blob: f6d715787da87e4b0a509f2483e7264ed6aa01fb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Implementation of Gasket page table support.
*
* Copyright (C) 2018 Google, Inc.
*/
/*
* Implementation of Gasket page table support.
*
* This file assumes 4kB pages throughout; can be factored out when necessary.
*
* There is a configurable number of page table entries, as well as a
* configurable bit index for the extended address flag. Both of these are
* specified in gasket_page_table_init through the page_table_config parameter.
*
* The following example assumes:
* page_table_config->total_entries = 8192
* page_table_config->extended_bit = 63
*
* Address format:
* Simple addresses - those whose containing pages are directly placed in the
* device's address translation registers - are laid out as:
* [ 63 - 25: 0 | 24 - 12: page index | 11 - 0: page offset ]
* page index: The index of the containing page in the device's address
* translation registers.
* page offset: The index of the address into the containing page.
*
* Extended address - those whose containing pages are contained in a second-
* level page table whose address is present in the device's address translation
* registers - are laid out as:
* [ 63: flag | 62 - 34: 0 | 33 - 21: dev/level 0 index |
* 20 - 12: host/level 1 index | 11 - 0: page offset ]
* flag: Marker indicating that this is an extended address. Always 1.
* dev index: The index of the first-level page in the device's extended
* address translation registers.
* host index: The index of the containing page in the [host-resident] second-
* level page table.
* page offset: The index of the address into the containing [second-level]
* page.
*/
#include "gasket_page_table.h"
#include <linux/device.h>
#include <linux/file.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pagemap.h>
#include <linux/vmalloc.h>
#include "gasket_constants.h"
#include "gasket_core.h"
/* Constants & utility macros */
/* The number of pages that can be mapped into each second-level page table. */
#define GASKET_PAGES_PER_SUBTABLE 512
/* The starting position of the page index in a simple virtual address. */
#define GASKET_SIMPLE_PAGE_SHIFT 12
/* Flag indicating that a [device] slot is valid for use. */
#define GASKET_VALID_SLOT_FLAG 1
/*
* The starting position of the level 0 page index (i.e., the entry in the
* device's extended address registers) in an extended address.
* Also can be thought of as (log2(PAGE_SIZE) + log2(PAGES_PER_SUBTABLE)),
* or (12 + 9).
*/
#define GASKET_EXTENDED_LVL0_SHIFT 21
/*
* Number of first level pages that Gasket chips support. Equivalent to
* log2(NUM_LVL0_PAGE_TABLES)
*
* At a maximum, allowing for a 34 bits address space (or 16GB)
* = GASKET_EXTENDED_LVL0_WIDTH + (log2(PAGE_SIZE) + log2(PAGES_PER_SUBTABLE)
* or, = 13 + 9 + 12
*/
#define GASKET_EXTENDED_LVL0_WIDTH 13
/*
* The starting position of the level 1 page index (i.e., the entry in the
* host second-level/sub- table) in an extended address.
*/
#define GASKET_EXTENDED_LVL1_SHIFT 12
/* Type declarations */
/* Valid states for a struct gasket_page_table_entry. */
enum pte_status {
PTE_FREE,
PTE_INUSE,
};
/*
* Mapping metadata for a single page.
*
* In this file, host-side page table entries are referred to as that (or PTEs).
* Where device vs. host entries are differentiated, device-side or -visible
* entries are called "slots". A slot may be either an entry in the device's
* address translation table registers or an entry in a second-level page
* table ("subtable").
*
* The full data in this structure is visible on the host [of course]. Only
* the address contained in dma_addr is communicated to the device; that points
* to the actual page mapped and described by this structure.
*/
struct gasket_page_table_entry {
/* The status of this entry/slot: free or in use. */
enum pte_status status;
/*
* Index for alignment into host vaddrs.
* When a user specifies a host address for a mapping, that address may
* not be page-aligned. Offset is the index into the containing page of
* the host address (i.e., host_vaddr & (PAGE_SIZE - 1)).
* This is necessary for translating between user-specified addresses
* and page-aligned addresses.
*/
int offset;
/* Address of the page in DMA space. */
dma_addr_t dma_addr;
/* Linux page descriptor for the page described by this structure. */
struct page *page;
/*
* If this is an extended and first-level entry, sublevel points
* to the second-level entries underneath this entry.
*/
struct gasket_page_table_entry *sublevel;
};
/*
* Maintains virtual to physical address mapping for a coherent page that is
* allocated by this module for a given device.
* Note that coherent pages mappings virt mapping cannot be tracked by the
* Linux kernel, and coherent pages don't have a struct page associated,
* hence Linux kernel cannot perform a get_user_page_xx() on a phys address
* that was allocated coherent.
* This structure trivially implements this mechanism.
*/
struct gasket_coherent_page_entry {
/* Phys address, dma'able by the owner device */
dma_addr_t paddr;
/* Kernel virtual address */
u64 user_virt;
/* User virtual address that was mapped by the mmap kernel subsystem */
u64 kernel_virt;
/*
* Whether this page has been mapped into a user land process virtual
* space
*/
u32 in_use;
};
/*
* [Host-side] page table descriptor.
*
* This structure tracks the metadata necessary to manage both simple and
* extended page tables.
*/
struct gasket_page_table {
/* The config used to create this page table. */
struct gasket_page_table_config config;
/* The number of simple (single-level) entries in the page table. */
uint num_simple_entries;
/* The number of extended (two-level) entries in the page table. */
uint num_extended_entries;
/* Array of [host-side] page table entries. */
struct gasket_page_table_entry *entries;
/* Number of actively mapped kernel pages in this table. */
uint num_active_pages;
/* Device register: base of/first slot in the page table. */
u64 __iomem *base_slot;
/* Device register: holds the offset indicating the start of the
* extended address region of the device's address translation table.
*/
u64 __iomem *extended_offset_reg;
/* Device structure for the underlying device. Only used for logging. */
struct device *device;
/* PCI system descriptor for the underlying device. */
struct pci_dev *pci_dev;
/* Location of the extended address bit for this Gasket device. */
u64 extended_flag;
/* Mutex to protect page table internals. */
struct mutex mutex;
/* Number of coherent pages accessible thru by this page table */
int num_coherent_pages;
/*
* List of coherent memory (physical) allocated for a device.
*
* This structure also remembers the user virtual mapping, this is
* hacky, but we need to do this because the kernel doesn't keep track
* of the user coherent pages (pfn pages), and virt to coherent page
* mapping.
* TODO: use find_vma() APIs to convert host address to vm_area, to
* dma_addr_t instead of storing user virtu address in
* gasket_coherent_page_entry
*
* Note that the user virtual mapping is created by the driver, in
* gasket_mmap function, so user_virt belongs in the driver anyhow.
*/
struct gasket_coherent_page_entry *coherent_pages;
};
/* See gasket_page_table.h for description. */
int gasket_page_table_init(struct gasket_page_table **ppg_tbl,
const struct gasket_bar_data *bar_data,
const struct gasket_page_table_config *page_table_config,
struct device *device, struct pci_dev *pci_dev)
{
ulong bytes;
struct gasket_page_table *pg_tbl;
ulong total_entries = page_table_config->total_entries;
/*
* TODO: Verify config->total_entries against value read from the
* hardware register that contains the page table size.
*/
if (total_entries == ULONG_MAX) {
dev_dbg(device,
"Error reading page table size. Initializing page table with size 0\n");
total_entries = 0;
}
dev_dbg(device,
"Attempting to initialize page table of size 0x%lx\n",
total_entries);
dev_dbg(device,
"Table has base reg 0x%x, extended offset reg 0x%x\n",
page_table_config->base_reg,
page_table_config->extended_reg);
*ppg_tbl = kzalloc(sizeof(**ppg_tbl), GFP_KERNEL);
if (!*ppg_tbl) {
dev_dbg(device, "No memory for page table\n");
return -ENOMEM;
}
pg_tbl = *ppg_tbl;
bytes = total_entries * sizeof(struct gasket_page_table_entry);
if (bytes != 0) {
pg_tbl->entries = vzalloc(bytes);
if (!pg_tbl->entries) {
dev_dbg(device,
"No memory for address translation metadata\n");
kfree(pg_tbl);
*ppg_tbl = NULL;
return -ENOMEM;
}
}
mutex_init(&pg_tbl->mutex);
memcpy(&pg_tbl->config, page_table_config, sizeof(*page_table_config));
if (pg_tbl->config.mode == GASKET_PAGE_TABLE_MODE_NORMAL ||
pg_tbl->config.mode == GASKET_PAGE_TABLE_MODE_SIMPLE) {
pg_tbl->num_simple_entries = total_entries;
pg_tbl->num_extended_entries = 0;
pg_tbl->extended_flag = 1ull << page_table_config->extended_bit;
} else {
pg_tbl->num_simple_entries = 0;
pg_tbl->num_extended_entries = total_entries;
pg_tbl->extended_flag = 0;
}
pg_tbl->num_active_pages = 0;
pg_tbl->base_slot =
(u64 __iomem *)&bar_data->virt_base[page_table_config->base_reg];
pg_tbl->extended_offset_reg =
(u64 __iomem *)&bar_data->virt_base[page_table_config->extended_reg];
pg_tbl->device = get_device(device);
pg_tbl->pci_dev = pci_dev;
dev_dbg(device, "Page table initialized successfully\n");
return 0;
}
/*
* Check if a range of PTEs is free.
* The page table mutex must be held by the caller.
*/
static bool gasket_is_pte_range_free(struct gasket_page_table_entry *ptes,
uint num_entries)
{
int i;
for (i = 0; i < num_entries; i++) {
if (ptes[i].status != PTE_FREE)
return false;
}
return true;
}
/*
* Free a second level page [sub]table.
* The page table mutex must be held before this call.
*/
static void gasket_free_extended_subtable(struct gasket_page_table *pg_tbl,
struct gasket_page_table_entry *pte,
u64 __iomem *slot)
{
/* Release the page table from the driver */
pte->status = PTE_FREE;
/* Release the page table from the device */
writeq(0, slot);
if (pte->dma_addr)
dma_unmap_page(pg_tbl->device, pte->dma_addr, PAGE_SIZE,
DMA_TO_DEVICE);
vfree(pte->sublevel);
if (pte->page)
free_page((ulong)page_address(pte->page));
memset(pte, 0, sizeof(struct gasket_page_table_entry));
}
/*
* Actually perform collection.
* The page table mutex must be held by the caller.
*/
static void
gasket_page_table_garbage_collect_nolock(struct gasket_page_table *pg_tbl)
{
struct gasket_page_table_entry *pte;
u64 __iomem *slot;
/* XXX FIX ME XXX -- more efficient to keep a usage count */
/* rather than scanning the second level page tables */
for (pte = pg_tbl->entries + pg_tbl->num_simple_entries,
slot = pg_tbl->base_slot + pg_tbl->num_simple_entries;
pte < pg_tbl->entries + pg_tbl->config.total_entries;
pte++, slot++) {
if (pte->status == PTE_INUSE) {
if (gasket_is_pte_range_free(pte->sublevel,
GASKET_PAGES_PER_SUBTABLE))
gasket_free_extended_subtable(pg_tbl, pte,
slot);
}
}
}
/* See gasket_page_table.h for description. */
void gasket_page_table_garbage_collect(struct gasket_page_table *pg_tbl)
{
mutex_lock(&pg_tbl->mutex);
gasket_page_table_garbage_collect_nolock(pg_tbl);
mutex_unlock(&pg_tbl->mutex);
}
/* See gasket_page_table.h for description. */
void gasket_page_table_cleanup(struct gasket_page_table *pg_tbl)
{
/* Deallocate free second-level tables. */
gasket_page_table_garbage_collect(pg_tbl);
/* TODO: Check that all PTEs have been freed? */
vfree(pg_tbl->entries);
pg_tbl->entries = NULL;
put_device(pg_tbl->device);
kfree(pg_tbl);
}
/* See gasket_page_table.h for description. */
int gasket_page_table_partition(struct gasket_page_table *pg_tbl,
uint num_simple_entries)
{
int i, start;
mutex_lock(&pg_tbl->mutex);
if (num_simple_entries > pg_tbl->config.total_entries) {
mutex_unlock(&pg_tbl->mutex);
return -EINVAL;
}
gasket_page_table_garbage_collect_nolock(pg_tbl);
start = min(pg_tbl->num_simple_entries, num_simple_entries);
for (i = start; i < pg_tbl->config.total_entries; i++) {
if (pg_tbl->entries[i].status != PTE_FREE) {
dev_err(pg_tbl->device, "entry %d is not free\n", i);
mutex_unlock(&pg_tbl->mutex);
return -EBUSY;
}
}
pg_tbl->num_simple_entries = num_simple_entries;
pg_tbl->num_extended_entries =
pg_tbl->config.total_entries - num_simple_entries;
writeq(num_simple_entries, pg_tbl->extended_offset_reg);
mutex_unlock(&pg_tbl->mutex);
return 0;
}
EXPORT_SYMBOL(gasket_page_table_partition);
/*
* Return whether a host buffer was mapped as coherent memory.
*
* A Gasket page_table currently support one contiguous dma range, mapped to one
* contiguous virtual memory range. Check if the host_addr is within that range.
*/
static int is_coherent(struct gasket_page_table *pg_tbl, ulong host_addr)
{
u64 min, max;
/* whether the host address is within user virt range */
if (!pg_tbl->coherent_pages)
return 0;
min = (u64)pg_tbl->coherent_pages[0].user_virt;
max = min + PAGE_SIZE * pg_tbl->num_coherent_pages;
return min <= host_addr && host_addr < max;
}
/* Safely return a page to the OS. */
static bool gasket_release_page(struct page *page)
{
if (!page)
return false;
if (!PageReserved(page))
SetPageDirty(page);
put_page(page);
return true;
}
/*
* Get and map last level page table buffers.
*
* slots is the location(s) to write device-mapped page address. If this is a
* simple mapping, these will be address translation registers. If this is
* an extended mapping, these will be within a second-level page table
* allocated by the host and so must have their __iomem attribute casted away.
*/
static int gasket_perform_mapping(struct gasket_page_table *pg_tbl,
struct gasket_page_table_entry *ptes,
u64 __iomem *slots, ulong host_addr,
uint num_pages, int is_simple_mapping)
{
int ret;
ulong offset;
struct page *page;
dma_addr_t dma_addr;
ulong page_addr;
int i;
for (i = 0; i < num_pages; i++) {
page_addr = host_addr + i * PAGE_SIZE;
offset = page_addr & (PAGE_SIZE - 1);
if (is_coherent(pg_tbl, host_addr)) {
u64 off =
(u64)host_addr -
(u64)pg_tbl->coherent_pages[0].user_virt;
ptes[i].page = NULL;
ptes[i].offset = offset;
ptes[i].dma_addr = pg_tbl->coherent_pages[0].paddr +
off + i * PAGE_SIZE;
} else {
ret = get_user_pages_fast(page_addr - offset, 1,
FOLL_WRITE, &page);
if (ret <= 0) {
dev_err(pg_tbl->device,
"get user pages failed for addr=0x%lx, offset=0x%lx [ret=%d]\n",
page_addr, offset, ret);
return ret ? ret : -ENOMEM;
}
++pg_tbl->num_active_pages;
ptes[i].page = page;
ptes[i].offset = offset;
/* Map the page into DMA space. */
ptes[i].dma_addr =
dma_map_page(pg_tbl->device, page, 0, PAGE_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(pg_tbl->device,
ptes[i].dma_addr)) {
if (gasket_release_page(ptes[i].page))
--pg_tbl->num_active_pages;
memset(&ptes[i], 0,
sizeof(struct gasket_page_table_entry));
return -EINVAL;
}
}
/* Make the DMA-space address available to the device. */
dma_addr = (ptes[i].dma_addr + offset) | GASKET_VALID_SLOT_FLAG;
if (is_simple_mapping) {
writeq(dma_addr, &slots[i]);
} else {
((u64 __force *)slots)[i] = dma_addr;
/* Extended page table vectors are in DRAM,
* and so need to be synced each time they are updated.
*/
dma_map_single(pg_tbl->device,
(void *)&((u64 __force *)slots)[i],
sizeof(u64), DMA_TO_DEVICE);
}
ptes[i].status = PTE_INUSE;
}
return 0;
}
/*
* Return the index of the page for the address in the simple table.
* Does not perform validity checking.
*/
static int gasket_simple_page_idx(struct gasket_page_table *pg_tbl,
ulong dev_addr)
{
return (dev_addr >> GASKET_SIMPLE_PAGE_SHIFT) &
(pg_tbl->config.total_entries - 1);
}
/*
* Return the level 0 page index for the given address.
* Does not perform validity checking.
*/
static ulong gasket_extended_lvl0_page_idx(struct gasket_page_table *pg_tbl,
ulong dev_addr)
{
return (dev_addr >> GASKET_EXTENDED_LVL0_SHIFT) &
(pg_tbl->config.total_entries - 1);
}
/*
* Return the level 1 page index for the given address.
* Does not perform validity checking.
*/
static ulong gasket_extended_lvl1_page_idx(struct gasket_page_table *pg_tbl,
ulong dev_addr)
{
return (dev_addr >> GASKET_EXTENDED_LVL1_SHIFT) &
(GASKET_PAGES_PER_SUBTABLE - 1);
}
/*
* Allocate page table entries in a simple table.
* The page table mutex must be held by the caller.
*/
static int gasket_alloc_simple_entries(struct gasket_page_table *pg_tbl,
ulong dev_addr, uint num_pages)
{
if (!gasket_is_pte_range_free(pg_tbl->entries +
gasket_simple_page_idx(pg_tbl, dev_addr),
num_pages))
return -EBUSY;
return 0;
}
/*
* Unmap and release mapped pages.
* The page table mutex must be held by the caller.
*/
static void gasket_perform_unmapping(struct gasket_page_table *pg_tbl,
struct gasket_page_table_entry *ptes,
u64 __iomem *slots, uint num_pages,
int is_simple_mapping)
{
int i;
/*
* For each page table entry and corresponding entry in the device's
* address translation table:
*/
for (i = 0; i < num_pages; i++) {
/* release the address from the device, */
if (is_simple_mapping || ptes[i].status == PTE_INUSE) {
writeq(0, &slots[i]);
} else {
((u64 __force *)slots)[i] = 0;
/* sync above PTE update before updating mappings */
wmb();
}
/* release the address from the driver, */
if (ptes[i].status == PTE_INUSE) {
if (ptes[i].page && ptes[i].dma_addr) {
dma_unmap_page(pg_tbl->device, ptes[i].dma_addr,
PAGE_SIZE, DMA_BIDIRECTIONAL);
}
if (gasket_release_page(ptes[i].page))
--pg_tbl->num_active_pages;
}
/* and clear the PTE. */
memset(&ptes[i], 0, sizeof(struct gasket_page_table_entry));
}
}
/*
* Unmap and release pages mapped to simple addresses.
* The page table mutex must be held by the caller.
*/
static void gasket_unmap_simple_pages(struct gasket_page_table *pg_tbl,
ulong dev_addr, uint num_pages)
{
uint slot = gasket_simple_page_idx(pg_tbl, dev_addr);
gasket_perform_unmapping(pg_tbl, pg_tbl->entries + slot,
pg_tbl->base_slot + slot, num_pages, 1);
}
/*
* Unmap and release buffers to extended addresses.
* The page table mutex must be held by the caller.
*/
static void gasket_unmap_extended_pages(struct gasket_page_table *pg_tbl,
ulong dev_addr, uint num_pages)
{
uint slot_idx, remain, len;
struct gasket_page_table_entry *pte;
u64 __iomem *slot_base;
remain = num_pages;
slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
pte = pg_tbl->entries + pg_tbl->num_simple_entries +
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
while (remain > 0) {
/* TODO: Add check to ensure pte remains valid? */
len = min(remain, GASKET_PAGES_PER_SUBTABLE - slot_idx);
if (pte->status == PTE_INUSE) {
slot_base = (u64 __iomem *)(page_address(pte->page) +
pte->offset);
gasket_perform_unmapping(pg_tbl,
pte->sublevel + slot_idx,
slot_base + slot_idx, len, 0);
}
remain -= len;
slot_idx = 0;
pte++;
}
}
/* Evaluates to nonzero if the specified virtual address is simple. */
static inline bool gasket_addr_is_simple(struct gasket_page_table *pg_tbl,
ulong addr)
{
return !((addr) & (pg_tbl)->extended_flag);
}
/*
* Convert (simple, page, offset) into a device address.
* Examples:
* Simple page 0, offset 32:
* Input (1, 0, 32), Output 0x20
* Simple page 1000, offset 511:
* Input (1, 1000, 511), Output 0x3E81FF
* Extended page 0, offset 32:
* Input (0, 0, 32), Output 0x8000000020
* Extended page 1000, offset 511:
* Input (0, 1000, 511), Output 0x8003E81FF
*/
static ulong gasket_components_to_dev_address(struct gasket_page_table *pg_tbl,
int is_simple, uint page_index,
uint offset)
{
ulong dev_addr = (page_index << GASKET_SIMPLE_PAGE_SHIFT) | offset;
return is_simple ? dev_addr : (pg_tbl->extended_flag | dev_addr);
}
/*
* Validity checking for simple addresses.
*
* Verify that address translation commutes (from address to/from page + offset)
* and that the requested page range starts and ends within the set of
* currently-partitioned simple pages.
*/
static bool gasket_is_simple_dev_addr_bad(struct gasket_page_table *pg_tbl,
ulong dev_addr, uint num_pages)
{
ulong page_offset = dev_addr & (PAGE_SIZE - 1);
ulong page_index =
(dev_addr / PAGE_SIZE) & (pg_tbl->config.total_entries - 1);
if (gasket_components_to_dev_address(pg_tbl, 1, page_index,
page_offset) != dev_addr) {
dev_err(pg_tbl->device, "address is invalid, 0x%lX\n",
dev_addr);
return true;
}
if (page_index >= pg_tbl->num_simple_entries) {
dev_err(pg_tbl->device,
"starting slot at %lu is too large, max is < %u\n",
page_index, pg_tbl->num_simple_entries);
return true;
}
if (page_index + num_pages > pg_tbl->num_simple_entries) {
dev_err(pg_tbl->device,
"ending slot at %lu is too large, max is <= %u\n",
page_index + num_pages, pg_tbl->num_simple_entries);
return true;
}
return false;
}
/*
* Validity checking for extended addresses.
*
* Verify that address translation commutes (from address to/from page +
* offset) and that the requested page range starts and ends within the set of
* currently-partitioned extended pages.
*/
static bool gasket_is_extended_dev_addr_bad(struct gasket_page_table *pg_tbl,
ulong dev_addr, uint num_pages)
{
/* Starting byte index of dev_addr into the first mapped page */
ulong page_offset = dev_addr & (PAGE_SIZE - 1);
ulong page_global_idx, page_lvl0_idx;
ulong num_lvl0_pages;
ulong addr;
/* check if the device address is out of bound */
addr = dev_addr & ~((pg_tbl)->extended_flag);
if (addr >> (GASKET_EXTENDED_LVL0_WIDTH + GASKET_EXTENDED_LVL0_SHIFT)) {
dev_err(pg_tbl->device, "device address out of bounds: 0x%lx\n",
dev_addr);
return true;
}
/* Find the starting sub-page index in the space of all sub-pages. */
page_global_idx = (dev_addr / PAGE_SIZE) &
(pg_tbl->config.total_entries * GASKET_PAGES_PER_SUBTABLE - 1);
/* Find the starting level 0 index. */
page_lvl0_idx = gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
/* Get the count of affected level 0 pages. */
num_lvl0_pages = DIV_ROUND_UP(num_pages, GASKET_PAGES_PER_SUBTABLE);
if (gasket_components_to_dev_address(pg_tbl, 0, page_global_idx,
page_offset) != dev_addr) {
dev_err(pg_tbl->device, "address is invalid: 0x%lx\n",
dev_addr);
return true;
}
if (page_lvl0_idx >= pg_tbl->num_extended_entries) {
dev_err(pg_tbl->device,
"starting level 0 slot at %lu is too large, max is < %u\n",
page_lvl0_idx, pg_tbl->num_extended_entries);
return true;
}
if (page_lvl0_idx + num_lvl0_pages > pg_tbl->num_extended_entries) {
dev_err(pg_tbl->device,
"ending level 0 slot at %lu is too large, max is <= %u\n",
page_lvl0_idx + num_lvl0_pages,
pg_tbl->num_extended_entries);
return true;
}
return false;
}
/*
* Non-locking entry to unmapping routines.
* The page table mutex must be held by the caller.
*/
static void gasket_page_table_unmap_nolock(struct gasket_page_table *pg_tbl,
ulong dev_addr, uint num_pages)
{
if (!num_pages)
return;
if (gasket_addr_is_simple(pg_tbl, dev_addr))
gasket_unmap_simple_pages(pg_tbl, dev_addr, num_pages);
else
gasket_unmap_extended_pages(pg_tbl, dev_addr, num_pages);
}
/*
* Allocate and map pages to simple addresses.
* If there is an error, no pages are mapped.
*/
static int gasket_map_simple_pages(struct gasket_page_table *pg_tbl,
ulong host_addr, ulong dev_addr,
uint num_pages)
{
int ret;
uint slot_idx = gasket_simple_page_idx(pg_tbl, dev_addr);
ret = gasket_alloc_simple_entries(pg_tbl, dev_addr, num_pages);
if (ret) {
dev_err(pg_tbl->device,
"page table slots %u (@ 0x%lx) to %u are not available\n",
slot_idx, dev_addr, slot_idx + num_pages - 1);
return ret;
}
ret = gasket_perform_mapping(pg_tbl, pg_tbl->entries + slot_idx,
pg_tbl->base_slot + slot_idx, host_addr,
num_pages, 1);
if (ret) {
gasket_page_table_unmap_nolock(pg_tbl, dev_addr, num_pages);
dev_err(pg_tbl->device, "gasket_perform_mapping %d\n", ret);
}
return ret;
}
/*
* Allocate a second level page table.
* The page table mutex must be held by the caller.
*/
static int gasket_alloc_extended_subtable(struct gasket_page_table *pg_tbl,
struct gasket_page_table_entry *pte,
u64 __iomem *slot)
{
ulong page_addr, subtable_bytes;
dma_addr_t dma_addr;
/* XXX FIX ME XXX this is inefficient for non-4K page sizes */
/* GFP_DMA flag must be passed to architectures for which
* part of the memory range is not considered DMA'able.
* This seems to be the case for Juno board with 4.5.0 Linaro kernel
*/
page_addr = get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!page_addr)
return -ENOMEM;
pte->page = virt_to_page((void *)page_addr);
pte->offset = 0;
subtable_bytes = sizeof(struct gasket_page_table_entry) *
GASKET_PAGES_PER_SUBTABLE;
pte->sublevel = vzalloc(subtable_bytes);
if (!pte->sublevel) {
free_page(page_addr);
memset(pte, 0, sizeof(struct gasket_page_table_entry));
return -ENOMEM;
}
/* Map the page into DMA space. */
pte->dma_addr = dma_map_page(pg_tbl->device, pte->page, 0, PAGE_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(pg_tbl->device, pte->dma_addr)) {
free_page(page_addr);
vfree(pte->sublevel);
memset(pte, 0, sizeof(struct gasket_page_table_entry));
return -ENOMEM;
}
/* make the addresses available to the device */
dma_addr = (pte->dma_addr + pte->offset) | GASKET_VALID_SLOT_FLAG;
writeq(dma_addr, slot);
pte->status = PTE_INUSE;
return 0;
}
/*
* Allocate slots in an extended page table. Check to see if a range of page
* table slots are available. If necessary, memory is allocated for second level
* page tables.
*
* Note that memory for second level page tables is allocated as needed, but
* that memory is only freed on the final close of the device file, when the
* page tables are repartitioned, or the the device is removed. If there is an
* error or if the full range of slots is not available, any memory
* allocated for second level page tables remains allocated until final close,
* repartition, or device removal.
*
* The page table mutex must be held by the caller.
*/
static int gasket_alloc_extended_entries(struct gasket_page_table *pg_tbl,
ulong dev_addr, uint num_entries)
{
int ret = 0;
uint remain, subtable_slot_idx, len;
struct gasket_page_table_entry *pte;
u64 __iomem *slot;
remain = num_entries;
subtable_slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
pte = pg_tbl->entries + pg_tbl->num_simple_entries +
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
slot = pg_tbl->base_slot + pg_tbl->num_simple_entries +
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
while (remain > 0) {
len = min(remain,
GASKET_PAGES_PER_SUBTABLE - subtable_slot_idx);
if (pte->status == PTE_FREE) {
ret = gasket_alloc_extended_subtable(pg_tbl, pte, slot);
if (ret) {
dev_err(pg_tbl->device,
"no memory for extended addr subtable\n");
return ret;
}
} else {
if (!gasket_is_pte_range_free(pte->sublevel +
subtable_slot_idx, len))
return -EBUSY;
}
remain -= len;
subtable_slot_idx = 0;
pte++;
slot++;
}
return 0;
}
/*
* gasket_map_extended_pages - Get and map buffers to extended addresses.
* If there is an error, no pages are mapped.
*/
static int gasket_map_extended_pages(struct gasket_page_table *pg_tbl,
ulong host_addr, ulong dev_addr,
uint num_pages)
{
int ret;
ulong dev_addr_end;
uint slot_idx, remain, len;
struct gasket_page_table_entry *pte;
u64 __iomem *slot_base;
ret = gasket_alloc_extended_entries(pg_tbl, dev_addr, num_pages);
if (ret) {
dev_addr_end = dev_addr + (num_pages / PAGE_SIZE) - 1;
dev_err(pg_tbl->device,
"page table slots (%lu,%lu) (@ 0x%lx) to (%lu,%lu) are not available\n",
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr),
dev_addr,
gasket_extended_lvl1_page_idx(pg_tbl, dev_addr),
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr_end),
gasket_extended_lvl1_page_idx(pg_tbl, dev_addr_end));
return ret;
}
remain = num_pages;
slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
pte = pg_tbl->entries + pg_tbl->num_simple_entries +
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
while (remain > 0) {
len = min(remain, GASKET_PAGES_PER_SUBTABLE - slot_idx);
slot_base =
(u64 __iomem *)(page_address(pte->page) + pte->offset);
ret = gasket_perform_mapping(pg_tbl, pte->sublevel + slot_idx,
slot_base + slot_idx, host_addr,
len, 0);
if (ret) {
gasket_page_table_unmap_nolock(pg_tbl, dev_addr,
num_pages);
return ret;
}
remain -= len;
slot_idx = 0;
pte++;
host_addr += len * PAGE_SIZE;
}
return 0;
}
/*
* See gasket_page_table.h for general description.
*
* gasket_page_table_map calls either gasket_map_simple_pages() or
* gasket_map_extended_pages() to actually perform the mapping.
*
* The page table mutex is held for the entire operation.
*/
int gasket_page_table_map(struct gasket_page_table *pg_tbl, ulong host_addr,
ulong dev_addr, uint num_pages)
{
int ret;
if (!num_pages)
return 0;
mutex_lock(&pg_tbl->mutex);
if (gasket_addr_is_simple(pg_tbl, dev_addr)) {
ret = gasket_map_simple_pages(pg_tbl, host_addr, dev_addr,
num_pages);
} else {
ret = gasket_map_extended_pages(pg_tbl, host_addr, dev_addr,
num_pages);
}
mutex_unlock(&pg_tbl->mutex);
return ret;
}
EXPORT_SYMBOL(gasket_page_table_map);
/*
* See gasket_page_table.h for general description.
*
* gasket_page_table_unmap takes the page table lock and calls either
* gasket_unmap_simple_pages() or gasket_unmap_extended_pages() to
* actually unmap the pages from device space.
*
* The page table mutex is held for the entire operation.
*/
void gasket_page_table_unmap(struct gasket_page_table *pg_tbl, ulong dev_addr,
uint num_pages)
{
if (!num_pages)
return;
mutex_lock(&pg_tbl->mutex);
gasket_page_table_unmap_nolock(pg_tbl, dev_addr, num_pages);
mutex_unlock(&pg_tbl->mutex);
}
EXPORT_SYMBOL(gasket_page_table_unmap);
static void gasket_page_table_unmap_all_nolock(struct gasket_page_table *pg_tbl)
{
gasket_unmap_simple_pages(pg_tbl,
gasket_components_to_dev_address(pg_tbl, 1, 0,
0),
pg_tbl->num_simple_entries);
gasket_unmap_extended_pages(pg_tbl,
gasket_components_to_dev_address(pg_tbl, 0,
0, 0),
pg_tbl->num_extended_entries *
GASKET_PAGES_PER_SUBTABLE);
}
/* See gasket_page_table.h for description. */
void gasket_page_table_unmap_all(struct gasket_page_table *pg_tbl)
{
mutex_lock(&pg_tbl->mutex);
gasket_page_table_unmap_all_nolock(pg_tbl);
mutex_unlock(&pg_tbl->mutex);
}
EXPORT_SYMBOL(gasket_page_table_unmap_all);
/* See gasket_page_table.h for description. */
void gasket_page_table_reset(struct gasket_page_table *pg_tbl)
{
mutex_lock(&pg_tbl->mutex);
gasket_page_table_unmap_all_nolock(pg_tbl);
writeq(pg_tbl->config.total_entries, pg_tbl->extended_offset_reg);
mutex_unlock(&pg_tbl->mutex);
}
/* See gasket_page_table.h for description. */
int gasket_page_table_lookup_page(struct gasket_page_table *pg_tbl,
ulong dev_addr, struct page **ppage,
ulong *poffset)
{
uint page_num;
struct gasket_page_table_entry *pte;
mutex_lock(&pg_tbl->mutex);
if (gasket_addr_is_simple(pg_tbl, dev_addr)) {
page_num = gasket_simple_page_idx(pg_tbl, dev_addr);
if (page_num >= pg_tbl->num_simple_entries)
goto fail;
pte = pg_tbl->entries + page_num;
if (pte->status != PTE_INUSE)
goto fail;
} else {
/* Find the level 0 entry, */
page_num = gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
if (page_num >= pg_tbl->num_extended_entries)
goto fail;
pte = pg_tbl->entries + pg_tbl->num_simple_entries + page_num;
if (pte->status != PTE_INUSE)
goto fail;
/* and its contained level 1 entry. */
page_num = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
pte = pte->sublevel + page_num;
if (pte->status != PTE_INUSE)
goto fail;
}
*ppage = pte->page;
*poffset = pte->offset;
mutex_unlock(&pg_tbl->mutex);
return 0;
fail:
*ppage = NULL;
*poffset = 0;
mutex_unlock(&pg_tbl->mutex);
return -EINVAL;
}
/* See gasket_page_table.h for description. */
bool gasket_page_table_are_addrs_bad(struct gasket_page_table *pg_tbl,
ulong host_addr, ulong dev_addr,
ulong bytes)
{
if (host_addr & (PAGE_SIZE - 1)) {
dev_err(pg_tbl->device,
"host mapping address 0x%lx must be page aligned\n",
host_addr);
return true;
}
return gasket_page_table_is_dev_addr_bad(pg_tbl, dev_addr, bytes);
}
EXPORT_SYMBOL(gasket_page_table_are_addrs_bad);
/* See gasket_page_table.h for description. */
bool gasket_page_table_is_dev_addr_bad(struct gasket_page_table *pg_tbl,
ulong dev_addr, ulong bytes)
{
uint num_pages = bytes / PAGE_SIZE;
if (bytes & (PAGE_SIZE - 1)) {
dev_err(pg_tbl->device,
"mapping size 0x%lX must be page aligned\n", bytes);
return true;
}
if (num_pages == 0) {
dev_err(pg_tbl->device,
"requested mapping is less than one page: %lu / %lu\n",
bytes, PAGE_SIZE);
return true;
}
if (gasket_addr_is_simple(pg_tbl, dev_addr))
return gasket_is_simple_dev_addr_bad(pg_tbl, dev_addr,
num_pages);
return gasket_is_extended_dev_addr_bad(pg_tbl, dev_addr, num_pages);
}
EXPORT_SYMBOL(gasket_page_table_is_dev_addr_bad);
/* See gasket_page_table.h for description. */
uint gasket_page_table_max_size(struct gasket_page_table *page_table)
{
if (!page_table)
return 0;
return page_table->config.total_entries;
}
EXPORT_SYMBOL(gasket_page_table_max_size);
/* See gasket_page_table.h for description. */
uint gasket_page_table_num_entries(struct gasket_page_table *pg_tbl)
{
if (!pg_tbl)
return 0;
return pg_tbl->num_simple_entries + pg_tbl->num_extended_entries;
}
EXPORT_SYMBOL(gasket_page_table_num_entries);
/* See gasket_page_table.h for description. */
uint gasket_page_table_num_simple_entries(struct gasket_page_table *pg_tbl)
{
if (!pg_tbl)
return 0;
return pg_tbl->num_simple_entries;
}
EXPORT_SYMBOL(gasket_page_table_num_simple_entries);
/* See gasket_page_table.h for description. */
uint gasket_page_table_num_active_pages(struct gasket_page_table *pg_tbl)
{
if (!pg_tbl)
return 0;
return pg_tbl->num_active_pages;
}
EXPORT_SYMBOL(gasket_page_table_num_active_pages);
/* See gasket_page_table.h */
int gasket_page_table_system_status(struct gasket_page_table *page_table)
{
if (!page_table)
return GASKET_STATUS_LAMED;
if (gasket_page_table_num_entries(page_table) == 0) {
dev_dbg(page_table->device, "Page table size is 0\n");
return GASKET_STATUS_LAMED;
}
return GASKET_STATUS_ALIVE;
}
/* Record the host_addr to coherent dma memory mapping. */
int gasket_set_user_virt(struct gasket_dev *gasket_dev, u64 size,
dma_addr_t dma_address, ulong vma)
{
int j;
struct gasket_page_table *pg_tbl;
unsigned int num_pages = size / PAGE_SIZE;
/*
* TODO: for future chipset, better handling of the case where multiple
* page tables are supported on a given device
*/
pg_tbl = gasket_dev->page_table[0];
if (!pg_tbl) {
dev_dbg(gasket_dev->dev, "%s: invalid page table index\n",
__func__);
return 0;
}
for (j = 0; j < num_pages; j++) {
pg_tbl->coherent_pages[j].user_virt =
(u64)vma + j * PAGE_SIZE;
}
return 0;
}
/* Allocate a block of coherent memory. */
int gasket_alloc_coherent_memory(struct gasket_dev *gasket_dev, u64 size,
dma_addr_t *dma_address, u64 index)
{
dma_addr_t handle;
void *mem;
int j;
unsigned int num_pages = DIV_ROUND_UP(size, PAGE_SIZE);
const struct gasket_driver_desc *driver_desc =
gasket_get_driver_desc(gasket_dev);
if (!gasket_dev->page_table[index])
return -EFAULT;
if (num_pages == 0)
return -EINVAL;
mem = dma_alloc_coherent(gasket_get_device(gasket_dev),
num_pages * PAGE_SIZE, &handle, GFP_KERNEL);
if (!mem)
goto nomem;
gasket_dev->page_table[index]->num_coherent_pages = num_pages;
/* allocate the physical memory block */
gasket_dev->page_table[index]->coherent_pages =
kcalloc(num_pages,
sizeof(*gasket_dev->page_table[index]->coherent_pages),
GFP_KERNEL);
if (!gasket_dev->page_table[index]->coherent_pages)
goto nomem;
gasket_dev->coherent_buffer.length_bytes =
PAGE_SIZE * (num_pages);
gasket_dev->coherent_buffer.phys_base = handle;
gasket_dev->coherent_buffer.virt_base = mem;
*dma_address = driver_desc->coherent_buffer_description.base;
for (j = 0; j < num_pages; j++) {
gasket_dev->page_table[index]->coherent_pages[j].paddr =
handle + j * PAGE_SIZE;
gasket_dev->page_table[index]->coherent_pages[j].kernel_virt =
(u64)mem + j * PAGE_SIZE;
}
return 0;
nomem:
if (mem) {
dma_free_coherent(gasket_get_device(gasket_dev),
num_pages * PAGE_SIZE, mem, handle);
gasket_dev->coherent_buffer.length_bytes = 0;
gasket_dev->coherent_buffer.virt_base = NULL;
gasket_dev->coherent_buffer.phys_base = 0;
}
kfree(gasket_dev->page_table[index]->coherent_pages);
gasket_dev->page_table[index]->coherent_pages = NULL;
gasket_dev->page_table[index]->num_coherent_pages = 0;
return -ENOMEM;
}
/* Free a block of coherent memory. */
int gasket_free_coherent_memory(struct gasket_dev *gasket_dev, u64 size,
dma_addr_t dma_address, u64 index)
{
const struct gasket_driver_desc *driver_desc;
if (!gasket_dev->page_table[index])
return -EFAULT;
driver_desc = gasket_get_driver_desc(gasket_dev);
if (driver_desc->coherent_buffer_description.base != dma_address)
return -EADDRNOTAVAIL;
if (gasket_dev->coherent_buffer.length_bytes) {
dma_free_coherent(gasket_get_device(gasket_dev),
gasket_dev->coherent_buffer.length_bytes,
gasket_dev->coherent_buffer.virt_base,
gasket_dev->coherent_buffer.phys_base);
gasket_dev->coherent_buffer.length_bytes = 0;
gasket_dev->coherent_buffer.virt_base = NULL;
gasket_dev->coherent_buffer.phys_base = 0;
}
kfree(gasket_dev->page_table[index]->coherent_pages);
gasket_dev->page_table[index]->coherent_pages = NULL;
gasket_dev->page_table[index]->num_coherent_pages = 0;
return 0;
}
/* Release all coherent memory. */
void gasket_free_coherent_memory_all(struct gasket_dev *gasket_dev, u64 index)
{
if (!gasket_dev->page_table[index])
return;
if (gasket_dev->coherent_buffer.length_bytes) {
dma_free_coherent(gasket_get_device(gasket_dev),
gasket_dev->coherent_buffer.length_bytes,
gasket_dev->coherent_buffer.virt_base,
gasket_dev->coherent_buffer.phys_base);
gasket_dev->coherent_buffer.length_bytes = 0;
gasket_dev->coherent_buffer.virt_base = NULL;
gasket_dev->coherent_buffer.phys_base = 0;
}
}