|  | /* | 
|  | *  linux/arch/arm/mm/dma-mapping.c | 
|  | * | 
|  | *  Copyright (C) 2000-2004 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | *  DMA uncached mapping support. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dma-contiguous.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/iommu.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sizes.h> | 
|  |  | 
|  | #include <asm/memory.h> | 
|  | #include <asm/highmem.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mach/arch.h> | 
|  | #include <asm/dma-iommu.h> | 
|  | #include <asm/mach/map.h> | 
|  | #include <asm/system_info.h> | 
|  | #include <asm/dma-contiguous.h> | 
|  |  | 
|  | #include "mm.h" | 
|  |  | 
|  | /* | 
|  | * The DMA API is built upon the notion of "buffer ownership".  A buffer | 
|  | * is either exclusively owned by the CPU (and therefore may be accessed | 
|  | * by it) or exclusively owned by the DMA device.  These helper functions | 
|  | * represent the transitions between these two ownership states. | 
|  | * | 
|  | * Note, however, that on later ARMs, this notion does not work due to | 
|  | * speculative prefetches.  We model our approach on the assumption that | 
|  | * the CPU does do speculative prefetches, which means we clean caches | 
|  | * before transfers and delay cache invalidation until transfer completion. | 
|  | * | 
|  | */ | 
|  | static void __dma_page_cpu_to_dev(struct page *, unsigned long, | 
|  | size_t, enum dma_data_direction); | 
|  | static void __dma_page_dev_to_cpu(struct page *, unsigned long, | 
|  | size_t, enum dma_data_direction); | 
|  |  | 
|  | /** | 
|  | * arm_dma_map_page - map a portion of a page for streaming DMA | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @page: page that buffer resides in | 
|  | * @offset: offset into page for start of buffer | 
|  | * @size: size of buffer to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Ensure that any data held in the cache is appropriately discarded | 
|  | * or written back. | 
|  | * | 
|  | * The device owns this memory once this call has completed.  The CPU | 
|  | * can regain ownership by calling dma_unmap_page(). | 
|  | */ | 
|  | static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) | 
|  | __dma_page_cpu_to_dev(page, offset, size, dir); | 
|  | return pfn_to_dma(dev, page_to_pfn(page)) + offset; | 
|  | } | 
|  |  | 
|  | static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | return pfn_to_dma(dev, page_to_pfn(page)) + offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @handle: DMA address of buffer | 
|  | * @size: size of buffer (same as passed to dma_map_page) | 
|  | * @dir: DMA transfer direction (same as passed to dma_map_page) | 
|  | * | 
|  | * Unmap a page streaming mode DMA translation.  The handle and size | 
|  | * must match what was provided in the previous dma_map_page() call. | 
|  | * All other usages are undefined. | 
|  | * | 
|  | * After this call, reads by the CPU to the buffer are guaranteed to see | 
|  | * whatever the device wrote there. | 
|  | */ | 
|  | static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, | 
|  | size_t size, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) | 
|  | __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), | 
|  | handle & ~PAGE_MASK, size, dir); | 
|  | } | 
|  |  | 
|  | static void arm_dma_sync_single_for_cpu(struct device *dev, | 
|  | dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | unsigned int offset = handle & (PAGE_SIZE - 1); | 
|  | struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); | 
|  | __dma_page_dev_to_cpu(page, offset, size, dir); | 
|  | } | 
|  |  | 
|  | static void arm_dma_sync_single_for_device(struct device *dev, | 
|  | dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | unsigned int offset = handle & (PAGE_SIZE - 1); | 
|  | struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); | 
|  | __dma_page_cpu_to_dev(page, offset, size, dir); | 
|  | } | 
|  |  | 
|  | struct dma_map_ops arm_dma_ops = { | 
|  | .alloc			= arm_dma_alloc, | 
|  | .free			= arm_dma_free, | 
|  | .mmap			= arm_dma_mmap, | 
|  | .get_sgtable		= arm_dma_get_sgtable, | 
|  | .map_page		= arm_dma_map_page, | 
|  | .unmap_page		= arm_dma_unmap_page, | 
|  | .map_sg			= arm_dma_map_sg, | 
|  | .unmap_sg		= arm_dma_unmap_sg, | 
|  | .sync_single_for_cpu	= arm_dma_sync_single_for_cpu, | 
|  | .sync_single_for_device	= arm_dma_sync_single_for_device, | 
|  | .sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu, | 
|  | .sync_sg_for_device	= arm_dma_sync_sg_for_device, | 
|  | .set_dma_mask		= arm_dma_set_mask, | 
|  | }; | 
|  | EXPORT_SYMBOL(arm_dma_ops); | 
|  |  | 
|  | static void *arm_coherent_dma_alloc(struct device *dev, size_t size, | 
|  | dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); | 
|  | static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, struct dma_attrs *attrs); | 
|  |  | 
|  | struct dma_map_ops arm_coherent_dma_ops = { | 
|  | .alloc			= arm_coherent_dma_alloc, | 
|  | .free			= arm_coherent_dma_free, | 
|  | .mmap			= arm_dma_mmap, | 
|  | .get_sgtable		= arm_dma_get_sgtable, | 
|  | .map_page		= arm_coherent_dma_map_page, | 
|  | .map_sg			= arm_dma_map_sg, | 
|  | .set_dma_mask		= arm_dma_set_mask, | 
|  | }; | 
|  | EXPORT_SYMBOL(arm_coherent_dma_ops); | 
|  |  | 
|  | static u64 get_coherent_dma_mask(struct device *dev) | 
|  | { | 
|  | u64 mask = (u64)arm_dma_limit; | 
|  |  | 
|  | if (dev) { | 
|  | mask = dev->coherent_dma_mask; | 
|  |  | 
|  | /* | 
|  | * Sanity check the DMA mask - it must be non-zero, and | 
|  | * must be able to be satisfied by a DMA allocation. | 
|  | */ | 
|  | if (mask == 0) { | 
|  | dev_warn(dev, "coherent DMA mask is unset\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((~mask) & (u64)arm_dma_limit) { | 
|  | dev_warn(dev, "coherent DMA mask %#llx is smaller " | 
|  | "than system GFP_DMA mask %#llx\n", | 
|  | mask, (u64)arm_dma_limit); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static void __dma_clear_buffer(struct page *page, size_t size) | 
|  | { | 
|  | /* | 
|  | * Ensure that the allocated pages are zeroed, and that any data | 
|  | * lurking in the kernel direct-mapped region is invalidated. | 
|  | */ | 
|  | if (PageHighMem(page)) { | 
|  | phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); | 
|  | phys_addr_t end = base + size; | 
|  | while (size > 0) { | 
|  | void *ptr = kmap_atomic(page); | 
|  | memset(ptr, 0, PAGE_SIZE); | 
|  | dmac_flush_range(ptr, ptr + PAGE_SIZE); | 
|  | kunmap_atomic(ptr); | 
|  | page++; | 
|  | size -= PAGE_SIZE; | 
|  | } | 
|  | outer_flush_range(base, end); | 
|  | } else { | 
|  | void *ptr = page_address(page); | 
|  | memset(ptr, 0, size); | 
|  | dmac_flush_range(ptr, ptr + size); | 
|  | outer_flush_range(__pa(ptr), __pa(ptr) + size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a DMA buffer for 'dev' of size 'size' using the | 
|  | * specified gfp mask.  Note that 'size' must be page aligned. | 
|  | */ | 
|  | static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) | 
|  | { | 
|  | unsigned long order = get_order(size); | 
|  | struct page *page, *p, *e; | 
|  |  | 
|  | page = alloc_pages(gfp, order); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Now split the huge page and free the excess pages | 
|  | */ | 
|  | split_page(page, order); | 
|  | for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) | 
|  | __free_page(p); | 
|  |  | 
|  | __dma_clear_buffer(page, size); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a DMA buffer.  'size' must be page aligned. | 
|  | */ | 
|  | static void __dma_free_buffer(struct page *page, size_t size) | 
|  | { | 
|  | struct page *e = page + (size >> PAGE_SHIFT); | 
|  |  | 
|  | while (page < e) { | 
|  | __free_page(page); | 
|  | page++; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | #warning ARM Coherent DMA allocator does not (yet) support huge TLB | 
|  | #endif | 
|  |  | 
|  | static void *__alloc_from_contiguous(struct device *dev, size_t size, | 
|  | pgprot_t prot, struct page **ret_page, | 
|  | const void *caller); | 
|  |  | 
|  | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, | 
|  | pgprot_t prot, struct page **ret_page, | 
|  | const void *caller); | 
|  |  | 
|  | static void * | 
|  | __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, | 
|  | const void *caller) | 
|  | { | 
|  | struct vm_struct *area; | 
|  | unsigned long addr; | 
|  |  | 
|  | /* | 
|  | * DMA allocation can be mapped to user space, so lets | 
|  | * set VM_USERMAP flags too. | 
|  | */ | 
|  | area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, | 
|  | caller); | 
|  | if (!area) | 
|  | return NULL; | 
|  | addr = (unsigned long)area->addr; | 
|  | area->phys_addr = __pfn_to_phys(page_to_pfn(page)); | 
|  |  | 
|  | if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { | 
|  | vunmap((void *)addr); | 
|  | return NULL; | 
|  | } | 
|  | return (void *)addr; | 
|  | } | 
|  |  | 
|  | static void __dma_free_remap(void *cpu_addr, size_t size) | 
|  | { | 
|  | unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; | 
|  | struct vm_struct *area = find_vm_area(cpu_addr); | 
|  | if (!area || (area->flags & flags) != flags) { | 
|  | WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); | 
|  | return; | 
|  | } | 
|  | unmap_kernel_range((unsigned long)cpu_addr, size); | 
|  | vunmap(cpu_addr); | 
|  | } | 
|  |  | 
|  | #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K | 
|  |  | 
|  | struct dma_pool { | 
|  | size_t size; | 
|  | spinlock_t lock; | 
|  | unsigned long *bitmap; | 
|  | unsigned long nr_pages; | 
|  | void *vaddr; | 
|  | struct page **pages; | 
|  | }; | 
|  |  | 
|  | static struct dma_pool atomic_pool = { | 
|  | .size = DEFAULT_DMA_COHERENT_POOL_SIZE, | 
|  | }; | 
|  |  | 
|  | static int __init early_coherent_pool(char *p) | 
|  | { | 
|  | atomic_pool.size = memparse(p, &p); | 
|  | return 0; | 
|  | } | 
|  | early_param("coherent_pool", early_coherent_pool); | 
|  |  | 
|  | void __init init_dma_coherent_pool_size(unsigned long size) | 
|  | { | 
|  | /* | 
|  | * Catch any attempt to set the pool size too late. | 
|  | */ | 
|  | BUG_ON(atomic_pool.vaddr); | 
|  |  | 
|  | /* | 
|  | * Set architecture specific coherent pool size only if | 
|  | * it has not been changed by kernel command line parameter. | 
|  | */ | 
|  | if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE) | 
|  | atomic_pool.size = size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise the coherent pool for atomic allocations. | 
|  | */ | 
|  | static int __init atomic_pool_init(void) | 
|  | { | 
|  | struct dma_pool *pool = &atomic_pool; | 
|  | pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); | 
|  | gfp_t gfp = GFP_KERNEL | GFP_DMA; | 
|  | unsigned long nr_pages = pool->size >> PAGE_SHIFT; | 
|  | unsigned long *bitmap; | 
|  | struct page *page; | 
|  | struct page **pages; | 
|  | void *ptr; | 
|  | int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); | 
|  |  | 
|  | bitmap = kzalloc(bitmap_size, GFP_KERNEL); | 
|  | if (!bitmap) | 
|  | goto no_bitmap; | 
|  |  | 
|  | pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); | 
|  | if (!pages) | 
|  | goto no_pages; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_DMA_CMA)) | 
|  | ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page, | 
|  | atomic_pool_init); | 
|  | else | 
|  | ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page, | 
|  | atomic_pool_init); | 
|  | if (ptr) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) | 
|  | pages[i] = page + i; | 
|  |  | 
|  | spin_lock_init(&pool->lock); | 
|  | pool->vaddr = ptr; | 
|  | pool->pages = pages; | 
|  | pool->bitmap = bitmap; | 
|  | pool->nr_pages = nr_pages; | 
|  | pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", | 
|  | (unsigned)pool->size / 1024); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | kfree(pages); | 
|  | no_pages: | 
|  | kfree(bitmap); | 
|  | no_bitmap: | 
|  | pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", | 
|  | (unsigned)pool->size / 1024); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* | 
|  | * CMA is activated by core_initcall, so we must be called after it. | 
|  | */ | 
|  | postcore_initcall(atomic_pool_init); | 
|  |  | 
|  | struct dma_contig_early_reserve { | 
|  | phys_addr_t base; | 
|  | unsigned long size; | 
|  | }; | 
|  |  | 
|  | static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; | 
|  |  | 
|  | static int dma_mmu_remap_num __initdata; | 
|  |  | 
|  | void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) | 
|  | { | 
|  | dma_mmu_remap[dma_mmu_remap_num].base = base; | 
|  | dma_mmu_remap[dma_mmu_remap_num].size = size; | 
|  | dma_mmu_remap_num++; | 
|  | } | 
|  |  | 
|  | void __init dma_contiguous_remap(void) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < dma_mmu_remap_num; i++) { | 
|  | phys_addr_t start = dma_mmu_remap[i].base; | 
|  | phys_addr_t end = start + dma_mmu_remap[i].size; | 
|  | struct map_desc map; | 
|  | unsigned long addr; | 
|  |  | 
|  | if (end > arm_lowmem_limit) | 
|  | end = arm_lowmem_limit; | 
|  | if (start >= end) | 
|  | continue; | 
|  |  | 
|  | map.pfn = __phys_to_pfn(start); | 
|  | map.virtual = __phys_to_virt(start); | 
|  | map.length = end - start; | 
|  | map.type = MT_MEMORY_DMA_READY; | 
|  |  | 
|  | /* | 
|  | * Clear previous low-memory mapping | 
|  | */ | 
|  | for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); | 
|  | addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | iotable_init(&map, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, | 
|  | void *data) | 
|  | { | 
|  | struct page *page = virt_to_page(addr); | 
|  | pgprot_t prot = *(pgprot_t *)data; | 
|  |  | 
|  | set_pte_ext(pte, mk_pte(page, prot), 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __dma_remap(struct page *page, size_t size, pgprot_t prot) | 
|  | { | 
|  | unsigned long start = (unsigned long) page_address(page); | 
|  | unsigned end = start + size; | 
|  |  | 
|  | apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); | 
|  | flush_tlb_kernel_range(start, end); | 
|  | } | 
|  |  | 
|  | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, | 
|  | pgprot_t prot, struct page **ret_page, | 
|  | const void *caller) | 
|  | { | 
|  | struct page *page; | 
|  | void *ptr; | 
|  | page = __dma_alloc_buffer(dev, size, gfp); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | ptr = __dma_alloc_remap(page, size, gfp, prot, caller); | 
|  | if (!ptr) { | 
|  | __dma_free_buffer(page, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *ret_page = page; | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static void *__alloc_from_pool(size_t size, struct page **ret_page) | 
|  | { | 
|  | struct dma_pool *pool = &atomic_pool; | 
|  | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | unsigned int pageno; | 
|  | unsigned long flags; | 
|  | void *ptr = NULL; | 
|  | unsigned long align_mask; | 
|  |  | 
|  | if (!pool->vaddr) { | 
|  | WARN(1, "coherent pool not initialised!\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Align the region allocation - allocations from pool are rather | 
|  | * small, so align them to their order in pages, minimum is a page | 
|  | * size. This helps reduce fragmentation of the DMA space. | 
|  | */ | 
|  | align_mask = (1 << get_order(size)) - 1; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, | 
|  | 0, count, align_mask); | 
|  | if (pageno < pool->nr_pages) { | 
|  | bitmap_set(pool->bitmap, pageno, count); | 
|  | ptr = pool->vaddr + PAGE_SIZE * pageno; | 
|  | *ret_page = pool->pages[pageno]; | 
|  | } else { | 
|  | pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n" | 
|  | "Please increase it with coherent_pool= kernel parameter!\n", | 
|  | (unsigned)pool->size / 1024); | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static bool __in_atomic_pool(void *start, size_t size) | 
|  | { | 
|  | struct dma_pool *pool = &atomic_pool; | 
|  | void *end = start + size; | 
|  | void *pool_start = pool->vaddr; | 
|  | void *pool_end = pool->vaddr + pool->size; | 
|  |  | 
|  | if (start < pool_start || start >= pool_end) | 
|  | return false; | 
|  |  | 
|  | if (end <= pool_end) | 
|  | return true; | 
|  |  | 
|  | WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n", | 
|  | start, end - 1, pool_start, pool_end - 1); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int __free_from_pool(void *start, size_t size) | 
|  | { | 
|  | struct dma_pool *pool = &atomic_pool; | 
|  | unsigned long pageno, count; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!__in_atomic_pool(start, size)) | 
|  | return 0; | 
|  |  | 
|  | pageno = (start - pool->vaddr) >> PAGE_SHIFT; | 
|  | count = size >> PAGE_SHIFT; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bitmap_clear(pool->bitmap, pageno, count); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void *__alloc_from_contiguous(struct device *dev, size_t size, | 
|  | pgprot_t prot, struct page **ret_page, | 
|  | const void *caller) | 
|  | { | 
|  | unsigned long order = get_order(size); | 
|  | size_t count = size >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  | void *ptr; | 
|  |  | 
|  | page = dma_alloc_from_contiguous(dev, count, order); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | __dma_clear_buffer(page, size); | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); | 
|  | if (!ptr) { | 
|  | dma_release_from_contiguous(dev, page, count); | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | __dma_remap(page, size, prot); | 
|  | ptr = page_address(page); | 
|  | } | 
|  | *ret_page = page; | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static void __free_from_contiguous(struct device *dev, struct page *page, | 
|  | void *cpu_addr, size_t size) | 
|  | { | 
|  | if (PageHighMem(page)) | 
|  | __dma_free_remap(cpu_addr, size); | 
|  | else | 
|  | __dma_remap(page, size, pgprot_kernel); | 
|  | dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) | 
|  | { | 
|  | prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? | 
|  | pgprot_writecombine(prot) : | 
|  | pgprot_dmacoherent(prot); | 
|  | return prot; | 
|  | } | 
|  |  | 
|  | #define nommu() 0 | 
|  |  | 
|  | #else	/* !CONFIG_MMU */ | 
|  |  | 
|  | #define nommu() 1 | 
|  |  | 
|  | #define __get_dma_pgprot(attrs, prot)	__pgprot(0) | 
|  | #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL | 
|  | #define __alloc_from_pool(size, ret_page)			NULL | 
|  | #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL | 
|  | #define __free_from_pool(cpu_addr, size)			0 | 
|  | #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0) | 
|  | #define __dma_free_remap(cpu_addr, size)			do { } while (0) | 
|  |  | 
|  | #endif	/* CONFIG_MMU */ | 
|  |  | 
|  | static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, | 
|  | struct page **ret_page) | 
|  | { | 
|  | struct page *page; | 
|  | page = __dma_alloc_buffer(dev, size, gfp); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | *ret_page = page; | 
|  | return page_address(page); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, | 
|  | gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller) | 
|  | { | 
|  | u64 mask = get_coherent_dma_mask(dev); | 
|  | struct page *page = NULL; | 
|  | void *addr; | 
|  |  | 
|  | #ifdef CONFIG_DMA_API_DEBUG | 
|  | u64 limit = (mask + 1) & ~mask; | 
|  | if (limit && size >= limit) { | 
|  | dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", | 
|  | size, mask); | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!mask) | 
|  | return NULL; | 
|  |  | 
|  | if (mask < 0xffffffffULL) | 
|  | gfp |= GFP_DMA; | 
|  |  | 
|  | /* | 
|  | * Following is a work-around (a.k.a. hack) to prevent pages | 
|  | * with __GFP_COMP being passed to split_page() which cannot | 
|  | * handle them.  The real problem is that this flag probably | 
|  | * should be 0 on ARM as it is not supported on this | 
|  | * platform; see CONFIG_HUGETLBFS. | 
|  | */ | 
|  | gfp &= ~(__GFP_COMP); | 
|  |  | 
|  | *handle = DMA_ERROR_CODE; | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (is_coherent || nommu()) | 
|  | addr = __alloc_simple_buffer(dev, size, gfp, &page); | 
|  | else if (!(gfp & __GFP_WAIT)) | 
|  | addr = __alloc_from_pool(size, &page); | 
|  | else if (!IS_ENABLED(CONFIG_DMA_CMA)) | 
|  | addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); | 
|  | else | 
|  | addr = __alloc_from_contiguous(dev, size, prot, &page, caller); | 
|  |  | 
|  | if (addr) | 
|  | *handle = pfn_to_dma(dev, page_to_pfn(page)); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate DMA-coherent memory space and return both the kernel remapped | 
|  | * virtual and bus address for that space. | 
|  | */ | 
|  | void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, | 
|  | gfp_t gfp, struct dma_attrs *attrs) | 
|  | { | 
|  | pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); | 
|  | void *memory; | 
|  |  | 
|  | if (dma_alloc_from_coherent(dev, size, handle, &memory)) | 
|  | return memory; | 
|  |  | 
|  | return __dma_alloc(dev, size, handle, gfp, prot, false, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  | static void *arm_coherent_dma_alloc(struct device *dev, size_t size, | 
|  | dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) | 
|  | { | 
|  | pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); | 
|  | void *memory; | 
|  |  | 
|  | if (dma_alloc_from_coherent(dev, size, handle, &memory)) | 
|  | return memory; | 
|  |  | 
|  | return __dma_alloc(dev, size, handle, gfp, prot, true, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create userspace mapping for the DMA-coherent memory. | 
|  | */ | 
|  | int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  | #ifdef CONFIG_MMU | 
|  | unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
|  | unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | unsigned long pfn = dma_to_pfn(dev, dma_addr); | 
|  | unsigned long off = vma->vm_pgoff; | 
|  |  | 
|  | vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); | 
|  |  | 
|  | if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) | 
|  | return ret; | 
|  |  | 
|  | if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { | 
|  | ret = remap_pfn_range(vma, vma->vm_start, | 
|  | pfn + off, | 
|  | vma->vm_end - vma->vm_start, | 
|  | vma->vm_page_prot); | 
|  | } | 
|  | #endif	/* CONFIG_MMU */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a buffer as defined by the above mapping. | 
|  | */ | 
|  | static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, struct dma_attrs *attrs, | 
|  | bool is_coherent) | 
|  | { | 
|  | struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); | 
|  |  | 
|  | if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) | 
|  | return; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (is_coherent || nommu()) { | 
|  | __dma_free_buffer(page, size); | 
|  | } else if (__free_from_pool(cpu_addr, size)) { | 
|  | return; | 
|  | } else if (!IS_ENABLED(CONFIG_DMA_CMA)) { | 
|  | __dma_free_remap(cpu_addr, size); | 
|  | __dma_free_buffer(page, size); | 
|  | } else { | 
|  | /* | 
|  | * Non-atomic allocations cannot be freed with IRQs disabled | 
|  | */ | 
|  | WARN_ON(irqs_disabled()); | 
|  | __free_from_contiguous(dev, page, cpu_addr, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, struct dma_attrs *attrs) | 
|  | { | 
|  | __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); | 
|  | } | 
|  |  | 
|  | static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, struct dma_attrs *attrs) | 
|  | { | 
|  | __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); | 
|  | } | 
|  |  | 
|  | int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, | 
|  | void *cpu_addr, dma_addr_t handle, size_t size, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); | 
|  | int ret; | 
|  |  | 
|  | ret = sg_alloc_table(sgt, 1, GFP_KERNEL); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dma_cache_maint_page(struct page *page, unsigned long offset, | 
|  | size_t size, enum dma_data_direction dir, | 
|  | void (*op)(const void *, size_t, int)) | 
|  | { | 
|  | unsigned long pfn; | 
|  | size_t left = size; | 
|  |  | 
|  | pfn = page_to_pfn(page) + offset / PAGE_SIZE; | 
|  | offset %= PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * A single sg entry may refer to multiple physically contiguous | 
|  | * pages.  But we still need to process highmem pages individually. | 
|  | * If highmem is not configured then the bulk of this loop gets | 
|  | * optimized out. | 
|  | */ | 
|  | do { | 
|  | size_t len = left; | 
|  | void *vaddr; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | if (len + offset > PAGE_SIZE) | 
|  | len = PAGE_SIZE - offset; | 
|  |  | 
|  | if (cache_is_vipt_nonaliasing()) { | 
|  | vaddr = kmap_atomic(page); | 
|  | op(vaddr + offset, len, dir); | 
|  | kunmap_atomic(vaddr); | 
|  | } else { | 
|  | vaddr = kmap_high_get(page); | 
|  | if (vaddr) { | 
|  | op(vaddr + offset, len, dir); | 
|  | kunmap_high(page); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | vaddr = page_address(page) + offset; | 
|  | op(vaddr, len, dir); | 
|  | } | 
|  | offset = 0; | 
|  | pfn++; | 
|  | left -= len; | 
|  | } while (left); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make an area consistent for devices. | 
|  | * Note: Drivers should NOT use this function directly, as it will break | 
|  | * platforms with CONFIG_DMABOUNCE. | 
|  | * Use the driver DMA support - see dma-mapping.h (dma_sync_*) | 
|  | */ | 
|  | static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, | 
|  | size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | unsigned long paddr; | 
|  |  | 
|  | dma_cache_maint_page(page, off, size, dir, dmac_map_area); | 
|  |  | 
|  | paddr = page_to_phys(page) + off; | 
|  | if (dir == DMA_FROM_DEVICE) { | 
|  | outer_inv_range(paddr, paddr + size); | 
|  | } else { | 
|  | outer_clean_range(paddr, paddr + size); | 
|  | } | 
|  | /* FIXME: non-speculating: flush on bidirectional mappings? */ | 
|  | } | 
|  |  | 
|  | static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, | 
|  | size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | unsigned long paddr = page_to_phys(page) + off; | 
|  |  | 
|  | /* FIXME: non-speculating: not required */ | 
|  | /* don't bother invalidating if DMA to device */ | 
|  | if (dir != DMA_TO_DEVICE) | 
|  | outer_inv_range(paddr, paddr + size); | 
|  |  | 
|  | dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); | 
|  |  | 
|  | /* | 
|  | * Mark the D-cache clean for these pages to avoid extra flushing. | 
|  | */ | 
|  | if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { | 
|  | unsigned long pfn; | 
|  | size_t left = size; | 
|  |  | 
|  | pfn = page_to_pfn(page) + off / PAGE_SIZE; | 
|  | off %= PAGE_SIZE; | 
|  | if (off) { | 
|  | pfn++; | 
|  | left -= PAGE_SIZE - off; | 
|  | } | 
|  | while (left >= PAGE_SIZE) { | 
|  | page = pfn_to_page(pfn++); | 
|  | set_bit(PG_dcache_clean, &page->flags); | 
|  | left -= PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
|  | * This is the scatter-gather version of the dma_map_single interface. | 
|  | * Here the scatter gather list elements are each tagged with the | 
|  | * appropriate dma address and length.  They are obtained via | 
|  | * sg_dma_{address,length}. | 
|  | * | 
|  | * Device ownership issues as mentioned for dma_map_single are the same | 
|  | * here. | 
|  | */ | 
|  | int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir, struct dma_attrs *attrs) | 
|  | { | 
|  | struct dma_map_ops *ops = get_dma_ops(dev); | 
|  | struct scatterlist *s; | 
|  | int i, j; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | #ifdef CONFIG_NEED_SG_DMA_LENGTH | 
|  | s->dma_length = s->length; | 
|  | #endif | 
|  | s->dma_address = ops->map_page(dev, sg_page(s), s->offset, | 
|  | s->length, dir, attrs); | 
|  | if (dma_mapping_error(dev, s->dma_address)) | 
|  | goto bad_mapping; | 
|  | } | 
|  | return nents; | 
|  |  | 
|  | bad_mapping: | 
|  | for_each_sg(sg, s, i, j) | 
|  | ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | * | 
|  | * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
|  | * rules concerning calls here are the same as for dma_unmap_single(). | 
|  | */ | 
|  | void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir, struct dma_attrs *attrs) | 
|  | { | 
|  | struct dma_map_ops *ops = get_dma_ops(dev); | 
|  | struct scatterlist *s; | 
|  |  | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_sync_sg_for_cpu | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct dma_map_ops *ops = get_dma_ops(dev); | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, | 
|  | dir); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_sync_sg_for_device | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct dma_map_ops *ops = get_dma_ops(dev); | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | ops->sync_single_for_device(dev, sg_dma_address(s), s->length, | 
|  | dir); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return whether the given device DMA address mask can be supported | 
|  | * properly.  For example, if your device can only drive the low 24-bits | 
|  | * during bus mastering, then you would pass 0x00ffffff as the mask | 
|  | * to this function. | 
|  | */ | 
|  | int dma_supported(struct device *dev, u64 mask) | 
|  | { | 
|  | if (mask < (u64)arm_dma_limit) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_supported); | 
|  |  | 
|  | int arm_dma_set_mask(struct device *dev, u64 dma_mask) | 
|  | { | 
|  | if (!dev->dma_mask || !dma_supported(dev, dma_mask)) | 
|  | return -EIO; | 
|  |  | 
|  | *dev->dma_mask = dma_mask; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define PREALLOC_DMA_DEBUG_ENTRIES	4096 | 
|  |  | 
|  | static int __init dma_debug_do_init(void) | 
|  | { | 
|  | dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(dma_debug_do_init); | 
|  |  | 
|  | #ifdef CONFIG_ARM_DMA_USE_IOMMU | 
|  |  | 
|  | /* IOMMU */ | 
|  |  | 
|  | static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, | 
|  | size_t size) | 
|  | { | 
|  | unsigned int order = get_order(size); | 
|  | unsigned int align = 0; | 
|  | unsigned int count, start; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) | 
|  | order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; | 
|  |  | 
|  | count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + | 
|  | (1 << mapping->order) - 1) >> mapping->order; | 
|  |  | 
|  | if (order > mapping->order) | 
|  | align = (1 << (order - mapping->order)) - 1; | 
|  |  | 
|  | spin_lock_irqsave(&mapping->lock, flags); | 
|  | start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, | 
|  | count, align); | 
|  | if (start > mapping->bits) { | 
|  | spin_unlock_irqrestore(&mapping->lock, flags); | 
|  | return DMA_ERROR_CODE; | 
|  | } | 
|  |  | 
|  | bitmap_set(mapping->bitmap, start, count); | 
|  | spin_unlock_irqrestore(&mapping->lock, flags); | 
|  |  | 
|  | return mapping->base + (start << (mapping->order + PAGE_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline void __free_iova(struct dma_iommu_mapping *mapping, | 
|  | dma_addr_t addr, size_t size) | 
|  | { | 
|  | unsigned int start = (addr - mapping->base) >> | 
|  | (mapping->order + PAGE_SHIFT); | 
|  | unsigned int count = ((size >> PAGE_SHIFT) + | 
|  | (1 << mapping->order) - 1) >> mapping->order; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&mapping->lock, flags); | 
|  | bitmap_clear(mapping->bitmap, start, count); | 
|  | spin_unlock_irqrestore(&mapping->lock, flags); | 
|  | } | 
|  |  | 
|  | static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, | 
|  | gfp_t gfp, struct dma_attrs *attrs) | 
|  | { | 
|  | struct page **pages; | 
|  | int count = size >> PAGE_SHIFT; | 
|  | int array_size = count * sizeof(struct page *); | 
|  | int i = 0; | 
|  |  | 
|  | if (array_size <= PAGE_SIZE) | 
|  | pages = kzalloc(array_size, gfp); | 
|  | else | 
|  | pages = vzalloc(array_size); | 
|  | if (!pages) | 
|  | return NULL; | 
|  |  | 
|  | if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) | 
|  | { | 
|  | unsigned long order = get_order(size); | 
|  | struct page *page; | 
|  |  | 
|  | page = dma_alloc_from_contiguous(dev, count, order); | 
|  | if (!page) | 
|  | goto error; | 
|  |  | 
|  | __dma_clear_buffer(page, size); | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | pages[i] = page + i; | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IOMMU can map any pages, so himem can also be used here | 
|  | */ | 
|  | gfp |= __GFP_NOWARN | __GFP_HIGHMEM; | 
|  |  | 
|  | while (count) { | 
|  | int j, order = __fls(count); | 
|  |  | 
|  | pages[i] = alloc_pages(gfp, order); | 
|  | while (!pages[i] && order) | 
|  | pages[i] = alloc_pages(gfp, --order); | 
|  | if (!pages[i]) | 
|  | goto error; | 
|  |  | 
|  | if (order) { | 
|  | split_page(pages[i], order); | 
|  | j = 1 << order; | 
|  | while (--j) | 
|  | pages[i + j] = pages[i] + j; | 
|  | } | 
|  |  | 
|  | __dma_clear_buffer(pages[i], PAGE_SIZE << order); | 
|  | i += 1 << order; | 
|  | count -= 1 << order; | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | error: | 
|  | while (i--) | 
|  | if (pages[i]) | 
|  | __free_pages(pages[i], 0); | 
|  | if (array_size <= PAGE_SIZE) | 
|  | kfree(pages); | 
|  | else | 
|  | vfree(pages); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int __iommu_free_buffer(struct device *dev, struct page **pages, | 
|  | size_t size, struct dma_attrs *attrs) | 
|  | { | 
|  | int count = size >> PAGE_SHIFT; | 
|  | int array_size = count * sizeof(struct page *); | 
|  | int i; | 
|  |  | 
|  | if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { | 
|  | dma_release_from_contiguous(dev, pages[0], count); | 
|  | } else { | 
|  | for (i = 0; i < count; i++) | 
|  | if (pages[i]) | 
|  | __free_pages(pages[i], 0); | 
|  | } | 
|  |  | 
|  | if (array_size <= PAGE_SIZE) | 
|  | kfree(pages); | 
|  | else | 
|  | vfree(pages); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a CPU mapping for a specified pages | 
|  | */ | 
|  | static void * | 
|  | __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, | 
|  | const void *caller) | 
|  | { | 
|  | unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | struct vm_struct *area; | 
|  | unsigned long p; | 
|  |  | 
|  | area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, | 
|  | caller); | 
|  | if (!area) | 
|  | return NULL; | 
|  |  | 
|  | area->pages = pages; | 
|  | area->nr_pages = nr_pages; | 
|  | p = (unsigned long)area->addr; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); | 
|  | if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) | 
|  | goto err; | 
|  | p += PAGE_SIZE; | 
|  | } | 
|  | return area->addr; | 
|  | err: | 
|  | unmap_kernel_range((unsigned long)area->addr, size); | 
|  | vunmap(area->addr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a mapping in device IO address space for specified pages | 
|  | */ | 
|  | static dma_addr_t | 
|  | __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
|  | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | dma_addr_t dma_addr, iova; | 
|  | int i, ret = DMA_ERROR_CODE; | 
|  |  | 
|  | dma_addr = __alloc_iova(mapping, size); | 
|  | if (dma_addr == DMA_ERROR_CODE) | 
|  | return dma_addr; | 
|  |  | 
|  | iova = dma_addr; | 
|  | for (i = 0; i < count; ) { | 
|  | unsigned int next_pfn = page_to_pfn(pages[i]) + 1; | 
|  | phys_addr_t phys = page_to_phys(pages[i]); | 
|  | unsigned int len, j; | 
|  |  | 
|  | for (j = i + 1; j < count; j++, next_pfn++) | 
|  | if (page_to_pfn(pages[j]) != next_pfn) | 
|  | break; | 
|  |  | 
|  | len = (j - i) << PAGE_SHIFT; | 
|  | ret = iommu_map(mapping->domain, iova, phys, len, | 
|  | IOMMU_READ|IOMMU_WRITE); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | iova += len; | 
|  | i = j; | 
|  | } | 
|  | return dma_addr; | 
|  | fail: | 
|  | iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); | 
|  | __free_iova(mapping, dma_addr, size); | 
|  | return DMA_ERROR_CODE; | 
|  | } | 
|  |  | 
|  | static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
|  |  | 
|  | /* | 
|  | * add optional in-page offset from iova to size and align | 
|  | * result to page size | 
|  | */ | 
|  | size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); | 
|  | iova &= PAGE_MASK; | 
|  |  | 
|  | iommu_unmap(mapping->domain, iova, size); | 
|  | __free_iova(mapping, iova, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct page **__atomic_get_pages(void *addr) | 
|  | { | 
|  | struct dma_pool *pool = &atomic_pool; | 
|  | struct page **pages = pool->pages; | 
|  | int offs = (addr - pool->vaddr) >> PAGE_SHIFT; | 
|  |  | 
|  | return pages + offs; | 
|  | } | 
|  |  | 
|  | static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) | 
|  | { | 
|  | struct vm_struct *area; | 
|  |  | 
|  | if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) | 
|  | return __atomic_get_pages(cpu_addr); | 
|  |  | 
|  | if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) | 
|  | return cpu_addr; | 
|  |  | 
|  | area = find_vm_area(cpu_addr); | 
|  | if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) | 
|  | return area->pages; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *__iommu_alloc_atomic(struct device *dev, size_t size, | 
|  | dma_addr_t *handle) | 
|  | { | 
|  | struct page *page; | 
|  | void *addr; | 
|  |  | 
|  | addr = __alloc_from_pool(size, &page); | 
|  | if (!addr) | 
|  | return NULL; | 
|  |  | 
|  | *handle = __iommu_create_mapping(dev, &page, size); | 
|  | if (*handle == DMA_ERROR_CODE) | 
|  | goto err_mapping; | 
|  |  | 
|  | return addr; | 
|  |  | 
|  | err_mapping: | 
|  | __free_from_pool(addr, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __iommu_free_atomic(struct device *dev, void *cpu_addr, | 
|  | dma_addr_t handle, size_t size) | 
|  | { | 
|  | __iommu_remove_mapping(dev, handle, size); | 
|  | __free_from_pool(cpu_addr, size); | 
|  | } | 
|  |  | 
|  | static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, | 
|  | dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) | 
|  | { | 
|  | pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); | 
|  | struct page **pages; | 
|  | void *addr = NULL; | 
|  |  | 
|  | *handle = DMA_ERROR_CODE; | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (gfp & GFP_ATOMIC) | 
|  | return __iommu_alloc_atomic(dev, size, handle); | 
|  |  | 
|  | /* | 
|  | * Following is a work-around (a.k.a. hack) to prevent pages | 
|  | * with __GFP_COMP being passed to split_page() which cannot | 
|  | * handle them.  The real problem is that this flag probably | 
|  | * should be 0 on ARM as it is not supported on this | 
|  | * platform; see CONFIG_HUGETLBFS. | 
|  | */ | 
|  | gfp &= ~(__GFP_COMP); | 
|  |  | 
|  | pages = __iommu_alloc_buffer(dev, size, gfp, attrs); | 
|  | if (!pages) | 
|  | return NULL; | 
|  |  | 
|  | *handle = __iommu_create_mapping(dev, pages, size); | 
|  | if (*handle == DMA_ERROR_CODE) | 
|  | goto err_buffer; | 
|  |  | 
|  | if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) | 
|  | return pages; | 
|  |  | 
|  | addr = __iommu_alloc_remap(pages, size, gfp, prot, | 
|  | __builtin_return_address(0)); | 
|  | if (!addr) | 
|  | goto err_mapping; | 
|  |  | 
|  | return addr; | 
|  |  | 
|  | err_mapping: | 
|  | __iommu_remove_mapping(dev, *handle, size); | 
|  | err_buffer: | 
|  | __iommu_free_buffer(dev, pages, size, attrs); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | unsigned long uaddr = vma->vm_start; | 
|  | unsigned long usize = vma->vm_end - vma->vm_start; | 
|  | struct page **pages = __iommu_get_pages(cpu_addr, attrs); | 
|  |  | 
|  | vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); | 
|  |  | 
|  | if (!pages) | 
|  | return -ENXIO; | 
|  |  | 
|  | do { | 
|  | int ret = vm_insert_page(vma, uaddr, *pages++); | 
|  | if (ret) { | 
|  | pr_err("Remapping memory failed: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | uaddr += PAGE_SIZE; | 
|  | usize -= PAGE_SIZE; | 
|  | } while (usize > 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free a page as defined by the above mapping. | 
|  | * Must not be called with IRQs disabled. | 
|  | */ | 
|  | void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, struct dma_attrs *attrs) | 
|  | { | 
|  | struct page **pages; | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (__in_atomic_pool(cpu_addr, size)) { | 
|  | __iommu_free_atomic(dev, cpu_addr, handle, size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pages = __iommu_get_pages(cpu_addr, attrs); | 
|  | if (!pages) { | 
|  | WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { | 
|  | unmap_kernel_range((unsigned long)cpu_addr, size); | 
|  | vunmap(cpu_addr); | 
|  | } | 
|  |  | 
|  | __iommu_remove_mapping(dev, handle, size); | 
|  | __iommu_free_buffer(dev, pages, size, attrs); | 
|  | } | 
|  |  | 
|  | static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, | 
|  | void *cpu_addr, dma_addr_t dma_addr, | 
|  | size_t size, struct dma_attrs *attrs) | 
|  | { | 
|  | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | struct page **pages = __iommu_get_pages(cpu_addr, attrs); | 
|  |  | 
|  | if (!pages) | 
|  | return -ENXIO; | 
|  |  | 
|  | return sg_alloc_table_from_pages(sgt, pages, count, 0, size, | 
|  | GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static int __dma_direction_to_prot(enum dma_data_direction dir) | 
|  | { | 
|  | int prot; | 
|  |  | 
|  | switch (dir) { | 
|  | case DMA_BIDIRECTIONAL: | 
|  | prot = IOMMU_READ | IOMMU_WRITE; | 
|  | break; | 
|  | case DMA_TO_DEVICE: | 
|  | prot = IOMMU_READ; | 
|  | break; | 
|  | case DMA_FROM_DEVICE: | 
|  | prot = IOMMU_WRITE; | 
|  | break; | 
|  | default: | 
|  | prot = 0; | 
|  | } | 
|  |  | 
|  | return prot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map a part of the scatter-gather list into contiguous io address space | 
|  | */ | 
|  | static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, | 
|  | size_t size, dma_addr_t *handle, | 
|  | enum dma_data_direction dir, struct dma_attrs *attrs, | 
|  | bool is_coherent) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
|  | dma_addr_t iova, iova_base; | 
|  | int ret = 0; | 
|  | unsigned int count; | 
|  | struct scatterlist *s; | 
|  | int prot; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  | *handle = DMA_ERROR_CODE; | 
|  |  | 
|  | iova_base = iova = __alloc_iova(mapping, size); | 
|  | if (iova == DMA_ERROR_CODE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { | 
|  | phys_addr_t phys = page_to_phys(sg_page(s)); | 
|  | unsigned int len = PAGE_ALIGN(s->offset + s->length); | 
|  |  | 
|  | if (!is_coherent && | 
|  | !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) | 
|  | __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); | 
|  |  | 
|  | prot = __dma_direction_to_prot(dir); | 
|  |  | 
|  | ret = iommu_map(mapping->domain, iova, phys, len, prot); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | count += len >> PAGE_SHIFT; | 
|  | iova += len; | 
|  | } | 
|  | *handle = iova_base; | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); | 
|  | __free_iova(mapping, iova_base, size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir, struct dma_attrs *attrs, | 
|  | bool is_coherent) | 
|  | { | 
|  | struct scatterlist *s = sg, *dma = sg, *start = sg; | 
|  | int i, count = 0; | 
|  | unsigned int offset = s->offset; | 
|  | unsigned int size = s->offset + s->length; | 
|  | unsigned int max = dma_get_max_seg_size(dev); | 
|  |  | 
|  | for (i = 1; i < nents; i++) { | 
|  | s = sg_next(s); | 
|  |  | 
|  | s->dma_address = DMA_ERROR_CODE; | 
|  | s->dma_length = 0; | 
|  |  | 
|  | if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { | 
|  | if (__map_sg_chunk(dev, start, size, &dma->dma_address, | 
|  | dir, attrs, is_coherent) < 0) | 
|  | goto bad_mapping; | 
|  |  | 
|  | dma->dma_address += offset; | 
|  | dma->dma_length = size - offset; | 
|  |  | 
|  | size = offset = s->offset; | 
|  | start = s; | 
|  | dma = sg_next(dma); | 
|  | count += 1; | 
|  | } | 
|  | size += s->length; | 
|  | } | 
|  | if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, | 
|  | is_coherent) < 0) | 
|  | goto bad_mapping; | 
|  |  | 
|  | dma->dma_address += offset; | 
|  | dma->dma_length = size - offset; | 
|  |  | 
|  | return count+1; | 
|  |  | 
|  | bad_mapping: | 
|  | for_each_sg(sg, s, count, i) | 
|  | __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Map a set of i/o coherent buffers described by scatterlist in streaming | 
|  | * mode for DMA. The scatter gather list elements are merged together (if | 
|  | * possible) and tagged with the appropriate dma address and length. They are | 
|  | * obtained via sg_dma_{address,length}. | 
|  | */ | 
|  | int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir, struct dma_attrs *attrs) | 
|  | { | 
|  | return __iommu_map_sg(dev, sg, nents, dir, attrs, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
|  | * The scatter gather list elements are merged together (if possible) and | 
|  | * tagged with the appropriate dma address and length. They are obtained via | 
|  | * sg_dma_{address,length}. | 
|  | */ | 
|  | int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir, struct dma_attrs *attrs) | 
|  | { | 
|  | return __iommu_map_sg(dev, sg, nents, dir, attrs, false); | 
|  | } | 
|  |  | 
|  | static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir, struct dma_attrs *attrs, | 
|  | bool is_coherent) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | if (sg_dma_len(s)) | 
|  | __iommu_remove_mapping(dev, sg_dma_address(s), | 
|  | sg_dma_len(s)); | 
|  | if (!is_coherent && | 
|  | !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) | 
|  | __dma_page_dev_to_cpu(sg_page(s), s->offset, | 
|  | s->length, dir); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | * | 
|  | * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
|  | * rules concerning calls here are the same as for dma_unmap_single(). | 
|  | */ | 
|  | void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir, struct dma_attrs *attrs) | 
|  | { | 
|  | __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | * | 
|  | * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
|  | * rules concerning calls here are the same as for dma_unmap_single(). | 
|  | */ | 
|  | void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir, struct dma_attrs *attrs) | 
|  | { | 
|  | __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_sync_sg_for_cpu | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_sync_sg_for_device | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * arm_coherent_iommu_map_page | 
|  | * @dev: valid struct device pointer | 
|  | * @page: page that buffer resides in | 
|  | * @offset: offset into page for start of buffer | 
|  | * @size: size of buffer to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Coherent IOMMU aware version of arm_dma_map_page() | 
|  | */ | 
|  | static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
|  | dma_addr_t dma_addr; | 
|  | int ret, prot, len = PAGE_ALIGN(size + offset); | 
|  |  | 
|  | dma_addr = __alloc_iova(mapping, len); | 
|  | if (dma_addr == DMA_ERROR_CODE) | 
|  | return dma_addr; | 
|  |  | 
|  | prot = __dma_direction_to_prot(dir); | 
|  |  | 
|  | ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  |  | 
|  | return dma_addr + offset; | 
|  | fail: | 
|  | __free_iova(mapping, dma_addr, len); | 
|  | return DMA_ERROR_CODE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_map_page | 
|  | * @dev: valid struct device pointer | 
|  | * @page: page that buffer resides in | 
|  | * @offset: offset into page for start of buffer | 
|  | * @size: size of buffer to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * IOMMU aware version of arm_dma_map_page() | 
|  | */ | 
|  | static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) | 
|  | __dma_page_cpu_to_dev(page, offset, size, dir); | 
|  |  | 
|  | return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_coherent_iommu_unmap_page | 
|  | * @dev: valid struct device pointer | 
|  | * @handle: DMA address of buffer | 
|  | * @size: size of buffer (same as passed to dma_map_page) | 
|  | * @dir: DMA transfer direction (same as passed to dma_map_page) | 
|  | * | 
|  | * Coherent IOMMU aware version of arm_dma_unmap_page() | 
|  | */ | 
|  | static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, | 
|  | size_t size, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
|  | dma_addr_t iova = handle & PAGE_MASK; | 
|  | int offset = handle & ~PAGE_MASK; | 
|  | int len = PAGE_ALIGN(size + offset); | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | iommu_unmap(mapping->domain, iova, len); | 
|  | __free_iova(mapping, iova, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_unmap_page | 
|  | * @dev: valid struct device pointer | 
|  | * @handle: DMA address of buffer | 
|  | * @size: size of buffer (same as passed to dma_map_page) | 
|  | * @dir: DMA transfer direction (same as passed to dma_map_page) | 
|  | * | 
|  | * IOMMU aware version of arm_dma_unmap_page() | 
|  | */ | 
|  | static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, | 
|  | size_t size, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
|  | dma_addr_t iova = handle & PAGE_MASK; | 
|  | struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
|  | int offset = handle & ~PAGE_MASK; | 
|  | int len = PAGE_ALIGN(size + offset); | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) | 
|  | __dma_page_dev_to_cpu(page, offset, size, dir); | 
|  |  | 
|  | iommu_unmap(mapping->domain, iova, len); | 
|  | __free_iova(mapping, iova, len); | 
|  | } | 
|  |  | 
|  | static void arm_iommu_sync_single_for_cpu(struct device *dev, | 
|  | dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
|  | dma_addr_t iova = handle & PAGE_MASK; | 
|  | struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
|  | unsigned int offset = handle & ~PAGE_MASK; | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | __dma_page_dev_to_cpu(page, offset, size, dir); | 
|  | } | 
|  |  | 
|  | static void arm_iommu_sync_single_for_device(struct device *dev, | 
|  | dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
|  | dma_addr_t iova = handle & PAGE_MASK; | 
|  | struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
|  | unsigned int offset = handle & ~PAGE_MASK; | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | __dma_page_cpu_to_dev(page, offset, size, dir); | 
|  | } | 
|  |  | 
|  | struct dma_map_ops iommu_ops = { | 
|  | .alloc		= arm_iommu_alloc_attrs, | 
|  | .free		= arm_iommu_free_attrs, | 
|  | .mmap		= arm_iommu_mmap_attrs, | 
|  | .get_sgtable	= arm_iommu_get_sgtable, | 
|  |  | 
|  | .map_page		= arm_iommu_map_page, | 
|  | .unmap_page		= arm_iommu_unmap_page, | 
|  | .sync_single_for_cpu	= arm_iommu_sync_single_for_cpu, | 
|  | .sync_single_for_device	= arm_iommu_sync_single_for_device, | 
|  |  | 
|  | .map_sg			= arm_iommu_map_sg, | 
|  | .unmap_sg		= arm_iommu_unmap_sg, | 
|  | .sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu, | 
|  | .sync_sg_for_device	= arm_iommu_sync_sg_for_device, | 
|  |  | 
|  | .set_dma_mask		= arm_dma_set_mask, | 
|  | }; | 
|  |  | 
|  | struct dma_map_ops iommu_coherent_ops = { | 
|  | .alloc		= arm_iommu_alloc_attrs, | 
|  | .free		= arm_iommu_free_attrs, | 
|  | .mmap		= arm_iommu_mmap_attrs, | 
|  | .get_sgtable	= arm_iommu_get_sgtable, | 
|  |  | 
|  | .map_page	= arm_coherent_iommu_map_page, | 
|  | .unmap_page	= arm_coherent_iommu_unmap_page, | 
|  |  | 
|  | .map_sg		= arm_coherent_iommu_map_sg, | 
|  | .unmap_sg	= arm_coherent_iommu_unmap_sg, | 
|  |  | 
|  | .set_dma_mask	= arm_dma_set_mask, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * arm_iommu_create_mapping | 
|  | * @bus: pointer to the bus holding the client device (for IOMMU calls) | 
|  | * @base: start address of the valid IO address space | 
|  | * @size: size of the valid IO address space | 
|  | * @order: accuracy of the IO addresses allocations | 
|  | * | 
|  | * Creates a mapping structure which holds information about used/unused | 
|  | * IO address ranges, which is required to perform memory allocation and | 
|  | * mapping with IOMMU aware functions. | 
|  | * | 
|  | * The client device need to be attached to the mapping with | 
|  | * arm_iommu_attach_device function. | 
|  | */ | 
|  | struct dma_iommu_mapping * | 
|  | arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, | 
|  | int order) | 
|  | { | 
|  | unsigned int count = size >> (PAGE_SHIFT + order); | 
|  | unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); | 
|  | struct dma_iommu_mapping *mapping; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | if (!count) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); | 
|  | if (!mapping) | 
|  | goto err; | 
|  |  | 
|  | mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); | 
|  | if (!mapping->bitmap) | 
|  | goto err2; | 
|  |  | 
|  | mapping->base = base; | 
|  | mapping->bits = BITS_PER_BYTE * bitmap_size; | 
|  | mapping->order = order; | 
|  | spin_lock_init(&mapping->lock); | 
|  |  | 
|  | mapping->domain = iommu_domain_alloc(bus); | 
|  | if (!mapping->domain) | 
|  | goto err3; | 
|  |  | 
|  | kref_init(&mapping->kref); | 
|  | return mapping; | 
|  | err3: | 
|  | kfree(mapping->bitmap); | 
|  | err2: | 
|  | kfree(mapping); | 
|  | err: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); | 
|  |  | 
|  | static void release_iommu_mapping(struct kref *kref) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = | 
|  | container_of(kref, struct dma_iommu_mapping, kref); | 
|  |  | 
|  | iommu_domain_free(mapping->domain); | 
|  | kfree(mapping->bitmap); | 
|  | kfree(mapping); | 
|  | } | 
|  |  | 
|  | void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) | 
|  | { | 
|  | if (mapping) | 
|  | kref_put(&mapping->kref, release_iommu_mapping); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); | 
|  |  | 
|  | /** | 
|  | * arm_iommu_attach_device | 
|  | * @dev: valid struct device pointer | 
|  | * @mapping: io address space mapping structure (returned from | 
|  | *	arm_iommu_create_mapping) | 
|  | * | 
|  | * Attaches specified io address space mapping to the provided device, | 
|  | * this replaces the dma operations (dma_map_ops pointer) with the | 
|  | * IOMMU aware version. More than one client might be attached to | 
|  | * the same io address space mapping. | 
|  | */ | 
|  | int arm_iommu_attach_device(struct device *dev, | 
|  | struct dma_iommu_mapping *mapping) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = iommu_attach_device(mapping->domain, dev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | kref_get(&mapping->kref); | 
|  | dev->archdata.mapping = mapping; | 
|  | set_dma_ops(dev, &iommu_ops); | 
|  |  | 
|  | pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm_iommu_attach_device); | 
|  |  | 
|  | /** | 
|  | * arm_iommu_detach_device | 
|  | * @dev: valid struct device pointer | 
|  | * | 
|  | * Detaches the provided device from a previously attached map. | 
|  | * This voids the dma operations (dma_map_ops pointer) | 
|  | */ | 
|  | void arm_iommu_detach_device(struct device *dev) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping; | 
|  |  | 
|  | mapping = to_dma_iommu_mapping(dev); | 
|  | if (!mapping) { | 
|  | dev_warn(dev, "Not attached\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | iommu_detach_device(mapping->domain, dev); | 
|  | kref_put(&mapping->kref, release_iommu_mapping); | 
|  | dev->archdata.mapping = NULL; | 
|  | set_dma_ops(dev, NULL); | 
|  |  | 
|  | pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm_iommu_detach_device); | 
|  |  | 
|  | #endif |