| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * SHA-3, as specified in |
| * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf |
| * |
| * SHA-3 code by Jeff Garzik <jeff@garzik.org> |
| * Ard Biesheuvel <ard.biesheuvel@linaro.org> |
| * David Howells <dhowells@redhat.com> |
| * |
| * See also Documentation/crypto/sha3.rst |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <crypto/sha3.h> |
| #include <crypto/utils.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/unaligned.h> |
| #include "fips.h" |
| |
| /* |
| * On some 32-bit architectures, such as h8300, GCC ends up using over 1 KB of |
| * stack if the round calculation gets inlined into the loop in |
| * sha3_keccakf_generic(). On the other hand, on 64-bit architectures with |
| * plenty of [64-bit wide] general purpose registers, not inlining it severely |
| * hurts performance. So let's use 64-bitness as a heuristic to decide whether |
| * to inline or not. |
| */ |
| #ifdef CONFIG_64BIT |
| #define SHA3_INLINE inline |
| #else |
| #define SHA3_INLINE noinline |
| #endif |
| |
| #define SHA3_KECCAK_ROUNDS 24 |
| |
| static const u64 sha3_keccakf_rndc[SHA3_KECCAK_ROUNDS] = { |
| 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, |
| 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL, |
| 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL, |
| 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL, |
| 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, |
| 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, |
| 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, |
| 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL |
| }; |
| |
| /* |
| * Perform a single round of Keccak mixing. |
| */ |
| static SHA3_INLINE void sha3_keccakf_one_round_generic(u64 st[25], int round) |
| { |
| u64 t[5], tt, bc[5]; |
| |
| /* Theta */ |
| bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; |
| bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; |
| bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; |
| bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; |
| bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; |
| |
| t[0] = bc[4] ^ rol64(bc[1], 1); |
| t[1] = bc[0] ^ rol64(bc[2], 1); |
| t[2] = bc[1] ^ rol64(bc[3], 1); |
| t[3] = bc[2] ^ rol64(bc[4], 1); |
| t[4] = bc[3] ^ rol64(bc[0], 1); |
| |
| st[0] ^= t[0]; |
| |
| /* Rho Pi */ |
| tt = st[1]; |
| st[ 1] = rol64(st[ 6] ^ t[1], 44); |
| st[ 6] = rol64(st[ 9] ^ t[4], 20); |
| st[ 9] = rol64(st[22] ^ t[2], 61); |
| st[22] = rol64(st[14] ^ t[4], 39); |
| st[14] = rol64(st[20] ^ t[0], 18); |
| st[20] = rol64(st[ 2] ^ t[2], 62); |
| st[ 2] = rol64(st[12] ^ t[2], 43); |
| st[12] = rol64(st[13] ^ t[3], 25); |
| st[13] = rol64(st[19] ^ t[4], 8); |
| st[19] = rol64(st[23] ^ t[3], 56); |
| st[23] = rol64(st[15] ^ t[0], 41); |
| st[15] = rol64(st[ 4] ^ t[4], 27); |
| st[ 4] = rol64(st[24] ^ t[4], 14); |
| st[24] = rol64(st[21] ^ t[1], 2); |
| st[21] = rol64(st[ 8] ^ t[3], 55); |
| st[ 8] = rol64(st[16] ^ t[1], 45); |
| st[16] = rol64(st[ 5] ^ t[0], 36); |
| st[ 5] = rol64(st[ 3] ^ t[3], 28); |
| st[ 3] = rol64(st[18] ^ t[3], 21); |
| st[18] = rol64(st[17] ^ t[2], 15); |
| st[17] = rol64(st[11] ^ t[1], 10); |
| st[11] = rol64(st[ 7] ^ t[2], 6); |
| st[ 7] = rol64(st[10] ^ t[0], 3); |
| st[10] = rol64( tt ^ t[1], 1); |
| |
| /* Chi */ |
| bc[ 0] = ~st[ 1] & st[ 2]; |
| bc[ 1] = ~st[ 2] & st[ 3]; |
| bc[ 2] = ~st[ 3] & st[ 4]; |
| bc[ 3] = ~st[ 4] & st[ 0]; |
| bc[ 4] = ~st[ 0] & st[ 1]; |
| st[ 0] ^= bc[ 0]; |
| st[ 1] ^= bc[ 1]; |
| st[ 2] ^= bc[ 2]; |
| st[ 3] ^= bc[ 3]; |
| st[ 4] ^= bc[ 4]; |
| |
| bc[ 0] = ~st[ 6] & st[ 7]; |
| bc[ 1] = ~st[ 7] & st[ 8]; |
| bc[ 2] = ~st[ 8] & st[ 9]; |
| bc[ 3] = ~st[ 9] & st[ 5]; |
| bc[ 4] = ~st[ 5] & st[ 6]; |
| st[ 5] ^= bc[ 0]; |
| st[ 6] ^= bc[ 1]; |
| st[ 7] ^= bc[ 2]; |
| st[ 8] ^= bc[ 3]; |
| st[ 9] ^= bc[ 4]; |
| |
| bc[ 0] = ~st[11] & st[12]; |
| bc[ 1] = ~st[12] & st[13]; |
| bc[ 2] = ~st[13] & st[14]; |
| bc[ 3] = ~st[14] & st[10]; |
| bc[ 4] = ~st[10] & st[11]; |
| st[10] ^= bc[ 0]; |
| st[11] ^= bc[ 1]; |
| st[12] ^= bc[ 2]; |
| st[13] ^= bc[ 3]; |
| st[14] ^= bc[ 4]; |
| |
| bc[ 0] = ~st[16] & st[17]; |
| bc[ 1] = ~st[17] & st[18]; |
| bc[ 2] = ~st[18] & st[19]; |
| bc[ 3] = ~st[19] & st[15]; |
| bc[ 4] = ~st[15] & st[16]; |
| st[15] ^= bc[ 0]; |
| st[16] ^= bc[ 1]; |
| st[17] ^= bc[ 2]; |
| st[18] ^= bc[ 3]; |
| st[19] ^= bc[ 4]; |
| |
| bc[ 0] = ~st[21] & st[22]; |
| bc[ 1] = ~st[22] & st[23]; |
| bc[ 2] = ~st[23] & st[24]; |
| bc[ 3] = ~st[24] & st[20]; |
| bc[ 4] = ~st[20] & st[21]; |
| st[20] ^= bc[ 0]; |
| st[21] ^= bc[ 1]; |
| st[22] ^= bc[ 2]; |
| st[23] ^= bc[ 3]; |
| st[24] ^= bc[ 4]; |
| |
| /* Iota */ |
| st[0] ^= sha3_keccakf_rndc[round]; |
| } |
| |
| /* Generic implementation of the Keccak-f[1600] permutation */ |
| static void sha3_keccakf_generic(struct sha3_state *state) |
| { |
| /* |
| * Temporarily convert the state words from little-endian to native- |
| * endian so that they can be operated on. Note that on little-endian |
| * machines this conversion is a no-op and is optimized out. |
| */ |
| |
| for (int i = 0; i < ARRAY_SIZE(state->words); i++) |
| state->native_words[i] = le64_to_cpu(state->words[i]); |
| |
| for (int round = 0; round < SHA3_KECCAK_ROUNDS; round++) |
| sha3_keccakf_one_round_generic(state->native_words, round); |
| |
| for (int i = 0; i < ARRAY_SIZE(state->words); i++) |
| state->words[i] = cpu_to_le64(state->native_words[i]); |
| } |
| |
| /* |
| * Generic implementation of absorbing the given nonzero number of full blocks |
| * into the sponge function Keccak[r=8*block_size, c=1600-8*block_size]. |
| */ |
| static void __maybe_unused |
| sha3_absorb_blocks_generic(struct sha3_state *state, const u8 *data, |
| size_t nblocks, size_t block_size) |
| { |
| do { |
| for (size_t i = 0; i < block_size; i += 8) |
| state->words[i / 8] ^= get_unaligned((__le64 *)&data[i]); |
| sha3_keccakf_generic(state); |
| data += block_size; |
| } while (--nblocks); |
| } |
| |
| #ifdef CONFIG_CRYPTO_LIB_SHA3_ARCH |
| #include "sha3.h" /* $(SRCARCH)/sha3.h */ |
| #else |
| #define sha3_keccakf sha3_keccakf_generic |
| #define sha3_absorb_blocks sha3_absorb_blocks_generic |
| #endif |
| |
| void __sha3_update(struct __sha3_ctx *ctx, const u8 *in, size_t in_len) |
| { |
| const size_t block_size = ctx->block_size; |
| size_t absorb_offset = ctx->absorb_offset; |
| |
| /* Warn if squeezing has already begun. */ |
| WARN_ON_ONCE(absorb_offset >= block_size); |
| |
| if (absorb_offset && absorb_offset + in_len >= block_size) { |
| crypto_xor(&ctx->state.bytes[absorb_offset], in, |
| block_size - absorb_offset); |
| in += block_size - absorb_offset; |
| in_len -= block_size - absorb_offset; |
| sha3_keccakf(&ctx->state); |
| absorb_offset = 0; |
| } |
| |
| if (in_len >= block_size) { |
| size_t nblocks = in_len / block_size; |
| |
| sha3_absorb_blocks(&ctx->state, in, nblocks, block_size); |
| in += nblocks * block_size; |
| in_len -= nblocks * block_size; |
| } |
| |
| if (in_len) { |
| crypto_xor(&ctx->state.bytes[absorb_offset], in, in_len); |
| absorb_offset += in_len; |
| } |
| ctx->absorb_offset = absorb_offset; |
| } |
| EXPORT_SYMBOL_GPL(__sha3_update); |
| |
| void sha3_final(struct sha3_ctx *sha3_ctx, u8 *out) |
| { |
| struct __sha3_ctx *ctx = &sha3_ctx->ctx; |
| |
| ctx->state.bytes[ctx->absorb_offset] ^= 0x06; |
| ctx->state.bytes[ctx->block_size - 1] ^= 0x80; |
| sha3_keccakf(&ctx->state); |
| memcpy(out, ctx->state.bytes, ctx->digest_size); |
| sha3_zeroize_ctx(sha3_ctx); |
| } |
| EXPORT_SYMBOL_GPL(sha3_final); |
| |
| void shake_squeeze(struct shake_ctx *shake_ctx, u8 *out, size_t out_len) |
| { |
| struct __sha3_ctx *ctx = &shake_ctx->ctx; |
| const size_t block_size = ctx->block_size; |
| size_t squeeze_offset = ctx->squeeze_offset; |
| |
| if (ctx->absorb_offset < block_size) { |
| /* First squeeze: */ |
| |
| /* Add the domain separation suffix and padding. */ |
| ctx->state.bytes[ctx->absorb_offset] ^= 0x1f; |
| ctx->state.bytes[block_size - 1] ^= 0x80; |
| |
| /* Indicate that squeezing has begun. */ |
| ctx->absorb_offset = block_size; |
| |
| /* |
| * Indicate that no output is pending yet, i.e. sha3_keccakf() |
| * will need to be called before the first copy. |
| */ |
| squeeze_offset = block_size; |
| } |
| while (out_len) { |
| if (squeeze_offset == block_size) { |
| sha3_keccakf(&ctx->state); |
| squeeze_offset = 0; |
| } |
| size_t copy = min(out_len, block_size - squeeze_offset); |
| |
| memcpy(out, &ctx->state.bytes[squeeze_offset], copy); |
| out += copy; |
| out_len -= copy; |
| squeeze_offset += copy; |
| } |
| ctx->squeeze_offset = squeeze_offset; |
| } |
| EXPORT_SYMBOL_GPL(shake_squeeze); |
| |
| #ifndef sha3_224_arch |
| static inline bool sha3_224_arch(const u8 *in, size_t in_len, |
| u8 out[SHA3_224_DIGEST_SIZE]) |
| { |
| return false; |
| } |
| #endif |
| #ifndef sha3_256_arch |
| static inline bool sha3_256_arch(const u8 *in, size_t in_len, |
| u8 out[SHA3_256_DIGEST_SIZE]) |
| { |
| return false; |
| } |
| #endif |
| #ifndef sha3_384_arch |
| static inline bool sha3_384_arch(const u8 *in, size_t in_len, |
| u8 out[SHA3_384_DIGEST_SIZE]) |
| { |
| return false; |
| } |
| #endif |
| #ifndef sha3_512_arch |
| static inline bool sha3_512_arch(const u8 *in, size_t in_len, |
| u8 out[SHA3_512_DIGEST_SIZE]) |
| { |
| return false; |
| } |
| #endif |
| |
| void sha3_224(const u8 *in, size_t in_len, u8 out[SHA3_224_DIGEST_SIZE]) |
| { |
| struct sha3_ctx ctx; |
| |
| if (sha3_224_arch(in, in_len, out)) |
| return; |
| sha3_224_init(&ctx); |
| sha3_update(&ctx, in, in_len); |
| sha3_final(&ctx, out); |
| } |
| EXPORT_SYMBOL_GPL(sha3_224); |
| |
| void sha3_256(const u8 *in, size_t in_len, u8 out[SHA3_256_DIGEST_SIZE]) |
| { |
| struct sha3_ctx ctx; |
| |
| if (sha3_256_arch(in, in_len, out)) |
| return; |
| sha3_256_init(&ctx); |
| sha3_update(&ctx, in, in_len); |
| sha3_final(&ctx, out); |
| } |
| EXPORT_SYMBOL_GPL(sha3_256); |
| |
| void sha3_384(const u8 *in, size_t in_len, u8 out[SHA3_384_DIGEST_SIZE]) |
| { |
| struct sha3_ctx ctx; |
| |
| if (sha3_384_arch(in, in_len, out)) |
| return; |
| sha3_384_init(&ctx); |
| sha3_update(&ctx, in, in_len); |
| sha3_final(&ctx, out); |
| } |
| EXPORT_SYMBOL_GPL(sha3_384); |
| |
| void sha3_512(const u8 *in, size_t in_len, u8 out[SHA3_512_DIGEST_SIZE]) |
| { |
| struct sha3_ctx ctx; |
| |
| if (sha3_512_arch(in, in_len, out)) |
| return; |
| sha3_512_init(&ctx); |
| sha3_update(&ctx, in, in_len); |
| sha3_final(&ctx, out); |
| } |
| EXPORT_SYMBOL_GPL(sha3_512); |
| |
| void shake128(const u8 *in, size_t in_len, u8 *out, size_t out_len) |
| { |
| struct shake_ctx ctx; |
| |
| shake128_init(&ctx); |
| shake_update(&ctx, in, in_len); |
| shake_squeeze(&ctx, out, out_len); |
| shake_zeroize_ctx(&ctx); |
| } |
| EXPORT_SYMBOL_GPL(shake128); |
| |
| void shake256(const u8 *in, size_t in_len, u8 *out, size_t out_len) |
| { |
| struct shake_ctx ctx; |
| |
| shake256_init(&ctx); |
| shake_update(&ctx, in, in_len); |
| shake_squeeze(&ctx, out, out_len); |
| shake_zeroize_ctx(&ctx); |
| } |
| EXPORT_SYMBOL_GPL(shake256); |
| |
| #if defined(sha3_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS) |
| static int __init sha3_mod_init(void) |
| { |
| #ifdef sha3_mod_init_arch |
| sha3_mod_init_arch(); |
| #endif |
| if (fips_enabled) { |
| /* |
| * FIPS cryptographic algorithm self-test. As per the FIPS |
| * Implementation Guidance, testing any SHA-3 algorithm |
| * satisfies the test requirement for all of them. |
| */ |
| u8 hash[SHA3_256_DIGEST_SIZE]; |
| |
| sha3_256(fips_test_data, sizeof(fips_test_data), hash); |
| if (memcmp(fips_test_sha3_256_value, hash, sizeof(hash)) != 0) |
| panic("sha3: FIPS self-test failed\n"); |
| } |
| return 0; |
| } |
| subsys_initcall(sha3_mod_init); |
| |
| static void __exit sha3_mod_exit(void) |
| { |
| } |
| module_exit(sha3_mod_exit); |
| #endif |
| |
| MODULE_DESCRIPTION("SHA-3 library functions"); |
| MODULE_LICENSE("GPL"); |