| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/fs/pnode.c |
| * |
| * (C) Copyright IBM Corporation 2005. |
| * Author : Ram Pai (linuxram@us.ibm.com) |
| */ |
| #include <linux/mnt_namespace.h> |
| #include <linux/mount.h> |
| #include <linux/fs.h> |
| #include <linux/nsproxy.h> |
| #include <uapi/linux/mount.h> |
| #include "internal.h" |
| #include "pnode.h" |
| |
| /* return the next shared peer mount of @p */ |
| static inline struct mount *next_peer(struct mount *p) |
| { |
| return list_entry(p->mnt_share.next, struct mount, mnt_share); |
| } |
| |
| static inline struct mount *first_slave(struct mount *p) |
| { |
| return hlist_entry(p->mnt_slave_list.first, struct mount, mnt_slave); |
| } |
| |
| static inline struct mount *next_slave(struct mount *p) |
| { |
| return hlist_entry(p->mnt_slave.next, struct mount, mnt_slave); |
| } |
| |
| static struct mount *get_peer_under_root(struct mount *mnt, |
| struct mnt_namespace *ns, |
| const struct path *root) |
| { |
| struct mount *m = mnt; |
| |
| do { |
| /* Check the namespace first for optimization */ |
| if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) |
| return m; |
| |
| m = next_peer(m); |
| } while (m != mnt); |
| |
| return NULL; |
| } |
| |
| /* |
| * Get ID of closest dominating peer group having a representative |
| * under the given root. |
| * |
| * Caller must hold namespace_sem |
| */ |
| int get_dominating_id(struct mount *mnt, const struct path *root) |
| { |
| struct mount *m; |
| |
| for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { |
| struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); |
| if (d) |
| return d->mnt_group_id; |
| } |
| |
| return 0; |
| } |
| |
| static inline bool will_be_unmounted(struct mount *m) |
| { |
| return m->mnt.mnt_flags & MNT_UMOUNT; |
| } |
| |
| static struct mount *propagation_source(struct mount *mnt) |
| { |
| do { |
| struct mount *m; |
| for (m = next_peer(mnt); m != mnt; m = next_peer(m)) { |
| if (!will_be_unmounted(m)) |
| return m; |
| } |
| mnt = mnt->mnt_master; |
| } while (mnt && will_be_unmounted(mnt)); |
| return mnt; |
| } |
| |
| static void transfer_propagation(struct mount *mnt, struct mount *to) |
| { |
| struct hlist_node *p = NULL, *n; |
| struct mount *m; |
| |
| hlist_for_each_entry_safe(m, n, &mnt->mnt_slave_list, mnt_slave) { |
| m->mnt_master = to; |
| if (!to) |
| hlist_del_init(&m->mnt_slave); |
| else |
| p = &m->mnt_slave; |
| } |
| if (p) |
| hlist_splice_init(&mnt->mnt_slave_list, p, &to->mnt_slave_list); |
| } |
| |
| /* |
| * EXCL[namespace_sem] |
| */ |
| void change_mnt_propagation(struct mount *mnt, int type) |
| { |
| struct mount *m = mnt->mnt_master; |
| |
| if (type == MS_SHARED) { |
| set_mnt_shared(mnt); |
| return; |
| } |
| if (IS_MNT_SHARED(mnt)) { |
| m = propagation_source(mnt); |
| if (list_empty(&mnt->mnt_share)) { |
| mnt_release_group_id(mnt); |
| } else { |
| list_del_init(&mnt->mnt_share); |
| mnt->mnt_group_id = 0; |
| } |
| CLEAR_MNT_SHARED(mnt); |
| transfer_propagation(mnt, m); |
| } |
| hlist_del_init(&mnt->mnt_slave); |
| if (type == MS_SLAVE) { |
| mnt->mnt_master = m; |
| if (m) |
| hlist_add_head(&mnt->mnt_slave, &m->mnt_slave_list); |
| } else { |
| mnt->mnt_master = NULL; |
| if (type == MS_UNBINDABLE) |
| mnt->mnt_t_flags |= T_UNBINDABLE; |
| else |
| mnt->mnt_t_flags &= ~T_UNBINDABLE; |
| } |
| } |
| |
| static struct mount *__propagation_next(struct mount *m, |
| struct mount *origin) |
| { |
| while (1) { |
| struct mount *master = m->mnt_master; |
| |
| if (master == origin->mnt_master) { |
| struct mount *next = next_peer(m); |
| return (next == origin) ? NULL : next; |
| } else if (m->mnt_slave.next) |
| return next_slave(m); |
| |
| /* back at master */ |
| m = master; |
| } |
| } |
| |
| /* |
| * get the next mount in the propagation tree. |
| * @m: the mount seen last |
| * @origin: the original mount from where the tree walk initiated |
| * |
| * Note that peer groups form contiguous segments of slave lists. |
| * We rely on that in get_source() to be able to find out if |
| * vfsmount found while iterating with propagation_next() is |
| * a peer of one we'd found earlier. |
| */ |
| static struct mount *propagation_next(struct mount *m, |
| struct mount *origin) |
| { |
| /* are there any slaves of this mount? */ |
| if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) |
| return first_slave(m); |
| |
| return __propagation_next(m, origin); |
| } |
| |
| static struct mount *skip_propagation_subtree(struct mount *m, |
| struct mount *origin) |
| { |
| /* |
| * Advance m past everything that gets propagation from it. |
| */ |
| struct mount *p = __propagation_next(m, origin); |
| |
| while (p && peers(m, p)) |
| p = __propagation_next(p, origin); |
| |
| return p; |
| } |
| |
| static struct mount *next_group(struct mount *m, struct mount *origin) |
| { |
| while (1) { |
| while (1) { |
| struct mount *next; |
| if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) |
| return first_slave(m); |
| next = next_peer(m); |
| if (m->mnt_group_id == origin->mnt_group_id) { |
| if (next == origin) |
| return NULL; |
| } else if (m->mnt_slave.next != &next->mnt_slave) |
| break; |
| m = next; |
| } |
| /* m is the last peer */ |
| while (1) { |
| struct mount *master = m->mnt_master; |
| if (m->mnt_slave.next) |
| return next_slave(m); |
| m = next_peer(master); |
| if (master->mnt_group_id == origin->mnt_group_id) |
| break; |
| if (master->mnt_slave.next == &m->mnt_slave) |
| break; |
| m = master; |
| } |
| if (m == origin) |
| return NULL; |
| } |
| } |
| |
| static bool need_secondary(struct mount *m, struct mountpoint *dest_mp) |
| { |
| /* skip ones added by this propagate_mnt() */ |
| if (IS_MNT_NEW(m)) |
| return false; |
| /* skip if mountpoint isn't visible in m */ |
| if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) |
| return false; |
| /* skip if m is in the anon_ns */ |
| if (is_anon_ns(m->mnt_ns)) |
| return false; |
| return true; |
| } |
| |
| static struct mount *find_master(struct mount *m, |
| struct mount *last_copy, |
| struct mount *original) |
| { |
| struct mount *p; |
| |
| // ascend until there's a copy for something with the same master |
| for (;;) { |
| p = m->mnt_master; |
| if (!p || IS_MNT_MARKED(p)) |
| break; |
| m = p; |
| } |
| while (!peers(last_copy, original)) { |
| struct mount *parent = last_copy->mnt_parent; |
| if (parent->mnt_master == p) { |
| if (!peers(parent, m)) |
| last_copy = last_copy->mnt_master; |
| break; |
| } |
| last_copy = last_copy->mnt_master; |
| } |
| return last_copy; |
| } |
| |
| /** |
| * propagate_mnt() - create secondary copies for tree attachment |
| * @dest_mnt: destination mount. |
| * @dest_mp: destination mountpoint. |
| * @source_mnt: source mount. |
| * @tree_list: list of secondaries to be attached. |
| * |
| * Create secondary copies for attaching a tree with root @source_mnt |
| * at mount @dest_mnt with mountpoint @dest_mp. Link all new mounts |
| * into a propagation graph. Set mountpoints for all secondaries, |
| * link their roots into @tree_list via ->mnt_hash. |
| */ |
| int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, |
| struct mount *source_mnt, struct hlist_head *tree_list) |
| { |
| struct mount *m, *n, *copy, *this; |
| int err = 0, type; |
| |
| if (dest_mnt->mnt_master) |
| SET_MNT_MARK(dest_mnt->mnt_master); |
| |
| /* iterate over peer groups, depth first */ |
| for (m = dest_mnt; m && !err; m = next_group(m, dest_mnt)) { |
| if (m == dest_mnt) { // have one for dest_mnt itself |
| copy = source_mnt; |
| type = CL_MAKE_SHARED; |
| n = next_peer(m); |
| if (n == m) |
| continue; |
| } else { |
| type = CL_SLAVE; |
| /* beginning of peer group among the slaves? */ |
| if (IS_MNT_SHARED(m)) |
| type |= CL_MAKE_SHARED; |
| n = m; |
| } |
| do { |
| if (!need_secondary(n, dest_mp)) |
| continue; |
| if (type & CL_SLAVE) // first in this peer group |
| copy = find_master(n, copy, source_mnt); |
| this = copy_tree(copy, copy->mnt.mnt_root, type); |
| if (IS_ERR(this)) { |
| err = PTR_ERR(this); |
| break; |
| } |
| read_seqlock_excl(&mount_lock); |
| mnt_set_mountpoint(n, dest_mp, this); |
| read_sequnlock_excl(&mount_lock); |
| if (n->mnt_master) |
| SET_MNT_MARK(n->mnt_master); |
| copy = this; |
| hlist_add_head(&this->mnt_hash, tree_list); |
| err = count_mounts(n->mnt_ns, this); |
| if (err) |
| break; |
| type = CL_MAKE_SHARED; |
| } while ((n = next_peer(n)) != m); |
| } |
| |
| hlist_for_each_entry(n, tree_list, mnt_hash) { |
| m = n->mnt_parent; |
| if (m->mnt_master) |
| CLEAR_MNT_MARK(m->mnt_master); |
| } |
| if (dest_mnt->mnt_master) |
| CLEAR_MNT_MARK(dest_mnt->mnt_master); |
| return err; |
| } |
| |
| /* |
| * return true if the refcount is greater than count |
| */ |
| static inline int do_refcount_check(struct mount *mnt, int count) |
| { |
| return mnt_get_count(mnt) > count; |
| } |
| |
| /** |
| * propagation_would_overmount - check whether propagation from @from |
| * would overmount @to |
| * @from: shared mount |
| * @to: mount to check |
| * @mp: future mountpoint of @to on @from |
| * |
| * If @from propagates mounts to @to, @from and @to must either be peers |
| * or one of the masters in the hierarchy of masters of @to must be a |
| * peer of @from. |
| * |
| * If the root of the @to mount is equal to the future mountpoint @mp of |
| * the @to mount on @from then @to will be overmounted by whatever is |
| * propagated to it. |
| * |
| * Context: This function expects namespace_lock() to be held and that |
| * @mp is stable. |
| * Return: If @from overmounts @to, true is returned, false if not. |
| */ |
| bool propagation_would_overmount(const struct mount *from, |
| const struct mount *to, |
| const struct mountpoint *mp) |
| { |
| if (!IS_MNT_SHARED(from)) |
| return false; |
| |
| if (to->mnt.mnt_root != mp->m_dentry) |
| return false; |
| |
| for (const struct mount *m = to; m; m = m->mnt_master) { |
| if (peers(from, m)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * check if the mount 'mnt' can be unmounted successfully. |
| * @mnt: the mount to be checked for unmount |
| * NOTE: unmounting 'mnt' would naturally propagate to all |
| * other mounts its parent propagates to. |
| * Check if any of these mounts that **do not have submounts** |
| * have more references than 'refcnt'. If so return busy. |
| * |
| * vfsmount lock must be held for write |
| */ |
| int propagate_mount_busy(struct mount *mnt, int refcnt) |
| { |
| struct mount *parent = mnt->mnt_parent; |
| |
| /* |
| * quickly check if the current mount can be unmounted. |
| * If not, we don't have to go checking for all other |
| * mounts |
| */ |
| if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) |
| return 1; |
| |
| if (mnt == parent) |
| return 0; |
| |
| for (struct mount *m = propagation_next(parent, parent); m; |
| m = propagation_next(m, parent)) { |
| struct list_head *head; |
| struct mount *child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); |
| |
| if (!child) |
| continue; |
| |
| head = &child->mnt_mounts; |
| if (!list_empty(head)) { |
| /* |
| * a mount that covers child completely wouldn't prevent |
| * it being pulled out; any other would. |
| */ |
| if (!list_is_singular(head) || !child->overmount) |
| continue; |
| } |
| if (do_refcount_check(child, 1)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Clear MNT_LOCKED when it can be shown to be safe. |
| * |
| * mount_lock lock must be held for write |
| */ |
| void propagate_mount_unlock(struct mount *mnt) |
| { |
| struct mount *parent = mnt->mnt_parent; |
| struct mount *m, *child; |
| |
| BUG_ON(parent == mnt); |
| |
| for (m = propagation_next(parent, parent); m; |
| m = propagation_next(m, parent)) { |
| child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); |
| if (child) |
| child->mnt.mnt_flags &= ~MNT_LOCKED; |
| } |
| } |
| |
| static inline bool is_candidate(struct mount *m) |
| { |
| return m->mnt_t_flags & T_UMOUNT_CANDIDATE; |
| } |
| |
| static void umount_one(struct mount *m, struct list_head *to_umount) |
| { |
| m->mnt.mnt_flags |= MNT_UMOUNT; |
| list_del_init(&m->mnt_child); |
| move_from_ns(m); |
| list_add_tail(&m->mnt_list, to_umount); |
| } |
| |
| static void remove_from_candidate_list(struct mount *m) |
| { |
| m->mnt_t_flags &= ~(T_MARKED | T_UMOUNT_CANDIDATE); |
| list_del_init(&m->mnt_list); |
| } |
| |
| static void gather_candidates(struct list_head *set, |
| struct list_head *candidates) |
| { |
| struct mount *m, *p, *q; |
| |
| list_for_each_entry(m, set, mnt_list) { |
| if (is_candidate(m)) |
| continue; |
| m->mnt_t_flags |= T_UMOUNT_CANDIDATE; |
| p = m->mnt_parent; |
| q = propagation_next(p, p); |
| while (q) { |
| struct mount *child = __lookup_mnt(&q->mnt, |
| m->mnt_mountpoint); |
| if (child) { |
| /* |
| * We might've already run into this one. That |
| * must've happened on earlier iteration of the |
| * outer loop; in that case we can skip those |
| * parents that get propagation from q - there |
| * will be nothing new on those as well. |
| */ |
| if (is_candidate(child)) { |
| q = skip_propagation_subtree(q, p); |
| continue; |
| } |
| child->mnt_t_flags |= T_UMOUNT_CANDIDATE; |
| if (!will_be_unmounted(child)) |
| list_add(&child->mnt_list, candidates); |
| } |
| q = propagation_next(q, p); |
| } |
| } |
| list_for_each_entry(m, set, mnt_list) |
| m->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; |
| } |
| |
| /* |
| * We know that some child of @m can't be unmounted. In all places where the |
| * chain of descent of @m has child not overmounting the root of parent, |
| * the parent can't be unmounted either. |
| */ |
| static void trim_ancestors(struct mount *m) |
| { |
| struct mount *p; |
| |
| for (p = m->mnt_parent; is_candidate(p); m = p, p = p->mnt_parent) { |
| if (IS_MNT_MARKED(m)) // all candidates beneath are overmounts |
| return; |
| SET_MNT_MARK(m); |
| if (m != p->overmount) |
| p->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; |
| } |
| } |
| |
| /* |
| * Find and exclude all umount candidates forbidden by @m |
| * (see Documentation/filesystems/propagate_umount.txt) |
| * If we can immediately tell that @m is OK to unmount (unlocked |
| * and all children are already committed to unmounting) commit |
| * to unmounting it. |
| * Only @m itself might be taken from the candidates list; |
| * anything found by trim_ancestors() is marked non-candidate |
| * and left on the list. |
| */ |
| static void trim_one(struct mount *m, struct list_head *to_umount) |
| { |
| bool remove_this = false, found = false, umount_this = false; |
| struct mount *n; |
| |
| if (!is_candidate(m)) { // trim_ancestors() left it on list |
| remove_from_candidate_list(m); |
| return; |
| } |
| |
| list_for_each_entry(n, &m->mnt_mounts, mnt_child) { |
| if (!is_candidate(n)) { |
| found = true; |
| if (n != m->overmount) { |
| remove_this = true; |
| break; |
| } |
| } |
| } |
| if (found) { |
| trim_ancestors(m); |
| } else if (!IS_MNT_LOCKED(m) && list_empty(&m->mnt_mounts)) { |
| remove_this = true; |
| umount_this = true; |
| } |
| if (remove_this) { |
| remove_from_candidate_list(m); |
| if (umount_this) |
| umount_one(m, to_umount); |
| } |
| } |
| |
| static void handle_locked(struct mount *m, struct list_head *to_umount) |
| { |
| struct mount *cutoff = m, *p; |
| |
| if (!is_candidate(m)) { // trim_ancestors() left it on list |
| remove_from_candidate_list(m); |
| return; |
| } |
| for (p = m; is_candidate(p); p = p->mnt_parent) { |
| remove_from_candidate_list(p); |
| if (!IS_MNT_LOCKED(p)) |
| cutoff = p->mnt_parent; |
| } |
| if (will_be_unmounted(p)) |
| cutoff = p; |
| while (m != cutoff) { |
| umount_one(m, to_umount); |
| m = m->mnt_parent; |
| } |
| } |
| |
| /* |
| * @m is not to going away, and it overmounts the top of a stack of mounts |
| * that are going away. We know that all of those are fully overmounted |
| * by the one above (@m being the topmost of the chain), so @m can be slid |
| * in place where the bottom of the stack is attached. |
| * |
| * NOTE: here we temporarily violate a constraint - two mounts end up with |
| * the same parent and mountpoint; that will be remedied as soon as we |
| * return from propagate_umount() - its caller (umount_tree()) will detach |
| * the stack from the parent it (and now @m) is attached to. umount_tree() |
| * might choose to keep unmounted pieces stuck to each other, but it always |
| * detaches them from the mounts that remain in the tree. |
| */ |
| static void reparent(struct mount *m) |
| { |
| struct mount *p = m; |
| struct mountpoint *mp; |
| |
| do { |
| mp = p->mnt_mp; |
| p = p->mnt_parent; |
| } while (will_be_unmounted(p)); |
| |
| mnt_change_mountpoint(p, mp, m); |
| mnt_notify_add(m); |
| } |
| |
| /** |
| * propagate_umount - apply propagation rules to the set of mounts for umount() |
| * @set: the list of mounts to be unmounted. |
| * |
| * Collect all mounts that receive propagation from the mount in @set and have |
| * no obstacles to being unmounted. Add these additional mounts to the set. |
| * |
| * See Documentation/filesystems/propagate_umount.txt if you do anything in |
| * this area. |
| * |
| * Locks held: |
| * mount_lock (write_seqlock), namespace_sem (exclusive). |
| */ |
| void propagate_umount(struct list_head *set) |
| { |
| struct mount *m, *p; |
| LIST_HEAD(to_umount); // committed to unmounting |
| LIST_HEAD(candidates); // undecided umount candidates |
| |
| // collect all candidates |
| gather_candidates(set, &candidates); |
| |
| // reduce the set until it's non-shifting |
| list_for_each_entry_safe(m, p, &candidates, mnt_list) |
| trim_one(m, &to_umount); |
| |
| // ... and non-revealing |
| while (!list_empty(&candidates)) { |
| m = list_first_entry(&candidates,struct mount, mnt_list); |
| handle_locked(m, &to_umount); |
| } |
| |
| // now to_umount consists of all acceptable candidates |
| // deal with reparenting of remaining overmounts on those |
| list_for_each_entry(m, &to_umount, mnt_list) { |
| if (m->overmount) |
| reparent(m->overmount); |
| } |
| |
| // and fold them into the set |
| list_splice_tail_init(&to_umount, set); |
| } |