|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * AMD SVM-SEV support | 
|  | * | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | */ | 
|  |  | 
|  | #include <linux/kvm_types.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/psp-sev.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/misc_cgroup.h> | 
|  | #include <linux/processor.h> | 
|  | #include <linux/trace_events.h> | 
|  | #include <asm/fpu/internal.h> | 
|  |  | 
|  | #include <asm/pkru.h> | 
|  | #include <asm/trapnr.h> | 
|  |  | 
|  | #include "x86.h" | 
|  | #include "svm.h" | 
|  | #include "svm_ops.h" | 
|  | #include "cpuid.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | #define __ex(x) __kvm_handle_fault_on_reboot(x) | 
|  |  | 
|  | #ifndef CONFIG_KVM_AMD_SEV | 
|  | /* | 
|  | * When this config is not defined, SEV feature is not supported and APIs in | 
|  | * this file are not used but this file still gets compiled into the KVM AMD | 
|  | * module. | 
|  | * | 
|  | * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum | 
|  | * misc_res_type {} defined in linux/misc_cgroup.h. | 
|  | * | 
|  | * Below macros allow compilation to succeed. | 
|  | */ | 
|  | #define MISC_CG_RES_SEV MISC_CG_RES_TYPES | 
|  | #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KVM_AMD_SEV | 
|  | /* enable/disable SEV support */ | 
|  | static bool sev_enabled = true; | 
|  | module_param_named(sev, sev_enabled, bool, 0444); | 
|  |  | 
|  | /* enable/disable SEV-ES support */ | 
|  | static bool sev_es_enabled = true; | 
|  | module_param_named(sev_es, sev_es_enabled, bool, 0444); | 
|  | #else | 
|  | #define sev_enabled false | 
|  | #define sev_es_enabled false | 
|  | #endif /* CONFIG_KVM_AMD_SEV */ | 
|  |  | 
|  | static u8 sev_enc_bit; | 
|  | static DECLARE_RWSEM(sev_deactivate_lock); | 
|  | static DEFINE_MUTEX(sev_bitmap_lock); | 
|  | unsigned int max_sev_asid; | 
|  | static unsigned int min_sev_asid; | 
|  | static unsigned long sev_me_mask; | 
|  | static unsigned int nr_asids; | 
|  | static unsigned long *sev_asid_bitmap; | 
|  | static unsigned long *sev_reclaim_asid_bitmap; | 
|  |  | 
|  | struct enc_region { | 
|  | struct list_head list; | 
|  | unsigned long npages; | 
|  | struct page **pages; | 
|  | unsigned long uaddr; | 
|  | unsigned long size; | 
|  | }; | 
|  |  | 
|  | /* Called with the sev_bitmap_lock held, or on shutdown  */ | 
|  | static int sev_flush_asids(int min_asid, int max_asid) | 
|  | { | 
|  | int ret, asid, error = 0; | 
|  |  | 
|  | /* Check if there are any ASIDs to reclaim before performing a flush */ | 
|  | asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); | 
|  | if (asid > max_asid) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* | 
|  | * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, | 
|  | * so it must be guarded. | 
|  | */ | 
|  | down_write(&sev_deactivate_lock); | 
|  |  | 
|  | wbinvd_on_all_cpus(); | 
|  | ret = sev_guest_df_flush(&error); | 
|  |  | 
|  | up_write(&sev_deactivate_lock); | 
|  |  | 
|  | if (ret) | 
|  | pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline bool is_mirroring_enc_context(struct kvm *kvm) | 
|  | { | 
|  | return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; | 
|  | } | 
|  |  | 
|  | /* Must be called with the sev_bitmap_lock held */ | 
|  | static bool __sev_recycle_asids(int min_asid, int max_asid) | 
|  | { | 
|  | if (sev_flush_asids(min_asid, max_asid)) | 
|  | return false; | 
|  |  | 
|  | /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ | 
|  | bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, | 
|  | nr_asids); | 
|  | bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int sev_asid_new(struct kvm_sev_info *sev) | 
|  | { | 
|  | int asid, min_asid, max_asid, ret; | 
|  | bool retry = true; | 
|  | enum misc_res_type type; | 
|  |  | 
|  | type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; | 
|  | WARN_ON(sev->misc_cg); | 
|  | sev->misc_cg = get_current_misc_cg(); | 
|  | ret = misc_cg_try_charge(type, sev->misc_cg, 1); | 
|  | if (ret) { | 
|  | put_misc_cg(sev->misc_cg); | 
|  | sev->misc_cg = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mutex_lock(&sev_bitmap_lock); | 
|  |  | 
|  | /* | 
|  | * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. | 
|  | * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. | 
|  | */ | 
|  | min_asid = sev->es_active ? 1 : min_sev_asid; | 
|  | max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; | 
|  | again: | 
|  | asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); | 
|  | if (asid > max_asid) { | 
|  | if (retry && __sev_recycle_asids(min_asid, max_asid)) { | 
|  | retry = false; | 
|  | goto again; | 
|  | } | 
|  | mutex_unlock(&sev_bitmap_lock); | 
|  | ret = -EBUSY; | 
|  | goto e_uncharge; | 
|  | } | 
|  |  | 
|  | __set_bit(asid, sev_asid_bitmap); | 
|  |  | 
|  | mutex_unlock(&sev_bitmap_lock); | 
|  |  | 
|  | return asid; | 
|  | e_uncharge: | 
|  | misc_cg_uncharge(type, sev->misc_cg, 1); | 
|  | put_misc_cg(sev->misc_cg); | 
|  | sev->misc_cg = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_get_asid(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  |  | 
|  | return sev->asid; | 
|  | } | 
|  |  | 
|  | static void sev_asid_free(struct kvm_sev_info *sev) | 
|  | { | 
|  | struct svm_cpu_data *sd; | 
|  | int cpu; | 
|  | enum misc_res_type type; | 
|  |  | 
|  | mutex_lock(&sev_bitmap_lock); | 
|  |  | 
|  | __set_bit(sev->asid, sev_reclaim_asid_bitmap); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | sd = per_cpu(svm_data, cpu); | 
|  | sd->sev_vmcbs[sev->asid] = NULL; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&sev_bitmap_lock); | 
|  |  | 
|  | type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; | 
|  | misc_cg_uncharge(type, sev->misc_cg, 1); | 
|  | put_misc_cg(sev->misc_cg); | 
|  | sev->misc_cg = NULL; | 
|  | } | 
|  |  | 
|  | static void sev_decommission(unsigned int handle) | 
|  | { | 
|  | struct sev_data_decommission decommission; | 
|  |  | 
|  | if (!handle) | 
|  | return; | 
|  |  | 
|  | decommission.handle = handle; | 
|  | sev_guest_decommission(&decommission, NULL); | 
|  | } | 
|  |  | 
|  | static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) | 
|  | { | 
|  | struct sev_data_deactivate deactivate; | 
|  |  | 
|  | if (!handle) | 
|  | return; | 
|  |  | 
|  | deactivate.handle = handle; | 
|  |  | 
|  | /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ | 
|  | down_read(&sev_deactivate_lock); | 
|  | sev_guest_deactivate(&deactivate, NULL); | 
|  | up_read(&sev_deactivate_lock); | 
|  |  | 
|  | sev_decommission(handle); | 
|  | } | 
|  |  | 
|  | static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | bool es_active = argp->id == KVM_SEV_ES_INIT; | 
|  | int asid, ret; | 
|  |  | 
|  | if (kvm->created_vcpus) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = -EBUSY; | 
|  | if (unlikely(sev->active)) | 
|  | return ret; | 
|  |  | 
|  | sev->es_active = es_active; | 
|  | asid = sev_asid_new(sev); | 
|  | if (asid < 0) | 
|  | goto e_no_asid; | 
|  | sev->asid = asid; | 
|  |  | 
|  | ret = sev_platform_init(&argp->error); | 
|  | if (ret) | 
|  | goto e_free; | 
|  |  | 
|  | sev->active = true; | 
|  | sev->asid = asid; | 
|  | INIT_LIST_HEAD(&sev->regions_list); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | e_free: | 
|  | sev_asid_free(sev); | 
|  | sev->asid = 0; | 
|  | e_no_asid: | 
|  | sev->es_active = false; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) | 
|  | { | 
|  | struct sev_data_activate activate; | 
|  | int asid = sev_get_asid(kvm); | 
|  | int ret; | 
|  |  | 
|  | /* activate ASID on the given handle */ | 
|  | activate.handle = handle; | 
|  | activate.asid   = asid; | 
|  | ret = sev_guest_activate(&activate, error); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __sev_issue_cmd(int fd, int id, void *data, int *error) | 
|  | { | 
|  | struct fd f; | 
|  | int ret; | 
|  |  | 
|  | f = fdget(fd); | 
|  | if (!f.file) | 
|  | return -EBADF; | 
|  |  | 
|  | ret = sev_issue_cmd_external_user(f.file, id, data, error); | 
|  |  | 
|  | fdput(f); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  |  | 
|  | return __sev_issue_cmd(sev->fd, id, data, error); | 
|  | } | 
|  |  | 
|  | static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_start start; | 
|  | struct kvm_sev_launch_start params; | 
|  | void *dh_blob, *session_blob; | 
|  | int *error = &argp->error; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | memset(&start, 0, sizeof(start)); | 
|  |  | 
|  | dh_blob = NULL; | 
|  | if (params.dh_uaddr) { | 
|  | dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); | 
|  | if (IS_ERR(dh_blob)) | 
|  | return PTR_ERR(dh_blob); | 
|  |  | 
|  | start.dh_cert_address = __sme_set(__pa(dh_blob)); | 
|  | start.dh_cert_len = params.dh_len; | 
|  | } | 
|  |  | 
|  | session_blob = NULL; | 
|  | if (params.session_uaddr) { | 
|  | session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); | 
|  | if (IS_ERR(session_blob)) { | 
|  | ret = PTR_ERR(session_blob); | 
|  | goto e_free_dh; | 
|  | } | 
|  |  | 
|  | start.session_address = __sme_set(__pa(session_blob)); | 
|  | start.session_len = params.session_len; | 
|  | } | 
|  |  | 
|  | start.handle = params.handle; | 
|  | start.policy = params.policy; | 
|  |  | 
|  | /* create memory encryption context */ | 
|  | ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); | 
|  | if (ret) | 
|  | goto e_free_session; | 
|  |  | 
|  | /* Bind ASID to this guest */ | 
|  | ret = sev_bind_asid(kvm, start.handle, error); | 
|  | if (ret) { | 
|  | sev_decommission(start.handle); | 
|  | goto e_free_session; | 
|  | } | 
|  |  | 
|  | /* return handle to userspace */ | 
|  | params.handle = start.handle; | 
|  | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { | 
|  | sev_unbind_asid(kvm, start.handle); | 
|  | ret = -EFAULT; | 
|  | goto e_free_session; | 
|  | } | 
|  |  | 
|  | sev->handle = start.handle; | 
|  | sev->fd = argp->sev_fd; | 
|  |  | 
|  | e_free_session: | 
|  | kfree(session_blob); | 
|  | e_free_dh: | 
|  | kfree(dh_blob); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, | 
|  | unsigned long ulen, unsigned long *n, | 
|  | int write) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | unsigned long npages, size; | 
|  | int npinned; | 
|  | unsigned long locked, lock_limit; | 
|  | struct page **pages; | 
|  | unsigned long first, last; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&kvm->lock); | 
|  |  | 
|  | if (ulen == 0 || uaddr + ulen < uaddr) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* Calculate number of pages. */ | 
|  | first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; | 
|  | last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; | 
|  | npages = (last - first + 1); | 
|  |  | 
|  | locked = sev->pages_locked + npages; | 
|  | lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; | 
|  | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { | 
|  | pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | if (WARN_ON_ONCE(npages > INT_MAX)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* Avoid using vmalloc for smaller buffers. */ | 
|  | size = npages * sizeof(struct page *); | 
|  | if (size > PAGE_SIZE) | 
|  | pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); | 
|  | else | 
|  | pages = kmalloc(size, GFP_KERNEL_ACCOUNT); | 
|  |  | 
|  | if (!pages) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* Pin the user virtual address. */ | 
|  | npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); | 
|  | if (npinned != npages) { | 
|  | pr_err("SEV: Failure locking %lu pages.\n", npages); | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | *n = npages; | 
|  | sev->pages_locked = locked; | 
|  |  | 
|  | return pages; | 
|  |  | 
|  | err: | 
|  | if (npinned > 0) | 
|  | unpin_user_pages(pages, npinned); | 
|  |  | 
|  | kvfree(pages); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void sev_unpin_memory(struct kvm *kvm, struct page **pages, | 
|  | unsigned long npages) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  |  | 
|  | unpin_user_pages(pages, npages); | 
|  | kvfree(pages); | 
|  | sev->pages_locked -= npages; | 
|  | } | 
|  |  | 
|  | static void sev_clflush_pages(struct page *pages[], unsigned long npages) | 
|  | { | 
|  | uint8_t *page_virtual; | 
|  | unsigned long i; | 
|  |  | 
|  | if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || | 
|  | pages == NULL) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < npages; i++) { | 
|  | page_virtual = kmap_atomic(pages[i]); | 
|  | clflush_cache_range(page_virtual, PAGE_SIZE); | 
|  | kunmap_atomic(page_virtual); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long get_num_contig_pages(unsigned long idx, | 
|  | struct page **inpages, unsigned long npages) | 
|  | { | 
|  | unsigned long paddr, next_paddr; | 
|  | unsigned long i = idx + 1, pages = 1; | 
|  |  | 
|  | /* find the number of contiguous pages starting from idx */ | 
|  | paddr = __sme_page_pa(inpages[idx]); | 
|  | while (i < npages) { | 
|  | next_paddr = __sme_page_pa(inpages[i++]); | 
|  | if ((paddr + PAGE_SIZE) == next_paddr) { | 
|  | pages++; | 
|  | paddr = next_paddr; | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct kvm_sev_launch_update_data params; | 
|  | struct sev_data_launch_update_data data; | 
|  | struct page **inpages; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | vaddr = params.uaddr; | 
|  | size = params.len; | 
|  | vaddr_end = vaddr + size; | 
|  |  | 
|  | /* Lock the user memory. */ | 
|  | inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); | 
|  | if (IS_ERR(inpages)) | 
|  | return PTR_ERR(inpages); | 
|  |  | 
|  | /* | 
|  | * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in | 
|  | * place; the cache may contain the data that was written unencrypted. | 
|  | */ | 
|  | sev_clflush_pages(inpages, npages); | 
|  |  | 
|  | data.reserved = 0; | 
|  | data.handle = sev->handle; | 
|  |  | 
|  | for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { | 
|  | int offset, len; | 
|  |  | 
|  | /* | 
|  | * If the user buffer is not page-aligned, calculate the offset | 
|  | * within the page. | 
|  | */ | 
|  | offset = vaddr & (PAGE_SIZE - 1); | 
|  |  | 
|  | /* Calculate the number of pages that can be encrypted in one go. */ | 
|  | pages = get_num_contig_pages(i, inpages, npages); | 
|  |  | 
|  | len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); | 
|  |  | 
|  | data.len = len; | 
|  | data.address = __sme_page_pa(inpages[i]) + offset; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); | 
|  | if (ret) | 
|  | goto e_unpin; | 
|  |  | 
|  | size -= len; | 
|  | next_vaddr = vaddr + len; | 
|  | } | 
|  |  | 
|  | e_unpin: | 
|  | /* content of memory is updated, mark pages dirty */ | 
|  | for (i = 0; i < npages; i++) { | 
|  | set_page_dirty_lock(inpages[i]); | 
|  | mark_page_accessed(inpages[i]); | 
|  | } | 
|  | /* unlock the user pages */ | 
|  | sev_unpin_memory(kvm, inpages, npages); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_es_sync_vmsa(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb_save_area *save = &svm->vmcb->save; | 
|  |  | 
|  | /* Check some debug related fields before encrypting the VMSA */ | 
|  | if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Sync registgers */ | 
|  | save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; | 
|  | save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; | 
|  | save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
|  | save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; | 
|  | save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; | 
|  | save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; | 
|  | save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; | 
|  | save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; | 
|  | #ifdef CONFIG_X86_64 | 
|  | save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8]; | 
|  | save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9]; | 
|  | save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; | 
|  | save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; | 
|  | save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; | 
|  | save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; | 
|  | save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; | 
|  | save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; | 
|  | #endif | 
|  | save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; | 
|  |  | 
|  | /* Sync some non-GPR registers before encrypting */ | 
|  | save->xcr0 = svm->vcpu.arch.xcr0; | 
|  | save->pkru = svm->vcpu.arch.pkru; | 
|  | save->xss  = svm->vcpu.arch.ia32_xss; | 
|  |  | 
|  | /* | 
|  | * SEV-ES will use a VMSA that is pointed to by the VMCB, not | 
|  | * the traditional VMSA that is part of the VMCB. Copy the | 
|  | * traditional VMSA as it has been built so far (in prep | 
|  | * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. | 
|  | */ | 
|  | memcpy(svm->vmsa, save, sizeof(*save)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_update_vmsa vmsa; | 
|  | struct kvm_vcpu *vcpu; | 
|  | int i, ret; | 
|  |  | 
|  | if (!sev_es_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | vmsa.reserved = 0; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | /* Perform some pre-encryption checks against the VMSA */ | 
|  | ret = sev_es_sync_vmsa(svm); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * The LAUNCH_UPDATE_VMSA command will perform in-place | 
|  | * encryption of the VMSA memory content (i.e it will write | 
|  | * the same memory region with the guest's key), so invalidate | 
|  | * it first. | 
|  | */ | 
|  | clflush_cache_range(svm->vmsa, PAGE_SIZE); | 
|  |  | 
|  | vmsa.handle = sev->handle; | 
|  | vmsa.address = __sme_pa(svm->vmsa); | 
|  | vmsa.len = PAGE_SIZE; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, | 
|  | &argp->error); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | svm->vcpu.arch.guest_state_protected = true; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | void __user *measure = (void __user *)(uintptr_t)argp->data; | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_measure data; | 
|  | struct kvm_sev_launch_measure params; | 
|  | void __user *p = NULL; | 
|  | void *blob = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, measure, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  |  | 
|  | /* User wants to query the blob length */ | 
|  | if (!params.len) | 
|  | goto cmd; | 
|  |  | 
|  | p = (void __user *)(uintptr_t)params.uaddr; | 
|  | if (p) { | 
|  | if (params.len > SEV_FW_BLOB_MAX_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); | 
|  | if (!blob) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data.address = __psp_pa(blob); | 
|  | data.len = params.len; | 
|  | } | 
|  |  | 
|  | cmd: | 
|  | data.handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); | 
|  |  | 
|  | /* | 
|  | * If we query the session length, FW responded with expected data. | 
|  | */ | 
|  | if (!params.len) | 
|  | goto done; | 
|  |  | 
|  | if (ret) | 
|  | goto e_free_blob; | 
|  |  | 
|  | if (blob) { | 
|  | if (copy_to_user(p, blob, params.len)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | done: | 
|  | params.len = data.len; | 
|  | if (copy_to_user(measure, ¶ms, sizeof(params))) | 
|  | ret = -EFAULT; | 
|  | e_free_blob: | 
|  | kfree(blob); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_finish data; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | data.handle = sev->handle; | 
|  | return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); | 
|  | } | 
|  |  | 
|  | static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct kvm_sev_guest_status params; | 
|  | struct sev_data_guest_status data; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  |  | 
|  | data.handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | params.policy = data.policy; | 
|  | params.state = data.state; | 
|  | params.handle = data.handle; | 
|  |  | 
|  | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, | 
|  | unsigned long dst, int size, | 
|  | int *error, bool enc) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_dbg data; | 
|  |  | 
|  | data.reserved = 0; | 
|  | data.handle = sev->handle; | 
|  | data.dst_addr = dst; | 
|  | data.src_addr = src; | 
|  | data.len = size; | 
|  |  | 
|  | return sev_issue_cmd(kvm, | 
|  | enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, | 
|  | &data, error); | 
|  | } | 
|  |  | 
|  | static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, | 
|  | unsigned long dst_paddr, int sz, int *err) | 
|  | { | 
|  | int offset; | 
|  |  | 
|  | /* | 
|  | * Its safe to read more than we are asked, caller should ensure that | 
|  | * destination has enough space. | 
|  | */ | 
|  | offset = src_paddr & 15; | 
|  | src_paddr = round_down(src_paddr, 16); | 
|  | sz = round_up(sz + offset, 16); | 
|  |  | 
|  | return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); | 
|  | } | 
|  |  | 
|  | static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, | 
|  | void __user *dst_uaddr, | 
|  | unsigned long dst_paddr, | 
|  | int size, int *err) | 
|  | { | 
|  | struct page *tpage = NULL; | 
|  | int ret, offset; | 
|  |  | 
|  | /* if inputs are not 16-byte then use intermediate buffer */ | 
|  | if (!IS_ALIGNED(dst_paddr, 16) || | 
|  | !IS_ALIGNED(paddr,     16) || | 
|  | !IS_ALIGNED(size,      16)) { | 
|  | tpage = (void *)alloc_page(GFP_KERNEL); | 
|  | if (!tpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dst_paddr = __sme_page_pa(tpage); | 
|  | } | 
|  |  | 
|  | ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); | 
|  | if (ret) | 
|  | goto e_free; | 
|  |  | 
|  | if (tpage) { | 
|  | offset = paddr & 15; | 
|  | if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | e_free: | 
|  | if (tpage) | 
|  | __free_page(tpage); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, | 
|  | void __user *vaddr, | 
|  | unsigned long dst_paddr, | 
|  | void __user *dst_vaddr, | 
|  | int size, int *error) | 
|  | { | 
|  | struct page *src_tpage = NULL; | 
|  | struct page *dst_tpage = NULL; | 
|  | int ret, len = size; | 
|  |  | 
|  | /* If source buffer is not aligned then use an intermediate buffer */ | 
|  | if (!IS_ALIGNED((unsigned long)vaddr, 16)) { | 
|  | src_tpage = alloc_page(GFP_KERNEL); | 
|  | if (!src_tpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (copy_from_user(page_address(src_tpage), vaddr, size)) { | 
|  | __free_page(src_tpage); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | paddr = __sme_page_pa(src_tpage); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  If destination buffer or length is not aligned then do read-modify-write: | 
|  | *   - decrypt destination in an intermediate buffer | 
|  | *   - copy the source buffer in an intermediate buffer | 
|  | *   - use the intermediate buffer as source buffer | 
|  | */ | 
|  | if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { | 
|  | int dst_offset; | 
|  |  | 
|  | dst_tpage = alloc_page(GFP_KERNEL); | 
|  | if (!dst_tpage) { | 
|  | ret = -ENOMEM; | 
|  | goto e_free; | 
|  | } | 
|  |  | 
|  | ret = __sev_dbg_decrypt(kvm, dst_paddr, | 
|  | __sme_page_pa(dst_tpage), size, error); | 
|  | if (ret) | 
|  | goto e_free; | 
|  |  | 
|  | /* | 
|  | *  If source is kernel buffer then use memcpy() otherwise | 
|  | *  copy_from_user(). | 
|  | */ | 
|  | dst_offset = dst_paddr & 15; | 
|  |  | 
|  | if (src_tpage) | 
|  | memcpy(page_address(dst_tpage) + dst_offset, | 
|  | page_address(src_tpage), size); | 
|  | else { | 
|  | if (copy_from_user(page_address(dst_tpage) + dst_offset, | 
|  | vaddr, size)) { | 
|  | ret = -EFAULT; | 
|  | goto e_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | paddr = __sme_page_pa(dst_tpage); | 
|  | dst_paddr = round_down(dst_paddr, 16); | 
|  | len = round_up(size, 16); | 
|  | } | 
|  |  | 
|  | ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); | 
|  |  | 
|  | e_free: | 
|  | if (src_tpage) | 
|  | __free_page(src_tpage); | 
|  | if (dst_tpage) | 
|  | __free_page(dst_tpage); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) | 
|  | { | 
|  | unsigned long vaddr, vaddr_end, next_vaddr; | 
|  | unsigned long dst_vaddr; | 
|  | struct page **src_p, **dst_p; | 
|  | struct kvm_sev_dbg debug; | 
|  | unsigned long n; | 
|  | unsigned int size; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) | 
|  | return -EINVAL; | 
|  | if (!debug.dst_uaddr) | 
|  | return -EINVAL; | 
|  |  | 
|  | vaddr = debug.src_uaddr; | 
|  | size = debug.len; | 
|  | vaddr_end = vaddr + size; | 
|  | dst_vaddr = debug.dst_uaddr; | 
|  |  | 
|  | for (; vaddr < vaddr_end; vaddr = next_vaddr) { | 
|  | int len, s_off, d_off; | 
|  |  | 
|  | /* lock userspace source and destination page */ | 
|  | src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); | 
|  | if (IS_ERR(src_p)) | 
|  | return PTR_ERR(src_p); | 
|  |  | 
|  | dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); | 
|  | if (IS_ERR(dst_p)) { | 
|  | sev_unpin_memory(kvm, src_p, n); | 
|  | return PTR_ERR(dst_p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify | 
|  | * the pages; flush the destination too so that future accesses do not | 
|  | * see stale data. | 
|  | */ | 
|  | sev_clflush_pages(src_p, 1); | 
|  | sev_clflush_pages(dst_p, 1); | 
|  |  | 
|  | /* | 
|  | * Since user buffer may not be page aligned, calculate the | 
|  | * offset within the page. | 
|  | */ | 
|  | s_off = vaddr & ~PAGE_MASK; | 
|  | d_off = dst_vaddr & ~PAGE_MASK; | 
|  | len = min_t(size_t, (PAGE_SIZE - s_off), size); | 
|  |  | 
|  | if (dec) | 
|  | ret = __sev_dbg_decrypt_user(kvm, | 
|  | __sme_page_pa(src_p[0]) + s_off, | 
|  | (void __user *)dst_vaddr, | 
|  | __sme_page_pa(dst_p[0]) + d_off, | 
|  | len, &argp->error); | 
|  | else | 
|  | ret = __sev_dbg_encrypt_user(kvm, | 
|  | __sme_page_pa(src_p[0]) + s_off, | 
|  | (void __user *)vaddr, | 
|  | __sme_page_pa(dst_p[0]) + d_off, | 
|  | (void __user *)dst_vaddr, | 
|  | len, &argp->error); | 
|  |  | 
|  | sev_unpin_memory(kvm, src_p, n); | 
|  | sev_unpin_memory(kvm, dst_p, n); | 
|  |  | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | next_vaddr = vaddr + len; | 
|  | dst_vaddr = dst_vaddr + len; | 
|  | size -= len; | 
|  | } | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_secret data; | 
|  | struct kvm_sev_launch_secret params; | 
|  | struct page **pages; | 
|  | void *blob, *hdr; | 
|  | unsigned long n, i; | 
|  | int ret, offset; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); | 
|  | if (IS_ERR(pages)) | 
|  | return PTR_ERR(pages); | 
|  |  | 
|  | /* | 
|  | * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in | 
|  | * place; the cache may contain the data that was written unencrypted. | 
|  | */ | 
|  | sev_clflush_pages(pages, n); | 
|  |  | 
|  | /* | 
|  | * The secret must be copied into contiguous memory region, lets verify | 
|  | * that userspace memory pages are contiguous before we issue command. | 
|  | */ | 
|  | if (get_num_contig_pages(0, pages, n) != n) { | 
|  | ret = -EINVAL; | 
|  | goto e_unpin_memory; | 
|  | } | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  |  | 
|  | offset = params.guest_uaddr & (PAGE_SIZE - 1); | 
|  | data.guest_address = __sme_page_pa(pages[0]) + offset; | 
|  | data.guest_len = params.guest_len; | 
|  |  | 
|  | blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); | 
|  | if (IS_ERR(blob)) { | 
|  | ret = PTR_ERR(blob); | 
|  | goto e_unpin_memory; | 
|  | } | 
|  |  | 
|  | data.trans_address = __psp_pa(blob); | 
|  | data.trans_len = params.trans_len; | 
|  |  | 
|  | hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); | 
|  | if (IS_ERR(hdr)) { | 
|  | ret = PTR_ERR(hdr); | 
|  | goto e_free_blob; | 
|  | } | 
|  | data.hdr_address = __psp_pa(hdr); | 
|  | data.hdr_len = params.hdr_len; | 
|  |  | 
|  | data.handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); | 
|  |  | 
|  | kfree(hdr); | 
|  |  | 
|  | e_free_blob: | 
|  | kfree(blob); | 
|  | e_unpin_memory: | 
|  | /* content of memory is updated, mark pages dirty */ | 
|  | for (i = 0; i < n; i++) { | 
|  | set_page_dirty_lock(pages[i]); | 
|  | mark_page_accessed(pages[i]); | 
|  | } | 
|  | sev_unpin_memory(kvm, pages, n); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | void __user *report = (void __user *)(uintptr_t)argp->data; | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_attestation_report data; | 
|  | struct kvm_sev_attestation_report params; | 
|  | void __user *p; | 
|  | void *blob = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  |  | 
|  | /* User wants to query the blob length */ | 
|  | if (!params.len) | 
|  | goto cmd; | 
|  |  | 
|  | p = (void __user *)(uintptr_t)params.uaddr; | 
|  | if (p) { | 
|  | if (params.len > SEV_FW_BLOB_MAX_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); | 
|  | if (!blob) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data.address = __psp_pa(blob); | 
|  | data.len = params.len; | 
|  | memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); | 
|  | } | 
|  | cmd: | 
|  | data.handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); | 
|  | /* | 
|  | * If we query the session length, FW responded with expected data. | 
|  | */ | 
|  | if (!params.len) | 
|  | goto done; | 
|  |  | 
|  | if (ret) | 
|  | goto e_free_blob; | 
|  |  | 
|  | if (blob) { | 
|  | if (copy_to_user(p, blob, params.len)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | done: | 
|  | params.len = data.len; | 
|  | if (copy_to_user(report, ¶ms, sizeof(params))) | 
|  | ret = -EFAULT; | 
|  | e_free_blob: | 
|  | kfree(blob); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Userspace wants to query session length. */ | 
|  | static int | 
|  | __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, | 
|  | struct kvm_sev_send_start *params) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_send_start data; | 
|  | int ret; | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  | data.handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); | 
|  |  | 
|  | params->session_len = data.session_len; | 
|  | if (copy_to_user((void __user *)(uintptr_t)argp->data, params, | 
|  | sizeof(struct kvm_sev_send_start))) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_send_start data; | 
|  | struct kvm_sev_send_start params; | 
|  | void *amd_certs, *session_data; | 
|  | void *pdh_cert, *plat_certs; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, | 
|  | sizeof(struct kvm_sev_send_start))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* if session_len is zero, userspace wants to query the session length */ | 
|  | if (!params.session_len) | 
|  | return __sev_send_start_query_session_length(kvm, argp, | 
|  | ¶ms); | 
|  |  | 
|  | /* some sanity checks */ | 
|  | if (!params.pdh_cert_uaddr || !params.pdh_cert_len || | 
|  | !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* allocate the memory to hold the session data blob */ | 
|  | session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); | 
|  | if (!session_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* copy the certificate blobs from userspace */ | 
|  | pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, | 
|  | params.pdh_cert_len); | 
|  | if (IS_ERR(pdh_cert)) { | 
|  | ret = PTR_ERR(pdh_cert); | 
|  | goto e_free_session; | 
|  | } | 
|  |  | 
|  | plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, | 
|  | params.plat_certs_len); | 
|  | if (IS_ERR(plat_certs)) { | 
|  | ret = PTR_ERR(plat_certs); | 
|  | goto e_free_pdh; | 
|  | } | 
|  |  | 
|  | amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, | 
|  | params.amd_certs_len); | 
|  | if (IS_ERR(amd_certs)) { | 
|  | ret = PTR_ERR(amd_certs); | 
|  | goto e_free_plat_cert; | 
|  | } | 
|  |  | 
|  | /* populate the FW SEND_START field with system physical address */ | 
|  | memset(&data, 0, sizeof(data)); | 
|  | data.pdh_cert_address = __psp_pa(pdh_cert); | 
|  | data.pdh_cert_len = params.pdh_cert_len; | 
|  | data.plat_certs_address = __psp_pa(plat_certs); | 
|  | data.plat_certs_len = params.plat_certs_len; | 
|  | data.amd_certs_address = __psp_pa(amd_certs); | 
|  | data.amd_certs_len = params.amd_certs_len; | 
|  | data.session_address = __psp_pa(session_data); | 
|  | data.session_len = params.session_len; | 
|  | data.handle = sev->handle; | 
|  |  | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); | 
|  |  | 
|  | if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, | 
|  | session_data, params.session_len)) { | 
|  | ret = -EFAULT; | 
|  | goto e_free_amd_cert; | 
|  | } | 
|  |  | 
|  | params.policy = data.policy; | 
|  | params.session_len = data.session_len; | 
|  | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, | 
|  | sizeof(struct kvm_sev_send_start))) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | e_free_amd_cert: | 
|  | kfree(amd_certs); | 
|  | e_free_plat_cert: | 
|  | kfree(plat_certs); | 
|  | e_free_pdh: | 
|  | kfree(pdh_cert); | 
|  | e_free_session: | 
|  | kfree(session_data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Userspace wants to query either header or trans length. */ | 
|  | static int | 
|  | __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, | 
|  | struct kvm_sev_send_update_data *params) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_send_update_data data; | 
|  | int ret; | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  | data.handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); | 
|  |  | 
|  | params->hdr_len = data.hdr_len; | 
|  | params->trans_len = data.trans_len; | 
|  |  | 
|  | if (copy_to_user((void __user *)(uintptr_t)argp->data, params, | 
|  | sizeof(struct kvm_sev_send_update_data))) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_send_update_data data; | 
|  | struct kvm_sev_send_update_data params; | 
|  | void *hdr, *trans_data; | 
|  | struct page **guest_page; | 
|  | unsigned long n; | 
|  | int ret, offset; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, | 
|  | sizeof(struct kvm_sev_send_update_data))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* userspace wants to query either header or trans length */ | 
|  | if (!params.trans_len || !params.hdr_len) | 
|  | return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); | 
|  |  | 
|  | if (!params.trans_uaddr || !params.guest_uaddr || | 
|  | !params.guest_len || !params.hdr_uaddr) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Check if we are crossing the page boundary */ | 
|  | offset = params.guest_uaddr & (PAGE_SIZE - 1); | 
|  | if ((params.guest_len + offset > PAGE_SIZE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Pin guest memory */ | 
|  | guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, | 
|  | PAGE_SIZE, &n, 0); | 
|  | if (IS_ERR(guest_page)) | 
|  | return PTR_ERR(guest_page); | 
|  |  | 
|  | /* allocate memory for header and transport buffer */ | 
|  | ret = -ENOMEM; | 
|  | hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); | 
|  | if (!hdr) | 
|  | goto e_unpin; | 
|  |  | 
|  | trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); | 
|  | if (!trans_data) | 
|  | goto e_free_hdr; | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  | data.hdr_address = __psp_pa(hdr); | 
|  | data.hdr_len = params.hdr_len; | 
|  | data.trans_address = __psp_pa(trans_data); | 
|  | data.trans_len = params.trans_len; | 
|  |  | 
|  | /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ | 
|  | data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; | 
|  | data.guest_address |= sev_me_mask; | 
|  | data.guest_len = params.guest_len; | 
|  | data.handle = sev->handle; | 
|  |  | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); | 
|  |  | 
|  | if (ret) | 
|  | goto e_free_trans_data; | 
|  |  | 
|  | /* copy transport buffer to user space */ | 
|  | if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, | 
|  | trans_data, params.trans_len)) { | 
|  | ret = -EFAULT; | 
|  | goto e_free_trans_data; | 
|  | } | 
|  |  | 
|  | /* Copy packet header to userspace. */ | 
|  | if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, | 
|  | params.hdr_len)) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | e_free_trans_data: | 
|  | kfree(trans_data); | 
|  | e_free_hdr: | 
|  | kfree(hdr); | 
|  | e_unpin: | 
|  | sev_unpin_memory(kvm, guest_page, n); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_send_finish data; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | data.handle = sev->handle; | 
|  | return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); | 
|  | } | 
|  |  | 
|  | static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_send_cancel data; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | data.handle = sev->handle; | 
|  | return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); | 
|  | } | 
|  |  | 
|  | static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_receive_start start; | 
|  | struct kvm_sev_receive_start params; | 
|  | int *error = &argp->error; | 
|  | void *session_data; | 
|  | void *pdh_data; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | /* Get parameter from the userspace */ | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, | 
|  | sizeof(struct kvm_sev_receive_start))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* some sanity checks */ | 
|  | if (!params.pdh_uaddr || !params.pdh_len || | 
|  | !params.session_uaddr || !params.session_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); | 
|  | if (IS_ERR(pdh_data)) | 
|  | return PTR_ERR(pdh_data); | 
|  |  | 
|  | session_data = psp_copy_user_blob(params.session_uaddr, | 
|  | params.session_len); | 
|  | if (IS_ERR(session_data)) { | 
|  | ret = PTR_ERR(session_data); | 
|  | goto e_free_pdh; | 
|  | } | 
|  |  | 
|  | memset(&start, 0, sizeof(start)); | 
|  | start.handle = params.handle; | 
|  | start.policy = params.policy; | 
|  | start.pdh_cert_address = __psp_pa(pdh_data); | 
|  | start.pdh_cert_len = params.pdh_len; | 
|  | start.session_address = __psp_pa(session_data); | 
|  | start.session_len = params.session_len; | 
|  |  | 
|  | /* create memory encryption context */ | 
|  | ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, | 
|  | error); | 
|  | if (ret) | 
|  | goto e_free_session; | 
|  |  | 
|  | /* Bind ASID to this guest */ | 
|  | ret = sev_bind_asid(kvm, start.handle, error); | 
|  | if (ret) | 
|  | goto e_free_session; | 
|  |  | 
|  | params.handle = start.handle; | 
|  | if (copy_to_user((void __user *)(uintptr_t)argp->data, | 
|  | ¶ms, sizeof(struct kvm_sev_receive_start))) { | 
|  | ret = -EFAULT; | 
|  | sev_unbind_asid(kvm, start.handle); | 
|  | goto e_free_session; | 
|  | } | 
|  |  | 
|  | sev->handle = start.handle; | 
|  | sev->fd = argp->sev_fd; | 
|  |  | 
|  | e_free_session: | 
|  | kfree(session_data); | 
|  | e_free_pdh: | 
|  | kfree(pdh_data); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct kvm_sev_receive_update_data params; | 
|  | struct sev_data_receive_update_data data; | 
|  | void *hdr = NULL, *trans = NULL; | 
|  | struct page **guest_page; | 
|  | unsigned long n; | 
|  | int ret, offset; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, | 
|  | sizeof(struct kvm_sev_receive_update_data))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!params.hdr_uaddr || !params.hdr_len || | 
|  | !params.guest_uaddr || !params.guest_len || | 
|  | !params.trans_uaddr || !params.trans_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Check if we are crossing the page boundary */ | 
|  | offset = params.guest_uaddr & (PAGE_SIZE - 1); | 
|  | if ((params.guest_len + offset > PAGE_SIZE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); | 
|  | if (IS_ERR(hdr)) | 
|  | return PTR_ERR(hdr); | 
|  |  | 
|  | trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto e_free_hdr; | 
|  | } | 
|  |  | 
|  | memset(&data, 0, sizeof(data)); | 
|  | data.hdr_address = __psp_pa(hdr); | 
|  | data.hdr_len = params.hdr_len; | 
|  | data.trans_address = __psp_pa(trans); | 
|  | data.trans_len = params.trans_len; | 
|  |  | 
|  | /* Pin guest memory */ | 
|  | guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, | 
|  | PAGE_SIZE, &n, 0); | 
|  | if (IS_ERR(guest_page)) { | 
|  | ret = PTR_ERR(guest_page); | 
|  | goto e_free_trans; | 
|  | } | 
|  |  | 
|  | /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ | 
|  | data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; | 
|  | data.guest_address |= sev_me_mask; | 
|  | data.guest_len = params.guest_len; | 
|  | data.handle = sev->handle; | 
|  |  | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, | 
|  | &argp->error); | 
|  |  | 
|  | sev_unpin_memory(kvm, guest_page, n); | 
|  |  | 
|  | e_free_trans: | 
|  | kfree(trans); | 
|  | e_free_hdr: | 
|  | kfree(hdr); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_receive_finish data; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | data.handle = sev->handle; | 
|  | return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); | 
|  | } | 
|  |  | 
|  | int svm_mem_enc_op(struct kvm *kvm, void __user *argp) | 
|  | { | 
|  | struct kvm_sev_cmd sev_cmd; | 
|  | int r; | 
|  |  | 
|  | if (!sev_enabled) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (!argp) | 
|  | return 0; | 
|  |  | 
|  | if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) | 
|  | return -EFAULT; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  |  | 
|  | /* enc_context_owner handles all memory enc operations */ | 
|  | if (is_mirroring_enc_context(kvm)) { | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (sev_cmd.id) { | 
|  | case KVM_SEV_ES_INIT: | 
|  | if (!sev_es_enabled) { | 
|  | r = -ENOTTY; | 
|  | goto out; | 
|  | } | 
|  | fallthrough; | 
|  | case KVM_SEV_INIT: | 
|  | r = sev_guest_init(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_START: | 
|  | r = sev_launch_start(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_UPDATE_DATA: | 
|  | r = sev_launch_update_data(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_UPDATE_VMSA: | 
|  | r = sev_launch_update_vmsa(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_MEASURE: | 
|  | r = sev_launch_measure(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_FINISH: | 
|  | r = sev_launch_finish(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_GUEST_STATUS: | 
|  | r = sev_guest_status(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_DBG_DECRYPT: | 
|  | r = sev_dbg_crypt(kvm, &sev_cmd, true); | 
|  | break; | 
|  | case KVM_SEV_DBG_ENCRYPT: | 
|  | r = sev_dbg_crypt(kvm, &sev_cmd, false); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_SECRET: | 
|  | r = sev_launch_secret(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_GET_ATTESTATION_REPORT: | 
|  | r = sev_get_attestation_report(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_SEND_START: | 
|  | r = sev_send_start(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_SEND_UPDATE_DATA: | 
|  | r = sev_send_update_data(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_SEND_FINISH: | 
|  | r = sev_send_finish(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_SEND_CANCEL: | 
|  | r = sev_send_cancel(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_RECEIVE_START: | 
|  | r = sev_receive_start(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_RECEIVE_UPDATE_DATA: | 
|  | r = sev_receive_update_data(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_RECEIVE_FINISH: | 
|  | r = sev_receive_finish(kvm, &sev_cmd); | 
|  | break; | 
|  | default: | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) | 
|  | r = -EFAULT; | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&kvm->lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int svm_register_enc_region(struct kvm *kvm, | 
|  | struct kvm_enc_region *range) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct enc_region *region; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | /* If kvm is mirroring encryption context it isn't responsible for it */ | 
|  | if (is_mirroring_enc_context(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (range->addr > ULONG_MAX || range->size > ULONG_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); | 
|  | if (!region) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  | region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); | 
|  | if (IS_ERR(region->pages)) { | 
|  | ret = PTR_ERR(region->pages); | 
|  | mutex_unlock(&kvm->lock); | 
|  | goto e_free; | 
|  | } | 
|  |  | 
|  | region->uaddr = range->addr; | 
|  | region->size = range->size; | 
|  |  | 
|  | list_add_tail(®ion->list, &sev->regions_list); | 
|  | mutex_unlock(&kvm->lock); | 
|  |  | 
|  | /* | 
|  | * The guest may change the memory encryption attribute from C=0 -> C=1 | 
|  | * or vice versa for this memory range. Lets make sure caches are | 
|  | * flushed to ensure that guest data gets written into memory with | 
|  | * correct C-bit. | 
|  | */ | 
|  | sev_clflush_pages(region->pages, region->npages); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | e_free: | 
|  | kfree(region); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct enc_region * | 
|  | find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct list_head *head = &sev->regions_list; | 
|  | struct enc_region *i; | 
|  |  | 
|  | list_for_each_entry(i, head, list) { | 
|  | if (i->uaddr == range->addr && | 
|  | i->size == range->size) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __unregister_enc_region_locked(struct kvm *kvm, | 
|  | struct enc_region *region) | 
|  | { | 
|  | sev_unpin_memory(kvm, region->pages, region->npages); | 
|  | list_del(®ion->list); | 
|  | kfree(region); | 
|  | } | 
|  |  | 
|  | int svm_unregister_enc_region(struct kvm *kvm, | 
|  | struct kvm_enc_region *range) | 
|  | { | 
|  | struct enc_region *region; | 
|  | int ret; | 
|  |  | 
|  | /* If kvm is mirroring encryption context it isn't responsible for it */ | 
|  | if (is_mirroring_enc_context(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  |  | 
|  | if (!sev_guest(kvm)) { | 
|  | ret = -ENOTTY; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | region = find_enc_region(kvm, range); | 
|  | if (!region) { | 
|  | ret = -EINVAL; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that all guest tagged cache entries are flushed before | 
|  | * releasing the pages back to the system for use. CLFLUSH will | 
|  | * not do this, so issue a WBINVD. | 
|  | */ | 
|  | wbinvd_on_all_cpus(); | 
|  |  | 
|  | __unregister_enc_region_locked(kvm, region); | 
|  |  | 
|  | mutex_unlock(&kvm->lock); | 
|  | return 0; | 
|  |  | 
|  | failed: | 
|  | mutex_unlock(&kvm->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) | 
|  | { | 
|  | struct file *source_kvm_file; | 
|  | struct kvm *source_kvm; | 
|  | struct kvm_sev_info *mirror_sev; | 
|  | unsigned int asid; | 
|  | int ret; | 
|  |  | 
|  | source_kvm_file = fget(source_fd); | 
|  | if (!file_is_kvm(source_kvm_file)) { | 
|  | ret = -EBADF; | 
|  | goto e_source_put; | 
|  | } | 
|  |  | 
|  | source_kvm = source_kvm_file->private_data; | 
|  | mutex_lock(&source_kvm->lock); | 
|  |  | 
|  | if (!sev_guest(source_kvm)) { | 
|  | ret = -EINVAL; | 
|  | goto e_source_unlock; | 
|  | } | 
|  |  | 
|  | /* Mirrors of mirrors should work, but let's not get silly */ | 
|  | if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { | 
|  | ret = -EINVAL; | 
|  | goto e_source_unlock; | 
|  | } | 
|  |  | 
|  | asid = to_kvm_svm(source_kvm)->sev_info.asid; | 
|  |  | 
|  | /* | 
|  | * The mirror kvm holds an enc_context_owner ref so its asid can't | 
|  | * disappear until we're done with it | 
|  | */ | 
|  | kvm_get_kvm(source_kvm); | 
|  |  | 
|  | fput(source_kvm_file); | 
|  | mutex_unlock(&source_kvm->lock); | 
|  | mutex_lock(&kvm->lock); | 
|  |  | 
|  | if (sev_guest(kvm)) { | 
|  | ret = -EINVAL; | 
|  | goto e_mirror_unlock; | 
|  | } | 
|  |  | 
|  | /* Set enc_context_owner and copy its encryption context over */ | 
|  | mirror_sev = &to_kvm_svm(kvm)->sev_info; | 
|  | mirror_sev->enc_context_owner = source_kvm; | 
|  | mirror_sev->asid = asid; | 
|  | mirror_sev->active = true; | 
|  |  | 
|  | mutex_unlock(&kvm->lock); | 
|  | return 0; | 
|  |  | 
|  | e_mirror_unlock: | 
|  | mutex_unlock(&kvm->lock); | 
|  | kvm_put_kvm(source_kvm); | 
|  | return ret; | 
|  | e_source_unlock: | 
|  | mutex_unlock(&source_kvm->lock); | 
|  | e_source_put: | 
|  | if (source_kvm_file) | 
|  | fput(source_kvm_file); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void sev_vm_destroy(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct list_head *head = &sev->regions_list; | 
|  | struct list_head *pos, *q; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return; | 
|  |  | 
|  | /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ | 
|  | if (is_mirroring_enc_context(kvm)) { | 
|  | kvm_put_kvm(sev->enc_context_owner); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  |  | 
|  | /* | 
|  | * Ensure that all guest tagged cache entries are flushed before | 
|  | * releasing the pages back to the system for use. CLFLUSH will | 
|  | * not do this, so issue a WBINVD. | 
|  | */ | 
|  | wbinvd_on_all_cpus(); | 
|  |  | 
|  | /* | 
|  | * if userspace was terminated before unregistering the memory regions | 
|  | * then lets unpin all the registered memory. | 
|  | */ | 
|  | if (!list_empty(head)) { | 
|  | list_for_each_safe(pos, q, head) { | 
|  | __unregister_enc_region_locked(kvm, | 
|  | list_entry(pos, struct enc_region, list)); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kvm->lock); | 
|  |  | 
|  | sev_unbind_asid(kvm, sev->handle); | 
|  | sev_asid_free(sev); | 
|  | } | 
|  |  | 
|  | void __init sev_set_cpu_caps(void) | 
|  | { | 
|  | if (!sev_enabled) | 
|  | kvm_cpu_cap_clear(X86_FEATURE_SEV); | 
|  | if (!sev_es_enabled) | 
|  | kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); | 
|  | } | 
|  |  | 
|  | void __init sev_hardware_setup(void) | 
|  | { | 
|  | #ifdef CONFIG_KVM_AMD_SEV | 
|  | unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; | 
|  | bool sev_es_supported = false; | 
|  | bool sev_supported = false; | 
|  |  | 
|  | if (!sev_enabled || !npt_enabled) | 
|  | goto out; | 
|  |  | 
|  | /* Does the CPU support SEV? */ | 
|  | if (!boot_cpu_has(X86_FEATURE_SEV)) | 
|  | goto out; | 
|  |  | 
|  | /* Retrieve SEV CPUID information */ | 
|  | cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); | 
|  |  | 
|  | /* Set encryption bit location for SEV-ES guests */ | 
|  | sev_enc_bit = ebx & 0x3f; | 
|  |  | 
|  | /* Maximum number of encrypted guests supported simultaneously */ | 
|  | max_sev_asid = ecx; | 
|  | if (!max_sev_asid) | 
|  | goto out; | 
|  |  | 
|  | /* Minimum ASID value that should be used for SEV guest */ | 
|  | min_sev_asid = edx; | 
|  | sev_me_mask = 1UL << (ebx & 0x3f); | 
|  |  | 
|  | /* | 
|  | * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, | 
|  | * even though it's never used, so that the bitmap is indexed by the | 
|  | * actual ASID. | 
|  | */ | 
|  | nr_asids = max_sev_asid + 1; | 
|  | sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); | 
|  | if (!sev_asid_bitmap) | 
|  | goto out; | 
|  |  | 
|  | sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); | 
|  | if (!sev_reclaim_asid_bitmap) { | 
|  | bitmap_free(sev_asid_bitmap); | 
|  | sev_asid_bitmap = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sev_asid_count = max_sev_asid - min_sev_asid + 1; | 
|  | if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) | 
|  | goto out; | 
|  |  | 
|  | pr_info("SEV supported: %u ASIDs\n", sev_asid_count); | 
|  | sev_supported = true; | 
|  |  | 
|  | /* SEV-ES support requested? */ | 
|  | if (!sev_es_enabled) | 
|  | goto out; | 
|  |  | 
|  | /* Does the CPU support SEV-ES? */ | 
|  | if (!boot_cpu_has(X86_FEATURE_SEV_ES)) | 
|  | goto out; | 
|  |  | 
|  | /* Has the system been allocated ASIDs for SEV-ES? */ | 
|  | if (min_sev_asid == 1) | 
|  | goto out; | 
|  |  | 
|  | sev_es_asid_count = min_sev_asid - 1; | 
|  | if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) | 
|  | goto out; | 
|  |  | 
|  | pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); | 
|  | sev_es_supported = true; | 
|  |  | 
|  | out: | 
|  | sev_enabled = sev_supported; | 
|  | sev_es_enabled = sev_es_supported; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void sev_hardware_teardown(void) | 
|  | { | 
|  | if (!sev_enabled) | 
|  | return; | 
|  |  | 
|  | /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ | 
|  | sev_flush_asids(1, max_sev_asid); | 
|  |  | 
|  | bitmap_free(sev_asid_bitmap); | 
|  | bitmap_free(sev_reclaim_asid_bitmap); | 
|  |  | 
|  | misc_cg_set_capacity(MISC_CG_RES_SEV, 0); | 
|  | misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); | 
|  | } | 
|  |  | 
|  | int sev_cpu_init(struct svm_cpu_data *sd) | 
|  | { | 
|  | if (!sev_enabled) | 
|  | return 0; | 
|  |  | 
|  | sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); | 
|  | if (!sd->sev_vmcbs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pages used by hardware to hold guest encrypted state must be flushed before | 
|  | * returning them to the system. | 
|  | */ | 
|  | static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, | 
|  | unsigned long len) | 
|  | { | 
|  | /* | 
|  | * If hardware enforced cache coherency for encrypted mappings of the | 
|  | * same physical page is supported, nothing to do. | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If the VM Page Flush MSR is supported, use it to flush the page | 
|  | * (using the page virtual address and the guest ASID). | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { | 
|  | struct kvm_sev_info *sev; | 
|  | unsigned long va_start; | 
|  | u64 start, stop; | 
|  |  | 
|  | /* Align start and stop to page boundaries. */ | 
|  | va_start = (unsigned long)va; | 
|  | start = (u64)va_start & PAGE_MASK; | 
|  | stop = PAGE_ALIGN((u64)va_start + len); | 
|  |  | 
|  | if (start < stop) { | 
|  | sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; | 
|  |  | 
|  | while (start < stop) { | 
|  | wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, | 
|  | start | sev->asid); | 
|  |  | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | WARN(1, "Address overflow, using WBINVD\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hardware should always have one of the above features, | 
|  | * but if not, use WBINVD and issue a warning. | 
|  | */ | 
|  | WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); | 
|  | wbinvd_on_all_cpus(); | 
|  | } | 
|  |  | 
|  | void sev_free_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm; | 
|  |  | 
|  | if (!sev_es_guest(vcpu->kvm)) | 
|  | return; | 
|  |  | 
|  | svm = to_svm(vcpu); | 
|  |  | 
|  | if (vcpu->arch.guest_state_protected) | 
|  | sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); | 
|  | __free_page(virt_to_page(svm->vmsa)); | 
|  |  | 
|  | if (svm->ghcb_sa_free) | 
|  | kfree(svm->ghcb_sa); | 
|  | } | 
|  |  | 
|  | static void dump_ghcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct ghcb *ghcb = svm->ghcb; | 
|  | unsigned int nbits; | 
|  |  | 
|  | /* Re-use the dump_invalid_vmcb module parameter */ | 
|  | if (!dump_invalid_vmcb) { | 
|  | pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | nbits = sizeof(ghcb->save.valid_bitmap) * 8; | 
|  |  | 
|  | pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); | 
|  | pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", | 
|  | ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); | 
|  | pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", | 
|  | ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); | 
|  | pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", | 
|  | ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); | 
|  | pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", | 
|  | ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); | 
|  | pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); | 
|  | } | 
|  |  | 
|  | static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  | struct ghcb *ghcb = svm->ghcb; | 
|  |  | 
|  | /* | 
|  | * The GHCB protocol so far allows for the following data | 
|  | * to be returned: | 
|  | *   GPRs RAX, RBX, RCX, RDX | 
|  | * | 
|  | * Copy their values, even if they may not have been written during the | 
|  | * VM-Exit.  It's the guest's responsibility to not consume random data. | 
|  | */ | 
|  | ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); | 
|  | ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); | 
|  | ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); | 
|  | ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); | 
|  | } | 
|  |  | 
|  | static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  | struct ghcb *ghcb = svm->ghcb; | 
|  | u64 exit_code; | 
|  |  | 
|  | /* | 
|  | * The GHCB protocol so far allows for the following data | 
|  | * to be supplied: | 
|  | *   GPRs RAX, RBX, RCX, RDX | 
|  | *   XCR0 | 
|  | *   CPL | 
|  | * | 
|  | * VMMCALL allows the guest to provide extra registers. KVM also | 
|  | * expects RSI for hypercalls, so include that, too. | 
|  | * | 
|  | * Copy their values to the appropriate location if supplied. | 
|  | */ | 
|  | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); | 
|  |  | 
|  | vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); | 
|  | vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); | 
|  | vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); | 
|  | vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); | 
|  | vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); | 
|  |  | 
|  | svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); | 
|  |  | 
|  | if (ghcb_xcr0_is_valid(ghcb)) { | 
|  | vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); | 
|  | kvm_update_cpuid_runtime(vcpu); | 
|  | } | 
|  |  | 
|  | /* Copy the GHCB exit information into the VMCB fields */ | 
|  | exit_code = ghcb_get_sw_exit_code(ghcb); | 
|  | control->exit_code = lower_32_bits(exit_code); | 
|  | control->exit_code_hi = upper_32_bits(exit_code); | 
|  | control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); | 
|  | control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); | 
|  |  | 
|  | /* Clear the valid entries fields */ | 
|  | memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); | 
|  | } | 
|  |  | 
|  | static int sev_es_validate_vmgexit(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu; | 
|  | struct ghcb *ghcb; | 
|  | u64 exit_code = 0; | 
|  |  | 
|  | ghcb = svm->ghcb; | 
|  |  | 
|  | /* Only GHCB Usage code 0 is supported */ | 
|  | if (ghcb->ghcb_usage) | 
|  | goto vmgexit_err; | 
|  |  | 
|  | /* | 
|  | * Retrieve the exit code now even though is may not be marked valid | 
|  | * as it could help with debugging. | 
|  | */ | 
|  | exit_code = ghcb_get_sw_exit_code(ghcb); | 
|  |  | 
|  | if (!ghcb_sw_exit_code_is_valid(ghcb) || | 
|  | !ghcb_sw_exit_info_1_is_valid(ghcb) || | 
|  | !ghcb_sw_exit_info_2_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  |  | 
|  | switch (ghcb_get_sw_exit_code(ghcb)) { | 
|  | case SVM_EXIT_READ_DR7: | 
|  | break; | 
|  | case SVM_EXIT_WRITE_DR7: | 
|  | if (!ghcb_rax_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | break; | 
|  | case SVM_EXIT_RDTSC: | 
|  | break; | 
|  | case SVM_EXIT_RDPMC: | 
|  | if (!ghcb_rcx_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | break; | 
|  | case SVM_EXIT_CPUID: | 
|  | if (!ghcb_rax_is_valid(ghcb) || | 
|  | !ghcb_rcx_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | if (ghcb_get_rax(ghcb) == 0xd) | 
|  | if (!ghcb_xcr0_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | break; | 
|  | case SVM_EXIT_INVD: | 
|  | break; | 
|  | case SVM_EXIT_IOIO: | 
|  | if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { | 
|  | if (!ghcb_sw_scratch_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | } else { | 
|  | if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) | 
|  | if (!ghcb_rax_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | } | 
|  | break; | 
|  | case SVM_EXIT_MSR: | 
|  | if (!ghcb_rcx_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | if (ghcb_get_sw_exit_info_1(ghcb)) { | 
|  | if (!ghcb_rax_is_valid(ghcb) || | 
|  | !ghcb_rdx_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | } | 
|  | break; | 
|  | case SVM_EXIT_VMMCALL: | 
|  | if (!ghcb_rax_is_valid(ghcb) || | 
|  | !ghcb_cpl_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | break; | 
|  | case SVM_EXIT_RDTSCP: | 
|  | break; | 
|  | case SVM_EXIT_WBINVD: | 
|  | break; | 
|  | case SVM_EXIT_MONITOR: | 
|  | if (!ghcb_rax_is_valid(ghcb) || | 
|  | !ghcb_rcx_is_valid(ghcb) || | 
|  | !ghcb_rdx_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | break; | 
|  | case SVM_EXIT_MWAIT: | 
|  | if (!ghcb_rax_is_valid(ghcb) || | 
|  | !ghcb_rcx_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | break; | 
|  | case SVM_VMGEXIT_MMIO_READ: | 
|  | case SVM_VMGEXIT_MMIO_WRITE: | 
|  | if (!ghcb_sw_scratch_is_valid(ghcb)) | 
|  | goto vmgexit_err; | 
|  | break; | 
|  | case SVM_VMGEXIT_NMI_COMPLETE: | 
|  | case SVM_VMGEXIT_AP_HLT_LOOP: | 
|  | case SVM_VMGEXIT_AP_JUMP_TABLE: | 
|  | case SVM_VMGEXIT_UNSUPPORTED_EVENT: | 
|  | break; | 
|  | default: | 
|  | goto vmgexit_err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | vmgexit_err: | 
|  | vcpu = &svm->vcpu; | 
|  |  | 
|  | if (ghcb->ghcb_usage) { | 
|  | vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", | 
|  | ghcb->ghcb_usage); | 
|  | } else { | 
|  | vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", | 
|  | exit_code); | 
|  | dump_ghcb(svm); | 
|  | } | 
|  |  | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; | 
|  | vcpu->run->internal.ndata = 2; | 
|  | vcpu->run->internal.data[0] = exit_code; | 
|  | vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | void sev_es_unmap_ghcb(struct vcpu_svm *svm) | 
|  | { | 
|  | if (!svm->ghcb) | 
|  | return; | 
|  |  | 
|  | if (svm->ghcb_sa_free) { | 
|  | /* | 
|  | * The scratch area lives outside the GHCB, so there is a | 
|  | * buffer that, depending on the operation performed, may | 
|  | * need to be synced, then freed. | 
|  | */ | 
|  | if (svm->ghcb_sa_sync) { | 
|  | kvm_write_guest(svm->vcpu.kvm, | 
|  | ghcb_get_sw_scratch(svm->ghcb), | 
|  | svm->ghcb_sa, svm->ghcb_sa_len); | 
|  | svm->ghcb_sa_sync = false; | 
|  | } | 
|  |  | 
|  | kfree(svm->ghcb_sa); | 
|  | svm->ghcb_sa = NULL; | 
|  | svm->ghcb_sa_free = false; | 
|  | } | 
|  |  | 
|  | trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); | 
|  |  | 
|  | sev_es_sync_to_ghcb(svm); | 
|  |  | 
|  | kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); | 
|  | svm->ghcb = NULL; | 
|  | } | 
|  |  | 
|  | void pre_sev_run(struct vcpu_svm *svm, int cpu) | 
|  | { | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
|  | int asid = sev_get_asid(svm->vcpu.kvm); | 
|  |  | 
|  | /* Assign the asid allocated with this SEV guest */ | 
|  | svm->asid = asid; | 
|  |  | 
|  | /* | 
|  | * Flush guest TLB: | 
|  | * | 
|  | * 1) when different VMCB for the same ASID is to be run on the same host CPU. | 
|  | * 2) or this VMCB was executed on different host CPU in previous VMRUNs. | 
|  | */ | 
|  | if (sd->sev_vmcbs[asid] == svm->vmcb && | 
|  | svm->vcpu.arch.last_vmentry_cpu == cpu) | 
|  | return; | 
|  |  | 
|  | sd->sev_vmcbs[asid] = svm->vmcb; | 
|  | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; | 
|  | vmcb_mark_dirty(svm->vmcb, VMCB_ASID); | 
|  | } | 
|  |  | 
|  | #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE) | 
|  | static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) | 
|  | { | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | struct ghcb *ghcb = svm->ghcb; | 
|  | u64 ghcb_scratch_beg, ghcb_scratch_end; | 
|  | u64 scratch_gpa_beg, scratch_gpa_end; | 
|  | void *scratch_va; | 
|  |  | 
|  | scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); | 
|  | if (!scratch_gpa_beg) { | 
|  | pr_err("vmgexit: scratch gpa not provided\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | scratch_gpa_end = scratch_gpa_beg + len; | 
|  | if (scratch_gpa_end < scratch_gpa_beg) { | 
|  | pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", | 
|  | len, scratch_gpa_beg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { | 
|  | /* Scratch area begins within GHCB */ | 
|  | ghcb_scratch_beg = control->ghcb_gpa + | 
|  | offsetof(struct ghcb, shared_buffer); | 
|  | ghcb_scratch_end = control->ghcb_gpa + | 
|  | offsetof(struct ghcb, reserved_1); | 
|  |  | 
|  | /* | 
|  | * If the scratch area begins within the GHCB, it must be | 
|  | * completely contained in the GHCB shared buffer area. | 
|  | */ | 
|  | if (scratch_gpa_beg < ghcb_scratch_beg || | 
|  | scratch_gpa_end > ghcb_scratch_end) { | 
|  | pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", | 
|  | scratch_gpa_beg, scratch_gpa_end); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | scratch_va = (void *)svm->ghcb; | 
|  | scratch_va += (scratch_gpa_beg - control->ghcb_gpa); | 
|  | } else { | 
|  | /* | 
|  | * The guest memory must be read into a kernel buffer, so | 
|  | * limit the size | 
|  | */ | 
|  | if (len > GHCB_SCRATCH_AREA_LIMIT) { | 
|  | pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", | 
|  | len, GHCB_SCRATCH_AREA_LIMIT); | 
|  | return false; | 
|  | } | 
|  | scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); | 
|  | if (!scratch_va) | 
|  | return false; | 
|  |  | 
|  | if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { | 
|  | /* Unable to copy scratch area from guest */ | 
|  | pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); | 
|  |  | 
|  | kfree(scratch_va); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The scratch area is outside the GHCB. The operation will | 
|  | * dictate whether the buffer needs to be synced before running | 
|  | * the vCPU next time (i.e. a read was requested so the data | 
|  | * must be written back to the guest memory). | 
|  | */ | 
|  | svm->ghcb_sa_sync = sync; | 
|  | svm->ghcb_sa_free = true; | 
|  | } | 
|  |  | 
|  | svm->ghcb_sa = scratch_va; | 
|  | svm->ghcb_sa_len = len; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, | 
|  | unsigned int pos) | 
|  | { | 
|  | svm->vmcb->control.ghcb_gpa &= ~(mask << pos); | 
|  | svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; | 
|  | } | 
|  |  | 
|  | static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) | 
|  | { | 
|  | return (svm->vmcb->control.ghcb_gpa >> pos) & mask; | 
|  | } | 
|  |  | 
|  | static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) | 
|  | { | 
|  | svm->vmcb->control.ghcb_gpa = value; | 
|  | } | 
|  |  | 
|  | static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  | u64 ghcb_info; | 
|  | int ret = 1; | 
|  |  | 
|  | ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; | 
|  |  | 
|  | trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, | 
|  | control->ghcb_gpa); | 
|  |  | 
|  | switch (ghcb_info) { | 
|  | case GHCB_MSR_SEV_INFO_REQ: | 
|  | set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, | 
|  | GHCB_VERSION_MIN, | 
|  | sev_enc_bit)); | 
|  | break; | 
|  | case GHCB_MSR_CPUID_REQ: { | 
|  | u64 cpuid_fn, cpuid_reg, cpuid_value; | 
|  |  | 
|  | cpuid_fn = get_ghcb_msr_bits(svm, | 
|  | GHCB_MSR_CPUID_FUNC_MASK, | 
|  | GHCB_MSR_CPUID_FUNC_POS); | 
|  |  | 
|  | /* Initialize the registers needed by the CPUID intercept */ | 
|  | vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; | 
|  | vcpu->arch.regs[VCPU_REGS_RCX] = 0; | 
|  |  | 
|  | ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); | 
|  | if (!ret) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cpuid_reg = get_ghcb_msr_bits(svm, | 
|  | GHCB_MSR_CPUID_REG_MASK, | 
|  | GHCB_MSR_CPUID_REG_POS); | 
|  | if (cpuid_reg == 0) | 
|  | cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; | 
|  | else if (cpuid_reg == 1) | 
|  | cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; | 
|  | else if (cpuid_reg == 2) | 
|  | cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; | 
|  | else | 
|  | cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; | 
|  |  | 
|  | set_ghcb_msr_bits(svm, cpuid_value, | 
|  | GHCB_MSR_CPUID_VALUE_MASK, | 
|  | GHCB_MSR_CPUID_VALUE_POS); | 
|  |  | 
|  | set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, | 
|  | GHCB_MSR_INFO_MASK, | 
|  | GHCB_MSR_INFO_POS); | 
|  | break; | 
|  | } | 
|  | case GHCB_MSR_TERM_REQ: { | 
|  | u64 reason_set, reason_code; | 
|  |  | 
|  | reason_set = get_ghcb_msr_bits(svm, | 
|  | GHCB_MSR_TERM_REASON_SET_MASK, | 
|  | GHCB_MSR_TERM_REASON_SET_POS); | 
|  | reason_code = get_ghcb_msr_bits(svm, | 
|  | GHCB_MSR_TERM_REASON_MASK, | 
|  | GHCB_MSR_TERM_REASON_POS); | 
|  | pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", | 
|  | reason_set, reason_code); | 
|  | fallthrough; | 
|  | } | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, | 
|  | control->ghcb_gpa, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int sev_handle_vmgexit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | u64 ghcb_gpa, exit_code; | 
|  | struct ghcb *ghcb; | 
|  | int ret; | 
|  |  | 
|  | /* Validate the GHCB */ | 
|  | ghcb_gpa = control->ghcb_gpa; | 
|  | if (ghcb_gpa & GHCB_MSR_INFO_MASK) | 
|  | return sev_handle_vmgexit_msr_protocol(svm); | 
|  |  | 
|  | if (!ghcb_gpa) { | 
|  | vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { | 
|  | /* Unable to map GHCB from guest */ | 
|  | vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", | 
|  | ghcb_gpa); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | svm->ghcb = svm->ghcb_map.hva; | 
|  | ghcb = svm->ghcb_map.hva; | 
|  |  | 
|  | trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); | 
|  |  | 
|  | exit_code = ghcb_get_sw_exit_code(ghcb); | 
|  |  | 
|  | ret = sev_es_validate_vmgexit(svm); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sev_es_sync_from_ghcb(svm); | 
|  | ghcb_set_sw_exit_info_1(ghcb, 0); | 
|  | ghcb_set_sw_exit_info_2(ghcb, 0); | 
|  |  | 
|  | ret = -EINVAL; | 
|  | switch (exit_code) { | 
|  | case SVM_VMGEXIT_MMIO_READ: | 
|  | if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) | 
|  | break; | 
|  |  | 
|  | ret = kvm_sev_es_mmio_read(vcpu, | 
|  | control->exit_info_1, | 
|  | control->exit_info_2, | 
|  | svm->ghcb_sa); | 
|  | break; | 
|  | case SVM_VMGEXIT_MMIO_WRITE: | 
|  | if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) | 
|  | break; | 
|  |  | 
|  | ret = kvm_sev_es_mmio_write(vcpu, | 
|  | control->exit_info_1, | 
|  | control->exit_info_2, | 
|  | svm->ghcb_sa); | 
|  | break; | 
|  | case SVM_VMGEXIT_NMI_COMPLETE: | 
|  | ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); | 
|  | break; | 
|  | case SVM_VMGEXIT_AP_HLT_LOOP: | 
|  | ret = kvm_emulate_ap_reset_hold(vcpu); | 
|  | break; | 
|  | case SVM_VMGEXIT_AP_JUMP_TABLE: { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; | 
|  |  | 
|  | switch (control->exit_info_1) { | 
|  | case 0: | 
|  | /* Set AP jump table address */ | 
|  | sev->ap_jump_table = control->exit_info_2; | 
|  | break; | 
|  | case 1: | 
|  | /* Get AP jump table address */ | 
|  | ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); | 
|  | break; | 
|  | default: | 
|  | pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", | 
|  | control->exit_info_1); | 
|  | ghcb_set_sw_exit_info_1(ghcb, 1); | 
|  | ghcb_set_sw_exit_info_2(ghcb, | 
|  | X86_TRAP_UD | | 
|  | SVM_EVTINJ_TYPE_EXEPT | | 
|  | SVM_EVTINJ_VALID); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | case SVM_VMGEXIT_UNSUPPORTED_EVENT: | 
|  | vcpu_unimpl(vcpu, | 
|  | "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", | 
|  | control->exit_info_1, control->exit_info_2); | 
|  | break; | 
|  | default: | 
|  | ret = svm_invoke_exit_handler(vcpu, exit_code); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) | 
|  | { | 
|  | if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return kvm_sev_es_string_io(&svm->vcpu, size, port, | 
|  | svm->ghcb_sa, svm->ghcb_sa_len, in); | 
|  | } | 
|  |  | 
|  | void sev_es_init_vmcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  |  | 
|  | svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; | 
|  | svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; | 
|  |  | 
|  | /* | 
|  | * An SEV-ES guest requires a VMSA area that is a separate from the | 
|  | * VMCB page. Do not include the encryption mask on the VMSA physical | 
|  | * address since hardware will access it using the guest key. | 
|  | */ | 
|  | svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); | 
|  |  | 
|  | /* Can't intercept CR register access, HV can't modify CR registers */ | 
|  | svm_clr_intercept(svm, INTERCEPT_CR0_READ); | 
|  | svm_clr_intercept(svm, INTERCEPT_CR4_READ); | 
|  | svm_clr_intercept(svm, INTERCEPT_CR8_READ); | 
|  | svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); | 
|  | svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); | 
|  | svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); | 
|  |  | 
|  | svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); | 
|  |  | 
|  | /* Track EFER/CR register changes */ | 
|  | svm_set_intercept(svm, TRAP_EFER_WRITE); | 
|  | svm_set_intercept(svm, TRAP_CR0_WRITE); | 
|  | svm_set_intercept(svm, TRAP_CR4_WRITE); | 
|  | svm_set_intercept(svm, TRAP_CR8_WRITE); | 
|  |  | 
|  | /* No support for enable_vmware_backdoor */ | 
|  | clr_exception_intercept(svm, GP_VECTOR); | 
|  |  | 
|  | /* Can't intercept XSETBV, HV can't modify XCR0 directly */ | 
|  | svm_clr_intercept(svm, INTERCEPT_XSETBV); | 
|  |  | 
|  | /* Clear intercepts on selected MSRs */ | 
|  | set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); | 
|  | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); | 
|  | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); | 
|  | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); | 
|  | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); | 
|  | set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); | 
|  | } | 
|  |  | 
|  | void sev_es_create_vcpu(struct vcpu_svm *svm) | 
|  | { | 
|  | /* | 
|  | * Set the GHCB MSR value as per the GHCB specification when creating | 
|  | * a vCPU for an SEV-ES guest. | 
|  | */ | 
|  | set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, | 
|  | GHCB_VERSION_MIN, | 
|  | sev_enc_bit)); | 
|  | } | 
|  |  | 
|  | void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) | 
|  | { | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
|  | struct vmcb_save_area *hostsa; | 
|  |  | 
|  | /* | 
|  | * As an SEV-ES guest, hardware will restore the host state on VMEXIT, | 
|  | * of which one step is to perform a VMLOAD. Since hardware does not | 
|  | * perform a VMSAVE on VMRUN, the host savearea must be updated. | 
|  | */ | 
|  | vmsave(__sme_page_pa(sd->save_area)); | 
|  |  | 
|  | /* XCR0 is restored on VMEXIT, save the current host value */ | 
|  | hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); | 
|  | hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); | 
|  |  | 
|  | /* PKRU is restored on VMEXIT, save the current host value */ | 
|  | hostsa->pkru = read_pkru(); | 
|  |  | 
|  | /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ | 
|  | hostsa->xss = host_xss; | 
|  | } | 
|  |  | 
|  | void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | /* First SIPI: Use the values as initially set by the VMM */ | 
|  | if (!svm->received_first_sipi) { | 
|  | svm->received_first_sipi = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where | 
|  | * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a | 
|  | * non-zero value. | 
|  | */ | 
|  | if (!svm->ghcb) | 
|  | return; | 
|  |  | 
|  | ghcb_set_sw_exit_info_2(svm->ghcb, 1); | 
|  | } |