blob: fa8d5464c1fb51f438846f7929098bc00921a1e8 [file] [log] [blame]
/*
* Copyright (C) 2011-2012 Red Hat UK.
*
* This file is released under the GPL.
*/
#include "dm-thin-metadata.h"
#include "dm-bio-prison-v1.h"
#include "dm.h"
#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
#include <linux/jiffies.h>
#include <linux/log2.h>
#include <linux/list.h>
#include <linux/rculist.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/sort.h>
#include <linux/rbtree.h>
#define DM_MSG_PREFIX "thin"
/*
* Tunable constants
*/
#define ENDIO_HOOK_POOL_SIZE 1024
#define MAPPING_POOL_SIZE 1024
#define COMMIT_PERIOD HZ
#define NO_SPACE_TIMEOUT_SECS 60
static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
"A percentage of time allocated for copy on write");
/*
* The block size of the device holding pool data must be
* between 64KB and 1GB.
*/
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
/*
* Device id is restricted to 24 bits.
*/
#define MAX_DEV_ID ((1 << 24) - 1)
/*
* How do we handle breaking sharing of data blocks?
* =================================================
*
* We use a standard copy-on-write btree to store the mappings for the
* devices (note I'm talking about copy-on-write of the metadata here, not
* the data). When you take an internal snapshot you clone the root node
* of the origin btree. After this there is no concept of an origin or a
* snapshot. They are just two device trees that happen to point to the
* same data blocks.
*
* When we get a write in we decide if it's to a shared data block using
* some timestamp magic. If it is, we have to break sharing.
*
* Let's say we write to a shared block in what was the origin. The
* steps are:
*
* i) plug io further to this physical block. (see bio_prison code).
*
* ii) quiesce any read io to that shared data block. Obviously
* including all devices that share this block. (see dm_deferred_set code)
*
* iii) copy the data block to a newly allocate block. This step can be
* missed out if the io covers the block. (schedule_copy).
*
* iv) insert the new mapping into the origin's btree
* (process_prepared_mapping). This act of inserting breaks some
* sharing of btree nodes between the two devices. Breaking sharing only
* effects the btree of that specific device. Btrees for the other
* devices that share the block never change. The btree for the origin
* device as it was after the last commit is untouched, ie. we're using
* persistent data structures in the functional programming sense.
*
* v) unplug io to this physical block, including the io that triggered
* the breaking of sharing.
*
* Steps (ii) and (iii) occur in parallel.
*
* The metadata _doesn't_ need to be committed before the io continues. We
* get away with this because the io is always written to a _new_ block.
* If there's a crash, then:
*
* - The origin mapping will point to the old origin block (the shared
* one). This will contain the data as it was before the io that triggered
* the breaking of sharing came in.
*
* - The snap mapping still points to the old block. As it would after
* the commit.
*
* The downside of this scheme is the timestamp magic isn't perfect, and
* will continue to think that data block in the snapshot device is shared
* even after the write to the origin has broken sharing. I suspect data
* blocks will typically be shared by many different devices, so we're
* breaking sharing n + 1 times, rather than n, where n is the number of
* devices that reference this data block. At the moment I think the
* benefits far, far outweigh the disadvantages.
*/
/*----------------------------------------------------------------*/
/*
* Key building.
*/
enum lock_space {
VIRTUAL,
PHYSICAL
};
static void build_key(struct dm_thin_device *td, enum lock_space ls,
dm_block_t b, dm_block_t e, struct dm_cell_key *key)
{
key->virtual = (ls == VIRTUAL);
key->dev = dm_thin_dev_id(td);
key->block_begin = b;
key->block_end = e;
}
static void build_data_key(struct dm_thin_device *td, dm_block_t b,
struct dm_cell_key *key)
{
build_key(td, PHYSICAL, b, b + 1llu, key);
}
static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
struct dm_cell_key *key)
{
build_key(td, VIRTUAL, b, b + 1llu, key);
}
/*----------------------------------------------------------------*/
#define THROTTLE_THRESHOLD (1 * HZ)
struct throttle {
struct rw_semaphore lock;
unsigned long threshold;
bool throttle_applied;
};
static void throttle_init(struct throttle *t)
{
init_rwsem(&t->lock);
t->throttle_applied = false;
}
static void throttle_work_start(struct throttle *t)
{
t->threshold = jiffies + THROTTLE_THRESHOLD;
}
static void throttle_work_update(struct throttle *t)
{
if (!t->throttle_applied && jiffies > t->threshold) {
down_write(&t->lock);
t->throttle_applied = true;
}
}
static void throttle_work_complete(struct throttle *t)
{
if (t->throttle_applied) {
t->throttle_applied = false;
up_write(&t->lock);
}
}
static void throttle_lock(struct throttle *t)
{
down_read(&t->lock);
}
static void throttle_unlock(struct throttle *t)
{
up_read(&t->lock);
}
/*----------------------------------------------------------------*/
/*
* A pool device ties together a metadata device and a data device. It
* also provides the interface for creating and destroying internal
* devices.
*/
struct dm_thin_new_mapping;
/*
* The pool runs in various modes. Ordered in degraded order for comparisons.
*/
enum pool_mode {
PM_WRITE, /* metadata may be changed */
PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
/*
* Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
*/
PM_OUT_OF_METADATA_SPACE,
PM_READ_ONLY, /* metadata may not be changed */
PM_FAIL, /* all I/O fails */
};
struct pool_features {
enum pool_mode mode;
bool zero_new_blocks:1;
bool discard_enabled:1;
bool discard_passdown:1;
bool error_if_no_space:1;
};
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
#define CELL_SORT_ARRAY_SIZE 8192
struct pool {
struct list_head list;
struct dm_target *ti; /* Only set if a pool target is bound */
struct mapped_device *pool_md;
struct block_device *data_dev;
struct block_device *md_dev;
struct dm_pool_metadata *pmd;
dm_block_t low_water_blocks;
uint32_t sectors_per_block;
int sectors_per_block_shift;
struct pool_features pf;
bool low_water_triggered:1; /* A dm event has been sent */
bool suspended:1;
bool out_of_data_space:1;
struct dm_bio_prison *prison;
struct dm_kcopyd_client *copier;
struct work_struct worker;
struct workqueue_struct *wq;
struct throttle throttle;
struct delayed_work waker;
struct delayed_work no_space_timeout;
unsigned long last_commit_jiffies;
unsigned ref_count;
spinlock_t lock;
struct bio_list deferred_flush_bios;
struct bio_list deferred_flush_completions;
struct list_head prepared_mappings;
struct list_head prepared_discards;
struct list_head prepared_discards_pt2;
struct list_head active_thins;
struct dm_deferred_set *shared_read_ds;
struct dm_deferred_set *all_io_ds;
struct dm_thin_new_mapping *next_mapping;
process_bio_fn process_bio;
process_bio_fn process_discard;
process_cell_fn process_cell;
process_cell_fn process_discard_cell;
process_mapping_fn process_prepared_mapping;
process_mapping_fn process_prepared_discard;
process_mapping_fn process_prepared_discard_pt2;
struct dm_bio_prison_cell **cell_sort_array;
mempool_t mapping_pool;
struct bio flush_bio;
};
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
static enum pool_mode get_pool_mode(struct pool *pool)
{
return pool->pf.mode;
}
static void notify_of_pool_mode_change(struct pool *pool)
{
const char *descs[] = {
"write",
"out-of-data-space",
"read-only",
"read-only",
"fail"
};
const char *extra_desc = NULL;
enum pool_mode mode = get_pool_mode(pool);
if (mode == PM_OUT_OF_DATA_SPACE) {
if (!pool->pf.error_if_no_space)
extra_desc = " (queue IO)";
else
extra_desc = " (error IO)";
}
dm_table_event(pool->ti->table);
DMINFO("%s: switching pool to %s%s mode",
dm_device_name(pool->pool_md),
descs[(int)mode], extra_desc ? : "");
}
/*
* Target context for a pool.
*/
struct pool_c {
struct dm_target *ti;
struct pool *pool;
struct dm_dev *data_dev;
struct dm_dev *metadata_dev;
struct dm_target_callbacks callbacks;
dm_block_t low_water_blocks;
struct pool_features requested_pf; /* Features requested during table load */
struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
};
/*
* Target context for a thin.
*/
struct thin_c {
struct list_head list;
struct dm_dev *pool_dev;
struct dm_dev *origin_dev;
sector_t origin_size;
dm_thin_id dev_id;
struct pool *pool;
struct dm_thin_device *td;
struct mapped_device *thin_md;
bool requeue_mode:1;
spinlock_t lock;
struct list_head deferred_cells;
struct bio_list deferred_bio_list;
struct bio_list retry_on_resume_list;
struct rb_root sort_bio_list; /* sorted list of deferred bios */
/*
* Ensures the thin is not destroyed until the worker has finished
* iterating the active_thins list.
*/
refcount_t refcount;
struct completion can_destroy;
};
/*----------------------------------------------------------------*/
static bool block_size_is_power_of_two(struct pool *pool)
{
return pool->sectors_per_block_shift >= 0;
}
static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
{
return block_size_is_power_of_two(pool) ?
(b << pool->sectors_per_block_shift) :
(b * pool->sectors_per_block);
}
/*----------------------------------------------------------------*/
struct discard_op {
struct thin_c *tc;
struct blk_plug plug;
struct bio *parent_bio;
struct bio *bio;
};
static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
{
BUG_ON(!parent);
op->tc = tc;
blk_start_plug(&op->plug);
op->parent_bio = parent;
op->bio = NULL;
}
static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
{
struct thin_c *tc = op->tc;
sector_t s = block_to_sectors(tc->pool, data_b);
sector_t len = block_to_sectors(tc->pool, data_e - data_b);
return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
GFP_NOWAIT, 0, &op->bio);
}
static void end_discard(struct discard_op *op, int r)
{
if (op->bio) {
/*
* Even if one of the calls to issue_discard failed, we
* need to wait for the chain to complete.
*/
bio_chain(op->bio, op->parent_bio);
bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
submit_bio(op->bio);
}
blk_finish_plug(&op->plug);
/*
* Even if r is set, there could be sub discards in flight that we
* need to wait for.
*/
if (r && !op->parent_bio->bi_status)
op->parent_bio->bi_status = errno_to_blk_status(r);
bio_endio(op->parent_bio);
}
/*----------------------------------------------------------------*/
/*
* wake_worker() is used when new work is queued and when pool_resume is
* ready to continue deferred IO processing.
*/
static void wake_worker(struct pool *pool)
{
queue_work(pool->wq, &pool->worker);
}
/*----------------------------------------------------------------*/
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
struct dm_bio_prison_cell **cell_result)
{
int r;
struct dm_bio_prison_cell *cell_prealloc;
/*
* Allocate a cell from the prison's mempool.
* This might block but it can't fail.
*/
cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
if (r)
/*
* We reused an old cell; we can get rid of
* the new one.
*/
dm_bio_prison_free_cell(pool->prison, cell_prealloc);
return r;
}
static void cell_release(struct pool *pool,
struct dm_bio_prison_cell *cell,
struct bio_list *bios)
{
dm_cell_release(pool->prison, cell, bios);
dm_bio_prison_free_cell(pool->prison, cell);
}
static void cell_visit_release(struct pool *pool,
void (*fn)(void *, struct dm_bio_prison_cell *),
void *context,
struct dm_bio_prison_cell *cell)
{
dm_cell_visit_release(pool->prison, fn, context, cell);
dm_bio_prison_free_cell(pool->prison, cell);
}
static void cell_release_no_holder(struct pool *pool,
struct dm_bio_prison_cell *cell,
struct bio_list *bios)
{
dm_cell_release_no_holder(pool->prison, cell, bios);
dm_bio_prison_free_cell(pool->prison, cell);
}
static void cell_error_with_code(struct pool *pool,
struct dm_bio_prison_cell *cell, blk_status_t error_code)
{
dm_cell_error(pool->prison, cell, error_code);
dm_bio_prison_free_cell(pool->prison, cell);
}
static blk_status_t get_pool_io_error_code(struct pool *pool)
{
return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
}
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
}
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
cell_error_with_code(pool, cell, 0);
}
static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
}
/*----------------------------------------------------------------*/
/*
* A global list of pools that uses a struct mapped_device as a key.
*/
static struct dm_thin_pool_table {
struct mutex mutex;
struct list_head pools;
} dm_thin_pool_table;
static void pool_table_init(void)
{
mutex_init(&dm_thin_pool_table.mutex);
INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}
static void pool_table_exit(void)
{
mutex_destroy(&dm_thin_pool_table.mutex);
}
static void __pool_table_insert(struct pool *pool)
{
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
list_add(&pool->list, &dm_thin_pool_table.pools);
}
static void __pool_table_remove(struct pool *pool)
{
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
list_del(&pool->list);
}
static struct pool *__pool_table_lookup(struct mapped_device *md)
{
struct pool *pool = NULL, *tmp;
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
if (tmp->pool_md == md) {
pool = tmp;
break;
}
}
return pool;
}
static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
struct pool *pool = NULL, *tmp;
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
if (tmp->md_dev == md_dev) {
pool = tmp;
break;
}
}
return pool;
}
/*----------------------------------------------------------------*/
struct dm_thin_endio_hook {
struct thin_c *tc;
struct dm_deferred_entry *shared_read_entry;
struct dm_deferred_entry *all_io_entry;
struct dm_thin_new_mapping *overwrite_mapping;
struct rb_node rb_node;
struct dm_bio_prison_cell *cell;
};
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
{
bio_list_merge(bios, master);
bio_list_init(master);
}
static void error_bio_list(struct bio_list *bios, blk_status_t error)
{
struct bio *bio;
while ((bio = bio_list_pop(bios))) {
bio->bi_status = error;
bio_endio(bio);
}
}
static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
blk_status_t error)
{
struct bio_list bios;
bio_list_init(&bios);
spin_lock_irq(&tc->lock);
__merge_bio_list(&bios, master);
spin_unlock_irq(&tc->lock);
error_bio_list(&bios, error);
}
static void requeue_deferred_cells(struct thin_c *tc)
{
struct pool *pool = tc->pool;
struct list_head cells;
struct dm_bio_prison_cell *cell, *tmp;
INIT_LIST_HEAD(&cells);
spin_lock_irq(&tc->lock);
list_splice_init(&tc->deferred_cells, &cells);
spin_unlock_irq(&tc->lock);
list_for_each_entry_safe(cell, tmp, &cells, user_list)
cell_requeue(pool, cell);
}
static void requeue_io(struct thin_c *tc)
{
struct bio_list bios;
bio_list_init(&bios);
spin_lock_irq(&tc->lock);
__merge_bio_list(&bios, &tc->deferred_bio_list);
__merge_bio_list(&bios, &tc->retry_on_resume_list);
spin_unlock_irq(&tc->lock);
error_bio_list(&bios, BLK_STS_DM_REQUEUE);
requeue_deferred_cells(tc);
}
static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
{
struct thin_c *tc;
rcu_read_lock();
list_for_each_entry_rcu(tc, &pool->active_thins, list)
error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
rcu_read_unlock();
}
static void error_retry_list(struct pool *pool)
{
error_retry_list_with_code(pool, get_pool_io_error_code(pool));
}
/*
* This section of code contains the logic for processing a thin device's IO.
* Much of the code depends on pool object resources (lists, workqueues, etc)
* but most is exclusively called from the thin target rather than the thin-pool
* target.
*/
static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
struct pool *pool = tc->pool;
sector_t block_nr = bio->bi_iter.bi_sector;
if (block_size_is_power_of_two(pool))
block_nr >>= pool->sectors_per_block_shift;
else
(void) sector_div(block_nr, pool->sectors_per_block);
return block_nr;
}
/*
* Returns the _complete_ blocks that this bio covers.
*/
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
dm_block_t *begin, dm_block_t *end)
{
struct pool *pool = tc->pool;
sector_t b = bio->bi_iter.bi_sector;
sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
b += pool->sectors_per_block - 1ull; /* so we round up */
if (block_size_is_power_of_two(pool)) {
b >>= pool->sectors_per_block_shift;
e >>= pool->sectors_per_block_shift;
} else {
(void) sector_div(b, pool->sectors_per_block);
(void) sector_div(e, pool->sectors_per_block);
}
if (e < b)
/* Can happen if the bio is within a single block. */
e = b;
*begin = b;
*end = e;
}
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
struct pool *pool = tc->pool;
sector_t bi_sector = bio->bi_iter.bi_sector;
bio_set_dev(bio, tc->pool_dev->bdev);
if (block_size_is_power_of_two(pool))
bio->bi_iter.bi_sector =
(block << pool->sectors_per_block_shift) |
(bi_sector & (pool->sectors_per_block - 1));
else
bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
sector_div(bi_sector, pool->sectors_per_block);
}
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
bio_set_dev(bio, tc->origin_dev->bdev);
}
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
return op_is_flush(bio->bi_opf) &&
dm_thin_changed_this_transaction(tc->td);
}
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
struct dm_thin_endio_hook *h;
if (bio_op(bio) == REQ_OP_DISCARD)
return;
h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}
static void issue(struct thin_c *tc, struct bio *bio)
{
struct pool *pool = tc->pool;
if (!bio_triggers_commit(tc, bio)) {
generic_make_request(bio);
return;
}
/*
* Complete bio with an error if earlier I/O caused changes to
* the metadata that can't be committed e.g, due to I/O errors
* on the metadata device.
*/
if (dm_thin_aborted_changes(tc->td)) {
bio_io_error(bio);
return;
}
/*
* Batch together any bios that trigger commits and then issue a
* single commit for them in process_deferred_bios().
*/
spin_lock_irq(&pool->lock);
bio_list_add(&pool->deferred_flush_bios, bio);
spin_unlock_irq(&pool->lock);
}
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
remap_to_origin(tc, bio);
issue(tc, bio);
}
static void remap_and_issue(struct thin_c *tc, struct bio *bio,
dm_block_t block)
{
remap(tc, bio, block);
issue(tc, bio);
}
/*----------------------------------------------------------------*/
/*
* Bio endio functions.
*/
struct dm_thin_new_mapping {
struct list_head list;
bool pass_discard:1;
bool maybe_shared:1;
/*
* Track quiescing, copying and zeroing preparation actions. When this
* counter hits zero the block is prepared and can be inserted into the
* btree.
*/
atomic_t prepare_actions;
blk_status_t status;
struct thin_c *tc;
dm_block_t virt_begin, virt_end;
dm_block_t data_block;
struct dm_bio_prison_cell *cell;
/*
* If the bio covers the whole area of a block then we can avoid
* zeroing or copying. Instead this bio is hooked. The bio will
* still be in the cell, so care has to be taken to avoid issuing
* the bio twice.
*/
struct bio *bio;
bio_end_io_t *saved_bi_end_io;
};
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
{
struct pool *pool = m->tc->pool;
if (atomic_dec_and_test(&m->prepare_actions)) {
list_add_tail(&m->list, &pool->prepared_mappings);
wake_worker(pool);
}
}
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
{
unsigned long flags;
struct pool *pool = m->tc->pool;
spin_lock_irqsave(&pool->lock, flags);
__complete_mapping_preparation(m);
spin_unlock_irqrestore(&pool->lock, flags);
}
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
struct dm_thin_new_mapping *m = context;
m->status = read_err || write_err ? BLK_STS_IOERR : 0;
complete_mapping_preparation(m);
}
static void overwrite_endio(struct bio *bio)
{
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
struct dm_thin_new_mapping *m = h->overwrite_mapping;
bio->bi_end_io = m->saved_bi_end_io;
m->status = bio->bi_status;
complete_mapping_preparation(m);
}
/*----------------------------------------------------------------*/
/*
* Workqueue.
*/
/*
* Prepared mapping jobs.
*/
/*
* This sends the bios in the cell, except the original holder, back
* to the deferred_bios list.
*/
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
{
struct pool *pool = tc->pool;
unsigned long flags;
int has_work;
spin_lock_irqsave(&tc->lock, flags);
cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
has_work = !bio_list_empty(&tc->deferred_bio_list);
spin_unlock_irqrestore(&tc->lock, flags);
if (has_work)
wake_worker(pool);
}
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
struct remap_info {
struct thin_c *tc;
struct bio_list defer_bios;
struct bio_list issue_bios;
};
static void __inc_remap_and_issue_cell(void *context,
struct dm_bio_prison_cell *cell)
{
struct remap_info *info = context;
struct bio *bio;
while ((bio = bio_list_pop(&cell->bios))) {
if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
bio_list_add(&info->defer_bios, bio);
else {
inc_all_io_entry(info->tc->pool, bio);
/*
* We can't issue the bios with the bio prison lock
* held, so we add them to a list to issue on
* return from this function.
*/
bio_list_add(&info->issue_bios, bio);
}
}
}
static void inc_remap_and_issue_cell(struct thin_c *tc,
struct dm_bio_prison_cell *cell,
dm_block_t block)
{
struct bio *bio;
struct remap_info info;
info.tc = tc;
bio_list_init(&info.defer_bios);
bio_list_init(&info.issue_bios);
/*
* We have to be careful to inc any bios we're about to issue
* before the cell is released, and avoid a race with new bios
* being added to the cell.
*/
cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
&info, cell);
while ((bio = bio_list_pop(&info.defer_bios)))
thin_defer_bio(tc, bio);
while ((bio = bio_list_pop(&info.issue_bios)))
remap_and_issue(info.tc, bio, block);
}
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
cell_error(m->tc->pool, m->cell);
list_del(&m->list);
mempool_free(m, &m->tc->pool->mapping_pool);
}
static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
{
struct pool *pool = tc->pool;
/*
* If the bio has the REQ_FUA flag set we must commit the metadata
* before signaling its completion.
*/
if (!bio_triggers_commit(tc, bio)) {
bio_endio(bio);
return;
}
/*
* Complete bio with an error if earlier I/O caused changes to the
* metadata that can't be committed, e.g, due to I/O errors on the
* metadata device.
*/
if (dm_thin_aborted_changes(tc->td)) {
bio_io_error(bio);
return;
}
/*
* Batch together any bios that trigger commits and then issue a
* single commit for them in process_deferred_bios().
*/
spin_lock_irq(&pool->lock);
bio_list_add(&pool->deferred_flush_completions, bio);
spin_unlock_irq(&pool->lock);
}
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
{
struct thin_c *tc = m->tc;
struct pool *pool = tc->pool;
struct bio *bio = m->bio;
int r;
if (m->status) {
cell_error(pool, m->cell);
goto out;
}
/*
* Commit the prepared block into the mapping btree.
* Any I/O for this block arriving after this point will get
* remapped to it directly.
*/
r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
if (r) {
metadata_operation_failed(pool, "dm_thin_insert_block", r);
cell_error(pool, m->cell);
goto out;
}
/*
* Release any bios held while the block was being provisioned.
* If we are processing a write bio that completely covers the block,
* we already processed it so can ignore it now when processing
* the bios in the cell.
*/
if (bio) {
inc_remap_and_issue_cell(tc, m->cell, m->data_block);
complete_overwrite_bio(tc, bio);
} else {
inc_all_io_entry(tc->pool, m->cell->holder);
remap_and_issue(tc, m->cell->holder, m->data_block);
inc_remap_and_issue_cell(tc, m->cell, m->data_block);
}
out:
list_del(&m->list);
mempool_free(m, &pool->mapping_pool);
}
/*----------------------------------------------------------------*/
static void free_discard_mapping(struct dm_thin_new_mapping *m)
{
struct thin_c *tc = m->tc;
if (m->cell)
cell_defer_no_holder(tc, m->cell);
mempool_free(m, &tc->pool->mapping_pool);
}
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
{
bio_io_error(m->bio);
free_discard_mapping(m);
}
static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
{
bio_endio(m->bio);
free_discard_mapping(m);
}
static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
{
int r;
struct thin_c *tc = m->tc;
r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
if (r) {
metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
bio_io_error(m->bio);
} else
bio_endio(m->bio);
cell_defer_no_holder(tc, m->cell);
mempool_free(m, &tc->pool->mapping_pool);
}
/*----------------------------------------------------------------*/
static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
struct bio *discard_parent)
{
/*
* We've already unmapped this range of blocks, but before we
* passdown we have to check that these blocks are now unused.
*/
int r = 0;
bool shared = true;
struct thin_c *tc = m->tc;
struct pool *pool = tc->pool;
dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
struct discard_op op;
begin_discard(&op, tc, discard_parent);
while (b != end) {
/* find start of unmapped run */
for (; b < end; b++) {
r = dm_pool_block_is_shared(pool->pmd, b, &shared);
if (r)
goto out;
if (!shared)
break;
}
if (b == end)
break;
/* find end of run */
for (e = b + 1; e != end; e++) {
r = dm_pool_block_is_shared(pool->pmd, e, &shared);
if (r)
goto out;
if (shared)
break;
}
r = issue_discard(&op, b, e);
if (r)
goto out;
b = e;
}
out:
end_discard(&op, r);
}
static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
{
unsigned long flags;
struct pool *pool = m->tc->pool;
spin_lock_irqsave(&pool->lock, flags);
list_add_tail(&m->list, &pool->prepared_discards_pt2);
spin_unlock_irqrestore(&pool->lock, flags);
wake_worker(pool);
}
static void passdown_endio(struct bio *bio)
{
/*
* It doesn't matter if the passdown discard failed, we still want
* to unmap (we ignore err).
*/
queue_passdown_pt2(bio->bi_private);
bio_put(bio);
}
static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
{
int r;
struct thin_c *tc = m->tc;
struct pool *pool = tc->pool;
struct bio *discard_parent;
dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
/*
* Only this thread allocates blocks, so we can be sure that the
* newly unmapped blocks will not be allocated before the end of
* the function.
*/
r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
if (r) {
metadata_operation_failed(pool, "dm_thin_remove_range", r);
bio_io_error(m->bio);
cell_defer_no_holder(tc, m->cell);
mempool_free(m, &pool->mapping_pool);
return;
}
/*
* Increment the unmapped blocks. This prevents a race between the
* passdown io and reallocation of freed blocks.
*/
r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
if (r) {
metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
bio_io_error(m->bio);
cell_defer_no_holder(tc, m->cell);
mempool_free(m, &pool->mapping_pool);
return;
}
discard_parent = bio_alloc(GFP_NOIO, 1);
if (!discard_parent) {
DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
dm_device_name(tc->pool->pool_md));
queue_passdown_pt2(m);
} else {
discard_parent->bi_end_io = passdown_endio;
discard_parent->bi_private = m;
if (m->maybe_shared)
passdown_double_checking_shared_status(m, discard_parent);
else {
struct discard_op op;
begin_discard(&op, tc, discard_parent);
r = issue_discard(&op, m->data_block, data_end);
end_discard(&op, r);
}
}
}
static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
{
int r;
struct thin_c *tc = m->tc;
struct pool *pool = tc->pool;
/*
* The passdown has completed, so now we can decrement all those
* unmapped blocks.
*/
r = dm_pool_dec_data_range(pool->pmd, m->data_block,
m->data_block + (m->virt_end - m->virt_begin));
if (r) {
metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
bio_io_error(m->bio);
} else
bio_endio(m->bio);
cell_defer_no_holder(tc, m->cell);
mempool_free(m, &pool->mapping_pool);
}
static void process_prepared(struct pool *pool, struct list_head *head,
process_mapping_fn *fn)
{
struct list_head maps;
struct dm_thin_new_mapping *m, *tmp;
INIT_LIST_HEAD(&maps);
spin_lock_irq(&pool->lock);
list_splice_init(head, &maps);
spin_unlock_irq(&pool->lock);
list_for_each_entry_safe(m, tmp, &maps, list)
(*fn)(m);
}
/*
* Deferred bio jobs.
*/
static int io_overlaps_block(struct pool *pool, struct bio *bio)
{
return bio->bi_iter.bi_size ==
(pool->sectors_per_block << SECTOR_SHIFT);
}
static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
return (bio_data_dir(bio) == WRITE) &&
io_overlaps_block(pool, bio);
}
static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
bio_end_io_t *fn)
{
*save = bio->bi_end_io;
bio->bi_end_io = fn;
}
static int ensure_next_mapping(struct pool *pool)
{
if (pool->next_mapping)
return 0;
pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
return pool->next_mapping ? 0 : -ENOMEM;
}
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
{
struct dm_thin_new_mapping *m = pool->next_mapping;
BUG_ON(!pool->next_mapping);
memset(m, 0, sizeof(struct dm_thin_new_mapping));
INIT_LIST_HEAD(&m->list);
m->bio = NULL;
pool->next_mapping = NULL;
return m;
}
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
sector_t begin, sector_t end)
{
struct dm_io_region to;
to.bdev = tc->pool_dev->bdev;
to.sector = begin;
to.count = end - begin;
dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
}
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
dm_block_t data_begin,
struct dm_thin_new_mapping *m)
{
struct pool *pool = tc->pool;
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
h->overwrite_mapping = m;
m->bio = bio;
save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
inc_all_io_entry(pool, bio);
remap_and_issue(tc, bio, data_begin);
}
/*
* A partial copy also needs to zero the uncopied region.
*/
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
struct dm_dev *origin, dm_block_t data_origin,
dm_block_t data_dest,
struct dm_bio_prison_cell *cell, struct bio *bio,
sector_t len)
{
struct pool *pool = tc->pool;
struct dm_thin_new_mapping *m = get_next_mapping(pool);
m->tc = tc;
m->virt_begin = virt_block;
m->virt_end = virt_block + 1u;
m->data_block = data_dest;
m->cell = cell;
/*
* quiesce action + copy action + an extra reference held for the
* duration of this function (we may need to inc later for a
* partial zero).
*/
atomic_set(&m->prepare_actions, 3);
if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
complete_mapping_preparation(m); /* already quiesced */
/*
* IO to pool_dev remaps to the pool target's data_dev.
*
* If the whole block of data is being overwritten, we can issue the
* bio immediately. Otherwise we use kcopyd to clone the data first.
*/
if (io_overwrites_block(pool, bio))
remap_and_issue_overwrite(tc, bio, data_dest, m);
else {
struct dm_io_region from, to;
from.bdev = origin->bdev;
from.sector = data_origin * pool->sectors_per_block;
from.count = len;
to.bdev = tc->pool_dev->bdev;
to.sector = data_dest * pool->sectors_per_block;
to.count = len;
dm_kcopyd_copy(pool->copier, &from, 1, &to,
0, copy_complete, m);
/*
* Do we need to zero a tail region?
*/
if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
atomic_inc(&m->prepare_actions);
ll_zero(tc, m,
data_dest * pool->sectors_per_block + len,
(data_dest + 1) * pool->sectors_per_block);
}
}
complete_mapping_preparation(m); /* drop our ref */
}
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
dm_block_t data_origin, dm_block_t data_dest,
struct dm_bio_prison_cell *cell, struct bio *bio)
{
schedule_copy(tc, virt_block, tc->pool_dev,
data_origin, data_dest, cell, bio,
tc->pool->sectors_per_block);
}
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
dm_block_t data_block, struct dm_bio_prison_cell *cell,
struct bio *bio)
{
struct pool *pool = tc->pool;
struct dm_thin_new_mapping *m = get_next_mapping(pool);
atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
m->tc = tc;
m->virt_begin = virt_block;
m->virt_end = virt_block + 1u;
m->data_block = data_block;
m->cell = cell;
/*
* If the whole block of data is being overwritten or we are not
* zeroing pre-existing data, we can issue the bio immediately.
* Otherwise we use kcopyd to zero the data first.
*/
if (pool->pf.zero_new_blocks) {
if (io_overwrites_block(pool, bio))
remap_and_issue_overwrite(tc, bio, data_block, m);
else
ll_zero(tc, m, data_block * pool->sectors_per_block,
(data_block + 1) * pool->sectors_per_block);
} else
process_prepared_mapping(m);
}
static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
dm_block_t data_dest,
struct dm_bio_prison_cell *cell, struct bio *bio)
{
struct pool *pool = tc->pool;
sector_t virt_block_begin = virt_block * pool->sectors_per_block;
sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
if (virt_block_end <= tc->origin_size)
schedule_copy(tc, virt_block, tc->origin_dev,
virt_block, data_dest, cell, bio,
pool->sectors_per_block);
else if (virt_block_begin < tc->origin_size)
schedule_copy(tc, virt_block, tc->origin_dev,
virt_block, data_dest, cell, bio,
tc->origin_size - virt_block_begin);
else
schedule_zero(tc, virt_block, data_dest, cell, bio);
}
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
static void requeue_bios(struct pool *pool);
static bool is_read_only_pool_mode(enum pool_mode mode)
{
return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
}
static bool is_read_only(struct pool *pool)
{
return is_read_only_pool_mode(get_pool_mode(pool));
}
static void check_for_metadata_space(struct pool *pool)
{
int r;
const char *ooms_reason = NULL;
dm_block_t nr_free;
r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
if (r)
ooms_reason = "Could not get free metadata blocks";
else if (!nr_free)
ooms_reason = "No free metadata blocks";
if (ooms_reason && !is_read_only(pool)) {
DMERR("%s", ooms_reason);
set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
}
}
static void check_for_data_space(struct pool *pool)
{
int r;
dm_block_t nr_free;
if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
return;
r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
if (r)
return;
if (nr_free) {
set_pool_mode(pool, PM_WRITE);
requeue_bios(pool);
}
}
/*
* A non-zero return indicates read_only or fail_io mode.
* Many callers don't care about the return value.
*/
static int commit(struct pool *pool)
{
int r;
if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
return -EINVAL;
r = dm_pool_commit_metadata(pool->pmd);
if (r)
metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
else {
check_for_metadata_space(pool);
check_for_data_space(pool);
}
return r;
}
static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
{
if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
DMWARN("%s: reached low water mark for data device: sending event.",
dm_device_name(pool->pool_md));
spin_lock_irq(&pool->lock);
pool->low_water_triggered = true;
spin_unlock_irq(&pool->lock);
dm_table_event(pool->ti->table);
}
}
static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
{
int r;
dm_block_t free_blocks;
struct pool *pool = tc->pool;
if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
return -EINVAL;
r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
if (r) {
metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
return r;
}
check_low_water_mark(pool, free_blocks);
if (!free_blocks) {
/*
* Try to commit to see if that will free up some
* more space.
*/
r = commit(pool);
if (r)
return r;
r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
if (r) {
metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
return r;
}
if (!free_blocks) {
set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
return -ENOSPC;
}
}
r = dm_pool_alloc_data_block(pool->pmd, result);
if (r) {
if (r == -ENOSPC)
set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
else
metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
return r;
}
r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
if (r) {
metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
return r;
}
if (!free_blocks) {
/* Let's commit before we use up the metadata reserve. */
r = commit(pool);
if (r)
return r;
}
return 0;
}
/*
* If we have run out of space, queue bios until the device is
* resumed, presumably after having been reloaded with more space.
*/
static void retry_on_resume(struct bio *bio)
{
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
struct thin_c *tc = h->tc;
spin_lock_irq(&tc->lock);
bio_list_add(&tc->retry_on_resume_list, bio);
spin_unlock_irq(&tc->lock);
}
static blk_status_t should_error_unserviceable_bio(struct pool *pool)
{
enum pool_mode m = get_pool_mode(pool);
switch (m) {
case PM_WRITE:
/* Shouldn't get here */
DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
return BLK_STS_IOERR;
case PM_OUT_OF_DATA_SPACE:
return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
case PM_OUT_OF_METADATA_SPACE:
case PM_READ_ONLY:
case PM_FAIL:
return BLK_STS_IOERR;
default:
/* Shouldn't get here */
DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
return BLK_STS_IOERR;
}
}
static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
{
blk_status_t error = should_error_unserviceable_bio(pool);
if (error) {
bio->bi_status = error;
bio_endio(bio);
} else
retry_on_resume(bio);
}
static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
{
struct bio *bio;
struct bio_list bios;
blk_status_t error;
error = should_error_unserviceable_bio(pool);
if (error) {
cell_error_with_code(pool, cell, error);
return;
}
bio_list_init(&bios);
cell_release(pool, cell, &bios);
while ((bio = bio_list_pop(&bios)))
retry_on_resume(bio);
}
static void process_discard_cell_no_passdown(struct thin_c *tc,
struct dm_bio_prison_cell *virt_cell)
{
struct pool *pool = tc->pool;
struct dm_thin_new_mapping *m = get_next_mapping(pool);
/*
* We don't need to lock the data blocks, since there's no
* passdown. We only lock data blocks for allocation and breaking sharing.
*/
m->tc = tc;
m->virt_begin = virt_cell->key.block_begin;
m->virt_end = virt_cell->key.block_end;
m->cell = virt_cell;
m->bio = virt_cell->holder;
if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
pool->process_prepared_discard(m);
}
static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
struct bio *bio)
{
struct pool *pool = tc->pool;
int r;
bool maybe_shared;
struct dm_cell_key data_key;
struct dm_bio_prison_cell *data_cell;
struct dm_thin_new_mapping *m;
dm_block_t virt_begin, virt_end, data_begin;
while (begin != end) {
r = ensure_next_mapping(pool);
if (r)
/* we did our best */
return;
r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
&data_begin, &maybe_shared);
if (r)
/*
* Silently fail, letting any mappings we've
* created complete.
*/
break;
build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
/* contention, we'll give up with this range */
begin = virt_end;
continue;
}
/*
* IO may still be going to the destination block. We must
* quiesce before we can do the removal.
*/
m = get_next_mapping(pool);
m->tc = tc;
m->maybe_shared = maybe_shared;
m->virt_begin = virt_begin;
m->virt_end = virt_end;
m->data_block = data_begin;
m->cell = data_cell;
m->bio = bio;
/*
* The parent bio must not complete before sub discard bios are
* chained to it (see end_discard's bio_chain)!
*
* This per-mapping bi_remaining increment is paired with
* the implicit decrement that occurs via bio_endio() in
* end_discard().
*/
bio_inc_remaining(bio);
if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
pool->process_prepared_discard(m);
begin = virt_end;
}
}
static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
{
struct bio *bio = virt_cell->holder;
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
/*
* The virt_cell will only get freed once the origin bio completes.
* This means it will remain locked while all the individual
* passdown bios are in flight.
*/
h->cell = virt_cell;
break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
/*
* We complete the bio now, knowing that the bi_remaining field
* will prevent completion until the sub range discards have
* completed.
*/
bio_endio(bio);
}
static void process_discard_bio(struct thin_c *tc, struct bio *bio)
{
dm_block_t begin, end;
struct dm_cell_key virt_key;
struct dm_bio_prison_cell *virt_cell;
get_bio_block_range(tc, bio, &begin, &end);
if (begin == end) {
/*
* The discard covers less than a block.
*/
bio_endio(bio);
return;
}
build_key(tc->td, VIRTUAL, begin, end, &virt_key);
if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
/*
* Potential starvation issue: We're relying on the
* fs/application being well behaved, and not trying to
* send IO to a region at the same time as discarding it.
* If they do this persistently then it's possible this
* cell will never be granted.
*/
return;
tc->pool->process_discard_cell(tc, virt_cell);
}
static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
struct dm_cell_key *key,
struct dm_thin_lookup_result *lookup_result,
struct dm_bio_prison_cell *cell)
{
int r;
dm_block_t data_block;
struct pool *pool = tc->pool;
r = alloc_data_block(tc, &data_block);
switch (r) {
case 0:
schedule_internal_copy(tc, block, lookup_result->block,
data_block, cell, bio);
break;
case -ENOSPC:
retry_bios_on_resume(pool, cell);
break;
default:
DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
__func__, r);
cell_error(pool, cell);
break;
}
}
static void __remap_and_issue_shared_cell(void *context,
struct dm_bio_prison_cell *cell)
{
struct remap_info *info = context;
struct bio *bio;
while ((bio = bio_list_pop(&cell->bios))) {
if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
bio_op(bio) == REQ_OP_DISCARD)
bio_list_add(&info->defer_bios, bio);
else {
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
inc_all_io_entry(info->tc->pool, bio);
bio_list_add(&info->issue_bios, bio);
}
}
}
static void remap_and_issue_shared_cell(struct thin_c *tc,
struct dm_bio_prison_cell *cell,
dm_block_t block)
{
struct bio *bio;
struct remap_info info;
info.tc = tc;
bio_list_init(&info.defer_bios);
bio_list_init(&info.issue_bios);
cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
&info, cell);
while ((bio = bio_list_pop(&info.defer_bios)))
thin_defer_bio(tc, bio);
while ((bio = bio_list_pop(&info.issue_bios)))
remap_and_issue(tc, bio, block);
}
static void process_shared_bio(struct thin_c *tc, struct bio *bio,
dm_block_t block,
struct dm_thin_lookup_result *lookup_result,
struct dm_bio_prison_cell *virt_cell)
{
struct dm_bio_prison_cell *data_cell;
struct pool *pool = tc->pool;
struct dm_cell_key key;
/*
* If cell is already occupied, then sharing is already in the process
* of being broken so we have nothing further to do here.
*/
build_data_key(tc->td, lookup_result->block, &key);
if (bio_detain(pool, &key, bio, &data_cell)) {
cell_defer_no_holder(tc, virt_cell);
return;
}
if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
break_sharing(tc, bio, block, &key, lookup_result, data_cell);
cell_defer_no_holder(tc, virt_cell);
} else {
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
inc_all_io_entry(pool, bio);
remap_and_issue(tc, bio, lookup_result->block);
remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
}
}
static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
struct dm_bio_prison_cell *cell)
{
int r;
dm_block_t data_block;
struct pool *pool = tc->pool;
/*
* Remap empty bios (flushes) immediately, without provisioning.
*/
if (!bio->bi_iter.bi_size) {
inc_all_io_entry(pool, bio);
cell_defer_no_holder(tc, cell);
remap_and_issue(tc, bio, 0);
return;
}
/*
* Fill read bios with zeroes and complete them immediately.
*/
if (bio_data_dir(bio) == READ) {
zero_fill_bio(bio);
cell_defer_no_holder(tc, cell);
bio_endio(bio);
return;
}
r = alloc_data_block(tc, &data_block);
switch (r) {
case 0:
if (tc->origin_dev)
schedule_external_copy(tc, block, data_block, cell, bio);
else
schedule_zero(tc, block, data_block, cell, bio);
break;
case -ENOSPC:
retry_bios_on_resume(pool, cell);
break;
default:
DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
__func__, r);
cell_error(pool, cell);
break;
}
}
static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
{
int r;
struct pool *pool = tc->pool;
struct bio *bio = cell->holder;
dm_block_t block = get_bio_block(tc, bio);
struct dm_thin_lookup_result lookup_result;
if (tc->requeue_mode) {
cell_requeue(pool, cell);
return;
}
r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
switch (r) {
case 0:
if (lookup_result.shared)
process_shared_bio(tc, bio, block, &lookup_result, cell);
else {
inc_all_io_entry(pool, bio);
remap_and_issue(tc, bio, lookup_result.block);
inc_remap_and_issue_cell(tc, cell, lookup_result.block);
}
break;
case -ENODATA:
if (bio_data_dir(bio) == READ && tc->origin_dev) {
inc_all_io_entry(pool, bio);
cell_defer_no_holder(tc, cell);
if (bio_end_sector(bio) <= tc->origin_size)
remap_to_origin_and_issue(tc, bio);
else if (bio->bi_iter.bi_sector < tc->origin_size) {
zero_fill_bio(bio);
bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
remap_to_origin_and_issue(tc, bio);
} else {
zero_fill_bio(bio);
bio_endio(bio);
}
} else
provision_block(tc, bio, block, cell);
break;
default:
DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
__func__, r);
cell_defer_no_holder(tc, cell);
bio_io_error(bio);
break;
}
}
static void process_bio(struct thin_c *tc, struct bio *bio)
{
struct pool *pool = tc->pool;
dm_block_t block = get_bio_block(tc, bio);
struct dm_bio_prison_cell *cell;
struct dm_cell_key key;
/*
* If cell is already occupied, then the block is already
* being provisioned so we have nothing further to do here.
*/
build_virtual_key(tc->td, block, &key);
if (bio_detain(pool, &key, bio, &cell))
return;
process_cell(tc, cell);
}
static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
struct dm_bio_prison_cell *cell)
{
int r;
int rw = bio_data_dir(bio);
dm_block_t block = get_bio_block(tc, bio);
struct dm_thin_lookup_result lookup_result;
r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
switch (r) {
case 0:
if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
handle_unserviceable_bio(tc->pool, bio);
if (cell)
cell_defer_no_holder(tc, cell);
} else {
inc_all_io_entry(tc->pool, bio);
remap_and_issue(tc, bio, lookup_result.block);
if (cell)
inc_remap_and_issue_cell(tc, cell, lookup_result.block);
}
break;
case -ENODATA:
if (cell)
cell_defer_no_holder(tc, cell);
if (rw != READ) {
handle_unserviceable_bio(tc->pool, bio);
break;
}
if (tc->origin_dev) {
inc_all_io_entry(tc->pool, bio);
remap_to_origin_and_issue(tc, bio);
break;
}
zero_fill_bio(bio);
bio_endio(bio);
break;
default:
DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
__func__, r);
if (cell)
cell_defer_no_holder(tc, cell);
bio_io_error(bio);
break;
}
}
static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
{
__process_bio_read_only(tc, bio, NULL);
}
static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
{
__process_bio_read_only(tc, cell->holder, cell);
}
static void process_bio_success(struct thin_c *tc, struct bio *bio)
{
bio_endio(bio);
}
static void process_bio_fail(struct thin_c *tc, struct bio *bio)
{
bio_io_error(bio);
}
static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
{
cell_success(tc->pool, cell);
}
static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
{
cell_error(tc->pool, cell);
}
/*
* FIXME: should we also commit due to size of transaction, measured in
* metadata blocks?
*/
static int need_commit_due_to_time(struct pool *pool)
{
return !time_in_range(jiffies, pool->last_commit_jiffies,
pool->last_commit_jiffies + COMMIT_PERIOD);
}
#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
{
struct rb_node **rbp, *parent;
struct dm_thin_endio_hook *pbd;
sector_t bi_sector = bio->bi_iter.bi_sector;
rbp = &tc->sort_bio_list.rb_node;
parent = NULL;
while (*rbp) {
parent = *rbp;
pbd = thin_pbd(parent);
if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
rbp = &(*rbp)->rb_left;
else
rbp = &(*rbp)->rb_right;
}
pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
rb_link_node(&pbd->rb_node, parent, rbp);
rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
}
static void __extract_sorted_bios(struct thin_c *tc)
{
struct rb_node *node;
struct dm_thin_endio_hook *pbd;
struct bio *bio;
for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
pbd = thin_pbd(node);
bio = thin_bio(pbd);
bio_list_add(&tc->deferred_bio_list, bio);
rb_erase(&pbd->rb_node, &tc->sort_bio_list);
}
WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
}
static void __sort_thin_deferred_bios(struct thin_c *tc)
{
struct bio *bio;
struct bio_list bios;
bio_list_init(&bios);
bio_list_merge(&bios, &tc->deferred_bio_list);
bio_list_init(&tc->deferred_bio_list);
/* Sort deferred_bio_list using rb-tree */
while ((bio = bio_list_pop(&bios)))
__thin_bio_rb_add(tc, bio);
/*
* Transfer the sorted bios in sort_bio_list back to
* deferred_bio_list to allow lockless submission of
* all bios.
*/
__extract_sorted_bios(tc);
}
static void process_thin_deferred_bios(struct thin_c *tc)
{
struct pool *pool = tc->pool;
struct bio *bio;
struct bio_list bios;
struct blk_plug plug;
unsigned count = 0;
if (tc->requeue_mode) {
error_thin_bio_list(tc, &tc->deferred_bio_list,
BLK_STS_DM_REQUEUE);
return;
}
bio_list_init(&bios);
spin_lock_irq(&tc->lock);
if (bio_list_empty(&tc->deferred_bio_list)) {
spin_unlock_irq(&tc->lock);
return;
}
__sort_thin_deferred_bios(tc);
bio_list_merge(&bios, &tc->deferred_bio_list);
bio_list_init(&tc->deferred_bio_list);
spin_unlock_irq(&tc->lock);
blk_start_plug(&plug);
while ((bio = bio_list_pop(&bios))) {
/*
* If we've got no free new_mapping structs, and processing
* this bio might require one, we pause until there are some
* prepared mappings to process.
*/
if (ensure_next_mapping(pool)) {
spin_lock_irq(&tc->lock);
bio_list_add(&tc->deferred_bio_list, bio);
bio_list_merge(&tc->deferred_bio_list, &bios);
spin_unlock_irq(&tc->lock);
break;
}
if (bio_op(bio) == REQ_OP_DISCARD)
pool->process_discard(tc, bio);
else
pool->process_bio(tc, bio);
if ((count++ & 127) == 0) {
throttle_work_update(&pool->throttle);
dm_pool_issue_prefetches(pool->pmd);
}
}
blk_finish_plug(&plug);
}
static int cmp_cells(const void *lhs, const void *rhs)
{
struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
BUG_ON(!lhs_cell->holder);
BUG_ON(!rhs_cell->holder);
if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
return -1;
if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
return 1;
return 0;
}
static unsigned sort_cells(struct pool *pool, struct list_head *cells)
{
unsigned count = 0;
struct dm_bio_prison_cell *cell, *tmp;
list_for_each_entry_safe(cell, tmp, cells, user_list) {
if (count >= CELL_SORT_ARRAY_SIZE)
break;
pool->cell_sort_array[count++] = cell;
list_del(&cell->user_list);
}
sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
return count;
}
static void process_thin_deferred_cells(struct thin_c *tc)
{
struct pool *pool = tc->pool;
struct list_head cells;
struct dm_bio_prison_cell *cell;
unsigned i, j, count;
INIT_LIST_HEAD(&cells);
spin_lock_irq(&tc->lock);
list_splice_init(&tc->deferred_cells, &cells);
spin_unlock_irq(&tc->lock);
if (list_empty(&cells))
return;
do {
count = sort_cells(tc->pool, &cells);
for (i = 0; i < count; i++) {
cell = pool->cell_sort_array[i];
BUG_ON(!cell->holder);
/*
* If we've got no free new_mapping structs, and processing
* this bio might require one, we pause until there are some
* prepared mappings to process.
*/
if (ensure_next_mapping(pool)) {
for (j = i; j < count; j++)
list_add(&pool->cell_sort_array[j]->user_list, &cells);
spin_lock_irq(&tc->lock);
list_splice(&cells, &tc->deferred_cells);
spin_unlock_irq(&tc->lock);
return;
}
if (bio_op(cell->holder) == REQ_OP_DISCARD)
pool->process_discard_cell(tc, cell);
else
pool->process_cell(tc, cell);
}
} while (!list_empty(&cells));
}
static void thin_get(struct thin_c *tc);
static void thin_put(struct thin_c *tc);
/*
* We can't hold rcu_read_lock() around code that can block. So we
* find a thin with the rcu lock held; bump a refcount; then drop
* the lock.
*/
static struct thin_c *get_first_thin(struct pool *pool)
{
struct thin_c *tc = NULL;
rcu_read_lock();
if (!list_empty(&pool->active_thins)) {
tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
thin_get(tc);
}
rcu_read_unlock();
return tc;
}
static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
{
struct thin_c *old_tc = tc;
rcu_read_lock();
list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
thin_get(tc);
thin_put(old_tc);
rcu_read_unlock();
return tc;
}
thin_put(old_tc);
rcu_read_unlock();
return NULL;
}
static void process_deferred_bios(struct pool *pool)
{
struct bio *bio;
struct bio_list bios, bio_completions;
struct thin_c *tc;
tc = get_first_thin(pool);
while (tc) {
process_thin_deferred_cells(tc);
process_thin_deferred_bios(tc);
tc = get_next_thin(pool, tc);
}
/*
* If there are any deferred flush bios, we must commit the metadata
* before issuing them or signaling their completion.
*/
bio_list_init(&bios);
bio_list_init(&bio_completions);
spin_lock_irq(&pool->lock);
bio_list_merge(&bios, &pool->deferred_flush_bios);
bio_list_init(&pool->deferred_flush_bios);
bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
bio_list_init(&pool->deferred_flush_completions);
spin_unlock_irq(&pool->lock);
if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
!(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
return;
if (commit(pool)) {
bio_list_merge(&bios, &bio_completions);
while ((bio = bio_list_pop(&bios)))
bio_io_error(bio);
return;
}
pool->last_commit_jiffies = jiffies;
while ((bio = bio_list_pop(&bio_completions)))
bio_endio(bio);
while ((bio = bio_list_pop(&bios))) {
/*
* The data device was flushed as part of metadata commit,
* so complete redundant flushes immediately.
*/
if (bio->bi_opf & REQ_PREFLUSH)
bio_endio(bio);
else
generic_make_request(bio);
}
}
static void do_worker(struct work_struct *ws)
{
struct pool *pool = container_of(ws, struct pool, worker);
throttle_work_start(&pool->throttle);
dm_pool_issue_prefetches(pool->pmd);
throttle_work_update(&pool->throttle);
process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
throttle_work_update(&pool->throttle);
process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
throttle_work_update(&pool->throttle);
process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
throttle_work_update(&pool->throttle);
process_deferred_bios(pool);
throttle_work_complete(&pool->throttle);
}
/*
* We want to commit periodically so that not too much
* unwritten data builds up.
*/
static void do_waker(struct work_struct *ws)
{
struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
wake_worker(pool);
queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
}
/*
* We're holding onto IO to allow userland time to react. After the
* timeout either the pool will have been resized (and thus back in
* PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
*/
static void do_no_space_timeout(struct work_struct *ws)
{
struct pool *pool = container_of(to_delayed_work(ws), struct pool,
no_space_timeout);
if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
pool->pf.error_if_no_space = true;
notify_of_pool_mode_change(pool);
error_retry_list_with_code(pool, BLK_STS_NOSPC);
}
}
/*----------------------------------------------------------------*/
struct pool_work {
struct work_struct worker;
struct completion complete;
};
static struct pool_work *to_pool_work(struct work_struct *ws)
{
return container_of(ws, struct pool_work, worker);
}
static void pool_work_complete(struct pool_work *pw)
{
complete(&pw->complete);
}
static void pool_work_wait(struct pool_work *pw, struct pool *pool,
void (*fn)(struct work_struct *))
{
INIT_WORK_ONSTACK(&pw->worker, fn);
init_completion(&pw->complete);
queue_work(pool->wq, &pw->worker);
wait_for_completion(&pw->complete);
}
/*----------------------------------------------------------------*/
struct noflush_work {
struct pool_work pw;
struct thin_c *tc;
};
static struct noflush_work *to_noflush(struct work_struct *ws)
{
return container_of(to_pool_work(ws), struct noflush_work, pw);
}
static void do_noflush_start(struct work_struct *ws)
{
struct noflush_work *w = to_noflush(ws);
w->tc->requeue_mode = true;
requeue_io(w->tc);
pool_work_complete(&w->pw);
}
static void do_noflush_stop(struct work_struct *ws)
{
struct noflush_work *w = to_noflush(ws);
w->tc->requeue_mode = false;
pool_work_complete(&w->pw);
}
static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
{
struct noflush_work w;
w.tc = tc;
pool_work_wait(&w.pw, tc->pool, fn);
}
/*----------------------------------------------------------------*/
static bool passdown_enabled(struct pool_c *pt)
{
return pt->adjusted_pf.discard_passdown;
}
static void set_discard_callbacks(struct pool *pool)
{
struct pool_c *pt = pool->ti->private;
if (passdown_enabled(pt)) {
pool->process_discard_cell = process_discard_cell_passdown;
pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
} else {
pool->process_discard_cell = process_discard_cell_no_passdown;
pool->process_prepared_discard = process_prepared_discard_no_passdown;
}
}
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
{
struct pool_c *pt = pool->ti->private;
bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
enum pool_mode old_mode = get_pool_mode(pool);
unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
/*
* Never allow the pool to transition to PM_WRITE mode if user
* intervention is required to verify metadata and data consistency.
*/
if (new_mode == PM_WRITE && needs_check) {
DMERR("%s: unable to switch pool to write mode until repaired.",
dm_device_name(pool->pool_md));
if (old_mode != new_mode)
new_mode = old_mode;
else
new_mode = PM_READ_ONLY;
}
/*
* If we were in PM_FAIL mode, rollback of metadata failed. We're
* not going to recover without a thin_repair. So we never let the
* pool move out of the old mode.
*/
if (old_mode == PM_FAIL)
new_mode = old_mode;
switch (new_mode) {
case PM_FAIL:
dm_pool_metadata_read_only(pool->pmd);
pool->process_bio = process_bio_fail;
pool->process_discard = process_bio_fail;
pool->process_cell = process_cell_fail;
pool->process_discard_cell = process_cell_fail;
pool->process_prepared_mapping = process_prepared_mapping_fail;
pool->process_prepared_discard = process_prepared_discard_fail;
error_retry_list(pool);
break;
case PM_OUT_OF_METADATA_SPACE:
case PM_READ_ONLY:
dm_pool_metadata_read_only(pool->pmd);
pool->process_bio = process_bio_read_only;
pool->process_discard = process_bio_success;
pool->process_cell = process_cell_read_only;
pool->process_discard_cell = process_cell_success;
pool->process_prepared_mapping = process_prepared_mapping_fail;
pool->process_prepared_discard = process_prepared_discard_success;
error_retry_list(pool);
break;
case PM_OUT_OF_DATA_SPACE:
/*
* Ideally we'd never hit this state; the low water mark
* would trigger userland to extend the pool before we
* completely run out of data space. However, many small
* IOs to unprovisioned space can consume data space at an
* alarming rate. Adjust your low water mark if you're
* frequently seeing this mode.
*/
pool->out_of_data_space = true;
pool->process_bio = process_bio_read_only;
pool->process_discard = process_discard_bio;
pool->process_cell = process_cell_read_only;
pool->process_prepared_mapping = process_prepared_mapping;
set_discard_callbacks(pool);
if (!pool->pf.error_if_no_space && no_space_timeout)
queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
break;
case PM_WRITE:
if (old_mode == PM_OUT_OF_DATA_SPACE)
cancel_delayed_work_sync(&pool->no_space_timeout);
pool->out_of_data_space = false;
pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
dm_pool_metadata_read_write(pool->pmd);
pool->process_bio = process_bio;
pool->process_discard = process_discard_bio;
pool->process_cell = process_cell;
pool->process_prepared_mapping = process_prepared_mapping;
set_discard_callbacks(pool);
break;
}
pool->pf.mode = new_mode;
/*
* The pool mode may have changed, sync it so bind_control_target()
* doesn't cause an unexpected mode transition on resume.
*/
pt->adjusted_pf.mode = new_mode;
if (old_mode != new_mode)
notify_of_pool_mode_change(pool);
}
static void abort_transaction(struct pool *pool)
{
const char *dev_name = dm_device_name(pool->pool_md);
DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
if (dm_pool_abort_metadata(pool->pmd)) {
DMERR("%s: failed to abort metadata transaction", dev_name);
set_pool_mode(pool, PM_FAIL);
}
if (dm_pool_metadata_set_needs_check(pool->pmd)) {
DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
set_pool_mode(pool, PM_FAIL);
}
}
static void metadata_operation_failed(struct pool *pool, const char *op, int r)
{
DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
dm_device_name(pool->pool_md), op, r);
abort_transaction(pool);
set_pool_mode(pool, PM_READ_ONLY);
}
/*----------------------------------------------------------------*/
/*
* Mapping functions.
*/
/*
* Called only while mapping a thin bio to hand it over to the workqueue.
*/
static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
{
struct pool *pool = tc->pool;
spin_lock_irq(&tc->lock);
bio_list_add(&tc->deferred_bio_list, bio);
spin_unlock_irq(&tc->lock);
wake_worker(pool);
}
static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
{
struct pool *pool = tc->pool;
throttle_lock(&pool->throttle);
thin_defer_bio(tc, bio);
throttle_unlock(&pool->throttle);
}
static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
{
struct pool *pool = tc->pool;
throttle_lock(&pool->throttle);
spin_lock_irq(&tc->lock);
list_add_tail(&cell->user_list, &tc->deferred_cells);
spin_unlock_irq(&tc->lock);
throttle_unlock(&pool->throttle);
wake_worker(pool);
}
static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
{
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
h->tc = tc;
h->shared_read_entry = NULL;
h->all_io_entry = NULL;
h->overwrite_mapping = NULL;
h->cell = NULL;
}
/*
* Non-blocking function called from the thin target's map function.
*/
static int thin_bio_map(struct dm_target *ti, struct bio *bio)
{
int r;
struct thin_c *tc = ti->private;
dm_block_t block = get_bio_block(tc, bio);
struct dm_thin_device *td = tc->td;
struct dm_thin_lookup_result result;
struct dm_bio_prison_cell *virt_cell, *data_cell;
struct dm_cell_key key;
thin_hook_bio(tc, bio);
if (tc->requeue_mode) {
bio->bi_status = BLK_STS_DM_REQUEUE;
bio_endio(bio);
return DM_MAPIO_SUBMITTED;
}
if (get_pool_mode(tc->pool) == PM_FAIL) {
bio_io_error(bio);
return DM_MAPIO_SUBMITTED;
}
if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
thin_defer_bio_with_throttle(tc, bio);
return DM_MAPIO_SUBMITTED;
}
/*
* We must hold the virtual cell before doing the lookup, otherwise
* there's a race with discard.
*/
build_virtual_key(tc->td, block, &key);
if (bio_detain(tc->pool, &key, bio, &virt_cell))
return DM_MAPIO_SUBMITTED;
r = dm_thin_find_block(td, block, 0, &result);
/*
* Note that we defer readahead too.
*/
switch (r) {
case 0:
if (unlikely(result.shared)) {
/*
* We have a race condition here between the
* result.shared value returned by the lookup and
* snapshot creation, which may cause new
* sharing.
*
* To avoid this always quiesce the origin before
* taking the snap. You want to do this anyway to
* ensure a consistent application view
* (i.e. lockfs).
*
* More distant ancestors are irrelevant. The
* shared flag will be set in their case.
*/
thin_defer_cell(tc, virt_cell);
return DM_MAPIO_SUBMITTED;
}
build_data_key(tc->td, result.block, &key);
if (bio_detain(tc->pool, &key, bio, &data_cell)) {
cell_defer_no_holder(tc, virt_cell);
return DM_MAPIO_SUBMITTED;
}
inc_all_io_entry(tc->pool, bio);
cell_defer_no_holder(tc, data_cell);
cell_defer_no_holder(tc, virt_cell);
remap(tc, bio, result.block);
return DM_MAPIO_REMAPPED;
case -ENODATA:
case -EWOULDBLOCK:
thin_defer_cell(tc, virt_cell);
return DM_MAPIO_SUBMITTED;
default:
/*
* Must always call bio_io_error on failure.
* dm_thin_find_block can fail with -EINVAL if the
* pool is switched to fail-io mode.
*/
bio_io_error(bio);
cell_defer_no_holder(tc, virt_cell);
return DM_MAPIO_SUBMITTED;
}
}
static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
{
struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
struct request_queue *q;
if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
return 1;
q = bdev_get_queue(pt->data_dev->bdev);
return bdi_congested(q->backing_dev_info, bdi_bits);
}
static void requeue_bios(struct pool *pool)
{
struct thin_c *tc;
rcu_read_lock();
list_for_each_entry_rcu(tc, &pool->active_thins, list) {
spin_lock_irq(&tc->lock);
bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
bio_list_init(&tc->retry_on_resume_list);
spin_unlock_irq(&tc->lock);
}
rcu_read_unlock();
}
/*----------------------------------------------------------------
* Binding of control targets to a pool object
*--------------------------------------------------------------*/
static bool data_dev_supports_discard(struct pool_c *pt)
{
struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
return q && blk_queue_discard(q);
}
static bool is_factor(sector_t block_size, uint32_t n)
{
return !sector_div(block_size, n);
}
/*
* If discard_passdown was enabled verify that the data device
* supports discards. Disable discard_passdown if not.
*/
static void disable_passdown_if_not_supported(struct pool_c *pt)
{
struct pool *pool = pt->pool;
struct block_device *data_bdev = pt->data_dev->bdev;
struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
const char *reason = NULL;
char buf[BDEVNAME_SIZE];
if (!pt->adjusted_pf.discard_passdown)
return;
if (!data_dev_supports_discard(pt))
reason = "discard unsupported";
else if (data_limits->max_discard_sectors < pool->sectors_per_block)
reason = "max discard sectors smaller than a block";
if (reason) {
DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
pt->adjusted_pf.discard_passdown = false;
}
}
static int bind_control_target(struct pool *pool, struct dm_target *ti)
{
struct pool_c *pt = ti->private;
/*
* We want to make sure that a pool in PM_FAIL mode is never upgraded.
*/
enum pool_mode old_mode = get_pool_mode(pool);
enum pool_mode new_mode = pt->adjusted_pf.mode;
/*
* Don't change the pool's mode until set_pool_mode() below.
* Otherwise the pool's process_* function pointers may
* not match the desired pool mode.
*/
pt->adjusted_pf.mode = old_mode;
pool->ti = ti;
pool->pf = pt->adjusted_pf;
pool->low_water_blocks = pt->low_water_blocks;
set_pool_mode(pool, new_mode);
return 0;
}
static void unbind_control_target(struct pool *pool, struct dm_target *ti)
{
if (pool->ti == ti)
pool->ti = NULL;
}
/*----------------------------------------------------------------
* Pool creation
*--------------------------------------------------------------*/
/* Initialize pool features. */
static void pool_features_init(struct pool_features *pf)
{
pf->mode = PM_WRITE;
pf->zero_new_blocks = true;
pf->discard_enabled = true;
pf->discard_passdown = true;
pf->error_if_no_space = false;
}
static void __pool_destroy(struct pool *pool)
{
__pool_table_remove(pool);
vfree(pool->cell_sort_array);
if (dm_pool_metadata_close(pool->pmd) < 0)
DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
dm_bio_prison_destroy(pool->prison);
dm_kcopyd_client_destroy(pool->copier);
if (pool->wq)
destroy_workqueue(pool->wq);
if (pool->next_mapping)
mempool_free(pool->next_mapping, &pool->mapping_pool);
mempool_exit(&pool->mapping_pool);
bio_uninit(&pool->flush_bio);
dm_deferred_set_destroy(pool->shared_read_ds);
dm_deferred_set_destroy(pool->all_io_ds);
kfree(pool);
}
static struct kmem_cache *_new_mapping_cache;
static struct pool *pool_create(struct mapped_device *pool_md,
struct block_device *metadata_dev,
struct block_device *data_dev,
unsigned long block_size,
int read_only, char **error)
{
int r;
void *err_p;
struct pool *pool;
struct dm_pool_metadata *pmd;
bool format_device = read_only ? false : true;
pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
if (IS_ERR(pmd)) {
*error = "Error creating metadata object";
return (struct pool *)pmd;
}
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
if (!pool) {
*error = "Error allocating memory for pool";
err_p = ERR_PTR(-ENOMEM);
goto bad_pool;
}
pool->pmd = pmd;
pool->sectors_per_block = block_size;
if (block_size & (block_size - 1))
pool->sectors_per_block_shift = -1;
else
pool->sectors_per_block_shift = __ffs(block_size);
pool->low_water_blocks = 0;
pool_features_init(&pool->pf);
pool->prison = dm_bio_prison_create();
if (!pool->prison) {
*error = "Error creating pool's bio prison";
err_p = ERR_PTR(-ENOMEM);
goto bad_prison;
}
pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
if (IS_ERR(pool->copier)) {
r = PTR_ERR(pool->copier);
*error = "Error creating pool's kcopyd client";
err_p = ERR_PTR(r);
goto bad_kcopyd_client;
}
/*
* Create singlethreaded workqueue that will service all devices
* that use this metadata.
*/
pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
if (!pool->wq) {
*error = "Error creating pool's workqueue";
err_p = ERR_PTR(-ENOMEM);
goto bad_wq;
}
throttle_init(&pool->throttle);
INIT_WORK(&pool->worker, do_worker);
INIT_DELAYED_WORK(&pool->waker, do_waker);
INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
spin_lock_init(&pool->lock);
bio_list_init(&pool->deferred_flush_bios);
bio_list_init(&pool->deferred_flush_completions);
INIT_LIST_HEAD(&pool->prepared_mappings);
INIT_LIST_HEAD(&pool->prepared_discards);
INIT_LIST_HEAD(&pool->prepared_discards_pt2);
INIT_LIST_HEAD(&pool->active_thins);
pool->low_water_triggered = false;
pool->suspended = true;
pool->out_of_data_space = false;
bio_init(&pool->flush_bio, NULL, 0);
pool->shared_read_ds = dm_deferred_set_create();
if (!pool->shared_read_ds) {
*error = "Error creating pool's shared read deferred set";
err_p = ERR_PTR(-ENOMEM);
goto bad_shared_read_ds;
}
pool->all_io_ds = dm_deferred_set_create();
if (!pool->all_io_ds) {
*error = "Error creating pool's all io deferred set";
err_p = ERR_PTR(-ENOMEM);
goto bad_all_io_ds;
}
pool->next_mapping = NULL;
r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
_new_mapping_cache);
if (r) {
*error = "Error creating pool's mapping mempool";
err_p = ERR_PTR(r);
goto bad_mapping_pool;
}
pool->cell_sort_array =
vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
sizeof(*pool->cell_sort_array)));
if (!pool->cell_sort_array) {
*error = "Error allocating cell sort array";
err_p = ERR_PTR(-ENOMEM);
goto bad_sort_array;
}
pool->ref_count = 1;
pool->last_commit_jiffies = jiffies;
pool->pool_md = pool_md;
pool->md_dev = metadata_dev;
pool->data_dev = data_dev;
__pool_table_insert(pool);
return pool;
bad_sort_array:
mempool_exit(&pool->mapping_pool);
bad_mapping_pool:
dm_deferred_set_destroy(pool->all_io_ds);
bad_all_io_ds:
dm_deferred_set_destroy(pool->shared_read_ds);
bad_shared_read_ds:
destroy_workqueue(pool->wq);
bad_wq:
dm_kcopyd_client_destroy(pool->copier);
bad_kcopyd_client:
dm_bio_prison_destroy(pool->prison);
bad_prison:
kfree(pool);
bad_pool:
if (dm_pool_metadata_close(pmd))
DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
return err_p;
}
static void __pool_inc(struct pool *pool)
{
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
pool->ref_count++;
}
static void __pool_dec(struct pool *pool)
{
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
BUG_ON(!pool->ref_count);
if (!--pool->ref_count)
__pool_destroy(pool);
}
static struct pool *__pool_find(struct mapped_device *pool_md,
struct block_device *metadata_dev,
struct block_device *data_dev,
unsigned long block_size, int read_only,
char **error, int *created)
{
struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
if (pool) {
if (pool->pool_md != pool_md) {
*error = "metadata device already in use by a pool";
return ERR_PTR(-EBUSY);
}
if (pool->data_dev != data_dev) {
*error = "data device already in use by a pool";
return ERR_PTR(-EBUSY);
}
__pool_inc(pool);
} else {
pool = __pool_table_lookup(pool_md);
if (pool) {
if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
*error = "different pool cannot replace a pool";
return ERR_PTR(-EINVAL);
}
__pool_inc(pool);
} else {
pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
*created = 1;
}
}
return pool;
}
/*----------------------------------------------------------------
* Pool target methods
*--------------------------------------------------------------*/
static void pool_dtr(struct dm_target *ti)
{
struct pool_c *pt = ti->private;
mutex_lock(&dm_thin_pool_table.mutex);
unbind_control_target(pt->pool, ti);
__pool_dec(pt->pool);
dm_put_device(ti, pt->metadata_dev);
dm_put_device(ti, pt->data_dev);
kfree(pt);
mutex_unlock(&dm_thin_pool_table.mutex);
}
static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
struct dm_target *ti)
{
int r;
unsigned argc;
const char *arg_name;
static const struct dm_arg _args[] = {
{0, 4, "Invalid number of pool feature arguments"},
};
/*
* No feature arguments supplied.
*/
if (!as->argc)
return 0;
r = dm_read_arg_group(_args, as, &argc, &ti->error);
if (r)
return -EINVAL;
while (argc && !r) {
arg_name = dm_shift_arg(as);
argc--;
if (!strcasecmp(arg_name, "skip_block_zeroing"))
pf->zero_new_blocks = false;
else if (!strcasecmp(arg_name, "ignore_discard"))
pf->discard_enabled = false;
else if (!strcasecmp(arg_name, "no_discard_passdown"))
pf->discard_passdown = false;
else if (!strcasecmp(arg_name, "read_only"))
pf->mode = PM_READ_ONLY;
else if (!strcasecmp(arg_name, "error_if_no_space"))
pf->error_if_no_space = true;
else {
ti->error = "Unrecognised pool feature requested";
r = -EINVAL;
break;
}
}
return r;
}
static void metadata_low_callback(void *context)
{
struct pool *pool = context;
DMWARN("%s: reached low water mark for metadata device: sending event.",
dm_device_name(pool->pool_md));
dm_table_event(pool->ti->table);
}
/*
* We need to flush the data device **before** committing the metadata.
*
* This ensures that the data blocks of any newly inserted mappings are
* properly written to non-volatile storage and won't be lost in case of a
* crash.
*
* Failure to do so can result in data corruption in the case of internal or
* external snapshots and in the case of newly provisioned blocks, when block
* zeroing is enabled.
*/
static int metadata_pre_commit_callback(void *context)
{
struct pool *pool = context;
struct bio *flush_bio = &pool->flush_bio;
bio_reset(flush_bio);
bio_set_dev(flush_bio, pool->data_dev);
flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
return submit_bio_wait(flush_bio);
}
static sector_t get_dev_size(struct block_device *bdev)
{
return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
}
static void warn_if_metadata_device_too_big(struct block_device *bdev)
{
sector_t metadata_dev_size = get_dev_size(bdev);
char buffer[BDEVNAME_SIZE];
if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
}
static sector_t get_metadata_dev_size(struct block_device *bdev)
{
sector_t metadata_dev_size = get_dev_size(bdev);
if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
metadata_dev_size = THIN_METADATA_MAX_SECTORS;
return metadata_dev_size;
}
static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
{
sector_t metadata_dev_size = get_metadata_dev_size(bdev);
sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
return metadata_dev_size;
}
/*
* When a metadata threshold is crossed a dm event is triggered, and
* userland should respond by growing the metadata device. We could let
* userland set the threshold, like we do with the data threshold, but I'm
* not sure they know enough to do this well.
*/
static dm_block_t calc_metadata_threshold(struct pool_c *pt)
{
/*
* 4M is ample for all ops with the possible exception of thin
* device deletion which is harmless if it fails (just retry the
* delete after you've grown the device).
*/
dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
return min((dm_block_t)1024ULL /* 4M */, quarter);
}
/*
* thin-pool <metadata dev> <data dev>
* <data block size (sectors)>
* <low water mark (blocks)>
* [<#feature args> [<arg>]*]
*
* Optional feature arguments are:
* skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
* ignore_discard: disable discard
* no_discard_passdown: don't pass discards down to the data device
* read_only: Don't allow any changes to be made to the pool metadata.
* error_if_no_space: error IOs, instead of queueing, if no space.
*/
static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
{
int r, pool_created = 0;
struct pool_c *pt;
struct pool *pool;
struct pool_features pf;
struct dm_arg_set as;
struct dm_dev *data_dev;
unsigned long block_size;
dm_block_t low_water_blocks;
struct dm_dev *metadata_dev;
fmode_t metadata_mode;
/*
* FIXME Remove validation from scope of lock.
*/
mutex_lock(&dm_thin_pool_table.mutex);
if (argc < 4) {
ti->error = "Invalid argument count";
r = -EINVAL;
goto out_unlock;
}
as.argc = argc;
as.argv = argv;
/* make sure metadata and data are different devices */
if (!strcmp(argv[0], argv[1])) {
ti->error = "Error setting metadata or data device";
r = -EINVAL;
goto out_unlock;
}
/*
* Set default pool features.
*/
pool_features_init(&pf);
dm_consume_args(&as, 4);
r = parse_pool_features(&as, &pf, ti);
if (r)
goto out_unlock;
metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
if (r) {
ti->error = "Error opening metadata block device";
goto out_unlock;
}
warn_if_metadata_device_too_big(metadata_dev->bdev);
r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
if (r) {
ti->error = "Error getting data device";
goto out_metadata;
}
if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
ti->error = "Invalid block size";
r = -EINVAL;
goto out;
}
if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
ti->error = "Invalid low water mark";
r = -EINVAL;
goto out;
}
pt = kzalloc(sizeof(*pt), GFP_KERNEL);
if (!pt) {
r = -ENOMEM;
goto out;
}
pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
if (IS_ERR(pool)) {
r = PTR_ERR(pool);
goto out_free_pt;
}
/*
* 'pool_created' reflects whether this is the first table load.
* Top level discard support is not allowed to be changed after
* initial load. This would require a pool reload to trigger thin
* device changes.
*/
if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
ti->error = "Discard support cannot be disabled once enabled";
r = -EINVAL;
goto out_flags_changed;
}
pt->pool = pool;
pt->ti = ti;
pt->metadata_dev = metadata_dev;
pt->data_dev = data_dev;
pt->low_water_blocks = low_water_blocks;
pt->adjusted_pf = pt->requested_pf = pf;
ti->num_flush_bios = 1;
/*
* Only need to enable discards if the pool should pass
* them down to the data device. The thin device's discard
* processing will cause mappings to be removed from the btree.
*/
if (pf.discard_enabled && pf.discard_passdown) {
ti->num_discard_bios = 1;
/*
* Setting 'discards_supported' circumvents the normal
* stacking of discard limits (this keeps the pool and
* thin devices' discard limits consistent).
*/
ti->discards_supported = true;
}
ti->private = pt;
r = dm_pool_register_metadata_threshold(pt->pool->pmd,
calc_metadata_threshold(pt),
metadata_low_callback,
pool);
if (r)
goto out_flags_changed;
dm_pool_register_pre_commit_callback(pool->pmd,
metadata_pre_commit_callback, pool);
pt->callbacks.congested_fn = pool_is_congested;
dm_table_add_target_callbacks(ti->table, &pt->callbacks);
mutex_unlock(&dm_thin_pool_table.mutex);
return 0;
out_flags_changed:
__pool_dec(pool);
out_free_pt:
kfree(pt);
out:
dm_put_device(ti, data_dev);
out_metadata:
dm_put_device(ti, metadata_dev);
out_unlock:
mutex_unlock(&dm_thin_pool_table.mutex);
return r;
}
static int pool_map(struct dm_target *ti, struct bio *bio)
{
int r;
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
/*
* As this is a singleton target, ti->begin is always zero.
*/
spin_lock_irq(&pool->lock);
bio_set_dev(bio, pt->data_dev->bdev);
r = DM_MAPIO_REMAPPED;
spin_unlock_irq(&pool->lock);
return r;
}
static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
{
int r;
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
sector_t data_size = ti->len;
dm_block_t sb_data_size;
*need_commit = false;
(void) sector_div(data_size, pool->sectors_per_block);
r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
if (r) {
DMERR("%s: failed to retrieve data device size",
dm_device_name(pool->pool_md));
return r;
}
if (data_size < sb_data_size) {
DMERR("%s: pool target (%llu blocks) too small: expected %llu",
dm_device_name(pool->pool_md),
(unsigned long long)data_size, sb_data_size);
return -EINVAL;
} else if (data_size > sb_data_size) {
if (dm_pool_metadata_needs_check(pool->pmd)) {
DMERR("%s: unable to grow the data device until repaired.",
dm_device_name(pool->pool_md));
return 0;
}
if (sb_data_size)
DMINFO("%s: growing the data device from %llu to %llu blocks",
dm_device_name(pool->pool_md),
sb_data_size, (unsigned long long)data_size);
r = dm_pool_resize_data_dev(pool->pmd, data_size);
if (r) {
metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
return r;
}
*need_commit = true;
}
return 0;
}
static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
{
int r;
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
dm_block_t metadata_dev_size, sb_metadata_dev_size;
*need_commit = false;
metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
if (r) {
DMERR("%s: failed to retrieve metadata device size",
dm_device_name(pool->pool_md));
return r;
}
if (metadata_dev_size < sb_metadata_dev_size) {
DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
dm_device_name(pool->pool_md),
metadata_dev_size, sb_metadata_dev_size);
return -EINVAL;
} else if (metadata_dev_size > sb_metadata_dev_size) {
if (dm_pool_metadata_needs_check(pool->pmd)) {
DMERR("%s: unable to grow the metadata device until repaired.",
dm_device_name(pool->pool_md));
return 0;
}
warn_if_metadata_device_too_big(pool->md_dev);
DMINFO("%s: growing the metadata device from %llu to %llu blocks",
dm_device_name(pool->pool_md),
sb_metadata_dev_size, metadata_dev_size);
if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
set_pool_mode(pool, PM_WRITE);
r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
if (r) {
metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
return r;
}
*need_commit = true;
}
return 0;
}
/*
* Retrieves the number of blocks of the data device from
* the superblock and compares it to the actual device size,
* thus resizing the data device in case it has grown.
*
* This both copes with opening preallocated data devices in the ctr
* being followed by a resume
* -and-
* calling the resume method individually after userspace has
* grown the data device in reaction to a table event.
*/
static int pool_preresume(struct dm_target *ti)
{
int r;
bool need_commit1, need_commit2;
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
/*
* Take control of the pool object.
*/
r = bind_control_target(pool, ti);
if (r)
return r;
r = maybe_resize_data_dev(ti, &need_commit1);
if (r)
return r;
r = maybe_resize_metadata_dev(ti, &need_commit2);
if (r)
return r;
if (need_commit1 || need_commit2)
(void) commit(pool);
return 0;
}
static void pool_suspend_active_thins(struct pool *pool)
{
struct thin_c *tc;
/* Suspend all active thin devices */
tc = get_first_thin(pool);
while (tc) {
dm_internal_suspend_noflush(tc->thin_md);
tc = get_next_thin(pool, tc);
}
}
static void pool_resume_active_thins(struct pool *pool)
{
struct thin_c *tc;
/* Resume all active thin devices */
tc = get_first_thin(pool);
while (tc) {
dm_internal_resume(tc->thin_md);
tc = get_next_thin(pool, tc);
}
}
static void pool_resume(struct dm_target *ti)
{
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
/*
* Must requeue active_thins' bios and then resume
* active_thins _before_ clearing 'suspend' flag.
*/
requeue_bios(pool);
pool_resume_active_thins(pool);
spin_lock_irq(&pool->lock);
pool->low_water_triggered = false;
pool->suspended = false;
spin_unlock_irq(&pool->lock);
do_waker(&pool->waker.work);
}
static void pool_presuspend(struct dm_target *ti)
{
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
spin_lock_irq(&pool->lock);
pool->suspended = true;
spin_unlock_irq(&pool->lock);
pool_suspend_active_thins(pool);
}
static void pool_presuspend_undo(struct dm_target *ti)
{
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
pool_resume_active_thins(pool);
spin_lock_irq(&pool->lock);
pool->suspended = false;
spin_unlock_irq(&pool->lock);
}
static void pool_postsuspend(struct dm_target *ti)
{
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
cancel_delayed_work_sync(&pool->waker);
cancel_delayed_work_sync(&pool->no_space_timeout);
flush_workqueue(pool->wq);
(void) commit(pool);
}
static int check_arg_count(unsigned argc, unsigned args_required)
{
if (argc != args_required) {
DMWARN("Message received with %u arguments instead of %u.",
argc, args_required);
return -EINVAL;
}
return 0;
}
static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
{
if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
*dev_id <= MAX_DEV_ID)
return 0;
if (warning)
DMWARN("Message received with invalid device id: %s", arg);
return -EINVAL;
}
static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
{
dm_thin_id dev_id;
int r;
r = check_arg_count(argc, 2);
if (r)
return r;
r = read_dev_id(argv[1], &dev_id, 1);
if (r)
return r;
r = dm_pool_create_thin(pool->pmd, dev_id);
if (r) {
DMWARN("Creation of new thinly-provisioned device with id %s failed.",
argv[1]);
return r;
}
return 0;
}
static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
{
dm_thin_id dev_id;
dm_thin_id origin_dev_id;
int r;
r = check_arg_count(argc, 3);
if (r)
return r;
r = read_dev_id(argv[1], &dev_id, 1);
if (r)
return r;
r = read_dev_id(argv[2], &origin_dev_id, 1);
if (r)
return r;
r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
if (r) {
DMWARN("Creation of new snapshot %s of device %s failed.",
argv[1], argv[2]);
return r;
}
return 0;
}
static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
{
dm_thin_id dev_id;
int r;
r = check_arg_count(argc, 2);
if (r)
return r;
r = read_dev_id(argv[1], &dev_id, 1);
if (r)
return r;
r = dm_pool_delete_thin_device(pool->pmd, dev_id);
if (r)
DMWARN("Deletion of thin device %s failed.", argv[1]);
return r;
}
static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
{
dm_thin_id old_id, new_id;
int r;
r = check_arg_count(argc, 3);
if (r)
return r;
if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
return -EINVAL;
}
if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
return -EINVAL;
}
r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
if (r) {
DMWARN("Failed to change transaction id from %s to %s.",
argv[1], argv[2]);
return r;
}
return 0;
}
static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
{
int r;
r = check_arg_count(argc, 1);
if (r)
return r;
(void) commit(pool);
r = dm_pool_reserve_metadata_snap(pool->pmd);
if (r)
DMWARN("reserve_metadata_snap message failed.");
return r;
}
static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
{
int r;
r = check_arg_count(argc, 1);
if (r)
return r;
r = dm_pool_release_metadata_snap(pool->pmd);
if (r)
DMWARN("release_metadata_snap message failed.");
return r;
}
/*
* Messages supported:
* create_thin <dev_id>
* create_snap <dev_id> <origin_id>
* delete <dev_id>
* set_transaction_id <current_trans_id> <new_trans_id>
* reserve_metadata_snap
* release_metadata_snap
*/
static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
char *result, unsigned maxlen)
{
int r = -EINVAL;
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
dm_device_name(pool->pool_md));
return -EOPNOTSUPP;
}
if (!strcasecmp(argv[0], "create_thin"))
r = process_create_thin_mesg(argc, argv, pool);
else if (!strcasecmp(argv[0], "create_snap"))
r = process_create_snap_mesg(argc, argv, pool);
else if (!strcasecmp(argv[0], "delete"))
r = process_delete_mesg(argc, argv, pool);
else if (!strcasecmp(argv[0], "set_transaction_id"))
r = process_set_transaction_id_mesg(argc, argv, pool);
else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
r = process_reserve_metadata_snap_mesg(argc, argv, pool);
else if (!strcasecmp(argv[0], "release_metadata_snap"))
r = process_release_metadata_snap_mesg(argc, argv, pool);
else
DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
if (!r)
(void) commit(pool);
return r;
}
static void emit_flags(struct pool_features *pf, char *result,
unsigned sz, unsigned maxlen)
{
unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
pf->error_if_no_space;
DMEMIT("%u ", count);
if (!pf->zero_new_blocks)
DMEMIT("skip_block_zeroing ");
if (!pf->discard_enabled)
DMEMIT("ignore_discard ");
if (!pf->discard_passdown)
DMEMIT("no_discard_passdown ");
if (pf->mode == PM_READ_ONLY)
DMEMIT("read_only ");
if (pf->error_if_no_space)
DMEMIT("error_if_no_space ");
}
/*
* Status line is:
* <transaction id> <used metadata sectors>/<total metadata sectors>
* <used data sectors>/<total data sectors> <held metadata root>
* <pool mode> <discard config> <no space config> <needs_check>
*/
static void pool_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result, unsigned maxlen)
{
int r;
unsigned sz = 0;
uint64_t transaction_id;
dm_block_t nr_free_blocks_data;
dm_block_t nr_free_blocks_metadata;
dm_block_t nr_blocks_data;
dm_block_t nr_blocks_metadata;
dm_block_t held_root;
enum pool_mode mode;
char buf[BDEVNAME_SIZE];
char buf2[BDEVNAME_SIZE];
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
switch (type) {
case STATUSTYPE_INFO:
if (get_pool_mode(pool) == PM_FAIL) {
DMEMIT("Fail");
break;
}
/* Commit to ensure statistics aren't out-of-date */
if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
(void) commit(pool);
r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
if (r) {
DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
dm_device_name(pool->pool_md), r);
goto err;
}
r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
if (r) {
DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
dm_device_name(pool->pool_md), r);
goto err;
}
r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
if (r) {
DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
dm_device_name(pool->pool_md), r);
goto err;
}
r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
if (r) {
DMERR("%s: dm_pool_get_free_block_count returned %d",
dm_device_name(pool->pool_md), r);
goto err;
}
r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
if (r) {
DMERR("%s: dm_pool_get_data_dev_size returned %d",
dm_device_name(pool->pool_md), r);
goto err;
}
r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
if (r) {
DMERR("%s: dm_pool_get_metadata_snap returned %d",
dm_device_name(pool->pool_md), r);
goto err;
}
DMEMIT("%llu %llu/%llu %llu/%llu ",
(unsigned long long)transaction_id,
(unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
(unsigned long long)nr_blocks_metadata,
(unsigned long long)(nr_blocks_data - nr_free_blocks_data),
(unsigned long long)nr_blocks_data);
if (held_root)
DMEMIT("%llu ", held_root);
else
DMEMIT("- ");
mode = get_pool_mode(pool);
if (mode == PM_OUT_OF_DATA_SPACE)
DMEMIT("out_of_data_space ");
else if (is_read_only_pool_mode(mode))
DMEMIT("ro ");
else
DMEMIT("rw ");
if (!pool->pf.discard_enabled)
DMEMIT("ignore_discard ");
else if (pool->pf.discard_passdown)
DMEMIT("discard_passdown ");
else
DMEMIT("no_discard_passdown ");
if (pool->pf.error_if_no_space)
DMEMIT("error_if_no_space ");
else
DMEMIT("queue_if_no_space ");
if (dm_pool_metadata_needs_check(pool->pmd))
DMEMIT("needs_check ");
else
DMEMIT("- ");
DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
break;
case STATUSTYPE_TABLE:
DMEMIT("%s %s %lu %llu ",
format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
(unsigned long)pool->sectors_per_block,
(unsigned long long)pt->low_water_blocks);
emit_flags(&pt->requested_pf, result, sz, maxlen);
break;
}
return;
err:
DMEMIT("Error");
}
static int pool_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
struct pool_c *pt = ti->private;
return fn(ti, pt->data_dev, 0, ti->len, data);
}
static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct pool_c *pt = ti->private;
struct pool *pool = pt->pool;
sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
/*
* If max_sectors is smaller than pool->sectors_per_block adjust it
* to the highest possible power-of-2 factor of pool->sectors_per_block.
* This is especially beneficial when the pool's data device is a RAID
* device that has a full stripe width that matches pool->sectors_per_block
* -- because even though partial RAID stripe-sized IOs will be issued to a
* single RAID stripe; when aggregated they will end on a full RAID stripe
* boundary.. which avoids additional partial RAID stripe writes cascading
*/
if (limits->max_sectors < pool->sectors_per_block) {
while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
limits->max_sectors--;
limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
}
}
/*
* If the system-determined stacked limits are compatible with the
* pool's blocksize (io_opt is a factor) do not override them.
*/
if (io_opt_sectors < pool->sectors_per_block ||
!is_factor(io_opt_sectors, pool->sectors_per_block)) {
if (is_factor(pool->sectors_per_block, limits->max_sectors))
blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
else
blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
}
/*
* pt->adjusted_pf is a staging area for the actual features to use.
* They get transferred to the live pool in bind_control_target()
* called from pool_preresume().
*/
if (!pt->adjusted_pf.discard_enabled) {
/*
* Must explicitly disallow stacking discard limits otherwise the
* block layer will stack them if pool's data device has support.
* QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
* user to see that, so make sure to set all discard limits to 0.
*/
limits->discard_granularity = 0;
return;
}
disable_passdown_if_not_supported(pt);
/*
* The pool uses the same discard limits as the underlying data
* device. DM core has already set this up.
*/
}
static struct target_type pool_target = {
.name = "thin-pool",
.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
DM_TARGET_IMMUTABLE,
.version = {1, 22, 0},
.module = THIS_MODULE,
.ctr = pool_ctr,
.dtr = pool_dtr,
.map = pool_map,
.presuspend = pool_presuspend,
.presuspend_undo = pool_presuspend_undo,
.postsuspend = pool_postsuspend,
.preresume = pool_preresume,
.resume = pool_resume,
.message = pool_message,
.status = pool_status,
.iterate_devices = pool_iterate_devices,
.io_hints = pool_io_hints,
};
/*----------------------------------------------------------------
* Thin target methods
*--------------------------------------------------------------*/
static void thin_get(struct thin_c *tc)
{
refcount_inc(&tc->refcount);
}
static void thin_put(struct thin_c *tc)
{
if (refcount_dec_and_test(&tc->refcount))
complete(&tc->can_destroy);
}
static void thin_dtr(struct dm_target *ti)
{
struct thin_c *tc = ti->private;
spin_lock_irq(&tc->pool->lock);
list_del_rcu(&tc->list);
spin_unlock_irq(&tc->pool->lock);
synchronize_rcu();
thin_put(tc);
wait_for_completion(&tc->can_destroy);
mutex_lock(&dm_thin_pool_table.mutex);
__pool_dec(tc->pool);
dm_pool_close_thin_device(tc->td);
dm_put_device(ti, tc->pool_dev);
if (tc->origin_dev)
dm_put_device(ti, tc->origin_dev);
kfree(tc);
mutex_unlock(&dm_thin_pool_table.mutex);
}
/*
* Thin target parameters:
*
* <pool_dev> <dev_id> [origin_dev]
*
* pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
* dev_id: the internal device identifier
* origin_dev: a device external to the pool that should act as the origin
*
* If the pool device has discards disabled, they get disabled for the thin
* device as well.
*/
static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
{
int r;
struct thin_c *tc;
struct dm_dev *pool_dev, *origin_dev;
struct mapped_device *pool_md;
mutex_lock(&dm_thin_pool_table.mutex);
if (argc != 2 && argc != 3) {
ti->error = "Invalid argument count";
r = -EINVAL;
goto out_unlock;
}
tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
if (!tc) {
ti->error = "Out of memory";
r = -ENOMEM;
goto out_unlock;
}
tc->thin_md = dm_table_get_md(ti->table);
spin_lock_init(&tc->lock);
INIT_LIST_HEAD(&tc->deferred_cells);
bio_list_init(&tc->deferred_bio_list);
bio_list_init(&tc->retry_on_resume_list);
tc->sort_bio_list = RB_ROOT;
if (argc == 3) {
if (!strcmp(argv[0], argv[2])) {
ti->error = "Error setting origin device";
r = -EINVAL;
goto bad_origin_dev;
}
r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
if (r) {
ti->error = "Error opening origin device";
goto bad_origin_dev;
}
tc->origin_dev = origin_dev;
}
r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
if (r) {
ti->error = "Error opening pool device";
goto bad_pool_dev;
}
tc->pool_dev = pool_dev;
if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
ti->error = "Invalid device id";
r = -EINVAL;
goto bad_common;
}
pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
if (!pool_md) {
ti->error = "Couldn't get pool mapped device";
r = -EINVAL;
goto bad_common;
}
tc->pool = __pool_table_lookup(pool_md);
if (!tc->pool) {
ti->error = "Couldn't find pool object";
r = -EINVAL;
goto bad_pool_lookup;
}
__pool_inc(tc->pool);
if (get_pool_mode(tc->pool) == PM_FAIL) {
ti->error = "Couldn't open thin device, Pool is in fail mode";
r = -EINVAL;
goto bad_pool;
}
r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
if (r) {
ti->error = "Couldn't open thin internal device";
goto bad_pool;
}
r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
if (r)
goto bad;
ti->num_flush_bios = 1;
ti->flush_supported = true;
ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
/* In case the pool supports discards, pass them on. */
if (tc->pool->pf.discard_enabled) {
ti->discards_supported = true;
ti->num_discard_bios = 1;
}
mutex_unlock(&dm_thin_pool_table.mutex);
spin_lock_irq(&tc->pool->lock);
if (tc->pool->suspended) {
spin_unlock_irq(&tc->pool->lock);
mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
ti->error = "Unable to activate thin device while pool is suspended";
r = -EINVAL;
goto bad;
}
refcount_set(&tc->refcount, 1);
init_completion(&tc->can_destroy);
list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
spin_unlock_irq(&tc->pool->lock);
/*
* This synchronize_rcu() call is needed here otherwise we risk a
* wake_worker() call finding no bios to process (because the newly
* added tc isn't yet visible). So this reduces latency since we
* aren't then dependent on the periodic commit to wake_worker().
*/
synchronize_rcu();
dm_put(pool_md);
return 0;
bad:
dm_pool_close_thin_device(tc->td);
bad_pool:
__pool_dec(tc->pool);
bad_pool_lookup:
dm_put(pool_md);
bad_common:
dm_put_device(ti, tc->pool_dev);
bad_pool_dev:
if (tc->origin_dev)
dm_put_device(ti, tc->origin_dev);
bad_origin_dev:
kfree(tc);
out_unlock:
mutex_unlock(&dm_thin_pool_table.mutex);
return r;
}
static int thin_map(struct dm_target *ti, struct bio *bio)
{
bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
return thin_bio_map(ti, bio);
}
static int thin_endio(struct dm_target *ti, struct bio *bio,
blk_status_t *err)
{
unsigned long flags;
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
struct list_head work;
struct dm_thin_new_mapping *m, *tmp;
struct pool *pool = h->tc->pool;
if (h->shared_read_entry) {
INIT_LIST_HEAD(&work);
dm_deferred_entry_dec(h->shared_read_entry, &work);
spin_lock_irqsave(&pool->lock, flags);
list_for_each_entry_safe(m, tmp, &work, list) {
list_del(&m->list);
__complete_mapping_preparation(m);
}
spin_unlock_irqrestore(&pool->lock, flags);
}
if (h->all_io_entry) {
INIT_LIST_HEAD(&work);
dm_deferred_entry_dec(h->all_io_entry, &work);
if (!list_empty(&work)) {
spin_lock_irqsave(&pool->lock, flags);
list_for_each_entry_safe(m, tmp, &work, list)
list_add_tail(&m->list, &pool->prepared_discards);
spin_unlock_irqrestore(&pool->lock, flags);
wake_worker(pool);
}
}
if (h->cell)
cell_defer_no_holder(h->tc, h->cell);
return DM_ENDIO_DONE;
}
static void thin_presuspend(struct dm_target *ti)
{
struct thin_c *tc = ti->private;
if (dm_noflush_suspending(ti))
noflush_work(tc, do_noflush_start);
}
static void thin_postsuspend(struct dm_target *ti)
{
struct thin_c *tc = ti->private;
/*
* The dm_noflush_suspending flag has been cleared by now, so
* unfortunately we must always run this.
*/
noflush_work(tc, do_noflush_stop);
}
static int thin_preresume(struct dm_target *ti)
{
struct thin_c *tc = ti->private;
if (tc->origin_dev)
tc->origin_size = get_dev_size(tc->origin_dev->bdev);
return 0;
}
/*
* <nr mapped sectors> <highest mapped sector>
*/
static void thin_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result, unsigned maxlen)
{
int r;
ssize_t sz = 0;
dm_block_t mapped, highest;
char buf[BDEVNAME_SIZE];
struct thin_c *tc = ti->private;
if (get_pool_mode(tc->pool) == PM_FAIL) {
DMEMIT("Fail");
return;
}
if (!tc->td)
DMEMIT("-");
else {
switch (type) {
case STATUSTYPE_INFO:
r = dm_thin_get_mapped_count(tc->td, &mapped);
if (r) {
DMERR("dm_thin_get_mapped_count returned %d", r);
goto err;
}
r = dm_thin_get_highest_mapped_block(tc->td, &highest);
if (r < 0) {
DMERR("dm_thin_get_highest_mapped_block returned %d", r);
goto err;
}
DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
if (r)
DMEMIT("%llu", ((highest + 1) *
tc->pool->sectors_per_block) - 1);
else
DMEMIT("-");
break;
case STATUSTYPE_TABLE:
DMEMIT("%s %lu",
format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
(unsigned long) tc->dev_id);
if (tc->origin_dev)
DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
break;
}
}
return;
err:
DMEMIT("Error");
}
static int thin_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
sector_t blocks;
struct thin_c *tc = ti->private;
struct pool *pool = tc->pool;
/*
* We can't call dm_pool_get_data_dev_size() since that blocks. So
* we follow a more convoluted path through to the pool's target.
*/
if (!pool->ti)
return 0; /* nothing is bound */
blocks = pool->ti->len;
(void) sector_div(blocks, pool->sectors_per_block);
if (blocks)
return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
return 0;
}
static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct thin_c *tc = ti->private;
struct pool *pool = tc->pool;
if (!pool->pf.discard_enabled)
return;
limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
}
static struct target_type thin_target = {
.name = "thin",
.version = {1, 22, 0},
.module = THIS_MODULE,
.ctr = thin_ctr,
.dtr = thin_dtr,
.map = thin_map,
.end_io = thin_endio,
.preresume = thin_preresume,
.presuspend = thin_presuspend,
.postsuspend = thin_postsuspend,
.status = thin_status,
.iterate_devices = thin_iterate_devices,
.io_hints = thin_io_hints,
};
/*----------------------------------------------------------------*/
static int __init dm_thin_init(void)
{
int r = -ENOMEM;
pool_table_init();
_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
if (!_new_mapping_cache)
return r;
r = dm_register_target(&thin_target);
if (r)
goto bad_new_mapping_cache;
r = dm_register_target(&pool_target);
if (r)
goto bad_thin_target;
return 0;
bad_thin_target:
dm_unregister_target(&thin_target);
bad_new_mapping_cache:
kmem_cache_destroy(_new_mapping_cache);
return r;
}
static void dm_thin_exit(void)
{
dm_unregister_target(&thin_target);
dm_unregister_target(&pool_target);
kmem_cache_destroy(_new_mapping_cache);
pool_table_exit();
}
module_init(dm_thin_init);
module_exit(dm_thin_exit);
module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");