blob: c0697e1b71185ab61bf4f7ae84b1a26e7d0cf888 [file] [log] [blame]
/*
* Copyright (c) 2015, Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/mlx5/driver.h>
#include <linux/mlx5/vport.h>
#include <linux/mlx5/eswitch.h>
#include "mlx5_core.h"
#include "fs_core.h"
#include "fs_cmd.h"
#include "fs_ft_pool.h"
#include "diag/fs_tracepoint.h"
#include "accel/ipsec.h"
#include "fpga/ipsec.h"
#define INIT_TREE_NODE_ARRAY_SIZE(...) (sizeof((struct init_tree_node[]){__VA_ARGS__}) /\
sizeof(struct init_tree_node))
#define ADD_PRIO(num_prios_val, min_level_val, num_levels_val, caps_val,\
...) {.type = FS_TYPE_PRIO,\
.min_ft_level = min_level_val,\
.num_levels = num_levels_val,\
.num_leaf_prios = num_prios_val,\
.caps = caps_val,\
.children = (struct init_tree_node[]) {__VA_ARGS__},\
.ar_size = INIT_TREE_NODE_ARRAY_SIZE(__VA_ARGS__) \
}
#define ADD_MULTIPLE_PRIO(num_prios_val, num_levels_val, ...)\
ADD_PRIO(num_prios_val, 0, num_levels_val, {},\
__VA_ARGS__)\
#define ADD_NS(def_miss_act, ...) {.type = FS_TYPE_NAMESPACE, \
.def_miss_action = def_miss_act,\
.children = (struct init_tree_node[]) {__VA_ARGS__},\
.ar_size = INIT_TREE_NODE_ARRAY_SIZE(__VA_ARGS__) \
}
#define INIT_CAPS_ARRAY_SIZE(...) (sizeof((long[]){__VA_ARGS__}) /\
sizeof(long))
#define FS_CAP(cap) (__mlx5_bit_off(flow_table_nic_cap, cap))
#define FS_REQUIRED_CAPS(...) {.arr_sz = INIT_CAPS_ARRAY_SIZE(__VA_ARGS__), \
.caps = (long[]) {__VA_ARGS__} }
#define FS_CHAINING_CAPS FS_REQUIRED_CAPS(FS_CAP(flow_table_properties_nic_receive.flow_modify_en), \
FS_CAP(flow_table_properties_nic_receive.modify_root), \
FS_CAP(flow_table_properties_nic_receive.identified_miss_table_mode), \
FS_CAP(flow_table_properties_nic_receive.flow_table_modify))
#define FS_CHAINING_CAPS_EGRESS \
FS_REQUIRED_CAPS( \
FS_CAP(flow_table_properties_nic_transmit.flow_modify_en), \
FS_CAP(flow_table_properties_nic_transmit.modify_root), \
FS_CAP(flow_table_properties_nic_transmit \
.identified_miss_table_mode), \
FS_CAP(flow_table_properties_nic_transmit.flow_table_modify))
#define FS_CHAINING_CAPS_RDMA_TX \
FS_REQUIRED_CAPS( \
FS_CAP(flow_table_properties_nic_transmit_rdma.flow_modify_en), \
FS_CAP(flow_table_properties_nic_transmit_rdma.modify_root), \
FS_CAP(flow_table_properties_nic_transmit_rdma \
.identified_miss_table_mode), \
FS_CAP(flow_table_properties_nic_transmit_rdma \
.flow_table_modify))
#define LEFTOVERS_NUM_LEVELS 1
#define LEFTOVERS_NUM_PRIOS 1
#define BY_PASS_PRIO_NUM_LEVELS 1
#define BY_PASS_MIN_LEVEL (ETHTOOL_MIN_LEVEL + MLX5_BY_PASS_NUM_PRIOS +\
LEFTOVERS_NUM_PRIOS)
#define ETHTOOL_PRIO_NUM_LEVELS 1
#define ETHTOOL_NUM_PRIOS 11
#define ETHTOOL_MIN_LEVEL (KERNEL_MIN_LEVEL + ETHTOOL_NUM_PRIOS)
/* Promiscuous, Vlan, mac, ttc, inner ttc, {UDP/ANY/aRFS/accel/{esp, esp_err}} */
#define KERNEL_NIC_PRIO_NUM_LEVELS 7
#define KERNEL_NIC_NUM_PRIOS 1
/* One more level for tc */
#define KERNEL_MIN_LEVEL (KERNEL_NIC_PRIO_NUM_LEVELS + 1)
#define KERNEL_NIC_TC_NUM_PRIOS 1
#define KERNEL_NIC_TC_NUM_LEVELS 2
#define ANCHOR_NUM_LEVELS 1
#define ANCHOR_NUM_PRIOS 1
#define ANCHOR_MIN_LEVEL (BY_PASS_MIN_LEVEL + 1)
#define OFFLOADS_MAX_FT 2
#define OFFLOADS_NUM_PRIOS 2
#define OFFLOADS_MIN_LEVEL (ANCHOR_MIN_LEVEL + OFFLOADS_NUM_PRIOS)
#define LAG_PRIO_NUM_LEVELS 1
#define LAG_NUM_PRIOS 1
#define LAG_MIN_LEVEL (OFFLOADS_MIN_LEVEL + 1)
#define KERNEL_TX_IPSEC_NUM_PRIOS 1
#define KERNEL_TX_IPSEC_NUM_LEVELS 1
#define KERNEL_TX_MIN_LEVEL (KERNEL_TX_IPSEC_NUM_LEVELS)
struct node_caps {
size_t arr_sz;
long *caps;
};
static struct init_tree_node {
enum fs_node_type type;
struct init_tree_node *children;
int ar_size;
struct node_caps caps;
int min_ft_level;
int num_leaf_prios;
int prio;
int num_levels;
enum mlx5_flow_table_miss_action def_miss_action;
} root_fs = {
.type = FS_TYPE_NAMESPACE,
.ar_size = 7,
.children = (struct init_tree_node[]){
ADD_PRIO(0, BY_PASS_MIN_LEVEL, 0, FS_CHAINING_CAPS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(MLX5_BY_PASS_NUM_PRIOS,
BY_PASS_PRIO_NUM_LEVELS))),
ADD_PRIO(0, LAG_MIN_LEVEL, 0, FS_CHAINING_CAPS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(LAG_NUM_PRIOS,
LAG_PRIO_NUM_LEVELS))),
ADD_PRIO(0, OFFLOADS_MIN_LEVEL, 0, FS_CHAINING_CAPS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(OFFLOADS_NUM_PRIOS,
OFFLOADS_MAX_FT))),
ADD_PRIO(0, ETHTOOL_MIN_LEVEL, 0, FS_CHAINING_CAPS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(ETHTOOL_NUM_PRIOS,
ETHTOOL_PRIO_NUM_LEVELS))),
ADD_PRIO(0, KERNEL_MIN_LEVEL, 0, {},
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(KERNEL_NIC_TC_NUM_PRIOS,
KERNEL_NIC_TC_NUM_LEVELS),
ADD_MULTIPLE_PRIO(KERNEL_NIC_NUM_PRIOS,
KERNEL_NIC_PRIO_NUM_LEVELS))),
ADD_PRIO(0, BY_PASS_MIN_LEVEL, 0, FS_CHAINING_CAPS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(LEFTOVERS_NUM_PRIOS,
LEFTOVERS_NUM_LEVELS))),
ADD_PRIO(0, ANCHOR_MIN_LEVEL, 0, {},
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(ANCHOR_NUM_PRIOS,
ANCHOR_NUM_LEVELS))),
}
};
static struct init_tree_node egress_root_fs = {
.type = FS_TYPE_NAMESPACE,
#ifdef CONFIG_MLX5_IPSEC
.ar_size = 2,
#else
.ar_size = 1,
#endif
.children = (struct init_tree_node[]) {
ADD_PRIO(0, MLX5_BY_PASS_NUM_PRIOS, 0,
FS_CHAINING_CAPS_EGRESS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(MLX5_BY_PASS_NUM_PRIOS,
BY_PASS_PRIO_NUM_LEVELS))),
#ifdef CONFIG_MLX5_IPSEC
ADD_PRIO(0, KERNEL_TX_MIN_LEVEL, 0,
FS_CHAINING_CAPS_EGRESS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(KERNEL_TX_IPSEC_NUM_PRIOS,
KERNEL_TX_IPSEC_NUM_LEVELS))),
#endif
}
};
#define RDMA_RX_BYPASS_PRIO 0
#define RDMA_RX_KERNEL_PRIO 1
static struct init_tree_node rdma_rx_root_fs = {
.type = FS_TYPE_NAMESPACE,
.ar_size = 2,
.children = (struct init_tree_node[]) {
[RDMA_RX_BYPASS_PRIO] =
ADD_PRIO(0, MLX5_BY_PASS_NUM_REGULAR_PRIOS, 0,
FS_CHAINING_CAPS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(MLX5_BY_PASS_NUM_REGULAR_PRIOS,
BY_PASS_PRIO_NUM_LEVELS))),
[RDMA_RX_KERNEL_PRIO] =
ADD_PRIO(0, MLX5_BY_PASS_NUM_REGULAR_PRIOS + 1, 0,
FS_CHAINING_CAPS,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_SWITCH_DOMAIN,
ADD_MULTIPLE_PRIO(1, 1))),
}
};
static struct init_tree_node rdma_tx_root_fs = {
.type = FS_TYPE_NAMESPACE,
.ar_size = 1,
.children = (struct init_tree_node[]) {
ADD_PRIO(0, MLX5_BY_PASS_NUM_PRIOS, 0,
FS_CHAINING_CAPS_RDMA_TX,
ADD_NS(MLX5_FLOW_TABLE_MISS_ACTION_DEF,
ADD_MULTIPLE_PRIO(MLX5_BY_PASS_NUM_PRIOS,
BY_PASS_PRIO_NUM_LEVELS))),
}
};
enum fs_i_lock_class {
FS_LOCK_GRANDPARENT,
FS_LOCK_PARENT,
FS_LOCK_CHILD
};
static const struct rhashtable_params rhash_fte = {
.key_len = sizeof_field(struct fs_fte, val),
.key_offset = offsetof(struct fs_fte, val),
.head_offset = offsetof(struct fs_fte, hash),
.automatic_shrinking = true,
.min_size = 1,
};
static const struct rhashtable_params rhash_fg = {
.key_len = sizeof_field(struct mlx5_flow_group, mask),
.key_offset = offsetof(struct mlx5_flow_group, mask),
.head_offset = offsetof(struct mlx5_flow_group, hash),
.automatic_shrinking = true,
.min_size = 1,
};
static void del_hw_flow_table(struct fs_node *node);
static void del_hw_flow_group(struct fs_node *node);
static void del_hw_fte(struct fs_node *node);
static void del_sw_flow_table(struct fs_node *node);
static void del_sw_flow_group(struct fs_node *node);
static void del_sw_fte(struct fs_node *node);
static void del_sw_prio(struct fs_node *node);
static void del_sw_ns(struct fs_node *node);
/* Delete rule (destination) is special case that
* requires to lock the FTE for all the deletion process.
*/
static void del_sw_hw_rule(struct fs_node *node);
static bool mlx5_flow_dests_cmp(struct mlx5_flow_destination *d1,
struct mlx5_flow_destination *d2);
static void cleanup_root_ns(struct mlx5_flow_root_namespace *root_ns);
static struct mlx5_flow_rule *
find_flow_rule(struct fs_fte *fte,
struct mlx5_flow_destination *dest);
static void tree_init_node(struct fs_node *node,
void (*del_hw_func)(struct fs_node *),
void (*del_sw_func)(struct fs_node *))
{
refcount_set(&node->refcount, 1);
INIT_LIST_HEAD(&node->list);
INIT_LIST_HEAD(&node->children);
init_rwsem(&node->lock);
node->del_hw_func = del_hw_func;
node->del_sw_func = del_sw_func;
node->active = false;
}
static void tree_add_node(struct fs_node *node, struct fs_node *parent)
{
if (parent)
refcount_inc(&parent->refcount);
node->parent = parent;
/* Parent is the root */
if (!parent)
node->root = node;
else
node->root = parent->root;
}
static int tree_get_node(struct fs_node *node)
{
return refcount_inc_not_zero(&node->refcount);
}
static void nested_down_read_ref_node(struct fs_node *node,
enum fs_i_lock_class class)
{
if (node) {
down_read_nested(&node->lock, class);
refcount_inc(&node->refcount);
}
}
static void nested_down_write_ref_node(struct fs_node *node,
enum fs_i_lock_class class)
{
if (node) {
down_write_nested(&node->lock, class);
refcount_inc(&node->refcount);
}
}
static void down_write_ref_node(struct fs_node *node, bool locked)
{
if (node) {
if (!locked)
down_write(&node->lock);
refcount_inc(&node->refcount);
}
}
static void up_read_ref_node(struct fs_node *node)
{
refcount_dec(&node->refcount);
up_read(&node->lock);
}
static void up_write_ref_node(struct fs_node *node, bool locked)
{
refcount_dec(&node->refcount);
if (!locked)
up_write(&node->lock);
}
static void tree_put_node(struct fs_node *node, bool locked)
{
struct fs_node *parent_node = node->parent;
if (refcount_dec_and_test(&node->refcount)) {
if (node->del_hw_func)
node->del_hw_func(node);
if (parent_node) {
down_write_ref_node(parent_node, locked);
list_del_init(&node->list);
}
node->del_sw_func(node);
if (parent_node)
up_write_ref_node(parent_node, locked);
node = NULL;
}
if (!node && parent_node)
tree_put_node(parent_node, locked);
}
static int tree_remove_node(struct fs_node *node, bool locked)
{
if (refcount_read(&node->refcount) > 1) {
refcount_dec(&node->refcount);
return -EEXIST;
}
tree_put_node(node, locked);
return 0;
}
static struct fs_prio *find_prio(struct mlx5_flow_namespace *ns,
unsigned int prio)
{
struct fs_prio *iter_prio;
fs_for_each_prio(iter_prio, ns) {
if (iter_prio->prio == prio)
return iter_prio;
}
return NULL;
}
static bool is_fwd_next_action(u32 action)
{
return action & (MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO |
MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_NS);
}
static bool check_valid_spec(const struct mlx5_flow_spec *spec)
{
int i;
for (i = 0; i < MLX5_ST_SZ_DW_MATCH_PARAM; i++)
if (spec->match_value[i] & ~spec->match_criteria[i]) {
pr_warn("mlx5_core: match_value differs from match_criteria\n");
return false;
}
return true;
}
static struct mlx5_flow_root_namespace *find_root(struct fs_node *node)
{
struct fs_node *root;
struct mlx5_flow_namespace *ns;
root = node->root;
if (WARN_ON(root->type != FS_TYPE_NAMESPACE)) {
pr_warn("mlx5: flow steering node is not in tree or garbaged\n");
return NULL;
}
ns = container_of(root, struct mlx5_flow_namespace, node);
return container_of(ns, struct mlx5_flow_root_namespace, ns);
}
static inline struct mlx5_flow_steering *get_steering(struct fs_node *node)
{
struct mlx5_flow_root_namespace *root = find_root(node);
if (root)
return root->dev->priv.steering;
return NULL;
}
static inline struct mlx5_core_dev *get_dev(struct fs_node *node)
{
struct mlx5_flow_root_namespace *root = find_root(node);
if (root)
return root->dev;
return NULL;
}
static void del_sw_ns(struct fs_node *node)
{
kfree(node);
}
static void del_sw_prio(struct fs_node *node)
{
kfree(node);
}
static void del_hw_flow_table(struct fs_node *node)
{
struct mlx5_flow_root_namespace *root;
struct mlx5_flow_table *ft;
struct mlx5_core_dev *dev;
int err;
fs_get_obj(ft, node);
dev = get_dev(&ft->node);
root = find_root(&ft->node);
trace_mlx5_fs_del_ft(ft);
if (node->active) {
err = root->cmds->destroy_flow_table(root, ft);
if (err)
mlx5_core_warn(dev, "flow steering can't destroy ft\n");
}
}
static void del_sw_flow_table(struct fs_node *node)
{
struct mlx5_flow_table *ft;
struct fs_prio *prio;
fs_get_obj(ft, node);
rhltable_destroy(&ft->fgs_hash);
if (ft->node.parent) {
fs_get_obj(prio, ft->node.parent);
prio->num_ft--;
}
kfree(ft);
}
static void modify_fte(struct fs_fte *fte)
{
struct mlx5_flow_root_namespace *root;
struct mlx5_flow_table *ft;
struct mlx5_flow_group *fg;
struct mlx5_core_dev *dev;
int err;
fs_get_obj(fg, fte->node.parent);
fs_get_obj(ft, fg->node.parent);
dev = get_dev(&fte->node);
root = find_root(&ft->node);
err = root->cmds->update_fte(root, ft, fg, fte->modify_mask, fte);
if (err)
mlx5_core_warn(dev,
"%s can't del rule fg id=%d fte_index=%d\n",
__func__, fg->id, fte->index);
fte->modify_mask = 0;
}
static void del_sw_hw_rule(struct fs_node *node)
{
struct mlx5_flow_rule *rule;
struct fs_fte *fte;
fs_get_obj(rule, node);
fs_get_obj(fte, rule->node.parent);
trace_mlx5_fs_del_rule(rule);
if (is_fwd_next_action(rule->sw_action)) {
mutex_lock(&rule->dest_attr.ft->lock);
list_del(&rule->next_ft);
mutex_unlock(&rule->dest_attr.ft->lock);
}
if (rule->dest_attr.type == MLX5_FLOW_DESTINATION_TYPE_COUNTER &&
--fte->dests_size) {
fte->modify_mask |=
BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_ACTION) |
BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_FLOW_COUNTERS);
fte->action.action &= ~MLX5_FLOW_CONTEXT_ACTION_COUNT;
goto out;
}
if (rule->dest_attr.type == MLX5_FLOW_DESTINATION_TYPE_PORT &&
--fte->dests_size) {
fte->modify_mask |= BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_ACTION);
fte->action.action &= ~MLX5_FLOW_CONTEXT_ACTION_ALLOW;
goto out;
}
if ((fte->action.action & MLX5_FLOW_CONTEXT_ACTION_FWD_DEST) &&
--fte->dests_size) {
fte->modify_mask |=
BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST);
}
out:
kfree(rule);
}
static void del_hw_fte(struct fs_node *node)
{
struct mlx5_flow_root_namespace *root;
struct mlx5_flow_table *ft;
struct mlx5_flow_group *fg;
struct mlx5_core_dev *dev;
struct fs_fte *fte;
int err;
fs_get_obj(fte, node);
fs_get_obj(fg, fte->node.parent);
fs_get_obj(ft, fg->node.parent);
trace_mlx5_fs_del_fte(fte);
dev = get_dev(&ft->node);
root = find_root(&ft->node);
if (node->active) {
err = root->cmds->delete_fte(root, ft, fte);
if (err)
mlx5_core_warn(dev,
"flow steering can't delete fte in index %d of flow group id %d\n",
fte->index, fg->id);
node->active = false;
}
}
static void del_sw_fte(struct fs_node *node)
{
struct mlx5_flow_steering *steering = get_steering(node);
struct mlx5_flow_group *fg;
struct fs_fte *fte;
int err;
fs_get_obj(fte, node);
fs_get_obj(fg, fte->node.parent);
err = rhashtable_remove_fast(&fg->ftes_hash,
&fte->hash,
rhash_fte);
WARN_ON(err);
ida_free(&fg->fte_allocator, fte->index - fg->start_index);
kmem_cache_free(steering->ftes_cache, fte);
}
static void del_hw_flow_group(struct fs_node *node)
{
struct mlx5_flow_root_namespace *root;
struct mlx5_flow_group *fg;
struct mlx5_flow_table *ft;
struct mlx5_core_dev *dev;
fs_get_obj(fg, node);
fs_get_obj(ft, fg->node.parent);
dev = get_dev(&ft->node);
trace_mlx5_fs_del_fg(fg);
root = find_root(&ft->node);
if (fg->node.active && root->cmds->destroy_flow_group(root, ft, fg))
mlx5_core_warn(dev, "flow steering can't destroy fg %d of ft %d\n",
fg->id, ft->id);
}
static void del_sw_flow_group(struct fs_node *node)
{
struct mlx5_flow_steering *steering = get_steering(node);
struct mlx5_flow_group *fg;
struct mlx5_flow_table *ft;
int err;
fs_get_obj(fg, node);
fs_get_obj(ft, fg->node.parent);
rhashtable_destroy(&fg->ftes_hash);
ida_destroy(&fg->fte_allocator);
if (ft->autogroup.active &&
fg->max_ftes == ft->autogroup.group_size &&
fg->start_index < ft->autogroup.max_fte)
ft->autogroup.num_groups--;
err = rhltable_remove(&ft->fgs_hash,
&fg->hash,
rhash_fg);
WARN_ON(err);
kmem_cache_free(steering->fgs_cache, fg);
}
static int insert_fte(struct mlx5_flow_group *fg, struct fs_fte *fte)
{
int index;
int ret;
index = ida_alloc_max(&fg->fte_allocator, fg->max_ftes - 1, GFP_KERNEL);
if (index < 0)
return index;
fte->index = index + fg->start_index;
ret = rhashtable_insert_fast(&fg->ftes_hash,
&fte->hash,
rhash_fte);
if (ret)
goto err_ida_remove;
tree_add_node(&fte->node, &fg->node);
list_add_tail(&fte->node.list, &fg->node.children);
return 0;
err_ida_remove:
ida_free(&fg->fte_allocator, index);
return ret;
}
static struct fs_fte *alloc_fte(struct mlx5_flow_table *ft,
const struct mlx5_flow_spec *spec,
struct mlx5_flow_act *flow_act)
{
struct mlx5_flow_steering *steering = get_steering(&ft->node);
struct fs_fte *fte;
fte = kmem_cache_zalloc(steering->ftes_cache, GFP_KERNEL);
if (!fte)
return ERR_PTR(-ENOMEM);
memcpy(fte->val, &spec->match_value, sizeof(fte->val));
fte->node.type = FS_TYPE_FLOW_ENTRY;
fte->action = *flow_act;
fte->flow_context = spec->flow_context;
tree_init_node(&fte->node, del_hw_fte, del_sw_fte);
return fte;
}
static void dealloc_flow_group(struct mlx5_flow_steering *steering,
struct mlx5_flow_group *fg)
{
rhashtable_destroy(&fg->ftes_hash);
kmem_cache_free(steering->fgs_cache, fg);
}
static struct mlx5_flow_group *alloc_flow_group(struct mlx5_flow_steering *steering,
u8 match_criteria_enable,
const void *match_criteria,
int start_index,
int end_index)
{
struct mlx5_flow_group *fg;
int ret;
fg = kmem_cache_zalloc(steering->fgs_cache, GFP_KERNEL);
if (!fg)
return ERR_PTR(-ENOMEM);
ret = rhashtable_init(&fg->ftes_hash, &rhash_fte);
if (ret) {
kmem_cache_free(steering->fgs_cache, fg);
return ERR_PTR(ret);
}
ida_init(&fg->fte_allocator);
fg->mask.match_criteria_enable = match_criteria_enable;
memcpy(&fg->mask.match_criteria, match_criteria,
sizeof(fg->mask.match_criteria));
fg->node.type = FS_TYPE_FLOW_GROUP;
fg->start_index = start_index;
fg->max_ftes = end_index - start_index + 1;
return fg;
}
static struct mlx5_flow_group *alloc_insert_flow_group(struct mlx5_flow_table *ft,
u8 match_criteria_enable,
const void *match_criteria,
int start_index,
int end_index,
struct list_head *prev)
{
struct mlx5_flow_steering *steering = get_steering(&ft->node);
struct mlx5_flow_group *fg;
int ret;
fg = alloc_flow_group(steering, match_criteria_enable, match_criteria,
start_index, end_index);
if (IS_ERR(fg))
return fg;
/* initialize refcnt, add to parent list */
ret = rhltable_insert(&ft->fgs_hash,
&fg->hash,
rhash_fg);
if (ret) {
dealloc_flow_group(steering, fg);
return ERR_PTR(ret);
}
tree_init_node(&fg->node, del_hw_flow_group, del_sw_flow_group);
tree_add_node(&fg->node, &ft->node);
/* Add node to group list */
list_add(&fg->node.list, prev);
atomic_inc(&ft->node.version);
return fg;
}
static struct mlx5_flow_table *alloc_flow_table(int level, u16 vport,
enum fs_flow_table_type table_type,
enum fs_flow_table_op_mod op_mod,
u32 flags)
{
struct mlx5_flow_table *ft;
int ret;
ft = kzalloc(sizeof(*ft), GFP_KERNEL);
if (!ft)
return ERR_PTR(-ENOMEM);
ret = rhltable_init(&ft->fgs_hash, &rhash_fg);
if (ret) {
kfree(ft);
return ERR_PTR(ret);
}
ft->level = level;
ft->node.type = FS_TYPE_FLOW_TABLE;
ft->op_mod = op_mod;
ft->type = table_type;
ft->vport = vport;
ft->flags = flags;
INIT_LIST_HEAD(&ft->fwd_rules);
mutex_init(&ft->lock);
return ft;
}
/* If reverse is false, then we search for the first flow table in the
* root sub-tree from start(closest from right), else we search for the
* last flow table in the root sub-tree till start(closest from left).
*/
static struct mlx5_flow_table *find_closest_ft_recursive(struct fs_node *root,
struct list_head *start,
bool reverse)
{
#define list_advance_entry(pos, reverse) \
((reverse) ? list_prev_entry(pos, list) : list_next_entry(pos, list))
#define list_for_each_advance_continue(pos, head, reverse) \
for (pos = list_advance_entry(pos, reverse); \
&pos->list != (head); \
pos = list_advance_entry(pos, reverse))
struct fs_node *iter = list_entry(start, struct fs_node, list);
struct mlx5_flow_table *ft = NULL;
if (!root || root->type == FS_TYPE_PRIO_CHAINS)
return NULL;
list_for_each_advance_continue(iter, &root->children, reverse) {
if (iter->type == FS_TYPE_FLOW_TABLE) {
fs_get_obj(ft, iter);
return ft;
}
ft = find_closest_ft_recursive(iter, &iter->children, reverse);
if (ft)
return ft;
}
return ft;
}
/* If reverse is false then return the first flow table in next priority of
* prio in the tree, else return the last flow table in the previous priority
* of prio in the tree.
*/
static struct mlx5_flow_table *find_closest_ft(struct fs_prio *prio, bool reverse)
{
struct mlx5_flow_table *ft = NULL;
struct fs_node *curr_node;
struct fs_node *parent;
parent = prio->node.parent;
curr_node = &prio->node;
while (!ft && parent) {
ft = find_closest_ft_recursive(parent, &curr_node->list, reverse);
curr_node = parent;
parent = curr_node->parent;
}
return ft;
}
/* Assuming all the tree is locked by mutex chain lock */
static struct mlx5_flow_table *find_next_chained_ft(struct fs_prio *prio)
{
return find_closest_ft(prio, false);
}
/* Assuming all the tree is locked by mutex chain lock */
static struct mlx5_flow_table *find_prev_chained_ft(struct fs_prio *prio)
{
return find_closest_ft(prio, true);
}
static struct mlx5_flow_table *find_next_fwd_ft(struct mlx5_flow_table *ft,
struct mlx5_flow_act *flow_act)
{
struct fs_prio *prio;
bool next_ns;
next_ns = flow_act->action & MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_NS;
fs_get_obj(prio, next_ns ? ft->ns->node.parent : ft->node.parent);
return find_next_chained_ft(prio);
}
static int connect_fts_in_prio(struct mlx5_core_dev *dev,
struct fs_prio *prio,
struct mlx5_flow_table *ft)
{
struct mlx5_flow_root_namespace *root = find_root(&prio->node);
struct mlx5_flow_table *iter;
int err;
fs_for_each_ft(iter, prio) {
err = root->cmds->modify_flow_table(root, iter, ft);
if (err) {
mlx5_core_err(dev,
"Failed to modify flow table id %d, type %d, err %d\n",
iter->id, iter->type, err);
/* The driver is out of sync with the FW */
return err;
}
}
return 0;
}
/* Connect flow tables from previous priority of prio to ft */
static int connect_prev_fts(struct mlx5_core_dev *dev,
struct mlx5_flow_table *ft,
struct fs_prio *prio)
{
struct mlx5_flow_table *prev_ft;
prev_ft = find_prev_chained_ft(prio);
if (prev_ft) {
struct fs_prio *prev_prio;
fs_get_obj(prev_prio, prev_ft->node.parent);
return connect_fts_in_prio(dev, prev_prio, ft);
}
return 0;
}
static int update_root_ft_create(struct mlx5_flow_table *ft, struct fs_prio
*prio)
{
struct mlx5_flow_root_namespace *root = find_root(&prio->node);
struct mlx5_ft_underlay_qp *uqp;
int min_level = INT_MAX;
int err = 0;
u32 qpn;
if (root->root_ft)
min_level = root->root_ft->level;
if (ft->level >= min_level)
return 0;
if (list_empty(&root->underlay_qpns)) {
/* Don't set any QPN (zero) in case QPN list is empty */
qpn = 0;
err = root->cmds->update_root_ft(root, ft, qpn, false);
} else {
list_for_each_entry(uqp, &root->underlay_qpns, list) {
qpn = uqp->qpn;
err = root->cmds->update_root_ft(root, ft,
qpn, false);
if (err)
break;
}
}
if (err)
mlx5_core_warn(root->dev,
"Update root flow table of id(%u) qpn(%d) failed\n",
ft->id, qpn);
else
root->root_ft = ft;
return err;
}
static int _mlx5_modify_rule_destination(struct mlx5_flow_rule *rule,
struct mlx5_flow_destination *dest)
{
struct mlx5_flow_root_namespace *root;
struct mlx5_flow_table *ft;
struct mlx5_flow_group *fg;
struct fs_fte *fte;
int modify_mask = BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST);
int err = 0;
fs_get_obj(fte, rule->node.parent);
if (!(fte->action.action & MLX5_FLOW_CONTEXT_ACTION_FWD_DEST))
return -EINVAL;
down_write_ref_node(&fte->node, false);
fs_get_obj(fg, fte->node.parent);
fs_get_obj(ft, fg->node.parent);
memcpy(&rule->dest_attr, dest, sizeof(*dest));
root = find_root(&ft->node);
err = root->cmds->update_fte(root, ft, fg,
modify_mask, fte);
up_write_ref_node(&fte->node, false);
return err;
}
int mlx5_modify_rule_destination(struct mlx5_flow_handle *handle,
struct mlx5_flow_destination *new_dest,
struct mlx5_flow_destination *old_dest)
{
int i;
if (!old_dest) {
if (handle->num_rules != 1)
return -EINVAL;
return _mlx5_modify_rule_destination(handle->rule[0],
new_dest);
}
for (i = 0; i < handle->num_rules; i++) {
if (mlx5_flow_dests_cmp(new_dest, &handle->rule[i]->dest_attr))
return _mlx5_modify_rule_destination(handle->rule[i],
new_dest);
}
return -EINVAL;
}
/* Modify/set FWD rules that point on old_next_ft to point on new_next_ft */
static int connect_fwd_rules(struct mlx5_core_dev *dev,
struct mlx5_flow_table *new_next_ft,
struct mlx5_flow_table *old_next_ft)
{
struct mlx5_flow_destination dest = {};
struct mlx5_flow_rule *iter;
int err = 0;
/* new_next_ft and old_next_ft could be NULL only
* when we create/destroy the anchor flow table.
*/
if (!new_next_ft || !old_next_ft)
return 0;
dest.type = MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE;
dest.ft = new_next_ft;
mutex_lock(&old_next_ft->lock);
list_splice_init(&old_next_ft->fwd_rules, &new_next_ft->fwd_rules);
mutex_unlock(&old_next_ft->lock);
list_for_each_entry(iter, &new_next_ft->fwd_rules, next_ft) {
if ((iter->sw_action & MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_NS) &&
iter->ft->ns == new_next_ft->ns)
continue;
err = _mlx5_modify_rule_destination(iter, &dest);
if (err)
pr_err("mlx5_core: failed to modify rule to point on flow table %d\n",
new_next_ft->id);
}
return 0;
}
static int connect_flow_table(struct mlx5_core_dev *dev, struct mlx5_flow_table *ft,
struct fs_prio *prio)
{
struct mlx5_flow_table *next_ft, *first_ft;
int err = 0;
/* Connect_prev_fts and update_root_ft_create are mutually exclusive */
first_ft = list_first_entry_or_null(&prio->node.children,
struct mlx5_flow_table, node.list);
if (!first_ft || first_ft->level > ft->level) {
err = connect_prev_fts(dev, ft, prio);
if (err)
return err;
next_ft = first_ft ? first_ft : find_next_chained_ft(prio);
err = connect_fwd_rules(dev, ft, next_ft);
if (err)
return err;
}
if (MLX5_CAP_FLOWTABLE(dev,
flow_table_properties_nic_receive.modify_root))
err = update_root_ft_create(ft, prio);
return err;
}
static void list_add_flow_table(struct mlx5_flow_table *ft,
struct fs_prio *prio)
{
struct list_head *prev = &prio->node.children;
struct mlx5_flow_table *iter;
fs_for_each_ft(iter, prio) {
if (iter->level > ft->level)
break;
prev = &iter->node.list;
}
list_add(&ft->node.list, prev);
}
static struct mlx5_flow_table *__mlx5_create_flow_table(struct mlx5_flow_namespace *ns,
struct mlx5_flow_table_attr *ft_attr,
enum fs_flow_table_op_mod op_mod,
u16 vport)
{
struct mlx5_flow_root_namespace *root = find_root(&ns->node);
bool unmanaged = ft_attr->flags & MLX5_FLOW_TABLE_UNMANAGED;
struct mlx5_flow_table *next_ft;
struct fs_prio *fs_prio = NULL;
struct mlx5_flow_table *ft;
int err;
if (!root) {
pr_err("mlx5: flow steering failed to find root of namespace\n");
return ERR_PTR(-ENODEV);
}
mutex_lock(&root->chain_lock);
fs_prio = find_prio(ns, ft_attr->prio);
if (!fs_prio) {
err = -EINVAL;
goto unlock_root;
}
if (!unmanaged) {
/* The level is related to the
* priority level range.
*/
if (ft_attr->level >= fs_prio->num_levels) {
err = -ENOSPC;
goto unlock_root;
}
ft_attr->level += fs_prio->start_level;
}
/* The level is related to the
* priority level range.
*/
ft = alloc_flow_table(ft_attr->level,
vport,
root->table_type,
op_mod, ft_attr->flags);
if (IS_ERR(ft)) {
err = PTR_ERR(ft);
goto unlock_root;
}
tree_init_node(&ft->node, del_hw_flow_table, del_sw_flow_table);
next_ft = unmanaged ? ft_attr->next_ft :
find_next_chained_ft(fs_prio);
ft->def_miss_action = ns->def_miss_action;
ft->ns = ns;
err = root->cmds->create_flow_table(root, ft, ft_attr->max_fte, next_ft);
if (err)
goto free_ft;
if (!unmanaged) {
err = connect_flow_table(root->dev, ft, fs_prio);
if (err)
goto destroy_ft;
}
ft->node.active = true;
down_write_ref_node(&fs_prio->node, false);
if (!unmanaged) {
tree_add_node(&ft->node, &fs_prio->node);
list_add_flow_table(ft, fs_prio);
} else {
ft->node.root = fs_prio->node.root;
}
fs_prio->num_ft++;
up_write_ref_node(&fs_prio->node, false);
mutex_unlock(&root->chain_lock);
trace_mlx5_fs_add_ft(ft);
return ft;
destroy_ft:
root->cmds->destroy_flow_table(root, ft);
free_ft:
rhltable_destroy(&ft->fgs_hash);
kfree(ft);
unlock_root:
mutex_unlock(&root->chain_lock);
return ERR_PTR(err);
}
struct mlx5_flow_table *mlx5_create_flow_table(struct mlx5_flow_namespace *ns,
struct mlx5_flow_table_attr *ft_attr)
{
return __mlx5_create_flow_table(ns, ft_attr, FS_FT_OP_MOD_NORMAL, 0);
}
EXPORT_SYMBOL(mlx5_create_flow_table);
struct mlx5_flow_table *
mlx5_create_vport_flow_table(struct mlx5_flow_namespace *ns,
struct mlx5_flow_table_attr *ft_attr, u16 vport)
{
return __mlx5_create_flow_table(ns, ft_attr, FS_FT_OP_MOD_NORMAL, vport);
}
struct mlx5_flow_table*
mlx5_create_lag_demux_flow_table(struct mlx5_flow_namespace *ns,
int prio, u32 level)
{
struct mlx5_flow_table_attr ft_attr = {};
ft_attr.level = level;
ft_attr.prio = prio;
ft_attr.max_fte = 1;
return __mlx5_create_flow_table(ns, &ft_attr, FS_FT_OP_MOD_LAG_DEMUX, 0);
}
EXPORT_SYMBOL(mlx5_create_lag_demux_flow_table);
#define MAX_FLOW_GROUP_SIZE BIT(24)
struct mlx5_flow_table*
mlx5_create_auto_grouped_flow_table(struct mlx5_flow_namespace *ns,
struct mlx5_flow_table_attr *ft_attr)
{
int num_reserved_entries = ft_attr->autogroup.num_reserved_entries;
int max_num_groups = ft_attr->autogroup.max_num_groups;
struct mlx5_flow_table *ft;
int autogroups_max_fte;
ft = mlx5_create_flow_table(ns, ft_attr);
if (IS_ERR(ft))
return ft;
autogroups_max_fte = ft->max_fte - num_reserved_entries;
if (max_num_groups > autogroups_max_fte)
goto err_validate;
if (num_reserved_entries > ft->max_fte)
goto err_validate;
/* Align the number of groups according to the largest group size */
if (autogroups_max_fte / (max_num_groups + 1) > MAX_FLOW_GROUP_SIZE)
max_num_groups = (autogroups_max_fte / MAX_FLOW_GROUP_SIZE) - 1;
ft->autogroup.active = true;
ft->autogroup.required_groups = max_num_groups;
ft->autogroup.max_fte = autogroups_max_fte;
/* We save place for flow groups in addition to max types */
ft->autogroup.group_size = autogroups_max_fte / (max_num_groups + 1);
return ft;
err_validate:
mlx5_destroy_flow_table(ft);
return ERR_PTR(-ENOSPC);
}
EXPORT_SYMBOL(mlx5_create_auto_grouped_flow_table);
struct mlx5_flow_group *mlx5_create_flow_group(struct mlx5_flow_table *ft,
u32 *fg_in)
{
struct mlx5_flow_root_namespace *root = find_root(&ft->node);
void *match_criteria = MLX5_ADDR_OF(create_flow_group_in,
fg_in, match_criteria);
u8 match_criteria_enable = MLX5_GET(create_flow_group_in,
fg_in,
match_criteria_enable);
int start_index = MLX5_GET(create_flow_group_in, fg_in,
start_flow_index);
int end_index = MLX5_GET(create_flow_group_in, fg_in,
end_flow_index);
struct mlx5_flow_group *fg;
int err;
if (ft->autogroup.active && start_index < ft->autogroup.max_fte)
return ERR_PTR(-EPERM);
down_write_ref_node(&ft->node, false);
fg = alloc_insert_flow_group(ft, match_criteria_enable, match_criteria,
start_index, end_index,
ft->node.children.prev);
up_write_ref_node(&ft->node, false);
if (IS_ERR(fg))
return fg;
err = root->cmds->create_flow_group(root, ft, fg_in, fg);
if (err) {
tree_put_node(&fg->node, false);
return ERR_PTR(err);
}
trace_mlx5_fs_add_fg(fg);
fg->node.active = true;
return fg;
}
EXPORT_SYMBOL(mlx5_create_flow_group);
static struct mlx5_flow_rule *alloc_rule(struct mlx5_flow_destination *dest)
{
struct mlx5_flow_rule *rule;
rule = kzalloc(sizeof(*rule), GFP_KERNEL);
if (!rule)
return NULL;
INIT_LIST_HEAD(&rule->next_ft);
rule->node.type = FS_TYPE_FLOW_DEST;
if (dest)
memcpy(&rule->dest_attr, dest, sizeof(*dest));
return rule;
}
static struct mlx5_flow_handle *alloc_handle(int num_rules)
{
struct mlx5_flow_handle *handle;
handle = kzalloc(struct_size(handle, rule, num_rules), GFP_KERNEL);
if (!handle)
return NULL;
handle->num_rules = num_rules;
return handle;
}
static void destroy_flow_handle(struct fs_fte *fte,
struct mlx5_flow_handle *handle,
struct mlx5_flow_destination *dest,
int i)
{
for (; --i >= 0;) {
if (refcount_dec_and_test(&handle->rule[i]->node.refcount)) {
fte->dests_size--;
list_del(&handle->rule[i]->node.list);
kfree(handle->rule[i]);
}
}
kfree(handle);
}
static struct mlx5_flow_handle *
create_flow_handle(struct fs_fte *fte,
struct mlx5_flow_destination *dest,
int dest_num,
int *modify_mask,
bool *new_rule)
{
struct mlx5_flow_handle *handle;
struct mlx5_flow_rule *rule = NULL;
static int count = BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_FLOW_COUNTERS);
static int dst = BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_DESTINATION_LIST);
int type;
int i = 0;
handle = alloc_handle((dest_num) ? dest_num : 1);
if (!handle)
return ERR_PTR(-ENOMEM);
do {
if (dest) {
rule = find_flow_rule(fte, dest + i);
if (rule) {
refcount_inc(&rule->node.refcount);
goto rule_found;
}
}
*new_rule = true;
rule = alloc_rule(dest + i);
if (!rule)
goto free_rules;
/* Add dest to dests list- we need flow tables to be in the
* end of the list for forward to next prio rules.
*/
tree_init_node(&rule->node, NULL, del_sw_hw_rule);
if (dest &&
dest[i].type != MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE)
list_add(&rule->node.list, &fte->node.children);
else
list_add_tail(&rule->node.list, &fte->node.children);
if (dest) {
fte->dests_size++;
type = dest[i].type ==
MLX5_FLOW_DESTINATION_TYPE_COUNTER;
*modify_mask |= type ? count : dst;
}
rule_found:
handle->rule[i] = rule;
} while (++i < dest_num);
return handle;
free_rules:
destroy_flow_handle(fte, handle, dest, i);
return ERR_PTR(-ENOMEM);
}
/* fte should not be deleted while calling this function */
static struct mlx5_flow_handle *
add_rule_fte(struct fs_fte *fte,
struct mlx5_flow_group *fg,
struct mlx5_flow_destination *dest,
int dest_num,
bool update_action)
{
struct mlx5_flow_root_namespace *root;
struct mlx5_flow_handle *handle;
struct mlx5_flow_table *ft;
int modify_mask = 0;
int err;
bool new_rule = false;
handle = create_flow_handle(fte, dest, dest_num, &modify_mask,
&new_rule);
if (IS_ERR(handle) || !new_rule)
goto out;
if (update_action)
modify_mask |= BIT(MLX5_SET_FTE_MODIFY_ENABLE_MASK_ACTION);
fs_get_obj(ft, fg->node.parent);
root = find_root(&fg->node);
if (!(fte->status & FS_FTE_STATUS_EXISTING))
err = root->cmds->create_fte(root, ft, fg, fte);
else
err = root->cmds->update_fte(root, ft, fg, modify_mask, fte);
if (err)
goto free_handle;
fte->node.active = true;
fte->status |= FS_FTE_STATUS_EXISTING;
atomic_inc(&fg->node.version);
out:
return handle;
free_handle:
destroy_flow_handle(fte, handle, dest, handle->num_rules);
return ERR_PTR(err);
}
static struct mlx5_flow_group *alloc_auto_flow_group(struct mlx5_flow_table *ft,
const struct mlx5_flow_spec *spec)
{
struct list_head *prev = &ft->node.children;
u32 max_fte = ft->autogroup.max_fte;
unsigned int candidate_index = 0;
unsigned int group_size = 0;
struct mlx5_flow_group *fg;
if (!ft->autogroup.active)
return ERR_PTR(-ENOENT);
if (ft->autogroup.num_groups < ft->autogroup.required_groups)
group_size = ft->autogroup.group_size;
/* max_fte == ft->autogroup.max_types */
if (group_size == 0)
group_size = 1;
/* sorted by start_index */
fs_for_each_fg(fg, ft) {
if (candidate_index + group_size > fg->start_index)
candidate_index = fg->start_index + fg->max_ftes;
else
break;
prev = &fg->node.list;
}
if (candidate_index + group_size > max_fte)
return ERR_PTR(-ENOSPC);
fg = alloc_insert_flow_group(ft,
spec->match_criteria_enable,
spec->match_criteria,
candidate_index,
candidate_index + group_size - 1,
prev);
if (IS_ERR(fg))
goto out;
if (group_size == ft->autogroup.group_size)
ft->autogroup.num_groups++;
out:
return fg;
}
static int create_auto_flow_group(struct mlx5_flow_table *ft,
struct mlx5_flow_group *fg)
{
struct mlx5_flow_root_namespace *root = find_root(&ft->node);
int inlen = MLX5_ST_SZ_BYTES(create_flow_group_in);
void *match_criteria_addr;
u8 src_esw_owner_mask_on;
void *misc;
int err;
u32 *in;
in = kvzalloc(inlen, GFP_KERNEL);
if (!in)
return -ENOMEM;
MLX5_SET(create_flow_group_in, in, match_criteria_enable,
fg->mask.match_criteria_enable);
MLX5_SET(create_flow_group_in, in, start_flow_index, fg->start_index);
MLX5_SET(create_flow_group_in, in, end_flow_index, fg->start_index +
fg->max_ftes - 1);
misc = MLX5_ADDR_OF(fte_match_param, fg->mask.match_criteria,
misc_parameters);
src_esw_owner_mask_on = !!MLX5_GET(fte_match_set_misc, misc,
source_eswitch_owner_vhca_id);
MLX5_SET(create_flow_group_in, in,
source_eswitch_owner_vhca_id_valid, src_esw_owner_mask_on);
match_criteria_addr = MLX5_ADDR_OF(create_flow_group_in,
in, match_criteria);
memcpy(match_criteria_addr, fg->mask.match_criteria,
sizeof(fg->mask.match_criteria));
err = root->cmds->create_flow_group(root, ft, in, fg);
if (!err) {
fg->node.active = true;
trace_mlx5_fs_add_fg(fg);
}
kvfree(in);
return err;
}
static bool mlx5_flow_dests_cmp(struct mlx5_flow_destination *d1,
struct mlx5_flow_destination *d2)
{
if (d1->type == d2->type) {
if ((d1->type == MLX5_FLOW_DESTINATION_TYPE_VPORT &&
d1->vport.num == d2->vport.num &&
d1->vport.flags == d2->vport.flags &&
((d1->vport.flags & MLX5_FLOW_DEST_VPORT_VHCA_ID) ?
(d1->vport.vhca_id == d2->vport.vhca_id) : true) &&
((d1->vport.flags & MLX5_FLOW_DEST_VPORT_REFORMAT_ID) ?
(d1->vport.pkt_reformat->id ==
d2->vport.pkt_reformat->id) : true)) ||
(d1->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE &&
d1->ft == d2->ft) ||
(d1->type == MLX5_FLOW_DESTINATION_TYPE_TIR &&
d1->tir_num == d2->tir_num) ||
(d1->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE_NUM &&
d1->ft_num == d2->ft_num) ||
(d1->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_SAMPLER &&
d1->sampler_id == d2->sampler_id))
return true;
}
return false;
}
static struct mlx5_flow_rule *find_flow_rule(struct fs_fte *fte,
struct mlx5_flow_destination *dest)
{
struct mlx5_flow_rule *rule;
list_for_each_entry(rule, &fte->node.children, node.list) {
if (mlx5_flow_dests_cmp(&rule->dest_attr, dest))
return rule;
}
return NULL;
}
static bool check_conflicting_actions(u32 action1, u32 action2)
{
u32 xored_actions = action1 ^ action2;
/* if one rule only wants to count, it's ok */
if (action1 == MLX5_FLOW_CONTEXT_ACTION_COUNT ||
action2 == MLX5_FLOW_CONTEXT_ACTION_COUNT)
return false;
if (xored_actions & (MLX5_FLOW_CONTEXT_ACTION_DROP |
MLX5_FLOW_CONTEXT_ACTION_PACKET_REFORMAT |
MLX5_FLOW_CONTEXT_ACTION_DECAP |
MLX5_FLOW_CONTEXT_ACTION_MOD_HDR |
MLX5_FLOW_CONTEXT_ACTION_VLAN_POP |
MLX5_FLOW_CONTEXT_ACTION_VLAN_PUSH |
MLX5_FLOW_CONTEXT_ACTION_VLAN_POP_2 |
MLX5_FLOW_CONTEXT_ACTION_VLAN_PUSH_2))
return true;
return false;
}
static int check_conflicting_ftes(struct fs_fte *fte,
const struct mlx5_flow_context *flow_context,
const struct mlx5_flow_act *flow_act)
{
if (check_conflicting_actions(flow_act->action, fte->action.action)) {
mlx5_core_warn(get_dev(&fte->node),
"Found two FTEs with conflicting actions\n");
return -EEXIST;
}
if ((flow_context->flags & FLOW_CONTEXT_HAS_TAG) &&
fte->flow_context.flow_tag != flow_context->flow_tag) {
mlx5_core_warn(get_dev(&fte->node),
"FTE flow tag %u already exists with different flow tag %u\n",
fte->flow_context.flow_tag,
flow_context->flow_tag);
return -EEXIST;
}
return 0;
}
static struct mlx5_flow_handle *add_rule_fg(struct mlx5_flow_group *fg,
const struct mlx5_flow_spec *spec,
struct mlx5_flow_act *flow_act,
struct mlx5_flow_destination *dest,
int dest_num,
struct fs_fte *fte)
{
struct mlx5_flow_handle *handle;
int old_action;
int i;
int ret;
ret = check_conflicting_ftes(fte, &spec->flow_context, flow_act);
if (ret)
return ERR_PTR(ret);
old_action = fte->action.action;
fte->action.action |= flow_act->action;
handle = add_rule_fte(fte, fg, dest, dest_num,
old_action != flow_act->action);
if (IS_ERR(handle)) {
fte->action.action = old_action;
return handle;
}
trace_mlx5_fs_set_fte(fte, false);
for (i = 0; i < handle->num_rules; i++) {
if (refcount_read(&handle->rule[i]->node.refcount) == 1) {
tree_add_node(&handle->rule[i]->node, &fte->node);
trace_mlx5_fs_add_rule(handle->rule[i]);
}
}
return handle;
}
static bool counter_is_valid(u32 action)
{
return (action & (MLX5_FLOW_CONTEXT_ACTION_DROP |
MLX5_FLOW_CONTEXT_ACTION_ALLOW |
MLX5_FLOW_CONTEXT_ACTION_FWD_DEST));
}
static bool dest_is_valid(struct mlx5_flow_destination *dest,
struct mlx5_flow_act *flow_act,
struct mlx5_flow_table *ft)
{
bool ignore_level = flow_act->flags & FLOW_ACT_IGNORE_FLOW_LEVEL;
u32 action = flow_act->action;
if (dest && (dest->type == MLX5_FLOW_DESTINATION_TYPE_COUNTER))
return counter_is_valid(action);
if (!(action & MLX5_FLOW_CONTEXT_ACTION_FWD_DEST))
return true;
if (ignore_level) {
if (ft->type != FS_FT_FDB &&
ft->type != FS_FT_NIC_RX)
return false;
if (dest->type == MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE &&
ft->type != dest->ft->type)
return false;
}
if (!dest || ((dest->type ==
MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE) &&
(dest->ft->level <= ft->level && !ignore_level)))
return false;
return true;
}
struct match_list {
struct list_head list;
struct mlx5_flow_group *g;
};
static void free_match_list(struct match_list *head, bool ft_locked)
{
struct match_list *iter, *match_tmp;
list_for_each_entry_safe(iter, match_tmp, &head->list,
list) {
tree_put_node(&iter->g->node, ft_locked);
list_del(&iter->list);
kfree(iter);
}
}
static int build_match_list(struct match_list *match_head,
struct mlx5_flow_table *ft,
const struct mlx5_flow_spec *spec,
bool ft_locked)
{
struct rhlist_head *tmp, *list;
struct mlx5_flow_group *g;
int err = 0;
rcu_read_lock();
INIT_LIST_HEAD(&match_head->list);
/* Collect all fgs which has a matching match_criteria */
list = rhltable_lookup(&ft->fgs_hash, spec, rhash_fg);
/* RCU is atomic, we can't execute FW commands here */
rhl_for_each_entry_rcu(g, tmp, list, hash) {
struct match_list *curr_match;
if (unlikely(!tree_get_node(&g->node)))
continue;
curr_match = kmalloc(sizeof(*curr_match), GFP_ATOMIC);
if (!curr_match) {
free_match_list(match_head, ft_locked);
err = -ENOMEM;
goto out;
}
curr_match->g = g;
list_add_tail(&curr_match->list, &match_head->list);
}
out:
rcu_read_unlock();
return err;
}
static u64 matched_fgs_get_version(struct list_head *match_head)
{
struct match_list *iter;
u64 version = 0;
list_for_each_entry(iter, match_head, list)
version += (u64)atomic_read(&iter->g->node.version);
return version;
}
static struct fs_fte *
lookup_fte_locked(struct mlx5_flow_group *g,
const u32 *match_value,
bool take_write)
{
struct fs_fte *fte_tmp;
if (take_write)
nested_down_write_ref_node(&g->node, FS_LOCK_PARENT);
else
nested_down_read_ref_node(&g->node, FS_LOCK_PARENT);
fte_tmp = rhashtable_lookup_fast(&g->ftes_hash, match_value,
rhash_fte);
if (!fte_tmp || !tree_get_node(&fte_tmp->node)) {
fte_tmp = NULL;
goto out;
}
if (!fte_tmp->node.active) {
tree_put_node(&fte_tmp->node, false);
fte_tmp = NULL;
goto out;
}
nested_down_write_ref_node(&fte_tmp->node, FS_LOCK_CHILD);
out:
if (take_write)
up_write_ref_node(&g->node, false);
else
up_read_ref_node(&g->node);
return fte_tmp;
}
static struct mlx5_flow_handle *
try_add_to_existing_fg(struct mlx5_flow_table *ft,
struct list_head *match_head,
const struct mlx5_flow_spec *spec,
struct mlx5_flow_act *flow_act,
struct mlx5_flow_destination *dest,
int dest_num,
int ft_version)
{
struct mlx5_flow_steering *steering = get_steering(&ft->node);
struct mlx5_flow_group *g;
struct mlx5_flow_handle *rule;
struct match_list *iter;
bool take_write = false;
struct fs_fte *fte;
u64 version = 0;
int err;
fte = alloc_fte(ft, spec, flow_act);
if (IS_ERR(fte))
return ERR_PTR(-ENOMEM);
search_again_locked:
if (flow_act->flags & FLOW_ACT_NO_APPEND)
goto skip_search;
version = matched_fgs_get_version(match_head);
/* Try to find an fte with identical match value and attempt update its
* action.
*/
list_for_each_entry(iter, match_head, list) {
struct fs_fte *fte_tmp;
g = iter->g;
fte_tmp = lookup_fte_locked(g, spec->match_value, take_write);
if (!fte_tmp)
continue;
rule = add_rule_fg(g, spec, flow_act, dest, dest_num, fte_tmp);
/* No error check needed here, because insert_fte() is not called */
up_write_ref_node(&fte_tmp->node, false);
tree_put_node(&fte_tmp->node, false);
kmem_cache_free(steering->ftes_cache, fte);
return rule;
}
skip_search:
/* No group with matching fte found, or we skipped the search.
* Try to add a new fte to any matching fg.
*/
/* Check the ft version, for case that new flow group
* was added while the fgs weren't locked
*/
if (atomic_read(&ft->node.version) != ft_version) {
rule = ERR_PTR(-EAGAIN);
goto out;
}
/* Check the fgs version. If version have changed it could be that an
* FTE with the same match value was added while the fgs weren't
* locked.
*/
if (!(flow_act->flags & FLOW_ACT_NO_APPEND) &&
version != matched_fgs_get_version(match_head)) {
take_write = true;
goto search_again_locked;
}
list_for_each_entry(iter, match_head, list) {
g = iter->g;
nested_down_write_ref_node(&g->node, FS_LOCK_PARENT);
if (!g->node.active) {
up_write_ref_node(&g->node, false);
continue;
}
err = insert_fte(g, fte);
if (err) {
up_write_ref_node(&g->node, false);
if (err == -ENOSPC)
continue;
kmem_cache_free(steering->ftes_cache, fte);
return ERR_PTR(err);
}
nested_down_write_ref_node(&fte->node, FS_LOCK_CHILD);
up_write_ref_node(&g->node, false);
rule = add_rule_fg(g, spec, flow_act, dest, dest_num, fte);
up_write_ref_node(&fte->node, false);
if (IS_ERR(rule))
tree_put_node(&fte->node, false);
return rule;
}
rule = ERR_PTR(-ENOENT);
out:
kmem_cache_free(steering->ftes_cache, fte);
return rule;
}
static struct mlx5_flow_handle *
_mlx5_add_flow_rules(struct mlx5_flow_table *ft,
const struct mlx5_flow_spec *spec,
struct mlx5_flow_act *flow_act,
struct mlx5_flow_destination *dest,
int dest_num)
{
struct mlx5_flow_steering *steering = get_steering(&ft->node);
struct mlx5_flow_handle *rule;
struct match_list match_head;
struct mlx5_flow_group *g;
bool take_write = false;
struct fs_fte *fte;
int version;
int err;
int i;
if (!check_valid_spec(spec))
return ERR_PTR(-EINVAL);
for (i = 0; i < dest_num; i++) {
if (!dest_is_valid(&dest[i], flow_act, ft))
return ERR_PTR(-EINVAL);
}
nested_down_read_ref_node(&ft->node, FS_LOCK_GRANDPARENT);
search_again_locked:
version = atomic_read(&ft->node.version);
/* Collect all fgs which has a matching match_criteria */
err = build_match_list(&match_head, ft, spec, take_write);
if (err) {
if (take_write)
up_write_ref_node(&ft->node, false);
else
up_read_ref_node(&ft->node);
return ERR_PTR(err);
}
if (!take_write)
up_read_ref_node(&ft->node);
rule = try_add_to_existing_fg(ft, &match_head.list, spec, flow_act, dest,
dest_num, version);
free_match_list(&match_head, take_write);
if (!IS_ERR(rule) ||
(PTR_ERR(rule) != -ENOENT && PTR_ERR(rule) != -EAGAIN)) {
if (take_write)
up_write_ref_node(&ft->node, false);
return rule;
}
if (!take_write) {
nested_down_write_ref_node(&ft->node, FS_LOCK_GRANDPARENT);
take_write = true;
}
if (PTR_ERR(rule) == -EAGAIN ||
version != atomic_read(&ft->node.version))
goto search_again_locked;
g = alloc_auto_flow_group(ft, spec);
if (IS_ERR(g)) {
rule = ERR_CAST(g);
up_write_ref_node(&ft->node, false);
return rule;
}
fte = alloc_fte(ft, spec, flow_act);
if (IS_ERR(fte)) {
up_write_ref_node(&ft->node, false);
err = PTR_ERR(fte);
goto err_alloc_fte;
}
nested_down_write_ref_node(&g->node, FS_LOCK_PARENT);
up_write_ref_node(&ft->node, false);
err = create_auto_flow_group(ft, g);
if (err)
goto err_release_fg;
err = insert_fte(g, fte);
if (err)
goto err_release_fg;
nested_down_write_ref_node(&fte->node, FS_LOCK_CHILD);
up_write_ref_node(&g->node, false);
rule = add_rule_fg(g, spec, flow_act, dest, dest_num, fte);
up_write_ref_node(&fte->node, false);
if (IS_ERR(rule))
tree_put_node(&fte->node, false);
tree_put_node(&g->node, false);
return rule;
err_release_fg:
up_write_ref_node(&g->node, false);
kmem_cache_free(steering->ftes_cache, fte);
err_alloc_fte:
tree_put_node(&g->node, false);
return ERR_PTR(err);
}
static bool fwd_next_prio_supported(struct mlx5_flow_table *ft)
{
return ((ft->type == FS_FT_NIC_RX) &&
(MLX5_CAP_FLOWTABLE(get_dev(&ft->node), nic_rx_multi_path_tirs)));
}
struct mlx5_flow_handle *
mlx5_add_flow_rules(struct mlx5_flow_table *ft,
const struct mlx5_flow_spec *spec,
struct mlx5_flow_act *flow_act,
struct mlx5_flow_destination *dest,
int num_dest)
{
struct mlx5_flow_root_namespace *root = find_root(&ft->node);
static const struct mlx5_flow_spec zero_spec = {};
struct mlx5_flow_destination *gen_dest = NULL;
struct mlx5_flow_table *next_ft = NULL;
struct mlx5_flow_handle *handle = NULL;
u32 sw_action = flow_act->action;
int i;
if (!spec)
spec = &zero_spec;
if (!is_fwd_next_action(sw_action))
return _mlx5_add_flow_rules(ft, spec, flow_act, dest, num_dest);
if (!fwd_next_prio_supported(ft))
return ERR_PTR(-EOPNOTSUPP);
mutex_lock(&root->chain_lock);
next_ft = find_next_fwd_ft(ft, flow_act);
if (!next_ft) {
handle = ERR_PTR(-EOPNOTSUPP);
goto unlock;
}
gen_dest = kcalloc(num_dest + 1, sizeof(*dest),
GFP_KERNEL);
if (!gen_dest) {
handle = ERR_PTR(-ENOMEM);
goto unlock;
}
for (i = 0; i < num_dest; i++)
gen_dest[i] = dest[i];
gen_dest[i].type =
MLX5_FLOW_DESTINATION_TYPE_FLOW_TABLE;
gen_dest[i].ft = next_ft;
dest = gen_dest;
num_dest++;
flow_act->action &= ~(MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO |
MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_NS);
flow_act->action |= MLX5_FLOW_CONTEXT_ACTION_FWD_DEST;
handle = _mlx5_add_flow_rules(ft, spec, flow_act, dest, num_dest);
if (IS_ERR(handle))
goto unlock;
if (list_empty(&handle->rule[num_dest - 1]->next_ft)) {
mutex_lock(&next_ft->lock);
list_add(&handle->rule[num_dest - 1]->next_ft,
&next_ft->fwd_rules);
mutex_unlock(&next_ft->lock);
handle->rule[num_dest - 1]->sw_action = sw_action;
handle->rule[num_dest - 1]->ft = ft;
}
unlock:
mutex_unlock(&root->chain_lock);
kfree(gen_dest);
return handle;
}
EXPORT_SYMBOL(mlx5_add_flow_rules);
void mlx5_del_flow_rules(struct mlx5_flow_handle *handle)
{
struct fs_fte *fte;
int i;
/* In order to consolidate the HW changes we lock the FTE for other
* changes, and increase its refcount, in order not to perform the
* "del" functions of the FTE. Will handle them here.
* The removal of the rules is done under locked FTE.
* After removing all the handle's rules, if there are remaining
* rules, it means we just need to modify the FTE in FW, and
* unlock/decrease the refcount we increased before.
* Otherwise, it means the FTE should be deleted. First delete the
* FTE in FW. Then, unlock the FTE, and proceed the tree_put_node of
* the FTE, which will handle the last decrease of the refcount, as
* well as required handling of its parent.
*/
fs_get_obj(fte, handle->rule[0]->node.parent);
down_write_ref_node(&fte->node, false);
for (i = handle->num_rules - 1; i >= 0; i--)
tree_remove_node(&handle->rule[i]->node, true);
if (fte->dests_size) {
if (fte->modify_mask)
modify_fte(fte);
up_write_ref_node(&fte->node, false);
} else if (list_empty(&fte->node.children)) {
del_hw_fte(&fte->node);
/* Avoid double call to del_hw_fte */
fte->node.del_hw_func = NULL;
up_write_ref_node(&fte->node, false);
tree_put_node(&fte->node, false);
}
kfree(handle);
}
EXPORT_SYMBOL(mlx5_del_flow_rules);
/* Assuming prio->node.children(flow tables) is sorted by level */
static struct mlx5_flow_table *find_next_ft(struct mlx5_flow_table *ft)
{
struct fs_prio *prio;
fs_get_obj(prio, ft->node.parent);
if (!list_is_last(&ft->node.list, &prio->node.children))
return list_next_entry(ft, node.list);
return find_next_chained_ft(prio);
}
static int update_root_ft_destroy(struct mlx5_flow_table *ft)
{
struct mlx5_flow_root_namespace *root = find_root(&ft->node);
struct mlx5_ft_underlay_qp *uqp;
struct mlx5_flow_table *new_root_ft = NULL;
int err = 0;
u32 qpn;
if (root->root_ft != ft)
return 0;
new_root_ft = find_next_ft(ft);
if (!new_root_ft) {
root->root_ft = NULL;
return 0;
}
if (list_empty(&root->underlay_qpns)) {
/* Don't set any QPN (zero) in case QPN list is empty */
qpn = 0;
err = root->cmds->update_root_ft(root, new_root_ft,
qpn, false);
} else {
list_for_each_entry(uqp, &root->underlay_qpns, list) {
qpn = uqp->qpn;
err = root->cmds->update_root_ft(root,
new_root_ft, qpn,
false);
if (err)
break;
}
}
if (err)
mlx5_core_warn(root->dev,
"Update root flow table of id(%u) qpn(%d) failed\n",
ft->id, qpn);
else
root->root_ft = new_root_ft;
return 0;
}
/* Connect flow table from previous priority to
* the next flow table.
*/
static int disconnect_flow_table(struct mlx5_flow_table *ft)
{
struct mlx5_core_dev *dev = get_dev(&ft->node);
struct mlx5_flow_table *next_ft;
struct fs_prio *prio;
int err = 0;
err = update_root_ft_destroy(ft);
if (err)
return err;
fs_get_obj(prio, ft->node.parent);
if (!(list_first_entry(&prio->node.children,
struct mlx5_flow_table,
node.list) == ft))
return 0;
next_ft = find_next_ft(ft);
err = connect_fwd_rules(dev, next_ft, ft);
if (err)
return err;
err = connect_prev_fts(dev, next_ft, prio);
if (err)
mlx5_core_warn(dev, "Failed to disconnect flow table %d\n",
ft->id);
return err;
}
int mlx5_destroy_flow_table(struct mlx5_flow_table *ft)
{
struct mlx5_flow_root_namespace *root = find_root(&ft->node);
int err = 0;
mutex_lock(&root->chain_lock);
if (!(ft->flags & MLX5_FLOW_TABLE_UNMANAGED))
err = disconnect_flow_table(ft);
if (err) {
mutex_unlock(&root->chain_lock);
return err;
}
if (tree_remove_node(&ft->node, false))
mlx5_core_warn(get_dev(&ft->node), "Flow table %d wasn't destroyed, refcount > 1\n",
ft->id);
mutex_unlock(&root->chain_lock);
return err;
}
EXPORT_SYMBOL(mlx5_destroy_flow_table);
void mlx5_destroy_flow_group(struct mlx5_flow_group *fg)
{
if (tree_remove_node(&fg->node, false))
mlx5_core_warn(get_dev(&fg->node), "Flow group %d wasn't destroyed, refcount > 1\n",
fg->id);
}
EXPORT_SYMBOL(mlx5_destroy_flow_group);
struct mlx5_flow_namespace *mlx5_get_fdb_sub_ns(struct mlx5_core_dev *dev,
int n)
{
struct mlx5_flow_steering *steering = dev->priv.steering;
if (!steering || !steering->fdb_sub_ns)
return NULL;
return steering->fdb_sub_ns[n];
}
EXPORT_SYMBOL(mlx5_get_fdb_sub_ns);
struct mlx5_flow_namespace *mlx5_get_flow_namespace(struct mlx5_core_dev *dev,
enum mlx5_flow_namespace_type type)
{
struct mlx5_flow_steering *steering = dev->priv.steering;
struct mlx5_flow_root_namespace *root_ns;
int prio = 0;
struct fs_prio *fs_prio;
struct mlx5_flow_namespace *ns;
if (!steering)
return NULL;
switch (type) {
case MLX5_FLOW_NAMESPACE_FDB:
if (steering->fdb_root_ns)
return &steering->fdb_root_ns->ns;
return NULL;
case MLX5_FLOW_NAMESPACE_SNIFFER_RX:
if (steering->sniffer_rx_root_ns)
return &steering->sniffer_rx_root_ns->ns;
return NULL;
case MLX5_FLOW_NAMESPACE_SNIFFER_TX:
if (steering->sniffer_tx_root_ns)
return &steering->sniffer_tx_root_ns->ns;
return NULL;
default:
break;
}
if (type == MLX5_FLOW_NAMESPACE_EGRESS ||
type == MLX5_FLOW_NAMESPACE_EGRESS_KERNEL) {
root_ns = steering->egress_root_ns;
prio = type - MLX5_FLOW_NAMESPACE_EGRESS;
} else if (type == MLX5_FLOW_NAMESPACE_RDMA_RX) {
root_ns = steering->rdma_rx_root_ns;
prio = RDMA_RX_BYPASS_PRIO;
} else if (type == MLX5_FLOW_NAMESPACE_RDMA_RX_KERNEL) {
root_ns = steering->rdma_rx_root_ns;
prio = RDMA_RX_KERNEL_PRIO;
} else if (type == MLX5_FLOW_NAMESPACE_RDMA_TX) {
root_ns = steering->rdma_tx_root_ns;
} else { /* Must be NIC RX */
root_ns = steering->root_ns;
prio = type;
}
if (!root_ns)
return NULL;
fs_prio = find_prio(&root_ns->ns, prio);
if (!fs_prio)
return NULL;
ns = list_first_entry(&fs_prio->node.children,
typeof(*ns),
node.list);
return ns;
}
EXPORT_SYMBOL(mlx5_get_flow_namespace);
struct mlx5_flow_namespace *mlx5_get_flow_vport_acl_namespace(struct mlx5_core_dev *dev,
enum mlx5_flow_namespace_type type,
int vport)
{
struct mlx5_flow_steering *steering = dev->priv.steering;
if (!steering)
return NULL;
switch (type) {
case MLX5_FLOW_NAMESPACE_ESW_EGRESS:
if (vport >= steering->esw_egress_acl_vports)
return NULL;
if (steering->esw_egress_root_ns &&
steering->esw_egress_root_ns[vport])
return &steering->esw_egress_root_ns[vport]->ns;
else
return NULL;
case MLX5_FLOW_NAMESPACE_ESW_INGRESS:
if (vport >= steering->esw_ingress_acl_vports)
return NULL;
if (steering->esw_ingress_root_ns &&
steering->esw_ingress_root_ns[vport])
return &steering->esw_ingress_root_ns[vport]->ns;
else
return NULL;
default:
return NULL;
}
}
static struct fs_prio *_fs_create_prio(struct mlx5_flow_namespace *ns,
unsigned int prio,
int num_levels,
enum fs_node_type type)
{
struct fs_prio *fs_prio;
fs_prio = kzalloc(sizeof(*fs_prio), GFP_KERNEL);
if (!fs_prio)
return ERR_PTR(-ENOMEM);
fs_prio->node.type = type;
tree_init_node(&fs_prio->node, NULL, del_sw_prio);
tree_add_node(&fs_prio->node, &ns->node);
fs_prio->num_levels = num_levels;
fs_prio->prio = prio;
list_add_tail(&fs_prio->node.list, &ns->node.children);
return fs_prio;
}
static struct fs_prio *fs_create_prio_chained(struct mlx5_flow_namespace *ns,
unsigned int prio,
int num_levels)
{
return _fs_create_prio(ns, prio, num_levels, FS_TYPE_PRIO_CHAINS);
}
static struct fs_prio *fs_create_prio(struct mlx5_flow_namespace *ns,
unsigned int prio, int num_levels)
{
return _fs_create_prio(ns, prio, num_levels, FS_TYPE_PRIO);
}
static struct mlx5_flow_namespace *fs_init_namespace(struct mlx5_flow_namespace
*ns)
{
ns->node.type = FS_TYPE_NAMESPACE;
return ns;
}
static struct mlx5_flow_namespace *fs_create_namespace(struct fs_prio *prio,
int def_miss_act)
{
struct mlx5_flow_namespace *ns;
ns = kzalloc(sizeof(*ns), GFP_KERNEL);
if (!ns)
return ERR_PTR(-ENOMEM);
fs_init_namespace(ns);
ns->def_miss_action = def_miss_act;
tree_init_node(&ns->node, NULL, del_sw_ns);
tree_add_node(&ns->node, &prio->node);
list_add_tail(&ns->node.list, &prio->node.children);
return ns;
}
static int create_leaf_prios(struct mlx5_flow_namespace *ns, int prio,
struct init_tree_node *prio_metadata)
{
struct fs_prio *fs_prio;
int i;
for (i = 0; i < prio_metadata->num_leaf_prios; i++) {
fs_prio = fs_create_prio(ns, prio++, prio_metadata->num_levels);
if (IS_ERR(fs_prio))
return PTR_ERR(fs_prio);
}
return 0;
}
#define FLOW_TABLE_BIT_SZ 1
#define GET_FLOW_TABLE_CAP(dev, offset) \
((be32_to_cpu(*((__be32 *)(dev->caps.hca_cur[MLX5_CAP_FLOW_TABLE]) + \
offset / 32)) >> \
(32 - FLOW_TABLE_BIT_SZ - (offset & 0x1f))) & FLOW_TABLE_BIT_SZ)
static bool has_required_caps(struct mlx5_core_dev *dev, struct node_caps *caps)
{
int i;
for (i = 0; i < caps->arr_sz; i++) {
if (!GET_FLOW_TABLE_CAP(dev, caps->caps[i]))
return false;
}
return true;
}
static int init_root_tree_recursive(struct mlx5_flow_steering *steering,
struct init_tree_node *init_node,
struct fs_node *fs_parent_node,
struct init_tree_node *init_parent_node,
int prio)
{
int max_ft_level = MLX5_CAP_FLOWTABLE(steering->dev,
flow_table_properties_nic_receive.
max_ft_level);
struct mlx5_flow_namespace *fs_ns;
struct fs_prio *fs_prio;
struct fs_node *base;
int i;
int err;
if (init_node->type == FS_TYPE_PRIO) {
if ((init_node->min_ft_level > max_ft_level) ||
!has_required_caps(steering->dev, &init_node->caps))
return 0;
fs_get_obj(fs_ns, fs_parent_node);
if (init_node->num_leaf_prios)
return create_leaf_prios(fs_ns, prio, init_node);
fs_prio = fs_create_prio(fs_ns, prio, init_node->num_levels);
if (IS_ERR(fs_prio))
return PTR_ERR(fs_prio);
base = &fs_prio->node;
} else if (init_node->type == FS_TYPE_NAMESPACE) {
fs_get_obj(fs_prio, fs_parent_node);
fs_ns = fs_create_namespace(fs_prio, init_node->def_miss_action);
if (IS_ERR(fs_ns))
return PTR_ERR(fs_ns);
base = &fs_ns->node;
} else {
return -EINVAL;
}
prio = 0;
for (i = 0; i < init_node->ar_size; i++) {
err = init_root_tree_recursive(steering, &init_node->children[i],
base, init_node, prio);
if (err)
return err;
if (init_node->children[i].type == FS_TYPE_PRIO &&
init_node->children[i].num_leaf_prios) {
prio += init_node->children[i].num_leaf_prios;
}
}
return 0;
}
static int init_root_tree(struct mlx5_flow_steering *steering,
struct init_tree_node *init_node,
struct fs_node *fs_parent_node)
{
int err;
int i;
for (i = 0; i < init_node->ar_size; i++) {
err = init_root_tree_recursive(steering, &init_node->children[i],
fs_parent_node,
init_node, i);
if (err)
return err;
}
return 0;
}
static void del_sw_root_ns(struct fs_node *node)
{
struct mlx5_flow_root_namespace *root_ns;
struct mlx5_flow_namespace *ns;
fs_get_obj(ns, node);
root_ns = container_of(ns, struct mlx5_flow_root_namespace, ns);
mutex_destroy(&root_ns->chain_lock);
kfree(node);
}
static struct mlx5_flow_root_namespace
*create_root_ns(struct mlx5_flow_steering *steering,
enum fs_flow_table_type table_type)
{
const struct mlx5_flow_cmds *cmds = mlx5_fs_cmd_get_default(table_type);
struct mlx5_flow_root_namespace *root_ns;
struct mlx5_flow_namespace *ns;
if (mlx5_fpga_ipsec_device_caps(steering->dev) & MLX5_ACCEL_IPSEC_CAP_DEVICE &&
(table_type == FS_FT_NIC_RX || table_type == FS_FT_NIC_TX))
cmds = mlx5_fs_cmd_get_default_ipsec_fpga_cmds(table_type);
/* Create the root namespace */
root_ns = kzalloc(sizeof(*root_ns), GFP_KERNEL);
if (!root_ns)
return NULL;
root_ns->dev = steering->dev;
root_ns->table_type = table_type;
root_ns->cmds = cmds;
INIT_LIST_HEAD(&root_ns->underlay_qpns);
ns = &root_ns->ns;
fs_init_namespace(ns);
mutex_init(&root_ns->chain_lock);
tree_init_node(&ns->node, NULL, del_sw_root_ns);
tree_add_node(&ns->node, NULL);
return root_ns;
}
static void set_prio_attrs_in_prio(struct fs_prio *prio, int acc_level);
static int set_prio_attrs_in_ns(struct mlx5_flow_namespace *ns, int acc_level)
{
struct fs_prio *prio;
fs_for_each_prio(prio, ns) {
/* This updates prio start_level and num_levels */
set_prio_attrs_in_prio(prio, acc_level);
acc_level += prio->num_levels;
}
return acc_level;
}
static void set_prio_attrs_in_prio(struct fs_prio *prio, int acc_level)
{
struct mlx5_flow_namespace *ns;
int acc_level_ns = acc_level;
prio->start_level = acc_level;
fs_for_each_ns(ns, prio) {
/* This updates start_level and num_levels of ns's priority descendants */
acc_level_ns = set_prio_attrs_in_ns(ns, acc_level);
/* If this a prio with chains, and we can jump from one chain
* (namepsace) to another, so we accumulate the levels
*/
if (prio->node.type == FS_TYPE_PRIO_CHAINS)
acc_level = acc_level_ns;
}
if (!prio->num_levels)
prio->num_levels = acc_level_ns - prio->start_level;
WARN_ON(prio->num_levels < acc_level_ns - prio->start_level);
}
static void set_prio_attrs(struct mlx5_flow_root_namespace *root_ns)
{
struct mlx5_flow_namespace *ns = &root_ns->ns;
struct fs_prio *prio;
int start_level = 0;
fs_for_each_prio(prio, ns) {
set_prio_attrs_in_prio(prio, start_level);
start_level += prio->num_levels;
}
}
#define ANCHOR_PRIO 0
#define ANCHOR_SIZE 1
#define ANCHOR_LEVEL 0
static int create_anchor_flow_table(struct mlx5_flow_steering *steering)
{
struct mlx5_flow_namespace *ns = NULL;
struct mlx5_flow_table_attr ft_attr = {};
struct mlx5_flow_table *ft;
ns = mlx5_get_flow_namespace(steering->dev, MLX5_FLOW_NAMESPACE_ANCHOR);
if (WARN_ON(!ns))
return -EINVAL;
ft_attr.max_fte = ANCHOR_SIZE;
ft_attr.level = ANCHOR_LEVEL;
ft_attr.prio = ANCHOR_PRIO;
ft = mlx5_create_flow_table(ns, &ft_attr);
if (IS_ERR(ft)) {
mlx5_core_err(steering->dev, "Failed to create last anchor flow table");
return PTR_ERR(ft);
}
return 0;
}
static int init_root_ns(struct mlx5_flow_steering *steering)
{
int err;
steering->root_ns = create_root_ns(steering, FS_FT_NIC_RX);
if (!steering->root_ns)
return -ENOMEM;
err = init_root_tree(steering, &root_fs, &steering->root_ns->ns.node);
if (err)
goto out_err;
set_prio_attrs(steering->root_ns);
err = create_anchor_flow_table(steering);
if (err)
goto out_err;
return 0;
out_err:
cleanup_root_ns(steering->root_ns);
steering->root_ns = NULL;
return err;
}
static void clean_tree(struct fs_node *node)
{
if (node) {
struct fs_node *iter;
struct fs_node *temp;
tree_get_node(node);
list_for_each_entry_safe(iter, temp, &node->children, list)
clean_tree(iter);
tree_put_node(node, false);
tree_remove_node(node, false);
}
}
static void cleanup_root_ns(struct mlx5_flow_root_namespace *root_ns)
{
if (!root_ns)
return;
clean_tree(&root_ns->ns.node);
}
void mlx5_cleanup_fs(struct mlx5_core_dev *dev)
{
struct mlx5_flow_steering *steering = dev->priv.steering;
cleanup_root_ns(steering->root_ns);
cleanup_root_ns(steering->fdb_root_ns);
steering->fdb_root_ns = NULL;
kfree(steering->fdb_sub_ns);
steering->fdb_sub_ns = NULL;
cleanup_root_ns(steering->sniffer_rx_root_ns);
cleanup_root_ns(steering->sniffer_tx_root_ns);
cleanup_root_ns(steering->rdma_rx_root_ns);
cleanup_root_ns(steering->rdma_tx_root_ns);
cleanup_root_ns(steering->egress_root_ns);
mlx5_cleanup_fc_stats(dev);
kmem_cache_destroy(steering->ftes_cache);
kmem_cache_destroy(steering->fgs_cache);
mlx5_ft_pool_destroy(dev);
kfree(steering);
}
static int init_sniffer_tx_root_ns(struct mlx5_flow_steering *steering)
{
struct fs_prio *prio;
steering->sniffer_tx_root_ns = create_root_ns(steering, FS_FT_SNIFFER_TX);
if (!steering->sniffer_tx_root_ns)
return -ENOMEM;
/* Create single prio */
prio = fs_create_prio(&steering->sniffer_tx_root_ns->ns, 0, 1);
return PTR_ERR_OR_ZERO(prio);
}
static int init_sniffer_rx_root_ns(struct mlx5_flow_steering *steering)
{
struct fs_prio *prio;
steering->sniffer_rx_root_ns = create_root_ns(steering, FS_FT_SNIFFER_RX);
if (!steering->sniffer_rx_root_ns)
return -ENOMEM;
/* Create single prio */
prio = fs_create_prio(&steering->sniffer_rx_root_ns->ns, 0, 1);
return PTR_ERR_OR_ZERO(prio);
}
static int init_rdma_rx_root_ns(struct mlx5_flow_steering *steering)
{
int err;
steering->rdma_rx_root_ns = create_root_ns(steering, FS_FT_RDMA_RX);
if (!steering->rdma_rx_root_ns)
return -ENOMEM;
err = init_root_tree(steering, &rdma_rx_root_fs,
&steering->rdma_rx_root_ns->ns.node);
if (err)
goto out_err;
set_prio_attrs(steering->rdma_rx_root_ns);
return 0;
out_err:
cleanup_root_ns(steering->rdma_rx_root_ns);
steering->rdma_rx_root_ns = NULL;
return err;
}
static int init_rdma_tx_root_ns(struct mlx5_flow_steering *steering)
{
int err;
steering->rdma_tx_root_ns = create_root_ns(steering, FS_FT_RDMA_TX);
if (!steering->rdma_tx_root_ns)
return -ENOMEM;
err = init_root_tree(steering, &rdma_tx_root_fs,
&steering->rdma_tx_root_ns->ns.node);
if (err)
goto out_err;
set_prio_attrs(steering->rdma_tx_root_ns);
return 0;
out_err:
cleanup_root_ns(steering->rdma_tx_root_ns);
steering->rdma_tx_root_ns = NULL;
return err;
}
/* FT and tc chains are stored in the same array so we can re-use the
* mlx5_get_fdb_sub_ns() and tc api for FT chains.
* When creating a new ns for each chain store it in the first available slot.
* Assume tc chains are created and stored first and only then the FT chain.
*/
static void store_fdb_sub_ns_prio_chain(struct mlx5_flow_steering *steering,
struct mlx5_flow_namespace *ns)
{
int chain = 0;
while (steering->fdb_sub_ns[chain])
++chain;
steering->fdb_sub_ns[chain] = ns;
}
static int create_fdb_sub_ns_prio_chain(struct mlx5_flow_steering *steering,
struct fs_prio *maj_prio)
{
struct mlx5_flow_namespace *ns;
struct fs_prio *min_prio;
int prio;
ns = fs_create_namespace(maj_prio, MLX5_FLOW_TABLE_MISS_ACTION_DEF);
if (IS_ERR(ns))
return PTR_ERR(ns);
for (prio = 0; prio < FDB_TC_MAX_PRIO; prio++) {
min_prio = fs_create_prio(ns, prio, FDB_TC_LEVELS_PER_PRIO);
if (IS_ERR(min_prio))
return PTR_ERR(min_prio);
}
store_fdb_sub_ns_prio_chain(steering, ns);
return 0;
}
static int create_fdb_chains(struct mlx5_flow_steering *steering,
int fs_prio,
int chains)
{
struct fs_prio *maj_prio;
int levels;
int chain;
int err;
levels = FDB_TC_LEVELS_PER_PRIO * FDB_TC_MAX_PRIO * chains;
maj_prio = fs_create_prio_chained(&steering->fdb_root_ns->ns,
fs_prio,
levels);
if (IS_ERR(maj_prio))
return PTR_ERR(maj_prio);
for (chain = 0; chain < chains; chain++) {
err = create_fdb_sub_ns_prio_chain(steering, maj_prio);
if (err)
return err;
}
return 0;
}
static int create_fdb_fast_path(struct mlx5_flow_steering *steering)
{
int err;
steering->fdb_sub_ns = kcalloc(FDB_NUM_CHAINS,
sizeof(*steering->fdb_sub_ns),
GFP_KERNEL);
if (!steering->fdb_sub_ns)
return -ENOMEM;
err = create_fdb_chains(steering, FDB_TC_OFFLOAD, FDB_TC_MAX_CHAIN + 1);
if (err)
return err;
err = create_fdb_chains(steering, FDB_FT_OFFLOAD, 1);
if (err)
return err;
return 0;
}
static int init_fdb_root_ns(struct mlx5_flow_steering *steering)
{
struct fs_prio *maj_prio;
int err;
steering->fdb_root_ns = create_root_ns(steering, FS_FT_FDB);
if (!steering->fdb_root_ns)
return -ENOMEM;
maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_BYPASS_PATH,
1);
if (IS_ERR(maj_prio)) {
err = PTR_ERR(maj_prio);
goto out_err;
}
err = create_fdb_fast_path(steering);
if (err)
goto out_err;
maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_TC_MISS, 1);
if (IS_ERR(maj_prio)) {
err = PTR_ERR(maj_prio);
goto out_err;
}
maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_BR_OFFLOAD, 3);
if (IS_ERR(maj_prio)) {
err = PTR_ERR(maj_prio);
goto out_err;
}
maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_SLOW_PATH, 1);
if (IS_ERR(maj_prio)) {
err = PTR_ERR(maj_prio);
goto out_err;
}
/* We put this priority last, knowing that nothing will get here
* unless explicitly forwarded to. This is possible because the
* slow path tables have catch all rules and nothing gets passed
* those tables.
*/
maj_prio = fs_create_prio(&steering->fdb_root_ns->ns, FDB_PER_VPORT, 1);
if (IS_ERR(maj_prio)) {
err = PTR_ERR(maj_prio);
goto out_err;
}
set_prio_attrs(steering->fdb_root_ns);
return 0;
out_err:
cleanup_root_ns(steering->fdb_root_ns);
kfree(steering->fdb_sub_ns);
steering->fdb_sub_ns = NULL;
steering->fdb_root_ns = NULL;
return err;
}
static int init_egress_acl_root_ns(struct mlx5_flow_steering *steering, int vport)
{
struct fs_prio *prio;
steering->esw_egress_root_ns[vport] = create_root_ns(steering, FS_FT_ESW_EGRESS_ACL);
if (!steering->esw_egress_root_ns[vport])
return -ENOMEM;
/* create 1 prio*/
prio = fs_create_prio(&steering->esw_egress_root_ns[vport]->ns, 0, 1);
return PTR_ERR_OR_ZERO(prio);
}
static int init_ingress_acl_root_ns(struct mlx5_flow_steering *steering, int vport)
{
struct fs_prio *prio;
steering->esw_ingress_root_ns[vport] = create_root_ns(steering, FS_FT_ESW_INGRESS_ACL);
if (!steering->esw_ingress_root_ns[vport])
return -ENOMEM;
/* create 1 prio*/
prio = fs_create_prio(&steering->esw_ingress_root_ns[vport]->ns, 0, 1);
return PTR_ERR_OR_ZERO(prio);
}
int mlx5_fs_egress_acls_init(struct mlx5_core_dev *dev, int total_vports)
{
struct mlx5_flow_steering *steering = dev->priv.steering;
int err;
int i;
steering->esw_egress_root_ns =
kcalloc(total_vports,
sizeof(*steering->esw_egress_root_ns),
GFP_KERNEL);
if (!steering->esw_egress_root_ns)
return -ENOMEM;
for (i = 0; i < total_vports; i++) {
err = init_egress_acl_root_ns(steering, i);
if (err)
goto cleanup_root_ns;
}
steering->esw_egress_acl_vports = total_vports;
return 0;
cleanup_root_ns:
for (i--; i >= 0; i--)
cleanup_root_ns(steering->esw_egress_root_ns[i]);
kfree(steering->esw_egress_root_ns);
steering->esw_egress_root_ns = NULL;
return err;
}
void mlx5_fs_egress_acls_cleanup(struct mlx5_core_dev *dev)
{
struct mlx5_flow_steering *steering = dev->priv.steering;
int i;
if (!steering->esw_egress_root_ns)
return;
for (i = 0; i < steering->esw_egress_acl_vports; i++)
cleanup_root_ns(steering->esw_egress_root_ns[i]);
kfree(steering->esw_egress_root_ns);
steering->esw_egress_root_ns = NULL;
}
int mlx5_fs_ingress_acls_init(struct mlx5_core_dev *dev, int total_vports)
{
struct mlx5_flow_steering *steering = dev->priv.steering;
int err;
int i;
steering->esw_ingress_root_ns =
kcalloc(total_vports,
sizeof(*steering->esw_ingress_root_ns),
GFP_KERNEL);
if (!steering->esw_ingress_root_ns)
return -ENOMEM;
for (i = 0; i < total_vports; i++) {
err = init_ingress_acl_root_ns(steering, i);
if (err)
goto cleanup_root_ns;
}
steering->esw_ingress_acl_vports = total_vports;
return 0;
cleanup_root_ns:
for (i--; i >= 0; i--)
cleanup_root_ns(steering->esw_ingress_root_ns[i]);
kfree(steering->esw_ingress_root_ns);
steering->esw_ingress_root_ns = NULL;
return err;
}
void mlx5_fs_ingress_acls_cleanup(struct mlx5_core_dev *dev)
{
struct mlx5_flow_steering *steering = dev->priv.steering;
int i;
if (!steering->esw_ingress_root_ns)
return;
for (i = 0; i < steering->esw_ingress_acl_vports; i++)
cleanup_root_ns(steering->esw_ingress_root_ns[i]);
kfree(steering->esw_ingress_root_ns);
steering->esw_ingress_root_ns = NULL;
}
static int init_egress_root_ns(struct mlx5_flow_steering *steering)
{
int err;
steering->egress_root_ns = create_root_ns(steering,
FS_FT_NIC_TX);
if (!steering->egress_root_ns)
return -ENOMEM;
err = init_root_tree(steering, &egress_root_fs,
&steering->egress_root_ns->ns.node);
if (err)
goto cleanup;
set_prio_attrs(steering->egress_root_ns);
return 0;
cleanup:
cleanup_root_ns(steering->egress_root_ns);
steering->egress_root_ns = NULL;
return err;
}
int mlx5_init_fs(struct mlx5_core_dev *dev)
{
struct mlx5_flow_steering *steering;
int err = 0;
err = mlx5_init_fc_stats(dev);
if (err)
return err;
err = mlx5_ft_pool_init(dev);
if (err)
return err;
steering = kzalloc(sizeof(*steering), GFP_KERNEL);
if (!steering) {
err = -ENOMEM;
goto err;
}
steering->dev = dev;
dev->priv.steering = steering;
steering->fgs_cache = kmem_cache_create("mlx5_fs_fgs",
sizeof(struct mlx5_flow_group), 0,
0, NULL);
steering->ftes_cache = kmem_cache_create("mlx5_fs_ftes", sizeof(struct fs_fte), 0,
0, NULL);
if (!steering->ftes_cache || !steering->fgs_cache) {
err = -ENOMEM;
goto err;
}
if ((((MLX5_CAP_GEN(dev, port_type) == MLX5_CAP_PORT_TYPE_ETH) &&
(MLX5_CAP_GEN(dev, nic_flow_table))) ||
((MLX5_CAP_GEN(dev, port_type) == MLX5_CAP_PORT_TYPE_IB) &&
MLX5_CAP_GEN(dev, ipoib_enhanced_offloads))) &&
MLX5_CAP_FLOWTABLE_NIC_RX(dev, ft_support)) {
err = init_root_ns(steering);
if (err)
goto err;
}
if (MLX5_ESWITCH_MANAGER(dev)) {
if (MLX5_CAP_ESW_FLOWTABLE_FDB(dev, ft_support)) {
err = init_fdb_root_ns(steering);
if (err)
goto err;
}
}
if (MLX5_CAP_FLOWTABLE_SNIFFER_RX(dev, ft_support)) {
err = init_sniffer_rx_root_ns(steering);
if (err)
goto err;
}
if (MLX5_CAP_FLOWTABLE_SNIFFER_TX(dev, ft_support)) {
err = init_sniffer_tx_root_ns(steering);
if (err)
goto err;
}
if (MLX5_CAP_FLOWTABLE_RDMA_RX(dev, ft_support) &&
MLX5_CAP_FLOWTABLE_RDMA_RX(dev, table_miss_action_domain)) {
err = init_rdma_rx_root_ns(steering);