blob: 81f7599bdac4fcf14ebbde8dfaa5ef872b5ac56b [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/pnode.c
*
* (C) Copyright IBM Corporation 2005.
* Author : Ram Pai (linuxram@us.ibm.com)
*/
#include <linux/mnt_namespace.h>
#include <linux/mount.h>
#include <linux/fs.h>
#include <linux/nsproxy.h>
#include <uapi/linux/mount.h>
#include "internal.h"
#include "pnode.h"
/* return the next shared peer mount of @p */
static inline struct mount *next_peer(struct mount *p)
{
return list_entry(p->mnt_share.next, struct mount, mnt_share);
}
static inline struct mount *first_slave(struct mount *p)
{
return hlist_entry(p->mnt_slave_list.first, struct mount, mnt_slave);
}
static inline struct mount *next_slave(struct mount *p)
{
return hlist_entry(p->mnt_slave.next, struct mount, mnt_slave);
}
static struct mount *get_peer_under_root(struct mount *mnt,
struct mnt_namespace *ns,
const struct path *root)
{
struct mount *m = mnt;
do {
/* Check the namespace first for optimization */
if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
return m;
m = next_peer(m);
} while (m != mnt);
return NULL;
}
/*
* Get ID of closest dominating peer group having a representative
* under the given root.
*
* Caller must hold namespace_sem
*/
int get_dominating_id(struct mount *mnt, const struct path *root)
{
struct mount *m;
for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
if (d)
return d->mnt_group_id;
}
return 0;
}
static inline bool will_be_unmounted(struct mount *m)
{
return m->mnt.mnt_flags & MNT_UMOUNT;
}
static struct mount *propagation_source(struct mount *mnt)
{
do {
struct mount *m;
for (m = next_peer(mnt); m != mnt; m = next_peer(m)) {
if (!will_be_unmounted(m))
return m;
}
mnt = mnt->mnt_master;
} while (mnt && will_be_unmounted(mnt));
return mnt;
}
static void transfer_propagation(struct mount *mnt, struct mount *to)
{
struct hlist_node *p = NULL, *n;
struct mount *m;
hlist_for_each_entry_safe(m, n, &mnt->mnt_slave_list, mnt_slave) {
m->mnt_master = to;
if (!to)
hlist_del_init(&m->mnt_slave);
else
p = &m->mnt_slave;
}
if (p)
hlist_splice_init(&mnt->mnt_slave_list, p, &to->mnt_slave_list);
}
/*
* EXCL[namespace_sem]
*/
void change_mnt_propagation(struct mount *mnt, int type)
{
struct mount *m = mnt->mnt_master;
if (type == MS_SHARED) {
set_mnt_shared(mnt);
return;
}
if (IS_MNT_SHARED(mnt)) {
m = propagation_source(mnt);
if (list_empty(&mnt->mnt_share)) {
mnt_release_group_id(mnt);
} else {
list_del_init(&mnt->mnt_share);
mnt->mnt_group_id = 0;
}
CLEAR_MNT_SHARED(mnt);
transfer_propagation(mnt, m);
}
hlist_del_init(&mnt->mnt_slave);
if (type == MS_SLAVE) {
mnt->mnt_master = m;
if (m)
hlist_add_head(&mnt->mnt_slave, &m->mnt_slave_list);
} else {
mnt->mnt_master = NULL;
if (type == MS_UNBINDABLE)
mnt->mnt_t_flags |= T_UNBINDABLE;
else
mnt->mnt_t_flags &= ~T_UNBINDABLE;
}
}
static struct mount *__propagation_next(struct mount *m,
struct mount *origin)
{
while (1) {
struct mount *master = m->mnt_master;
if (master == origin->mnt_master) {
struct mount *next = next_peer(m);
return (next == origin) ? NULL : next;
} else if (m->mnt_slave.next)
return next_slave(m);
/* back at master */
m = master;
}
}
/*
* get the next mount in the propagation tree.
* @m: the mount seen last
* @origin: the original mount from where the tree walk initiated
*
* Note that peer groups form contiguous segments of slave lists.
* We rely on that in get_source() to be able to find out if
* vfsmount found while iterating with propagation_next() is
* a peer of one we'd found earlier.
*/
static struct mount *propagation_next(struct mount *m,
struct mount *origin)
{
/* are there any slaves of this mount? */
if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list))
return first_slave(m);
return __propagation_next(m, origin);
}
static struct mount *skip_propagation_subtree(struct mount *m,
struct mount *origin)
{
/*
* Advance m past everything that gets propagation from it.
*/
struct mount *p = __propagation_next(m, origin);
while (p && peers(m, p))
p = __propagation_next(p, origin);
return p;
}
static struct mount *next_group(struct mount *m, struct mount *origin)
{
while (1) {
while (1) {
struct mount *next;
if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list))
return first_slave(m);
next = next_peer(m);
if (m->mnt_group_id == origin->mnt_group_id) {
if (next == origin)
return NULL;
} else if (m->mnt_slave.next != &next->mnt_slave)
break;
m = next;
}
/* m is the last peer */
while (1) {
struct mount *master = m->mnt_master;
if (m->mnt_slave.next)
return next_slave(m);
m = next_peer(master);
if (master->mnt_group_id == origin->mnt_group_id)
break;
if (master->mnt_slave.next == &m->mnt_slave)
break;
m = master;
}
if (m == origin)
return NULL;
}
}
static bool need_secondary(struct mount *m, struct mountpoint *dest_mp)
{
/* skip ones added by this propagate_mnt() */
if (IS_MNT_NEW(m))
return false;
/* skip if mountpoint isn't visible in m */
if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root))
return false;
/* skip if m is in the anon_ns */
if (is_anon_ns(m->mnt_ns))
return false;
return true;
}
static struct mount *find_master(struct mount *m,
struct mount *last_copy,
struct mount *original)
{
struct mount *p;
// ascend until there's a copy for something with the same master
for (;;) {
p = m->mnt_master;
if (!p || IS_MNT_MARKED(p))
break;
m = p;
}
while (!peers(last_copy, original)) {
struct mount *parent = last_copy->mnt_parent;
if (parent->mnt_master == p) {
if (!peers(parent, m))
last_copy = last_copy->mnt_master;
break;
}
last_copy = last_copy->mnt_master;
}
return last_copy;
}
/**
* propagate_mnt() - create secondary copies for tree attachment
* @dest_mnt: destination mount.
* @dest_mp: destination mountpoint.
* @source_mnt: source mount.
* @tree_list: list of secondaries to be attached.
*
* Create secondary copies for attaching a tree with root @source_mnt
* at mount @dest_mnt with mountpoint @dest_mp. Link all new mounts
* into a propagation graph. Set mountpoints for all secondaries,
* link their roots into @tree_list via ->mnt_hash.
*/
int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
struct mount *source_mnt, struct hlist_head *tree_list)
{
struct mount *m, *n, *copy, *this;
int err = 0, type;
if (dest_mnt->mnt_master)
SET_MNT_MARK(dest_mnt->mnt_master);
/* iterate over peer groups, depth first */
for (m = dest_mnt; m && !err; m = next_group(m, dest_mnt)) {
if (m == dest_mnt) { // have one for dest_mnt itself
copy = source_mnt;
type = CL_MAKE_SHARED;
n = next_peer(m);
if (n == m)
continue;
} else {
type = CL_SLAVE;
/* beginning of peer group among the slaves? */
if (IS_MNT_SHARED(m))
type |= CL_MAKE_SHARED;
n = m;
}
do {
if (!need_secondary(n, dest_mp))
continue;
if (type & CL_SLAVE) // first in this peer group
copy = find_master(n, copy, source_mnt);
this = copy_tree(copy, copy->mnt.mnt_root, type);
if (IS_ERR(this)) {
err = PTR_ERR(this);
break;
}
read_seqlock_excl(&mount_lock);
mnt_set_mountpoint(n, dest_mp, this);
read_sequnlock_excl(&mount_lock);
if (n->mnt_master)
SET_MNT_MARK(n->mnt_master);
copy = this;
hlist_add_head(&this->mnt_hash, tree_list);
err = count_mounts(n->mnt_ns, this);
if (err)
break;
type = CL_MAKE_SHARED;
} while ((n = next_peer(n)) != m);
}
hlist_for_each_entry(n, tree_list, mnt_hash) {
m = n->mnt_parent;
if (m->mnt_master)
CLEAR_MNT_MARK(m->mnt_master);
}
if (dest_mnt->mnt_master)
CLEAR_MNT_MARK(dest_mnt->mnt_master);
return err;
}
/*
* return true if the refcount is greater than count
*/
static inline int do_refcount_check(struct mount *mnt, int count)
{
return mnt_get_count(mnt) > count;
}
/**
* propagation_would_overmount - check whether propagation from @from
* would overmount @to
* @from: shared mount
* @to: mount to check
* @mp: future mountpoint of @to on @from
*
* If @from propagates mounts to @to, @from and @to must either be peers
* or one of the masters in the hierarchy of masters of @to must be a
* peer of @from.
*
* If the root of the @to mount is equal to the future mountpoint @mp of
* the @to mount on @from then @to will be overmounted by whatever is
* propagated to it.
*
* Context: This function expects namespace_lock() to be held and that
* @mp is stable.
* Return: If @from overmounts @to, true is returned, false if not.
*/
bool propagation_would_overmount(const struct mount *from,
const struct mount *to,
const struct mountpoint *mp)
{
if (!IS_MNT_SHARED(from))
return false;
if (to->mnt.mnt_root != mp->m_dentry)
return false;
for (const struct mount *m = to; m; m = m->mnt_master) {
if (peers(from, m))
return true;
}
return false;
}
/*
* check if the mount 'mnt' can be unmounted successfully.
* @mnt: the mount to be checked for unmount
* NOTE: unmounting 'mnt' would naturally propagate to all
* other mounts its parent propagates to.
* Check if any of these mounts that **do not have submounts**
* have more references than 'refcnt'. If so return busy.
*
* vfsmount lock must be held for write
*/
int propagate_mount_busy(struct mount *mnt, int refcnt)
{
struct mount *parent = mnt->mnt_parent;
/*
* quickly check if the current mount can be unmounted.
* If not, we don't have to go checking for all other
* mounts
*/
if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
return 1;
if (mnt == parent)
return 0;
for (struct mount *m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
struct list_head *head;
struct mount *child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
if (!child)
continue;
head = &child->mnt_mounts;
if (!list_empty(head)) {
/*
* a mount that covers child completely wouldn't prevent
* it being pulled out; any other would.
*/
if (!list_is_singular(head) || !child->overmount)
continue;
}
if (do_refcount_check(child, 1))
return 1;
}
return 0;
}
/*
* Clear MNT_LOCKED when it can be shown to be safe.
*
* mount_lock lock must be held for write
*/
void propagate_mount_unlock(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m, *child;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
if (child)
child->mnt.mnt_flags &= ~MNT_LOCKED;
}
}
static inline bool is_candidate(struct mount *m)
{
return m->mnt_t_flags & T_UMOUNT_CANDIDATE;
}
static void umount_one(struct mount *m, struct list_head *to_umount)
{
m->mnt.mnt_flags |= MNT_UMOUNT;
list_del_init(&m->mnt_child);
move_from_ns(m);
list_add_tail(&m->mnt_list, to_umount);
}
static void remove_from_candidate_list(struct mount *m)
{
m->mnt_t_flags &= ~(T_MARKED | T_UMOUNT_CANDIDATE);
list_del_init(&m->mnt_list);
}
static void gather_candidates(struct list_head *set,
struct list_head *candidates)
{
struct mount *m, *p, *q;
list_for_each_entry(m, set, mnt_list) {
if (is_candidate(m))
continue;
m->mnt_t_flags |= T_UMOUNT_CANDIDATE;
p = m->mnt_parent;
q = propagation_next(p, p);
while (q) {
struct mount *child = __lookup_mnt(&q->mnt,
m->mnt_mountpoint);
if (child) {
/*
* We might've already run into this one. That
* must've happened on earlier iteration of the
* outer loop; in that case we can skip those
* parents that get propagation from q - there
* will be nothing new on those as well.
*/
if (is_candidate(child)) {
q = skip_propagation_subtree(q, p);
continue;
}
child->mnt_t_flags |= T_UMOUNT_CANDIDATE;
if (!will_be_unmounted(child))
list_add(&child->mnt_list, candidates);
}
q = propagation_next(q, p);
}
}
list_for_each_entry(m, set, mnt_list)
m->mnt_t_flags &= ~T_UMOUNT_CANDIDATE;
}
/*
* We know that some child of @m can't be unmounted. In all places where the
* chain of descent of @m has child not overmounting the root of parent,
* the parent can't be unmounted either.
*/
static void trim_ancestors(struct mount *m)
{
struct mount *p;
for (p = m->mnt_parent; is_candidate(p); m = p, p = p->mnt_parent) {
if (IS_MNT_MARKED(m)) // all candidates beneath are overmounts
return;
SET_MNT_MARK(m);
if (m != p->overmount)
p->mnt_t_flags &= ~T_UMOUNT_CANDIDATE;
}
}
/*
* Find and exclude all umount candidates forbidden by @m
* (see Documentation/filesystems/propagate_umount.txt)
* If we can immediately tell that @m is OK to unmount (unlocked
* and all children are already committed to unmounting) commit
* to unmounting it.
* Only @m itself might be taken from the candidates list;
* anything found by trim_ancestors() is marked non-candidate
* and left on the list.
*/
static void trim_one(struct mount *m, struct list_head *to_umount)
{
bool remove_this = false, found = false, umount_this = false;
struct mount *n;
if (!is_candidate(m)) { // trim_ancestors() left it on list
remove_from_candidate_list(m);
return;
}
list_for_each_entry(n, &m->mnt_mounts, mnt_child) {
if (!is_candidate(n)) {
found = true;
if (n != m->overmount) {
remove_this = true;
break;
}
}
}
if (found) {
trim_ancestors(m);
} else if (!IS_MNT_LOCKED(m) && list_empty(&m->mnt_mounts)) {
remove_this = true;
umount_this = true;
}
if (remove_this) {
remove_from_candidate_list(m);
if (umount_this)
umount_one(m, to_umount);
}
}
static void handle_locked(struct mount *m, struct list_head *to_umount)
{
struct mount *cutoff = m, *p;
if (!is_candidate(m)) { // trim_ancestors() left it on list
remove_from_candidate_list(m);
return;
}
for (p = m; is_candidate(p); p = p->mnt_parent) {
remove_from_candidate_list(p);
if (!IS_MNT_LOCKED(p))
cutoff = p->mnt_parent;
}
if (will_be_unmounted(p))
cutoff = p;
while (m != cutoff) {
umount_one(m, to_umount);
m = m->mnt_parent;
}
}
/*
* @m is not to going away, and it overmounts the top of a stack of mounts
* that are going away. We know that all of those are fully overmounted
* by the one above (@m being the topmost of the chain), so @m can be slid
* in place where the bottom of the stack is attached.
*
* NOTE: here we temporarily violate a constraint - two mounts end up with
* the same parent and mountpoint; that will be remedied as soon as we
* return from propagate_umount() - its caller (umount_tree()) will detach
* the stack from the parent it (and now @m) is attached to. umount_tree()
* might choose to keep unmounted pieces stuck to each other, but it always
* detaches them from the mounts that remain in the tree.
*/
static void reparent(struct mount *m)
{
struct mount *p = m;
struct mountpoint *mp;
do {
mp = p->mnt_mp;
p = p->mnt_parent;
} while (will_be_unmounted(p));
mnt_change_mountpoint(p, mp, m);
mnt_notify_add(m);
}
/**
* propagate_umount - apply propagation rules to the set of mounts for umount()
* @set: the list of mounts to be unmounted.
*
* Collect all mounts that receive propagation from the mount in @set and have
* no obstacles to being unmounted. Add these additional mounts to the set.
*
* See Documentation/filesystems/propagate_umount.txt if you do anything in
* this area.
*
* Locks held:
* mount_lock (write_seqlock), namespace_sem (exclusive).
*/
void propagate_umount(struct list_head *set)
{
struct mount *m, *p;
LIST_HEAD(to_umount); // committed to unmounting
LIST_HEAD(candidates); // undecided umount candidates
// collect all candidates
gather_candidates(set, &candidates);
// reduce the set until it's non-shifting
list_for_each_entry_safe(m, p, &candidates, mnt_list)
trim_one(m, &to_umount);
// ... and non-revealing
while (!list_empty(&candidates)) {
m = list_first_entry(&candidates,struct mount, mnt_list);
handle_locked(m, &to_umount);
}
// now to_umount consists of all acceptable candidates
// deal with reparenting of remaining overmounts on those
list_for_each_entry(m, &to_umount, mnt_list) {
if (m->overmount)
reparent(m->overmount);
}
// and fold them into the set
list_splice_tail_init(&to_umount, set);
}