|  |  | 
|  | /* | 
|  | *  ATI Mach64 CT/VT/GT/LT Support | 
|  | */ | 
|  |  | 
|  | #include <linux/fb.h> | 
|  | #include <linux/delay.h> | 
|  | #include <asm/io.h> | 
|  | #include <video/mach64.h> | 
|  | #include "atyfb.h" | 
|  | #ifdef CONFIG_PPC | 
|  | #include <asm/machdep.h> | 
|  | #endif | 
|  |  | 
|  | #undef DEBUG | 
|  |  | 
|  | static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll); | 
|  | static int aty_dsp_gt       (const struct fb_info *info, u32 bpp, struct pll_ct *pll); | 
|  | static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll); | 
|  | static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll); | 
|  |  | 
|  | u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par) | 
|  | { | 
|  | u8 res; | 
|  |  | 
|  | /* write addr byte */ | 
|  | aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par); | 
|  | /* read the register value */ | 
|  | res = aty_ld_8(CLOCK_CNTL_DATA, par); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par) | 
|  | { | 
|  | /* write addr byte */ | 
|  | aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par); | 
|  | /* write the register value */ | 
|  | aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par); | 
|  | aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * by Daniel Mantione | 
|  | *                                  <daniel.mantione@freepascal.org> | 
|  | * | 
|  | * | 
|  | * ATI Mach64 CT clock synthesis description. | 
|  | * | 
|  | * All clocks on the Mach64 can be calculated using the same principle: | 
|  | * | 
|  | *       XTALIN * x * FB_DIV | 
|  | * CLK = ---------------------- | 
|  | *       PLL_REF_DIV * POST_DIV | 
|  | * | 
|  | * XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz. | 
|  | * PLL_REF_DIV can be set by the user, but is the same for all clocks. | 
|  | * FB_DIV can be set by the user for each clock individually, it should be set | 
|  | * between 128 and 255, the chip will generate a bad clock signal for too low | 
|  | * values. | 
|  | * x depends on the type of clock; usually it is 2, but for the MCLK it can also | 
|  | * be set to 4. | 
|  | * POST_DIV can be set by the user for each clock individually, Possible values | 
|  | * are 1,2,4,8 and for some clocks other values are available too. | 
|  | * CLK is of course the clock speed that is generated. | 
|  | * | 
|  | * The Mach64 has these clocks: | 
|  | * | 
|  | * MCLK			The clock rate of the chip | 
|  | * XCLK			The clock rate of the on-chip memory | 
|  | * VCLK0		First pixel clock of first CRT controller | 
|  | * VCLK1    Second pixel clock of first CRT controller | 
|  | * VCLK2		Third pixel clock of first CRT controller | 
|  | * VCLK3    Fourth pixel clock of first CRT controller | 
|  | * VCLK			Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3 | 
|  | * V2CLK		Pixel clock of the second CRT controller. | 
|  | * SCLK			Multi-purpose clock | 
|  | * | 
|  | * - MCLK and XCLK use the same FB_DIV | 
|  | * - VCLK0 .. VCLK3 use the same FB_DIV | 
|  | * - V2CLK is needed when the second CRTC is used (can be used for dualhead); | 
|  | *   i.e. CRT monitor connected to laptop has different resolution than built | 
|  | *   in LCD monitor. | 
|  | * - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO, | 
|  | *   Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT. | 
|  | * - V2CLK is not available on all cards, most likely only the Rage LT-PRO, | 
|  | *   the Rage XL and the Rage Mobility | 
|  | * | 
|  | * SCLK can be used to: | 
|  | * - Clock the chip instead of MCLK | 
|  | * - Replace XTALIN with a user defined frequency | 
|  | * - Generate the pixel clock for the LCD monitor (instead of VCLK) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * It can be quite hard to calculate XCLK and MCLK if they don't run at the | 
|  | * same frequency. Luckily, until now all cards that need asynchrone clock | 
|  | * speeds seem to have SCLK. | 
|  | * So this driver uses SCLK to clock the chip and XCLK to clock the memory. | 
|  | */ | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ | 
|  |  | 
|  | /* | 
|  | *  PLL programming (Mach64 CT family) | 
|  | * | 
|  | * | 
|  | * This procedure sets the display fifo. The display fifo is a buffer that | 
|  | * contains data read from the video memory that waits to be processed by | 
|  | * the CRT controller. | 
|  | * | 
|  | * On the more modern Mach64 variants, the chip doesn't calculate the | 
|  | * interval after which the display fifo has to be reloaded from memory | 
|  | * automatically, the driver has to do it instead. | 
|  | */ | 
|  |  | 
|  | #define Maximum_DSP_PRECISION 7 | 
|  | static u8 postdividers[] = {1,2,4,8,3}; | 
|  |  | 
|  | static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll) | 
|  | { | 
|  | u32 dsp_off, dsp_on, dsp_xclks; | 
|  | u32 multiplier, divider, ras_multiplier, ras_divider, tmp; | 
|  | u8 vshift, xshift; | 
|  | s8 dsp_precision; | 
|  |  | 
|  | multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real; | 
|  | divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div; | 
|  |  | 
|  | ras_multiplier = pll->xclkmaxrasdelay; | 
|  | ras_divider = 1; | 
|  |  | 
|  | if (bpp>=8) | 
|  | divider = divider * (bpp >> 2); | 
|  |  | 
|  | vshift = (6 - 2) - pll->xclk_post_div;	/* FIFO is 64 bits wide in accelerator mode ... */ | 
|  |  | 
|  | if (bpp == 0) | 
|  | vshift--;	/* ... but only 32 bits in VGA mode. */ | 
|  |  | 
|  | #ifdef CONFIG_FB_ATY_GENERIC_LCD | 
|  | if (pll->xres != 0) { | 
|  | struct atyfb_par *par = (struct atyfb_par *) info->par; | 
|  |  | 
|  | multiplier = multiplier * par->lcd_width; | 
|  | divider = divider * pll->xres & ~7; | 
|  |  | 
|  | ras_multiplier = ras_multiplier * par->lcd_width; | 
|  | ras_divider = ras_divider * pll->xres & ~7; | 
|  | } | 
|  | #endif | 
|  | /* If we don't do this, 32 bits for multiplier & divider won't be | 
|  | enough in certain situations! */ | 
|  | while (((multiplier | divider) & 1) == 0) { | 
|  | multiplier = multiplier >> 1; | 
|  | divider = divider >> 1; | 
|  | } | 
|  |  | 
|  | /* Determine DSP precision first */ | 
|  | tmp = ((multiplier * pll->fifo_size) << vshift) / divider; | 
|  |  | 
|  | for (dsp_precision = -5;  tmp;  dsp_precision++) | 
|  | tmp >>= 1; | 
|  | if (dsp_precision < 0) | 
|  | dsp_precision = 0; | 
|  | else if (dsp_precision > Maximum_DSP_PRECISION) | 
|  | dsp_precision = Maximum_DSP_PRECISION; | 
|  |  | 
|  | xshift = 6 - dsp_precision; | 
|  | vshift += xshift; | 
|  |  | 
|  | /* Move on to dsp_off */ | 
|  | dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider - | 
|  | (1 << (vshift - xshift)); | 
|  |  | 
|  | /*    if (bpp == 0) | 
|  | dsp_on = ((multiplier * 20 << vshift) + divider) / divider; | 
|  | else */ | 
|  | { | 
|  | dsp_on = ((multiplier << vshift) + divider) / divider; | 
|  | tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider; | 
|  | if (dsp_on < tmp) | 
|  | dsp_on = tmp; | 
|  | dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift); | 
|  | } | 
|  |  | 
|  | /* Calculate rounding factor and apply it to dsp_on */ | 
|  | tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1; | 
|  | dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1); | 
|  |  | 
|  | if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) { | 
|  | dsp_on = dsp_off - (multiplier << vshift) / divider; | 
|  | dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1); | 
|  | } | 
|  |  | 
|  | /* Last but not least:  dsp_xclks */ | 
|  | dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider; | 
|  |  | 
|  | /* Get register values. */ | 
|  | pll->dsp_on_off = (dsp_on << 16) + dsp_off; | 
|  | pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks; | 
|  | #ifdef DEBUG | 
|  | printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n", | 
|  | __func__, pll->dsp_config, pll->dsp_on_off); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll) | 
|  | { | 
|  | u32 q; | 
|  | struct atyfb_par *par = (struct atyfb_par *) info->par; | 
|  | int pllvclk; | 
|  |  | 
|  | /* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */ | 
|  | q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per; | 
|  | if (q < 16*8 || q > 255*8) { | 
|  | printk(KERN_CRIT "atyfb: vclk out of range\n"); | 
|  | return -EINVAL; | 
|  | } else { | 
|  | pll->vclk_post_div  = (q < 128*8); | 
|  | pll->vclk_post_div += (q <  64*8); | 
|  | pll->vclk_post_div += (q <  32*8); | 
|  | } | 
|  | pll->vclk_post_div_real = postdividers[pll->vclk_post_div]; | 
|  | //    pll->vclk_post_div <<= 6; | 
|  | pll->vclk_fb_div = q * pll->vclk_post_div_real / 8; | 
|  | pllvclk = (1000000 * 2 * pll->vclk_fb_div) / | 
|  | (par->ref_clk_per * pll->pll_ref_div); | 
|  | #ifdef DEBUG | 
|  | printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n", | 
|  | __func__, pllvclk, pllvclk / pll->vclk_post_div_real); | 
|  | #endif | 
|  | pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */ | 
|  |  | 
|  | /* Set ECP (scaler/overlay clock) divider */ | 
|  | if (par->pll_limits.ecp_max) { | 
|  | int ecp = pllvclk / pll->vclk_post_div_real; | 
|  | int ecp_div = 0; | 
|  |  | 
|  | while (ecp > par->pll_limits.ecp_max && ecp_div < 2) { | 
|  | ecp >>= 1; | 
|  | ecp_div++; | 
|  | } | 
|  | pll->pll_vclk_cntl |= ecp_div << 4; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) | 
|  | { | 
|  | struct atyfb_par *par = (struct atyfb_par *) info->par; | 
|  | int err; | 
|  |  | 
|  | if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct))) | 
|  | return err; | 
|  | if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct))) | 
|  | return err; | 
|  | /*aty_calc_pll_ct(info, &pll->ct);*/ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll) | 
|  | { | 
|  | struct atyfb_par *par = (struct atyfb_par *) info->par; | 
|  | u32 ret; | 
|  | ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2; | 
|  | #ifdef CONFIG_FB_ATY_GENERIC_LCD | 
|  | if(pll->ct.xres > 0) { | 
|  | ret *= par->lcd_width; | 
|  | ret /= pll->ct.xres; | 
|  | } | 
|  | #endif | 
|  | #ifdef DEBUG | 
|  | printk("atyfb(%s): calculated 0x%08X(%i)\n", __func__, ret, ret); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll) | 
|  | { | 
|  | struct atyfb_par *par = (struct atyfb_par *) info->par; | 
|  | u32 crtc_gen_cntl, lcd_gen_cntrl; | 
|  | u8 tmp, tmp2; | 
|  |  | 
|  | lcd_gen_cntrl = 0; | 
|  | #ifdef DEBUG | 
|  | printk("atyfb(%s): about to program:\n" | 
|  | "pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n", | 
|  | __func__, | 
|  | pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl); | 
|  |  | 
|  | printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n", | 
|  | __func__, | 
|  | par->clk_wr_offset, pll->ct.vclk_fb_div, | 
|  | pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real); | 
|  | #endif | 
|  | #ifdef CONFIG_FB_ATY_GENERIC_LCD | 
|  | if (par->lcd_table != 0) { | 
|  | /* turn off LCD */ | 
|  | lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par); | 
|  | aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par); | 
|  | } | 
|  | #endif | 
|  | aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par); | 
|  |  | 
|  | /* Temporarily switch to accelerator mode */ | 
|  | crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par); | 
|  | if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) | 
|  | aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par); | 
|  |  | 
|  | /* Reset VCLK generator */ | 
|  | aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par); | 
|  |  | 
|  | /* Set post-divider */ | 
|  | tmp2 = par->clk_wr_offset << 1; | 
|  | tmp = aty_ld_pll_ct(VCLK_POST_DIV, par); | 
|  | tmp &= ~(0x03U << tmp2); | 
|  | tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2); | 
|  | aty_st_pll_ct(VCLK_POST_DIV, tmp, par); | 
|  |  | 
|  | /* Set extended post-divider */ | 
|  | tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par); | 
|  | tmp &= ~(0x10U << par->clk_wr_offset); | 
|  | tmp &= 0xF0U; | 
|  | tmp |= pll->ct.pll_ext_cntl; | 
|  | aty_st_pll_ct(PLL_EXT_CNTL, tmp, par); | 
|  |  | 
|  | /* Set feedback divider */ | 
|  | tmp = VCLK0_FB_DIV + par->clk_wr_offset; | 
|  | aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par); | 
|  |  | 
|  | aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par); | 
|  |  | 
|  | /* End VCLK generator reset */ | 
|  | aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par); | 
|  | mdelay(5); | 
|  |  | 
|  | aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par); | 
|  | aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par); | 
|  | mdelay(1); | 
|  |  | 
|  | /* Restore mode register */ | 
|  | if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) | 
|  | aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par); | 
|  |  | 
|  | if (M64_HAS(GTB_DSP)) { | 
|  | u8 dll_cntl; | 
|  |  | 
|  | if (M64_HAS(XL_DLL)) | 
|  | dll_cntl = 0x80; | 
|  | else if (par->ram_type >= SDRAM) | 
|  | dll_cntl = 0xa6; | 
|  | else | 
|  | dll_cntl = 0xa0; | 
|  | aty_st_pll_ct(DLL_CNTL, dll_cntl, par); | 
|  | aty_st_pll_ct(VFC_CNTL, 0x1b, par); | 
|  | aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par); | 
|  | aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par); | 
|  |  | 
|  | mdelay(10); | 
|  | aty_st_pll_ct(DLL_CNTL, dll_cntl, par); | 
|  | mdelay(10); | 
|  | aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par); | 
|  | mdelay(10); | 
|  | aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par); | 
|  | } | 
|  | #ifdef CONFIG_FB_ATY_GENERIC_LCD | 
|  | if (par->lcd_table != 0) { | 
|  | /* restore LCD */ | 
|  | aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __devinit aty_get_pll_ct(const struct fb_info *info, | 
|  | union aty_pll *pll) | 
|  | { | 
|  | struct atyfb_par *par = (struct atyfb_par *) info->par; | 
|  | u8 tmp, clock; | 
|  |  | 
|  | clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U; | 
|  | tmp = clock << 1; | 
|  | pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U; | 
|  |  | 
|  | pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU; | 
|  | pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU; | 
|  | pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); | 
|  | pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par); | 
|  |  | 
|  | pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par); | 
|  | pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par); | 
|  |  | 
|  | if (M64_HAS(GTB_DSP)) { | 
|  | pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par); | 
|  | pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __devinit aty_init_pll_ct(const struct fb_info *info, | 
|  | union aty_pll *pll) | 
|  | { | 
|  | struct atyfb_par *par = (struct atyfb_par *) info->par; | 
|  | u8 mpost_div, xpost_div, sclk_post_div_real; | 
|  | u32 q, memcntl, trp; | 
|  | u32 dsp_config, dsp_on_off, vga_dsp_config, vga_dsp_on_off; | 
|  | #ifdef DEBUG | 
|  | int pllmclk, pllsclk; | 
|  | #endif | 
|  | pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par); | 
|  | pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07; | 
|  | pll->ct.xclk_ref_div = 1; | 
|  | switch (pll->ct.xclk_post_div) { | 
|  | case 0:  case 1:  case 2:  case 3: | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | pll->ct.xclk_ref_div = 3; | 
|  | pll->ct.xclk_post_div = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_CRIT "atyfb: Unsupported xclk source:  %d.\n", pll->ct.xclk_post_div); | 
|  | return -EINVAL; | 
|  | } | 
|  | pll->ct.mclk_fb_mult = 2; | 
|  | if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) { | 
|  | pll->ct.mclk_fb_mult = 4; | 
|  | pll->ct.xclk_post_div -= 1; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n", | 
|  | __func__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div); | 
|  | #endif | 
|  |  | 
|  | memcntl = aty_ld_le32(MEM_CNTL, par); | 
|  | trp = (memcntl & 0x300) >> 8; | 
|  |  | 
|  | pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2; | 
|  | pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2; | 
|  |  | 
|  | if (M64_HAS(FIFO_32)) { | 
|  | pll->ct.fifo_size = 32; | 
|  | } else { | 
|  | pll->ct.fifo_size = 24; | 
|  | pll->ct.xclkpagefaultdelay += 2; | 
|  | pll->ct.xclkmaxrasdelay += 3; | 
|  | } | 
|  |  | 
|  | switch (par->ram_type) { | 
|  | case DRAM: | 
|  | if (info->fix.smem_len<=ONE_MB) { | 
|  | pll->ct.dsp_loop_latency = 10; | 
|  | } else { | 
|  | pll->ct.dsp_loop_latency = 8; | 
|  | pll->ct.xclkpagefaultdelay += 2; | 
|  | } | 
|  | break; | 
|  | case EDO: | 
|  | case PSEUDO_EDO: | 
|  | if (info->fix.smem_len<=ONE_MB) { | 
|  | pll->ct.dsp_loop_latency = 9; | 
|  | } else { | 
|  | pll->ct.dsp_loop_latency = 8; | 
|  | pll->ct.xclkpagefaultdelay += 1; | 
|  | } | 
|  | break; | 
|  | case SDRAM: | 
|  | if (info->fix.smem_len<=ONE_MB) { | 
|  | pll->ct.dsp_loop_latency = 11; | 
|  | } else { | 
|  | pll->ct.dsp_loop_latency = 10; | 
|  | pll->ct.xclkpagefaultdelay += 1; | 
|  | } | 
|  | break; | 
|  | case SGRAM: | 
|  | pll->ct.dsp_loop_latency = 8; | 
|  | pll->ct.xclkpagefaultdelay += 3; | 
|  | break; | 
|  | default: | 
|  | pll->ct.dsp_loop_latency = 11; | 
|  | pll->ct.xclkpagefaultdelay += 3; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay) | 
|  | pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1; | 
|  |  | 
|  | /* Allow BIOS to override */ | 
|  | dsp_config = aty_ld_le32(DSP_CONFIG, par); | 
|  | dsp_on_off = aty_ld_le32(DSP_ON_OFF, par); | 
|  | vga_dsp_config = aty_ld_le32(VGA_DSP_CONFIG, par); | 
|  | vga_dsp_on_off = aty_ld_le32(VGA_DSP_ON_OFF, par); | 
|  |  | 
|  | if (dsp_config) | 
|  | pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16; | 
|  | #if 0 | 
|  | FIXME: is it relevant for us? | 
|  | if ((!dsp_on_off && !M64_HAS(RESET_3D)) || | 
|  | ((dsp_on_off == vga_dsp_on_off) && | 
|  | (!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) { | 
|  | vga_dsp_on_off &= VGA_DSP_OFF; | 
|  | vga_dsp_config &= VGA_DSP_XCLKS_PER_QW; | 
|  | if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24) | 
|  | pll->ct.fifo_size = 32; | 
|  | else | 
|  | pll->ct.fifo_size = 24; | 
|  | } | 
|  | #endif | 
|  | /* Exit if the user does not want us to tamper with the clock | 
|  | rates of her chip. */ | 
|  | if (par->mclk_per == 0) { | 
|  | u8 mclk_fb_div, pll_ext_cntl; | 
|  | pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); | 
|  | pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par); | 
|  | pll->ct.xclk_post_div_real = postdividers[pll_ext_cntl & 0x07]; | 
|  | mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par); | 
|  | if (pll_ext_cntl & PLL_MFB_TIMES_4_2B) | 
|  | mclk_fb_div <<= 1; | 
|  | pll->ct.mclk_fb_div = mclk_fb_div; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per; | 
|  |  | 
|  | /* FIXME: use the VTB/GTB /3 post divider if it's better suited */ | 
|  | q = par->ref_clk_per * pll->ct.pll_ref_div * 8 / | 
|  | (pll->ct.mclk_fb_mult * par->xclk_per); | 
|  |  | 
|  | if (q < 16*8 || q > 255*8) { | 
|  | printk(KERN_CRIT "atxfb: xclk out of range\n"); | 
|  | return -EINVAL; | 
|  | } else { | 
|  | xpost_div  = (q < 128*8); | 
|  | xpost_div += (q <  64*8); | 
|  | xpost_div += (q <  32*8); | 
|  | } | 
|  | pll->ct.xclk_post_div_real = postdividers[xpost_div]; | 
|  | pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8; | 
|  |  | 
|  | #ifdef CONFIG_PPC | 
|  | if (machine_is(powermac)) { | 
|  | /* Override PLL_EXT_CNTL & 0x07. */ | 
|  | pll->ct.xclk_post_div = xpost_div; | 
|  | pll->ct.xclk_ref_div = 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG | 
|  | pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) / | 
|  | (par->ref_clk_per * pll->ct.pll_ref_div); | 
|  | printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n", | 
|  | __func__, pllmclk, pllmclk / pll->ct.xclk_post_div_real); | 
|  | #endif | 
|  |  | 
|  | if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM)) | 
|  | pll->ct.pll_gen_cntl = OSC_EN; | 
|  | else | 
|  | pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */; | 
|  |  | 
|  | if (M64_HAS(MAGIC_POSTDIV)) | 
|  | pll->ct.pll_ext_cntl = 0; | 
|  | else | 
|  | pll->ct.pll_ext_cntl = xpost_div; | 
|  |  | 
|  | if (pll->ct.mclk_fb_mult == 4) | 
|  | pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B; | 
|  |  | 
|  | if (par->mclk_per == par->xclk_per) { | 
|  | pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */ | 
|  | } else { | 
|  | /* | 
|  | * The chip clock is not equal to the memory clock. | 
|  | * Therefore we will use sclk to clock the chip. | 
|  | */ | 
|  | pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */ | 
|  |  | 
|  | q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per; | 
|  | if (q < 16*8 || q > 255*8) { | 
|  | printk(KERN_CRIT "atyfb: mclk out of range\n"); | 
|  | return -EINVAL; | 
|  | } else { | 
|  | mpost_div  = (q < 128*8); | 
|  | mpost_div += (q <  64*8); | 
|  | mpost_div += (q <  32*8); | 
|  | } | 
|  | sclk_post_div_real = postdividers[mpost_div]; | 
|  | pll->ct.sclk_fb_div = q * sclk_post_div_real / 8; | 
|  | pll->ct.spll_cntl2 = mpost_div << 4; | 
|  | #ifdef DEBUG | 
|  | pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) / | 
|  | (par->ref_clk_per * pll->ct.pll_ref_div); | 
|  | printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n", | 
|  | __func__, pllsclk, pllsclk / sclk_post_div_real); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Disable the extra precision pixel clock controls since we do not use them. */ | 
|  | pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par); | 
|  | pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void aty_resume_pll_ct(const struct fb_info *info, | 
|  | union aty_pll *pll) | 
|  | { | 
|  | struct atyfb_par *par = info->par; | 
|  |  | 
|  | if (par->mclk_per != par->xclk_per) { | 
|  | /* | 
|  | * This disables the sclk, crashes the computer as reported: | 
|  | * aty_st_pll_ct(SPLL_CNTL2, 3, info); | 
|  | * | 
|  | * So it seems the sclk must be enabled before it is used; | 
|  | * so PLL_GEN_CNTL must be programmed *after* the sclk. | 
|  | */ | 
|  | aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par); | 
|  | aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par); | 
|  | /* | 
|  | * SCLK has been started. Wait for the PLL to lock. 5 ms | 
|  | * should be enough according to mach64 programmer's guide. | 
|  | */ | 
|  | mdelay(5); | 
|  | } | 
|  |  | 
|  | aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par); | 
|  | aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par); | 
|  | aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par); | 
|  | aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par); | 
|  | aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par); | 
|  | } | 
|  |  | 
|  | static int dummy(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct aty_dac_ops aty_dac_ct = { | 
|  | .set_dac	= (void *) dummy, | 
|  | }; | 
|  |  | 
|  | const struct aty_pll_ops aty_pll_ct = { | 
|  | .var_to_pll	= aty_var_to_pll_ct, | 
|  | .pll_to_var	= aty_pll_to_var_ct, | 
|  | .set_pll	= aty_set_pll_ct, | 
|  | .get_pll	= aty_get_pll_ct, | 
|  | .init_pll	= aty_init_pll_ct, | 
|  | .resume_pll	= aty_resume_pll_ct, | 
|  | }; |