blob: eda11abc5f011f1a8ef8bab3feb19274d6c0277f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
#include <linux/completion.h>
#include <linux/circ_buf.h>
#include <linux/list.h>
#include "a6xx_gmu.h"
#include "a6xx_gmu.xml.h"
#define HFI_MSG_ID(val) [val] = #val
static const char * const a6xx_hfi_msg_id[] = {
HFI_MSG_ID(HFI_H2F_MSG_INIT),
HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION),
HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE),
HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE),
HFI_MSG_ID(HFI_H2F_MSG_TEST),
};
static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data,
u32 dwords)
{
struct a6xx_hfi_queue_header *header = queue->header;
u32 i, hdr, index = header->read_index;
if (header->read_index == header->write_index) {
header->rx_request = 1;
return 0;
}
hdr = queue->data[index];
/*
* If we are to assume that the GMU firmware is in fact a rational actor
* and is programmed to not send us a larger response than we expect
* then we can also assume that if the header size is unexpectedly large
* that it is due to memory corruption and/or hardware failure. In this
* case the only reasonable course of action is to BUG() to help harden
* the failure.
*/
BUG_ON(HFI_HEADER_SIZE(hdr) > dwords);
for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) {
data[i] = queue->data[index];
index = (index + 1) % header->size;
}
header->read_index = index;
return HFI_HEADER_SIZE(hdr);
}
static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu,
struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
{
struct a6xx_hfi_queue_header *header = queue->header;
u32 i, space, index = header->write_index;
spin_lock(&queue->lock);
space = CIRC_SPACE(header->write_index, header->read_index,
header->size);
if (space < dwords) {
header->dropped++;
spin_unlock(&queue->lock);
return -ENOSPC;
}
for (i = 0; i < dwords; i++) {
queue->data[index] = data[i];
index = (index + 1) % header->size;
}
header->write_index = index;
spin_unlock(&queue->lock);
gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01);
return 0;
}
static int a6xx_hfi_wait_for_ack(struct a6xx_gmu *gmu, u32 id, u32 seqnum,
u32 *payload, u32 payload_size)
{
struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE];
u32 val;
int ret;
/* Wait for a response */
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
val & A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ, 100, 5000);
if (ret) {
DRM_DEV_ERROR(gmu->dev,
"Message %s id %d timed out waiting for response\n",
a6xx_hfi_msg_id[id], seqnum);
return -ETIMEDOUT;
}
/* Clear the interrupt */
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR,
A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ);
for (;;) {
struct a6xx_hfi_msg_response resp;
/* Get the next packet */
ret = a6xx_hfi_queue_read(queue, (u32 *) &resp,
sizeof(resp) >> 2);
/* If the queue is empty our response never made it */
if (!ret) {
DRM_DEV_ERROR(gmu->dev,
"The HFI response queue is unexpectedly empty\n");
return -ENOENT;
}
if (HFI_HEADER_ID(resp.header) == HFI_F2H_MSG_ERROR) {
struct a6xx_hfi_msg_error *error =
(struct a6xx_hfi_msg_error *) &resp;
DRM_DEV_ERROR(gmu->dev, "GMU firmware error %d\n",
error->code);
continue;
}
if (seqnum != HFI_HEADER_SEQNUM(resp.ret_header)) {
DRM_DEV_ERROR(gmu->dev,
"Unexpected message id %d on the response queue\n",
HFI_HEADER_SEQNUM(resp.ret_header));
continue;
}
if (resp.error) {
DRM_DEV_ERROR(gmu->dev,
"Message %s id %d returned error %d\n",
a6xx_hfi_msg_id[id], seqnum, resp.error);
return -EINVAL;
}
/* All is well, copy over the buffer */
if (payload && payload_size)
memcpy(payload, resp.payload,
min_t(u32, payload_size, sizeof(resp.payload)));
return 0;
}
}
static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id,
void *data, u32 size, u32 *payload, u32 payload_size)
{
struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE];
int ret, dwords = size >> 2;
u32 seqnum;
seqnum = atomic_inc_return(&queue->seqnum) % 0xfff;
/* First dword of the message is the message header - fill it in */
*((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) |
(dwords << 8) | id;
ret = a6xx_hfi_queue_write(gmu, queue, data, dwords);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "Unable to send message %s id %d\n",
a6xx_hfi_msg_id[id], seqnum);
return ret;
}
return a6xx_hfi_wait_for_ack(gmu, id, seqnum, payload, payload_size);
}
static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state)
{
struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 };
msg.dbg_buffer_addr = (u32) gmu->debug->iova;
msg.dbg_buffer_size = (u32) gmu->debug->size;
msg.boot_state = boot_state;
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg),
NULL, 0);
}
static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version)
{
struct a6xx_hfi_msg_fw_version msg = { 0 };
/* Currently supporting version 1.1 */
msg.supported_version = (1 << 28) | (1 << 16);
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg),
version, sizeof(*version));
}
static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
{
struct a6xx_hfi_msg_perf_table msg = { 0 };
int i;
msg.num_gpu_levels = gmu->nr_gpu_freqs;
msg.num_gmu_levels = gmu->nr_gmu_freqs;
for (i = 0; i < gmu->nr_gpu_freqs; i++) {
msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
}
for (i = 0; i < gmu->nr_gmu_freqs; i++) {
msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
}
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
NULL, 0);
}
static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu)
{
struct a6xx_hfi_msg_bw_table msg = { 0 };
/*
* The sdm845 GMU doesn't do bus frequency scaling on its own but it
* does need at least one entry in the list because it might be accessed
* when the GMU is shutting down. Send a single "off" entry.
*/
msg.bw_level_num = 1;
msg.ddr_cmds_num = 3;
msg.ddr_wait_bitmask = 0x07;
msg.ddr_cmds_addrs[0] = 0x50000;
msg.ddr_cmds_addrs[1] = 0x5005c;
msg.ddr_cmds_addrs[2] = 0x5000c;
msg.ddr_cmds_data[0][0] = 0x40000000;
msg.ddr_cmds_data[0][1] = 0x40000000;
msg.ddr_cmds_data[0][2] = 0x40000000;
/*
* These are the CX (CNOC) votes. This is used but the values for the
* sdm845 GMU are known and fixed so we can hard code them.
*/
msg.cnoc_cmds_num = 3;
msg.cnoc_wait_bitmask = 0x05;
msg.cnoc_cmds_addrs[0] = 0x50034;
msg.cnoc_cmds_addrs[1] = 0x5007c;
msg.cnoc_cmds_addrs[2] = 0x5004c;
msg.cnoc_cmds_data[0][0] = 0x40000000;
msg.cnoc_cmds_data[0][1] = 0x00000000;
msg.cnoc_cmds_data[0][2] = 0x40000000;
msg.cnoc_cmds_data[1][0] = 0x60000001;
msg.cnoc_cmds_data[1][1] = 0x20000001;
msg.cnoc_cmds_data[1][2] = 0x60000001;
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg),
NULL, 0);
}
static int a6xx_hfi_send_test(struct a6xx_gmu *gmu)
{
struct a6xx_hfi_msg_test msg = { 0 };
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg),
NULL, 0);
}
int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state)
{
int ret;
ret = a6xx_hfi_send_gmu_init(gmu, boot_state);
if (ret)
return ret;
ret = a6xx_hfi_get_fw_version(gmu, NULL);
if (ret)
return ret;
/*
* We have to get exchange version numbers per the sequence but at this
* point th kernel driver doesn't need to know the exact version of
* the GMU firmware
*/
ret = a6xx_hfi_send_perf_table(gmu);
if (ret)
return ret;
ret = a6xx_hfi_send_bw_table(gmu);
if (ret)
return ret;
/*
* Let the GMU know that there won't be any more HFI messages until next
* boot
*/
a6xx_hfi_send_test(gmu);
return 0;
}
void a6xx_hfi_stop(struct a6xx_gmu *gmu)
{
int i;
for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
struct a6xx_hfi_queue *queue = &gmu->queues[i];
if (!queue->header)
continue;
if (queue->header->read_index != queue->header->write_index)
DRM_DEV_ERROR(gmu->dev, "HFI queue %d is not empty\n", i);
queue->header->read_index = 0;
queue->header->write_index = 0;
}
}
static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue,
struct a6xx_hfi_queue_header *header, void *virt, u64 iova,
u32 id)
{
spin_lock_init(&queue->lock);
queue->header = header;
queue->data = virt;
atomic_set(&queue->seqnum, 0);
/* Set up the shared memory header */
header->iova = iova;
header->type = 10 << 8 | id;
header->status = 1;
header->size = SZ_4K >> 2;
header->msg_size = 0;
header->dropped = 0;
header->rx_watermark = 1;
header->tx_watermark = 1;
header->rx_request = 1;
header->tx_request = 0;
header->read_index = 0;
header->write_index = 0;
}
void a6xx_hfi_init(struct a6xx_gmu *gmu)
{
struct a6xx_gmu_bo *hfi = gmu->hfi;
struct a6xx_hfi_queue_table_header *table = hfi->virt;
struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table);
u64 offset;
int table_size;
/*
* The table size is the size of the table header plus all of the queue
* headers
*/
table_size = sizeof(*table);
table_size += (ARRAY_SIZE(gmu->queues) *
sizeof(struct a6xx_hfi_queue_header));
table->version = 0;
table->size = table_size;
/* First queue header is located immediately after the table header */
table->qhdr0_offset = sizeof(*table) >> 2;
table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2;
table->num_queues = ARRAY_SIZE(gmu->queues);
table->active_queues = ARRAY_SIZE(gmu->queues);
/* Command queue */
offset = SZ_4K;
a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset,
hfi->iova + offset, 0);
/* GMU response queue */
offset += SZ_4K;
a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset,
hfi->iova + offset, 4);
}