blob: 39e17a7d2f24b9f52fc63bfd36deedb766d2944c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* hal.c - DIM2 HAL implementation
* (MediaLB, Device Interface Macro IP, OS62420)
*
* Copyright (C) 2015-2016, Microchip Technology Germany II GmbH & Co. KG
*/
/* Author: Andrey Shvetsov <andrey.shvetsov@k2l.de> */
#include "hal.h"
#include "errors.h"
#include "reg.h"
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/io.h>
/*
* Size factor for isochronous DBR buffer.
* Minimal value is 3.
*/
#define ISOC_DBR_FACTOR 3u
/*
* Number of 32-bit units for DBR map.
*
* 1: block size is 512, max allocation is 16K
* 2: block size is 256, max allocation is 8K
* 4: block size is 128, max allocation is 4K
* 8: block size is 64, max allocation is 2K
*
* Min allocated space is block size.
* Max possible allocated space is 32 blocks.
*/
#define DBR_MAP_SIZE 2
/* -------------------------------------------------------------------------- */
/* not configurable area */
#define CDT 0x00
#define ADT 0x40
#define MLB_CAT 0x80
#define AHB_CAT 0x88
#define DBR_SIZE (16 * 1024) /* specified by IP */
#define DBR_BLOCK_SIZE (DBR_SIZE / 32 / DBR_MAP_SIZE)
#define ROUND_UP_TO(x, d) (DIV_ROUND_UP(x, (d)) * (d))
/* -------------------------------------------------------------------------- */
/* generic helper functions and macros */
static inline u32 bit_mask(u8 position)
{
return (u32)1 << position;
}
static inline bool dim_on_error(u8 error_id, const char *error_message)
{
dimcb_on_error(error_id, error_message);
return false;
}
/* -------------------------------------------------------------------------- */
/* types and local variables */
struct async_tx_dbr {
u8 ch_addr;
u16 rpc;
u16 wpc;
u16 rest_size;
u16 sz_queue[CDT0_RPC_MASK + 1];
};
struct lld_global_vars_t {
bool dim_is_initialized;
bool mcm_is_initialized;
struct dim2_regs __iomem *dim2; /* DIM2 core base address */
struct async_tx_dbr atx_dbr;
u32 fcnt;
u32 dbr_map[DBR_MAP_SIZE];
};
static struct lld_global_vars_t g = { false };
/* -------------------------------------------------------------------------- */
static int dbr_get_mask_size(u16 size)
{
int i;
for (i = 0; i < 6; i++)
if (size <= (DBR_BLOCK_SIZE << i))
return 1 << i;
return 0;
}
/**
* Allocates DBR memory.
* @param size Allocating memory size.
* @return Offset in DBR memory by success or DBR_SIZE if out of memory.
*/
static int alloc_dbr(u16 size)
{
int mask_size;
int i, block_idx = 0;
if (size <= 0)
return DBR_SIZE; /* out of memory */
mask_size = dbr_get_mask_size(size);
if (mask_size == 0)
return DBR_SIZE; /* out of memory */
for (i = 0; i < DBR_MAP_SIZE; i++) {
u32 const blocks = DIV_ROUND_UP(size, DBR_BLOCK_SIZE);
u32 mask = ~((~(u32)0) << blocks);
do {
if ((g.dbr_map[i] & mask) == 0) {
g.dbr_map[i] |= mask;
return block_idx * DBR_BLOCK_SIZE;
}
block_idx += mask_size;
/* do shift left with 2 steps in case mask_size == 32 */
mask <<= mask_size - 1;
} while ((mask <<= 1) != 0);
}
return DBR_SIZE; /* out of memory */
}
static void free_dbr(int offs, int size)
{
int block_idx = offs / DBR_BLOCK_SIZE;
u32 const blocks = DIV_ROUND_UP(size, DBR_BLOCK_SIZE);
u32 mask = ~((~(u32)0) << blocks);
mask <<= block_idx % 32;
g.dbr_map[block_idx / 32] &= ~mask;
}
/* -------------------------------------------------------------------------- */
static void dim2_transfer_madr(u32 val)
{
writel(val, &g.dim2->MADR);
/* wait for transfer completion */
while ((readl(&g.dim2->MCTL) & 1) != 1)
continue;
writel(0, &g.dim2->MCTL); /* clear transfer complete */
}
static void dim2_clear_dbr(u16 addr, u16 size)
{
enum { MADR_TB_BIT = 30, MADR_WNR_BIT = 31 };
u16 const end_addr = addr + size;
u32 const cmd = bit_mask(MADR_WNR_BIT) | bit_mask(MADR_TB_BIT);
writel(0, &g.dim2->MCTL); /* clear transfer complete */
writel(0, &g.dim2->MDAT0);
for (; addr < end_addr; addr++)
dim2_transfer_madr(cmd | addr);
}
static u32 dim2_read_ctr(u32 ctr_addr, u16 mdat_idx)
{
dim2_transfer_madr(ctr_addr);
return readl((&g.dim2->MDAT0) + mdat_idx);
}
static void dim2_write_ctr_mask(u32 ctr_addr, const u32 *mask, const u32 *value)
{
enum { MADR_WNR_BIT = 31 };
writel(0, &g.dim2->MCTL); /* clear transfer complete */
if (mask[0] != 0)
writel(value[0], &g.dim2->MDAT0);
if (mask[1] != 0)
writel(value[1], &g.dim2->MDAT1);
if (mask[2] != 0)
writel(value[2], &g.dim2->MDAT2);
if (mask[3] != 0)
writel(value[3], &g.dim2->MDAT3);
writel(mask[0], &g.dim2->MDWE0);
writel(mask[1], &g.dim2->MDWE1);
writel(mask[2], &g.dim2->MDWE2);
writel(mask[3], &g.dim2->MDWE3);
dim2_transfer_madr(bit_mask(MADR_WNR_BIT) | ctr_addr);
}
static inline void dim2_write_ctr(u32 ctr_addr, const u32 *value)
{
u32 const mask[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
dim2_write_ctr_mask(ctr_addr, mask, value);
}
static inline void dim2_clear_ctr(u32 ctr_addr)
{
u32 const value[4] = { 0, 0, 0, 0 };
dim2_write_ctr(ctr_addr, value);
}
static void dim2_configure_cat(u8 cat_base, u8 ch_addr, u8 ch_type,
bool read_not_write)
{
bool isoc_fce = ch_type == CAT_CT_VAL_ISOC;
bool sync_mfe = ch_type == CAT_CT_VAL_SYNC;
u16 const cat =
(read_not_write << CAT_RNW_BIT) |
(ch_type << CAT_CT_SHIFT) |
(ch_addr << CAT_CL_SHIFT) |
(isoc_fce << CAT_FCE_BIT) |
(sync_mfe << CAT_MFE_BIT) |
(false << CAT_MT_BIT) |
(true << CAT_CE_BIT);
u8 const ctr_addr = cat_base + ch_addr / 8;
u8 const idx = (ch_addr % 8) / 2;
u8 const shift = (ch_addr % 2) * 16;
u32 mask[4] = { 0, 0, 0, 0 };
u32 value[4] = { 0, 0, 0, 0 };
mask[idx] = (u32)0xFFFF << shift;
value[idx] = cat << shift;
dim2_write_ctr_mask(ctr_addr, mask, value);
}
static void dim2_clear_cat(u8 cat_base, u8 ch_addr)
{
u8 const ctr_addr = cat_base + ch_addr / 8;
u8 const idx = (ch_addr % 8) / 2;
u8 const shift = (ch_addr % 2) * 16;
u32 mask[4] = { 0, 0, 0, 0 };
u32 value[4] = { 0, 0, 0, 0 };
mask[idx] = (u32)0xFFFF << shift;
dim2_write_ctr_mask(ctr_addr, mask, value);
}
static void dim2_configure_cdt(u8 ch_addr, u16 dbr_address, u16 hw_buffer_size,
u16 packet_length)
{
u32 cdt[4] = { 0, 0, 0, 0 };
if (packet_length)
cdt[1] = ((packet_length - 1) << CDT1_BS_ISOC_SHIFT);
cdt[3] =
((hw_buffer_size - 1) << CDT3_BD_SHIFT) |
(dbr_address << CDT3_BA_SHIFT);
dim2_write_ctr(CDT + ch_addr, cdt);
}
static u16 dim2_rpc(u8 ch_addr)
{
u32 cdt0 = dim2_read_ctr(CDT + ch_addr, 0);
return (cdt0 >> CDT0_RPC_SHIFT) & CDT0_RPC_MASK;
}
static void dim2_clear_cdt(u8 ch_addr)
{
u32 cdt[4] = { 0, 0, 0, 0 };
dim2_write_ctr(CDT + ch_addr, cdt);
}
static void dim2_configure_adt(u8 ch_addr)
{
u32 adt[4] = { 0, 0, 0, 0 };
adt[0] =
(true << ADT0_CE_BIT) |
(true << ADT0_LE_BIT) |
(0 << ADT0_PG_BIT);
dim2_write_ctr(ADT + ch_addr, adt);
}
static void dim2_clear_adt(u8 ch_addr)
{
u32 adt[4] = { 0, 0, 0, 0 };
dim2_write_ctr(ADT + ch_addr, adt);
}
static void dim2_start_ctrl_async(u8 ch_addr, u8 idx, u32 buf_addr,
u16 buffer_size)
{
u8 const shift = idx * 16;
u32 mask[4] = { 0, 0, 0, 0 };
u32 adt[4] = { 0, 0, 0, 0 };
mask[1] =
bit_mask(ADT1_PS_BIT + shift) |
bit_mask(ADT1_RDY_BIT + shift) |
(ADT1_CTRL_ASYNC_BD_MASK << (ADT1_BD_SHIFT + shift));
adt[1] =
(true << (ADT1_PS_BIT + shift)) |
(true << (ADT1_RDY_BIT + shift)) |
((buffer_size - 1) << (ADT1_BD_SHIFT + shift));
mask[idx + 2] = 0xFFFFFFFF;
adt[idx + 2] = buf_addr;
dim2_write_ctr_mask(ADT + ch_addr, mask, adt);
}
static void dim2_start_isoc_sync(u8 ch_addr, u8 idx, u32 buf_addr,
u16 buffer_size)
{
u8 const shift = idx * 16;
u32 mask[4] = { 0, 0, 0, 0 };
u32 adt[4] = { 0, 0, 0, 0 };
mask[1] =
bit_mask(ADT1_RDY_BIT + shift) |
(ADT1_ISOC_SYNC_BD_MASK << (ADT1_BD_SHIFT + shift));
adt[1] =
(true << (ADT1_RDY_BIT + shift)) |
((buffer_size - 1) << (ADT1_BD_SHIFT + shift));
mask[idx + 2] = 0xFFFFFFFF;
adt[idx + 2] = buf_addr;
dim2_write_ctr_mask(ADT + ch_addr, mask, adt);
}
static void dim2_clear_ctram(void)
{
u32 ctr_addr;
for (ctr_addr = 0; ctr_addr < 0x90; ctr_addr++)
dim2_clear_ctr(ctr_addr);
}
static void dim2_configure_channel(
u8 ch_addr, u8 type, u8 is_tx, u16 dbr_address, u16 hw_buffer_size,
u16 packet_length)
{
dim2_configure_cdt(ch_addr, dbr_address, hw_buffer_size, packet_length);
dim2_configure_cat(MLB_CAT, ch_addr, type, is_tx ? 1 : 0);
dim2_configure_adt(ch_addr);
dim2_configure_cat(AHB_CAT, ch_addr, type, is_tx ? 0 : 1);
/* unmask interrupt for used channel, enable mlb_sys_int[0] interrupt */
writel(readl(&g.dim2->ACMR0) | bit_mask(ch_addr), &g.dim2->ACMR0);
}
static void dim2_clear_channel(u8 ch_addr)
{
/* mask interrupt for used channel, disable mlb_sys_int[0] interrupt */
writel(readl(&g.dim2->ACMR0) & ~bit_mask(ch_addr), &g.dim2->ACMR0);
dim2_clear_cat(AHB_CAT, ch_addr);
dim2_clear_adt(ch_addr);
dim2_clear_cat(MLB_CAT, ch_addr);
dim2_clear_cdt(ch_addr);
/* clear channel status bit */
writel(bit_mask(ch_addr), &g.dim2->ACSR0);
}
/* -------------------------------------------------------------------------- */
/* trace async tx dbr fill state */
static inline u16 norm_pc(u16 pc)
{
return pc & CDT0_RPC_MASK;
}
static void dbrcnt_init(u8 ch_addr, u16 dbr_size)
{
g.atx_dbr.rest_size = dbr_size;
g.atx_dbr.rpc = dim2_rpc(ch_addr);
g.atx_dbr.wpc = g.atx_dbr.rpc;
}
static void dbrcnt_enq(int buf_sz)
{
g.atx_dbr.rest_size -= buf_sz;
g.atx_dbr.sz_queue[norm_pc(g.atx_dbr.wpc)] = buf_sz;
g.atx_dbr.wpc++;
}
u16 dim_dbr_space(struct dim_channel *ch)
{
u16 cur_rpc;
struct async_tx_dbr *dbr = &g.atx_dbr;
if (ch->addr != dbr->ch_addr)
return 0xFFFF;
cur_rpc = dim2_rpc(ch->addr);
while (norm_pc(dbr->rpc) != cur_rpc) {
dbr->rest_size += dbr->sz_queue[norm_pc(dbr->rpc)];
dbr->rpc++;
}
if ((u16)(dbr->wpc - dbr->rpc) >= CDT0_RPC_MASK)
return 0;
return dbr->rest_size;
}
/* -------------------------------------------------------------------------- */
/* channel state helpers */
static void state_init(struct int_ch_state *state)
{
state->request_counter = 0;
state->service_counter = 0;
state->idx1 = 0;
state->idx2 = 0;
state->level = 0;
}
/* -------------------------------------------------------------------------- */
/* macro helper functions */
static inline bool check_channel_address(u32 ch_address)
{
return ch_address > 0 && (ch_address % 2) == 0 &&
(ch_address / 2) <= (u32)CAT_CL_MASK;
}
static inline bool check_packet_length(u32 packet_length)
{
u16 const max_size = ((u16)CDT3_BD_ISOC_MASK + 1u) / ISOC_DBR_FACTOR;
if (packet_length <= 0)
return false; /* too small */
if (packet_length > max_size)
return false; /* too big */
if (packet_length - 1u > (u32)CDT1_BS_ISOC_MASK)
return false; /* too big */
return true;
}
static inline bool check_bytes_per_frame(u32 bytes_per_frame)
{
u16 const bd_factor = g.fcnt + 2;
u16 const max_size = ((u16)CDT3_BD_MASK + 1u) >> bd_factor;
if (bytes_per_frame <= 0)
return false; /* too small */
if (bytes_per_frame > max_size)
return false; /* too big */
return true;
}
u16 dim_norm_ctrl_async_buffer_size(u16 buf_size)
{
u16 const max_size = (u16)ADT1_CTRL_ASYNC_BD_MASK + 1u;
if (buf_size > max_size)
return max_size;
return buf_size;
}
static inline u16 norm_isoc_buffer_size(u16 buf_size, u16 packet_length)
{
u16 n;
u16 const max_size = (u16)ADT1_ISOC_SYNC_BD_MASK + 1u;
if (buf_size > max_size)
buf_size = max_size;
n = buf_size / packet_length;
if (n < 2u)
return 0; /* too small buffer for given packet_length */
return packet_length * n;
}
static inline u16 norm_sync_buffer_size(u16 buf_size, u16 bytes_per_frame)
{
u16 n;
u16 const max_size = (u16)ADT1_ISOC_SYNC_BD_MASK + 1u;
u32 const unit = bytes_per_frame << g.fcnt;
if (buf_size > max_size)
buf_size = max_size;
n = buf_size / unit;
if (n < 1u)
return 0; /* too small buffer for given bytes_per_frame */
return unit * n;
}
static void dim2_cleanup(void)
{
/* disable MediaLB */
writel(false << MLBC0_MLBEN_BIT, &g.dim2->MLBC0);
dim2_clear_ctram();
/* disable mlb_int interrupt */
writel(0, &g.dim2->MIEN);
/* clear status for all dma channels */
writel(0xFFFFFFFF, &g.dim2->ACSR0);
writel(0xFFFFFFFF, &g.dim2->ACSR1);
/* mask interrupts for all channels */
writel(0, &g.dim2->ACMR0);
writel(0, &g.dim2->ACMR1);
}
static void dim2_initialize(bool enable_6pin, u8 mlb_clock)
{
dim2_cleanup();
/* configure and enable MediaLB */
writel(enable_6pin << MLBC0_MLBPEN_BIT |
mlb_clock << MLBC0_MLBCLK_SHIFT |
g.fcnt << MLBC0_FCNT_SHIFT |
true << MLBC0_MLBEN_BIT,
&g.dim2->MLBC0);
/* activate all HBI channels */
writel(0xFFFFFFFF, &g.dim2->HCMR0);
writel(0xFFFFFFFF, &g.dim2->HCMR1);
/* enable HBI */
writel(bit_mask(HCTL_EN_BIT), &g.dim2->HCTL);
/* configure DMA */
writel(ACTL_DMA_MODE_VAL_DMA_MODE_1 << ACTL_DMA_MODE_BIT |
true << ACTL_SCE_BIT, &g.dim2->ACTL);
}
static bool dim2_is_mlb_locked(void)
{
u32 const mask0 = bit_mask(MLBC0_MLBLK_BIT);
u32 const mask1 = bit_mask(MLBC1_CLKMERR_BIT) |
bit_mask(MLBC1_LOCKERR_BIT);
u32 const c1 = readl(&g.dim2->MLBC1);
u32 const nda_mask = (u32)MLBC1_NDA_MASK << MLBC1_NDA_SHIFT;
writel(c1 & nda_mask, &g.dim2->MLBC1);
return (readl(&g.dim2->MLBC1) & mask1) == 0 &&
(readl(&g.dim2->MLBC0) & mask0) != 0;
}
/* -------------------------------------------------------------------------- */
/* channel help routines */
static inline bool service_channel(u8 ch_addr, u8 idx)
{
u8 const shift = idx * 16;
u32 const adt1 = dim2_read_ctr(ADT + ch_addr, 1);
u32 mask[4] = { 0, 0, 0, 0 };
u32 adt_w[4] = { 0, 0, 0, 0 };
if (((adt1 >> (ADT1_DNE_BIT + shift)) & 1) == 0)
return false;
mask[1] =
bit_mask(ADT1_DNE_BIT + shift) |
bit_mask(ADT1_ERR_BIT + shift) |
bit_mask(ADT1_RDY_BIT + shift);
dim2_write_ctr_mask(ADT + ch_addr, mask, adt_w);
/* clear channel status bit */
writel(bit_mask(ch_addr), &g.dim2->ACSR0);
return true;
}
/* -------------------------------------------------------------------------- */
/* channel init routines */
static void isoc_init(struct dim_channel *ch, u8 ch_addr, u16 packet_length)
{
state_init(&ch->state);
ch->addr = ch_addr;
ch->packet_length = packet_length;
ch->bytes_per_frame = 0;
ch->done_sw_buffers_number = 0;
}
static void sync_init(struct dim_channel *ch, u8 ch_addr, u16 bytes_per_frame)
{
state_init(&ch->state);
ch->addr = ch_addr;
ch->packet_length = 0;
ch->bytes_per_frame = bytes_per_frame;
ch->done_sw_buffers_number = 0;
}
static void channel_init(struct dim_channel *ch, u8 ch_addr)
{
state_init(&ch->state);
ch->addr = ch_addr;
ch->packet_length = 0;
ch->bytes_per_frame = 0;
ch->done_sw_buffers_number = 0;
}
/* returns true if channel interrupt state is cleared */
static bool channel_service_interrupt(struct dim_channel *ch)
{
struct int_ch_state *const state = &ch->state;
if (!service_channel(ch->addr, state->idx2))
return false;
state->idx2 ^= 1;
state->request_counter++;
return true;
}
static bool channel_start(struct dim_channel *ch, u32 buf_addr, u16 buf_size)
{
struct int_ch_state *const state = &ch->state;
if (buf_size <= 0)
return dim_on_error(DIM_ERR_BAD_BUFFER_SIZE, "Bad buffer size");
if (ch->packet_length == 0 && ch->bytes_per_frame == 0 &&
buf_size != dim_norm_ctrl_async_buffer_size(buf_size))
return dim_on_error(DIM_ERR_BAD_BUFFER_SIZE,
"Bad control/async buffer size");
if (ch->packet_length &&
buf_size != norm_isoc_buffer_size(buf_size, ch->packet_length))
return dim_on_error(DIM_ERR_BAD_BUFFER_SIZE,
"Bad isochronous buffer size");
if (ch->bytes_per_frame &&
buf_size != norm_sync_buffer_size(buf_size, ch->bytes_per_frame))
return dim_on_error(DIM_ERR_BAD_BUFFER_SIZE,
"Bad synchronous buffer size");
if (state->level >= 2u)
return dim_on_error(DIM_ERR_OVERFLOW, "Channel overflow");
++state->level;
if (ch->addr == g.atx_dbr.ch_addr)
dbrcnt_enq(buf_size);
if (ch->packet_length || ch->bytes_per_frame)
dim2_start_isoc_sync(ch->addr, state->idx1, buf_addr, buf_size);
else
dim2_start_ctrl_async(ch->addr, state->idx1, buf_addr,
buf_size);
state->idx1 ^= 1;
return true;
}
static u8 channel_service(struct dim_channel *ch)
{
struct int_ch_state *const state = &ch->state;
if (state->service_counter != state->request_counter) {
state->service_counter++;
if (state->level == 0)
return DIM_ERR_UNDERFLOW;
--state->level;
ch->done_sw_buffers_number++;
}
return DIM_NO_ERROR;
}
static bool channel_detach_buffers(struct dim_channel *ch, u16 buffers_number)
{
if (buffers_number > ch->done_sw_buffers_number)
return dim_on_error(DIM_ERR_UNDERFLOW, "Channel underflow");
ch->done_sw_buffers_number -= buffers_number;
return true;
}
/* -------------------------------------------------------------------------- */
/* API */
u8 dim_startup(struct dim2_regs __iomem *dim_base_address, u32 mlb_clock,
u32 fcnt)
{
g.dim_is_initialized = false;
if (!dim_base_address)
return DIM_INIT_ERR_DIM_ADDR;
/* MediaLB clock: 0 - 256 fs, 1 - 512 fs, 2 - 1024 fs, 3 - 2048 fs */
/* MediaLB clock: 4 - 3072 fs, 5 - 4096 fs, 6 - 6144 fs, 7 - 8192 fs */
if (mlb_clock >= 8)
return DIM_INIT_ERR_MLB_CLOCK;
if (fcnt > MLBC0_FCNT_MAX_VAL)
return DIM_INIT_ERR_MLB_CLOCK;
g.dim2 = dim_base_address;
g.fcnt = fcnt;
g.dbr_map[0] = 0;
g.dbr_map[1] = 0;
dim2_initialize(mlb_clock >= 3, mlb_clock);
g.dim_is_initialized = true;
return DIM_NO_ERROR;
}
void dim_shutdown(void)
{
g.dim_is_initialized = false;
dim2_cleanup();
}
bool dim_get_lock_state(void)
{
return dim2_is_mlb_locked();
}
static u8 init_ctrl_async(struct dim_channel *ch, u8 type, u8 is_tx,
u16 ch_address, u16 hw_buffer_size)
{
if (!g.dim_is_initialized || !ch)
return DIM_ERR_DRIVER_NOT_INITIALIZED;
if (!check_channel_address(ch_address))
return DIM_INIT_ERR_CHANNEL_ADDRESS;
if (!ch->dbr_size)
ch->dbr_size = ROUND_UP_TO(hw_buffer_size, DBR_BLOCK_SIZE);
ch->dbr_addr = alloc_dbr(ch->dbr_size);
if (ch->dbr_addr >= DBR_SIZE)
return DIM_INIT_ERR_OUT_OF_MEMORY;
channel_init(ch, ch_address / 2);
dim2_configure_channel(ch->addr, type, is_tx,
ch->dbr_addr, ch->dbr_size, 0);
return DIM_NO_ERROR;
}
void dim_service_mlb_int_irq(void)
{
writel(0, &g.dim2->MS0);
writel(0, &g.dim2->MS1);
}
/**
* Retrieves maximal possible correct buffer size for isochronous data type
* conform to given packet length and not bigger than given buffer size.
*
* Returns non-zero correct buffer size or zero by error.
*/
u16 dim_norm_isoc_buffer_size(u16 buf_size, u16 packet_length)
{
if (!check_packet_length(packet_length))
return 0;
return norm_isoc_buffer_size(buf_size, packet_length);
}
/**
* Retrieves maximal possible correct buffer size for synchronous data type
* conform to given bytes per frame and not bigger than given buffer size.
*
* Returns non-zero correct buffer size or zero by error.
*/
u16 dim_norm_sync_buffer_size(u16 buf_size, u16 bytes_per_frame)
{
if (!check_bytes_per_frame(bytes_per_frame))
return 0;
return norm_sync_buffer_size(buf_size, bytes_per_frame);
}
u8 dim_init_control(struct dim_channel *ch, u8 is_tx, u16 ch_address,
u16 max_buffer_size)
{
return init_ctrl_async(ch, CAT_CT_VAL_CONTROL, is_tx, ch_address,
max_buffer_size);
}
u8 dim_init_async(struct dim_channel *ch, u8 is_tx, u16 ch_address,
u16 max_buffer_size)
{
u8 ret = init_ctrl_async(ch, CAT_CT_VAL_ASYNC, is_tx, ch_address,
max_buffer_size);
if (is_tx && !g.atx_dbr.ch_addr) {
g.atx_dbr.ch_addr = ch->addr;
dbrcnt_init(ch->addr, ch->dbr_size);
writel(bit_mask(20), &g.dim2->MIEN);
}
return ret;
}
u8 dim_init_isoc(struct dim_channel *ch, u8 is_tx, u16 ch_address,
u16 packet_length)
{
if (!g.dim_is_initialized || !ch)
return DIM_ERR_DRIVER_NOT_INITIALIZED;
if (!check_channel_address(ch_address))
return DIM_INIT_ERR_CHANNEL_ADDRESS;
if (!check_packet_length(packet_length))
return DIM_ERR_BAD_CONFIG;
if (!ch->dbr_size)
ch->dbr_size = packet_length * ISOC_DBR_FACTOR;
ch->dbr_addr = alloc_dbr(ch->dbr_size);
if (ch->dbr_addr >= DBR_SIZE)
return DIM_INIT_ERR_OUT_OF_MEMORY;
isoc_init(ch, ch_address / 2, packet_length);
dim2_configure_channel(ch->addr, CAT_CT_VAL_ISOC, is_tx, ch->dbr_addr,
ch->dbr_size, packet_length);
return DIM_NO_ERROR;
}
u8 dim_init_sync(struct dim_channel *ch, u8 is_tx, u16 ch_address,
u16 bytes_per_frame)
{
u16 bd_factor = g.fcnt + 2;
if (!g.dim_is_initialized || !ch)
return DIM_ERR_DRIVER_NOT_INITIALIZED;
if (!check_channel_address(ch_address))
return DIM_INIT_ERR_CHANNEL_ADDRESS;
if (!check_bytes_per_frame(bytes_per_frame))
return DIM_ERR_BAD_CONFIG;
if (!ch->dbr_size)
ch->dbr_size = bytes_per_frame << bd_factor;
ch->dbr_addr = alloc_dbr(ch->dbr_size);
if (ch->dbr_addr >= DBR_SIZE)
return DIM_INIT_ERR_OUT_OF_MEMORY;
sync_init(ch, ch_address / 2, bytes_per_frame);
dim2_clear_dbr(ch->dbr_addr, ch->dbr_size);
dim2_configure_channel(ch->addr, CAT_CT_VAL_SYNC, is_tx,
ch->dbr_addr, ch->dbr_size, 0);
return DIM_NO_ERROR;
}
u8 dim_destroy_channel(struct dim_channel *ch)
{
if (!g.dim_is_initialized || !ch)
return DIM_ERR_DRIVER_NOT_INITIALIZED;
if (ch->addr == g.atx_dbr.ch_addr) {
writel(0, &g.dim2->MIEN);
g.atx_dbr.ch_addr = 0;
}
dim2_clear_channel(ch->addr);
if (ch->dbr_addr < DBR_SIZE)
free_dbr(ch->dbr_addr, ch->dbr_size);
ch->dbr_addr = DBR_SIZE;
return DIM_NO_ERROR;
}
void dim_service_ahb_int_irq(struct dim_channel *const *channels)
{
bool state_changed;
if (!g.dim_is_initialized) {
dim_on_error(DIM_ERR_DRIVER_NOT_INITIALIZED,
"DIM is not initialized");
return;
}
if (!channels) {
dim_on_error(DIM_ERR_DRIVER_NOT_INITIALIZED, "Bad channels");
return;
}
/*
* Use while-loop and a flag to make sure the age is changed back at
* least once, otherwise the interrupt may never come if CPU generates
* interrupt on changing age.
* This cycle runs not more than number of channels, because
* channel_service_interrupt() routine doesn't start the channel again.
*/
do {
struct dim_channel *const *ch = channels;
state_changed = false;
while (*ch) {
state_changed |= channel_service_interrupt(*ch);
++ch;
}
} while (state_changed);
}
u8 dim_service_channel(struct dim_channel *ch)
{
if (!g.dim_is_initialized || !ch)
return DIM_ERR_DRIVER_NOT_INITIALIZED;
return channel_service(ch);
}
struct dim_ch_state_t *dim_get_channel_state(struct dim_channel *ch,
struct dim_ch_state_t *state_ptr)
{
if (!ch || !state_ptr)
return NULL;
state_ptr->ready = ch->state.level < 2;
state_ptr->done_buffers = ch->done_sw_buffers_number;
return state_ptr;
}
bool dim_enqueue_buffer(struct dim_channel *ch, u32 buffer_addr,
u16 buffer_size)
{
if (!ch)
return dim_on_error(DIM_ERR_DRIVER_NOT_INITIALIZED,
"Bad channel");
return channel_start(ch, buffer_addr, buffer_size);
}
bool dim_detach_buffers(struct dim_channel *ch, u16 buffers_number)
{
if (!ch)
return dim_on_error(DIM_ERR_DRIVER_NOT_INITIALIZED,
"Bad channel");
return channel_detach_buffers(ch, buffers_number);
}