struct fw_device, work); | 
|  | device->workfn(work); | 
|  | } | 
|  |  | 
|  | void fw_node_event(struct fw_card *card, struct fw_node *node, int event) | 
|  | { | 
|  | struct fw_device *device; | 
|  |  | 
|  | switch (event) { | 
|  | case FW_NODE_CREATED: | 
|  | /* | 
|  | * Attempt to scan the node, regardless whether its self ID has | 
|  | * the L (link active) flag set or not.  Some broken devices | 
|  | * send L=0 but have an up-and-running link; others send L=1 | 
|  | * without actually having a link. | 
|  | */ | 
|  | create: | 
|  | device = kzalloc(sizeof(*device), GFP_ATOMIC); | 
|  | if (device == NULL) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Do minimal initialization of the device here, the | 
|  | * rest will happen in fw_device_init(). | 
|  | * | 
|  | * Attention:  A lot of things, even fw_device_get(), | 
|  | * cannot be done before fw_device_init() finished! | 
|  | * You can basically just check device->state and | 
|  | * schedule work until then, but only while holding | 
|  | * card->lock. | 
|  | */ | 
|  | atomic_set(&device->state, FW_DEVICE_INITIALIZING); | 
|  | device->card = fw_card_get(card); | 
|  | device->node = fw_node_get(node); | 
|  | device->node_id = node->node_id; | 
|  | device->generation = card->generation; | 
|  | device->is_local = node == card->local_node; | 
|  | mutex_init(&device->client_list_mutex); | 
|  | INIT_LIST_HEAD(&device->client_list); | 
|  |  | 
|  | /* | 
|  | * Set the node data to point back to this device so | 
|  | * FW_NODE_UPDATED callbacks can update the node_id | 
|  | * and generation for the device. | 
|  | */ | 
|  | node->data = device; | 
|  |  | 
|  | /* | 
|  | * Many devices are slow to respond after bus resets, | 
|  | * especially if they are bus powered and go through | 
|  | * power-up after getting plugged in.  We schedule the | 
|  | * first config rom scan half a second after bus reset. | 
|  | */ | 
|  | device->workfn = fw_device_init; | 
|  | INIT_DELAYED_WORK(&device->work, fw_device_workfn); | 
|  | fw_schedule_device_work(device, INITIAL_DELAY); | 
|  | break; | 
|  |  | 
|  | case FW_NODE_INITIATED_RESET: | 
|  | case FW_NODE_LINK_ON: | 
|  | device = node->data; | 
|  | if (device == NULL) | 
|  | goto create; | 
|  |  | 
|  | device->node_id = node->node_id; | 
|  | smp_wmb();  /* update node_id before generation */ | 
|  | device->generation = card->generation; | 
|  | if (atomic_cmpxchg(&device->state, | 
|  | FW_DEVICE_RUNNING, | 
|  | FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { | 
|  | device->workfn = fw_device_refresh; | 
|  | fw_schedule_device_work(device, | 
|  | device->is_local ? 0 : INITIAL_DELAY); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case FW_NODE_UPDATED: | 
|  | device = node->data; | 
|  | if (device == NULL) | 
|  | break; | 
|  |  | 
|  | device->node_id = node->node_id; | 
|  | smp_wmb();  /* update node_id before generation */ | 
|  | device->generation = card->generation; | 
|  | if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { | 
|  | device->workfn = fw_device_update; | 
|  | fw_schedule_device_work(device, 0); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case FW_NODE_DESTROYED: | 
|  | case FW_NODE_LINK_OFF: | 
|  | if (!node->data) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Destroy the device associated with the node.  There | 
|  | * are two cases here: either the device is fully | 
|  | * initialized (FW_DEVICE_RUNNING) or we're in the | 
|  | * process of reading its config rom | 
|  | * (FW_DEVICE_INITIALIZING).  If it is fully | 
|  | * initialized we can reuse device->work to schedule a | 
|  | * full fw_device_shutdown().  If not, there's work | 
|  | * scheduled to read it's config rom, and we just put | 
|  | * the device in shutdown state to have that code fail | 
|  | * to create the device. | 
|  | */ | 
|  | device = node->data; | 
|  | if (atomic_xchg(&device->state, | 
|  | FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { | 
|  | device->workfn = fw_device_shutdown; | 
|  | fw_schedule_device_work(device, | 
|  | list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } |