|  | /* | 
|  | *  fs/userfaultfd.c | 
|  | * | 
|  | *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org> | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc. | 
|  | *  Copyright (C) 2015  Red Hat, Inc. | 
|  | * | 
|  | *  This work is licensed under the terms of the GNU GPL, version 2. See | 
|  | *  the COPYING file in the top-level directory. | 
|  | * | 
|  | *  Some part derived from fs/eventfd.c (anon inode setup) and | 
|  | *  mm/ksm.c (mm hashing). | 
|  | */ | 
|  |  | 
|  | #include <linux/list.h> | 
|  | #include <linux/hashtable.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/ioctl.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/hugetlb.h> | 
|  |  | 
|  | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; | 
|  |  | 
|  | enum userfaultfd_state { | 
|  | UFFD_STATE_WAIT_API, | 
|  | UFFD_STATE_RUNNING, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Start with fault_pending_wqh and fault_wqh so they're more likely | 
|  | * to be in the same cacheline. | 
|  | */ | 
|  | struct userfaultfd_ctx { | 
|  | /* waitqueue head for the pending (i.e. not read) userfaults */ | 
|  | wait_queue_head_t fault_pending_wqh; | 
|  | /* waitqueue head for the userfaults */ | 
|  | wait_queue_head_t fault_wqh; | 
|  | /* waitqueue head for the pseudo fd to wakeup poll/read */ | 
|  | wait_queue_head_t fd_wqh; | 
|  | /* waitqueue head for events */ | 
|  | wait_queue_head_t event_wqh; | 
|  | /* a refile sequence protected by fault_pending_wqh lock */ | 
|  | struct seqcount refile_seq; | 
|  | /* pseudo fd refcounting */ | 
|  | refcount_t refcount; | 
|  | /* userfaultfd syscall flags */ | 
|  | unsigned int flags; | 
|  | /* features requested from the userspace */ | 
|  | unsigned int features; | 
|  | /* state machine */ | 
|  | enum userfaultfd_state state; | 
|  | /* released */ | 
|  | bool released; | 
|  | /* memory mappings are changing because of non-cooperative event */ | 
|  | bool mmap_changing; | 
|  | /* mm with one ore more vmas attached to this userfaultfd_ctx */ | 
|  | struct mm_struct *mm; | 
|  | }; | 
|  |  | 
|  | struct userfaultfd_fork_ctx { | 
|  | struct userfaultfd_ctx *orig; | 
|  | struct userfaultfd_ctx *new; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | struct userfaultfd_unmap_ctx { | 
|  | struct userfaultfd_ctx *ctx; | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | struct userfaultfd_wait_queue { | 
|  | struct uffd_msg msg; | 
|  | wait_queue_entry_t wq; | 
|  | struct userfaultfd_ctx *ctx; | 
|  | bool waken; | 
|  | }; | 
|  |  | 
|  | struct userfaultfd_wake_range { | 
|  | unsigned long start; | 
|  | unsigned long len; | 
|  | }; | 
|  |  | 
|  | static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, | 
|  | int wake_flags, void *key) | 
|  | { | 
|  | struct userfaultfd_wake_range *range = key; | 
|  | int ret; | 
|  | struct userfaultfd_wait_queue *uwq; | 
|  | unsigned long start, len; | 
|  |  | 
|  | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | 
|  | ret = 0; | 
|  | /* len == 0 means wake all */ | 
|  | start = range->start; | 
|  | len = range->len; | 
|  | if (len && (start > uwq->msg.arg.pagefault.address || | 
|  | start + len <= uwq->msg.arg.pagefault.address)) | 
|  | goto out; | 
|  | WRITE_ONCE(uwq->waken, true); | 
|  | /* | 
|  | * The Program-Order guarantees provided by the scheduler | 
|  | * ensure uwq->waken is visible before the task is woken. | 
|  | */ | 
|  | ret = wake_up_state(wq->private, mode); | 
|  | if (ret) { | 
|  | /* | 
|  | * Wake only once, autoremove behavior. | 
|  | * | 
|  | * After the effect of list_del_init is visible to the other | 
|  | * CPUs, the waitqueue may disappear from under us, see the | 
|  | * !list_empty_careful() in handle_userfault(). | 
|  | * | 
|  | * try_to_wake_up() has an implicit smp_mb(), and the | 
|  | * wq->private is read before calling the extern function | 
|  | * "wake_up_state" (which in turns calls try_to_wake_up). | 
|  | */ | 
|  | list_del_init(&wq->entry); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd | 
|  | * context. | 
|  | * @ctx: [in] Pointer to the userfaultfd context. | 
|  | */ | 
|  | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) | 
|  | { | 
|  | refcount_inc(&ctx->refcount); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd | 
|  | * context. | 
|  | * @ctx: [in] Pointer to userfaultfd context. | 
|  | * | 
|  | * The userfaultfd context reference must have been previously acquired either | 
|  | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). | 
|  | */ | 
|  | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) | 
|  | { | 
|  | if (refcount_dec_and_test(&ctx->refcount)) { | 
|  | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); | 
|  | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); | 
|  | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); | 
|  | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); | 
|  | VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); | 
|  | VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); | 
|  | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); | 
|  | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); | 
|  | mmdrop(ctx->mm); | 
|  | kmem_cache_free(userfaultfd_ctx_cachep, ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void msg_init(struct uffd_msg *msg) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); | 
|  | /* | 
|  | * Must use memset to zero out the paddings or kernel data is | 
|  | * leaked to userland. | 
|  | */ | 
|  | memset(msg, 0, sizeof(struct uffd_msg)); | 
|  | } | 
|  |  | 
|  | static inline struct uffd_msg userfault_msg(unsigned long address, | 
|  | unsigned int flags, | 
|  | unsigned long reason, | 
|  | unsigned int features) | 
|  | { | 
|  | struct uffd_msg msg; | 
|  | msg_init(&msg); | 
|  | msg.event = UFFD_EVENT_PAGEFAULT; | 
|  | msg.arg.pagefault.address = address; | 
|  | if (flags & FAULT_FLAG_WRITE) | 
|  | /* | 
|  | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the | 
|  | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE | 
|  | * was not set in a UFFD_EVENT_PAGEFAULT, it means it | 
|  | * was a read fault, otherwise if set it means it's | 
|  | * a write fault. | 
|  | */ | 
|  | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; | 
|  | if (reason & VM_UFFD_WP) | 
|  | /* | 
|  | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the | 
|  | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was | 
|  | * not set in a UFFD_EVENT_PAGEFAULT, it means it was | 
|  | * a missing fault, otherwise if set it means it's a | 
|  | * write protect fault. | 
|  | */ | 
|  | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; | 
|  | if (features & UFFD_FEATURE_THREAD_ID) | 
|  | msg.arg.pagefault.feat.ptid = task_pid_vnr(current); | 
|  | return msg; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* | 
|  | * Same functionality as userfaultfd_must_wait below with modifications for | 
|  | * hugepmd ranges. | 
|  | */ | 
|  | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | unsigned long flags, | 
|  | unsigned long reason) | 
|  | { | 
|  | struct mm_struct *mm = ctx->mm; | 
|  | pte_t *ptep, pte; | 
|  | bool ret = true; | 
|  |  | 
|  | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | 
|  |  | 
|  | ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); | 
|  |  | 
|  | if (!ptep) | 
|  | goto out; | 
|  |  | 
|  | ret = false; | 
|  | pte = huge_ptep_get(ptep); | 
|  |  | 
|  | /* | 
|  | * Lockless access: we're in a wait_event so it's ok if it | 
|  | * changes under us. | 
|  | */ | 
|  | if (huge_pte_none(pte)) | 
|  | ret = true; | 
|  | if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) | 
|  | ret = true; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | unsigned long flags, | 
|  | unsigned long reason) | 
|  | { | 
|  | return false;	/* should never get here */ | 
|  | } | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | /* | 
|  | * Verify the pagetables are still not ok after having reigstered into | 
|  | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any | 
|  | * userfault that has already been resolved, if userfaultfd_read and | 
|  | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different | 
|  | * threads. | 
|  | */ | 
|  | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, | 
|  | unsigned long address, | 
|  | unsigned long flags, | 
|  | unsigned long reason) | 
|  | { | 
|  | struct mm_struct *mm = ctx->mm; | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd, _pmd; | 
|  | pte_t *pte; | 
|  | bool ret = true; | 
|  |  | 
|  | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | goto out; | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (!p4d_present(*p4d)) | 
|  | goto out; | 
|  | pud = pud_offset(p4d, address); | 
|  | if (!pud_present(*pud)) | 
|  | goto out; | 
|  | pmd = pmd_offset(pud, address); | 
|  | /* | 
|  | * READ_ONCE must function as a barrier with narrower scope | 
|  | * and it must be equivalent to: | 
|  | *	_pmd = *pmd; barrier(); | 
|  | * | 
|  | * This is to deal with the instability (as in | 
|  | * pmd_trans_unstable) of the pmd. | 
|  | */ | 
|  | _pmd = READ_ONCE(*pmd); | 
|  | if (pmd_none(_pmd)) | 
|  | goto out; | 
|  |  | 
|  | ret = false; | 
|  | if (!pmd_present(_pmd)) | 
|  | goto out; | 
|  |  | 
|  | if (pmd_trans_huge(_pmd)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it | 
|  | * and use the standard pte_offset_map() instead of parsing _pmd. | 
|  | */ | 
|  | pte = pte_offset_map(pmd, address); | 
|  | /* | 
|  | * Lockless access: we're in a wait_event so it's ok if it | 
|  | * changes under us. | 
|  | */ | 
|  | if (pte_none(*pte)) | 
|  | ret = true; | 
|  | pte_unmap(pte); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The locking rules involved in returning VM_FAULT_RETRY depending on | 
|  | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and | 
|  | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" | 
|  | * recommendation in __lock_page_or_retry is not an understatement. | 
|  | * | 
|  | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released | 
|  | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is | 
|  | * not set. | 
|  | * | 
|  | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not | 
|  | * set, VM_FAULT_RETRY can still be returned if and only if there are | 
|  | * fatal_signal_pending()s, and the mmap_sem must be released before | 
|  | * returning it. | 
|  | */ | 
|  | vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) | 
|  | { | 
|  | struct mm_struct *mm = vmf->vma->vm_mm; | 
|  | struct userfaultfd_ctx *ctx; | 
|  | struct userfaultfd_wait_queue uwq; | 
|  | vm_fault_t ret = VM_FAULT_SIGBUS; | 
|  | bool must_wait, return_to_userland; | 
|  | long blocking_state; | 
|  |  | 
|  | /* | 
|  | * We don't do userfault handling for the final child pid update. | 
|  | * | 
|  | * We also don't do userfault handling during | 
|  | * coredumping. hugetlbfs has the special | 
|  | * follow_hugetlb_page() to skip missing pages in the | 
|  | * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with | 
|  | * the no_page_table() helper in follow_page_mask(), but the | 
|  | * shmem_vm_ops->fault method is invoked even during | 
|  | * coredumping without mmap_sem and it ends up here. | 
|  | */ | 
|  | if (current->flags & (PF_EXITING|PF_DUMPCORE)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Coredumping runs without mmap_sem so we can only check that | 
|  | * the mmap_sem is held, if PF_DUMPCORE was not set. | 
|  | */ | 
|  | WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); | 
|  |  | 
|  | ctx = vmf->vma->vm_userfaultfd_ctx.ctx; | 
|  | if (!ctx) | 
|  | goto out; | 
|  |  | 
|  | BUG_ON(ctx->mm != mm); | 
|  |  | 
|  | VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); | 
|  | VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); | 
|  |  | 
|  | if (ctx->features & UFFD_FEATURE_SIGBUS) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If it's already released don't get it. This avoids to loop | 
|  | * in __get_user_pages if userfaultfd_release waits on the | 
|  | * caller of handle_userfault to release the mmap_sem. | 
|  | */ | 
|  | if (unlikely(READ_ONCE(ctx->released))) { | 
|  | /* | 
|  | * Don't return VM_FAULT_SIGBUS in this case, so a non | 
|  | * cooperative manager can close the uffd after the | 
|  | * last UFFDIO_COPY, without risking to trigger an | 
|  | * involuntary SIGBUS if the process was starting the | 
|  | * userfaultfd while the userfaultfd was still armed | 
|  | * (but after the last UFFDIO_COPY). If the uffd | 
|  | * wasn't already closed when the userfault reached | 
|  | * this point, that would normally be solved by | 
|  | * userfaultfd_must_wait returning 'false'. | 
|  | * | 
|  | * If we were to return VM_FAULT_SIGBUS here, the non | 
|  | * cooperative manager would be instead forced to | 
|  | * always call UFFDIO_UNREGISTER before it can safely | 
|  | * close the uffd. | 
|  | */ | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that we can return VM_FAULT_RETRY. | 
|  | * | 
|  | * NOTE: it should become possible to return VM_FAULT_RETRY | 
|  | * even if FAULT_FLAG_TRIED is set without leading to gup() | 
|  | * -EBUSY failures, if the userfaultfd is to be extended for | 
|  | * VM_UFFD_WP tracking and we intend to arm the userfault | 
|  | * without first stopping userland access to the memory. For | 
|  | * VM_UFFD_MISSING userfaults this is enough for now. | 
|  | */ | 
|  | if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { | 
|  | /* | 
|  | * Validate the invariant that nowait must allow retry | 
|  | * to be sure not to return SIGBUS erroneously on | 
|  | * nowait invocations. | 
|  | */ | 
|  | BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | if (printk_ratelimit()) { | 
|  | printk(KERN_WARNING | 
|  | "FAULT_FLAG_ALLOW_RETRY missing %x\n", | 
|  | vmf->flags); | 
|  | dump_stack(); | 
|  | } | 
|  | #endif | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle nowait, not much to do other than tell it to retry | 
|  | * and wait. | 
|  | */ | 
|  | ret = VM_FAULT_RETRY; | 
|  | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) | 
|  | goto out; | 
|  |  | 
|  | /* take the reference before dropping the mmap_sem */ | 
|  | userfaultfd_ctx_get(ctx); | 
|  |  | 
|  | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); | 
|  | uwq.wq.private = current; | 
|  | uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, | 
|  | ctx->features); | 
|  | uwq.ctx = ctx; | 
|  | uwq.waken = false; | 
|  |  | 
|  | return_to_userland = | 
|  | (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == | 
|  | (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); | 
|  | blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : | 
|  | TASK_KILLABLE; | 
|  |  | 
|  | spin_lock(&ctx->fault_pending_wqh.lock); | 
|  | /* | 
|  | * After the __add_wait_queue the uwq is visible to userland | 
|  | * through poll/read(). | 
|  | */ | 
|  | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); | 
|  | /* | 
|  | * The smp_mb() after __set_current_state prevents the reads | 
|  | * following the spin_unlock to happen before the list_add in | 
|  | * __add_wait_queue. | 
|  | */ | 
|  | set_current_state(blocking_state); | 
|  | spin_unlock(&ctx->fault_pending_wqh.lock); | 
|  |  | 
|  | if (!is_vm_hugetlb_page(vmf->vma)) | 
|  | must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, | 
|  | reason); | 
|  | else | 
|  | must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, | 
|  | vmf->address, | 
|  | vmf->flags, reason); | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | if (likely(must_wait && !READ_ONCE(ctx->released) && | 
|  | (return_to_userland ? !signal_pending(current) : | 
|  | !fatal_signal_pending(current)))) { | 
|  | wake_up_poll(&ctx->fd_wqh, EPOLLIN); | 
|  | schedule(); | 
|  | ret |= VM_FAULT_MAJOR; | 
|  |  | 
|  | /* | 
|  | * False wakeups can orginate even from rwsem before | 
|  | * up_read() however userfaults will wait either for a | 
|  | * targeted wakeup on the specific uwq waitqueue from | 
|  | * wake_userfault() or for signals or for uffd | 
|  | * release. | 
|  | */ | 
|  | while (!READ_ONCE(uwq.waken)) { | 
|  | /* | 
|  | * This needs the full smp_store_mb() | 
|  | * guarantee as the state write must be | 
|  | * visible to other CPUs before reading | 
|  | * uwq.waken from other CPUs. | 
|  | */ | 
|  | set_current_state(blocking_state); | 
|  | if (READ_ONCE(uwq.waken) || | 
|  | READ_ONCE(ctx->released) || | 
|  | (return_to_userland ? signal_pending(current) : | 
|  | fatal_signal_pending(current))) | 
|  | break; | 
|  | schedule(); | 
|  | } | 
|  | } | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | if (return_to_userland) { | 
|  | if (signal_pending(current) && | 
|  | !fatal_signal_pending(current)) { | 
|  | /* | 
|  | * If we got a SIGSTOP or SIGCONT and this is | 
|  | * a normal userland page fault, just let | 
|  | * userland return so the signal will be | 
|  | * handled and gdb debugging works.  The page | 
|  | * fault code immediately after we return from | 
|  | * this function is going to release the | 
|  | * mmap_sem and it's not depending on it | 
|  | * (unlike gup would if we were not to return | 
|  | * VM_FAULT_RETRY). | 
|  | * | 
|  | * If a fatal signal is pending we still take | 
|  | * the streamlined VM_FAULT_RETRY failure path | 
|  | * and there's no need to retake the mmap_sem | 
|  | * in such case. | 
|  | */ | 
|  | down_read(&mm->mmap_sem); | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we race with the list_del; list_add in | 
|  | * userfaultfd_ctx_read(), however because we don't ever run | 
|  | * list_del_init() to refile across the two lists, the prev | 
|  | * and next pointers will never point to self. list_add also | 
|  | * would never let any of the two pointers to point to | 
|  | * self. So list_empty_careful won't risk to see both pointers | 
|  | * pointing to self at any time during the list refile. The | 
|  | * only case where list_del_init() is called is the full | 
|  | * removal in the wake function and there we don't re-list_add | 
|  | * and it's fine not to block on the spinlock. The uwq on this | 
|  | * kernel stack can be released after the list_del_init. | 
|  | */ | 
|  | if (!list_empty_careful(&uwq.wq.entry)) { | 
|  | spin_lock(&ctx->fault_pending_wqh.lock); | 
|  | /* | 
|  | * No need of list_del_init(), the uwq on the stack | 
|  | * will be freed shortly anyway. | 
|  | */ | 
|  | list_del(&uwq.wq.entry); | 
|  | spin_unlock(&ctx->fault_pending_wqh.lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ctx may go away after this if the userfault pseudo fd is | 
|  | * already released. | 
|  | */ | 
|  | userfaultfd_ctx_put(ctx); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, | 
|  | struct userfaultfd_wait_queue *ewq) | 
|  | { | 
|  | struct userfaultfd_ctx *release_new_ctx; | 
|  |  | 
|  | if (WARN_ON_ONCE(current->flags & PF_EXITING)) | 
|  | goto out; | 
|  |  | 
|  | ewq->ctx = ctx; | 
|  | init_waitqueue_entry(&ewq->wq, current); | 
|  | release_new_ctx = NULL; | 
|  |  | 
|  | spin_lock(&ctx->event_wqh.lock); | 
|  | /* | 
|  | * After the __add_wait_queue the uwq is visible to userland | 
|  | * through poll/read(). | 
|  | */ | 
|  | __add_wait_queue(&ctx->event_wqh, &ewq->wq); | 
|  | for (;;) { | 
|  | set_current_state(TASK_KILLABLE); | 
|  | if (ewq->msg.event == 0) | 
|  | break; | 
|  | if (READ_ONCE(ctx->released) || | 
|  | fatal_signal_pending(current)) { | 
|  | /* | 
|  | * &ewq->wq may be queued in fork_event, but | 
|  | * __remove_wait_queue ignores the head | 
|  | * parameter. It would be a problem if it | 
|  | * didn't. | 
|  | */ | 
|  | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | 
|  | if (ewq->msg.event == UFFD_EVENT_FORK) { | 
|  | struct userfaultfd_ctx *new; | 
|  |  | 
|  | new = (struct userfaultfd_ctx *) | 
|  | (unsigned long) | 
|  | ewq->msg.arg.reserved.reserved1; | 
|  | release_new_ctx = new; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_unlock(&ctx->event_wqh.lock); | 
|  |  | 
|  | wake_up_poll(&ctx->fd_wqh, EPOLLIN); | 
|  | schedule(); | 
|  |  | 
|  | spin_lock(&ctx->event_wqh.lock); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | spin_unlock(&ctx->event_wqh.lock); | 
|  |  | 
|  | if (release_new_ctx) { | 
|  | struct vm_area_struct *vma; | 
|  | struct mm_struct *mm = release_new_ctx->mm; | 
|  |  | 
|  | /* the various vma->vm_userfaultfd_ctx still points to it */ | 
|  | down_write(&mm->mmap_sem); | 
|  | /* no task can run (and in turn coredump) yet */ | 
|  | VM_WARN_ON(!mmget_still_valid(mm)); | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) | 
|  | if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { | 
|  | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | 
|  | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | 
|  | } | 
|  | up_write(&mm->mmap_sem); | 
|  |  | 
|  | userfaultfd_ctx_put(release_new_ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ctx may go away after this if the userfault pseudo fd is | 
|  | * already released. | 
|  | */ | 
|  | out: | 
|  | WRITE_ONCE(ctx->mmap_changing, false); | 
|  | userfaultfd_ctx_put(ctx); | 
|  | } | 
|  |  | 
|  | static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, | 
|  | struct userfaultfd_wait_queue *ewq) | 
|  | { | 
|  | ewq->msg.event = 0; | 
|  | wake_up_locked(&ctx->event_wqh); | 
|  | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | 
|  | } | 
|  |  | 
|  | int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx = NULL, *octx; | 
|  | struct userfaultfd_fork_ctx *fctx; | 
|  |  | 
|  | octx = vma->vm_userfaultfd_ctx.ctx; | 
|  | if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { | 
|  | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | 
|  | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(fctx, fcs, list) | 
|  | if (fctx->orig == octx) { | 
|  | ctx = fctx->new; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!ctx) { | 
|  | fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); | 
|  | if (!fctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); | 
|  | if (!ctx) { | 
|  | kfree(fctx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | refcount_set(&ctx->refcount, 1); | 
|  | ctx->flags = octx->flags; | 
|  | ctx->state = UFFD_STATE_RUNNING; | 
|  | ctx->features = octx->features; | 
|  | ctx->released = false; | 
|  | ctx->mmap_changing = false; | 
|  | ctx->mm = vma->vm_mm; | 
|  | mmgrab(ctx->mm); | 
|  |  | 
|  | userfaultfd_ctx_get(octx); | 
|  | WRITE_ONCE(octx->mmap_changing, true); | 
|  | fctx->orig = octx; | 
|  | fctx->new = ctx; | 
|  | list_add_tail(&fctx->list, fcs); | 
|  | } | 
|  |  | 
|  | vma->vm_userfaultfd_ctx.ctx = ctx; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dup_fctx(struct userfaultfd_fork_ctx *fctx) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx = fctx->orig; | 
|  | struct userfaultfd_wait_queue ewq; | 
|  |  | 
|  | msg_init(&ewq.msg); | 
|  |  | 
|  | ewq.msg.event = UFFD_EVENT_FORK; | 
|  | ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; | 
|  |  | 
|  | userfaultfd_event_wait_completion(ctx, &ewq); | 
|  | } | 
|  |  | 
|  | void dup_userfaultfd_complete(struct list_head *fcs) | 
|  | { | 
|  | struct userfaultfd_fork_ctx *fctx, *n; | 
|  |  | 
|  | list_for_each_entry_safe(fctx, n, fcs, list) { | 
|  | dup_fctx(fctx); | 
|  | list_del(&fctx->list); | 
|  | kfree(fctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mremap_userfaultfd_prep(struct vm_area_struct *vma, | 
|  | struct vm_userfaultfd_ctx *vm_ctx) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx; | 
|  |  | 
|  | ctx = vma->vm_userfaultfd_ctx.ctx; | 
|  |  | 
|  | if (!ctx) | 
|  | return; | 
|  |  | 
|  | if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { | 
|  | vm_ctx->ctx = ctx; | 
|  | userfaultfd_ctx_get(ctx); | 
|  | WRITE_ONCE(ctx->mmap_changing, true); | 
|  | } else { | 
|  | /* Drop uffd context if remap feature not enabled */ | 
|  | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | 
|  | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, | 
|  | unsigned long from, unsigned long to, | 
|  | unsigned long len) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx = vm_ctx->ctx; | 
|  | struct userfaultfd_wait_queue ewq; | 
|  |  | 
|  | if (!ctx) | 
|  | return; | 
|  |  | 
|  | if (to & ~PAGE_MASK) { | 
|  | userfaultfd_ctx_put(ctx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | msg_init(&ewq.msg); | 
|  |  | 
|  | ewq.msg.event = UFFD_EVENT_REMAP; | 
|  | ewq.msg.arg.remap.from = from; | 
|  | ewq.msg.arg.remap.to = to; | 
|  | ewq.msg.arg.remap.len = len; | 
|  |  | 
|  | userfaultfd_event_wait_completion(ctx, &ewq); | 
|  | } | 
|  |  | 
|  | bool userfaultfd_remove(struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct userfaultfd_ctx *ctx; | 
|  | struct userfaultfd_wait_queue ewq; | 
|  |  | 
|  | ctx = vma->vm_userfaultfd_ctx.ctx; | 
|  | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) | 
|  | return true; | 
|  |  | 
|  | userfaultfd_ctx_get(ctx); | 
|  | WRITE_ONCE(ctx->mmap_changing, true); | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | msg_init(&ewq.msg); | 
|  |  | 
|  | ewq.msg.event = UFFD_EVENT_REMOVE; | 
|  | ewq.msg.arg.remove.start = start; | 
|  | ewq.msg.arg.remove.end = end; | 
|  |  | 
|  | userfaultfd_event_wait_completion(ctx, &ewq); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | struct userfaultfd_unmap_ctx *unmap_ctx; | 
|  |  | 
|  | list_for_each_entry(unmap_ctx, unmaps, list) | 
|  | if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && | 
|  | unmap_ctx->end == end) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int userfaultfd_unmap_prep(struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, | 
|  | struct list_head *unmaps) | 
|  | { | 
|  | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { | 
|  | struct userfaultfd_unmap_ctx *unmap_ctx; | 
|  | struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; | 
|  |  | 
|  | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || | 
|  | has_unmap_ctx(ctx, unmaps, start, end)) | 
|  | continue; | 
|  |  | 
|  | unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); | 
|  | if (!unmap_ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | userfaultfd_ctx_get(ctx); | 
|  | WRITE_ONCE(ctx->mmap_changing, true); | 
|  | unmap_ctx->ctx = ctx; | 
|  | unmap_ctx->start = start; | 
|  | unmap_ctx->end = end; | 
|  | list_add_tail(&unmap_ctx->list, unmaps); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) | 
|  | { | 
|  | struct userfaultfd_unmap_ctx *ctx, *n; | 
|  | struct userfaultfd_wait_queue ewq; | 
|  |  | 
|  | list_for_each_entry_safe(ctx, n, uf, list) { | 
|  | msg_init(&ewq.msg); | 
|  |  | 
|  | ewq.msg.event = UFFD_EVENT_UNMAP; | 
|  | ewq.msg.arg.remove.start = ctx->start; | 
|  | ewq.msg.arg.remove.end = ctx->end; | 
|  |  | 
|  | userfaultfd_event_wait_completion(ctx->ctx, &ewq); | 
|  |  | 
|  | list_del(&ctx->list); | 
|  | kfree(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int userfaultfd_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx = file->private_data; | 
|  | struct mm_struct *mm = ctx->mm; | 
|  | struct vm_area_struct *vma, *prev; | 
|  | /* len == 0 means wake all */ | 
|  | struct userfaultfd_wake_range range = { .len = 0, }; | 
|  | unsigned long new_flags; | 
|  |  | 
|  | WRITE_ONCE(ctx->released, true); | 
|  |  | 
|  | if (!mmget_not_zero(mm)) | 
|  | goto wakeup; | 
|  |  | 
|  | /* | 
|  | * Flush page faults out of all CPUs. NOTE: all page faults | 
|  | * must be retried without returning VM_FAULT_SIGBUS if | 
|  | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx | 
|  | * changes while handle_userfault released the mmap_sem. So | 
|  | * it's critical that released is set to true (above), before | 
|  | * taking the mmap_sem for writing. | 
|  | */ | 
|  | down_write(&mm->mmap_sem); | 
|  | if (!mmget_still_valid(mm)) | 
|  | goto skip_mm; | 
|  | prev = NULL; | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | cond_resched(); | 
|  | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ | 
|  | !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | 
|  | if (vma->vm_userfaultfd_ctx.ctx != ctx) { | 
|  | prev = vma; | 
|  | continue; | 
|  | } | 
|  | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | 
|  | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, | 
|  | new_flags, vma->anon_vma, | 
|  | vma->vm_file, vma->vm_pgoff, | 
|  | vma_policy(vma), | 
|  | NULL_VM_UFFD_CTX); | 
|  | if (prev) | 
|  | vma = prev; | 
|  | else | 
|  | prev = vma; | 
|  | vma->vm_flags = new_flags; | 
|  | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | 
|  | } | 
|  | skip_mm: | 
|  | up_write(&mm->mmap_sem); | 
|  | mmput(mm); | 
|  | wakeup: | 
|  | /* | 
|  | * After no new page faults can wait on this fault_*wqh, flush | 
|  | * the last page faults that may have been already waiting on | 
|  | * the fault_*wqh. | 
|  | */ | 
|  | spin_lock(&ctx->fault_pending_wqh.lock); | 
|  | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); | 
|  | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); | 
|  | spin_unlock(&ctx->fault_pending_wqh.lock); | 
|  |  | 
|  | /* Flush pending events that may still wait on event_wqh */ | 
|  | wake_up_all(&ctx->event_wqh); | 
|  |  | 
|  | wake_up_poll(&ctx->fd_wqh, EPOLLHUP); | 
|  | userfaultfd_ctx_put(ctx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* fault_pending_wqh.lock must be hold by the caller */ | 
|  | static inline struct userfaultfd_wait_queue *find_userfault_in( | 
|  | wait_queue_head_t *wqh) | 
|  | { | 
|  | wait_queue_entry_t *wq; | 
|  | struct userfaultfd_wait_queue *uwq; | 
|  |  | 
|  | lockdep_assert_held(&wqh->lock); | 
|  |  | 
|  | uwq = NULL; | 
|  | if (!waitqueue_active(wqh)) | 
|  | goto out; | 
|  | /* walk in reverse to provide FIFO behavior to read userfaults */ | 
|  | wq = list_last_entry(&wqh->head, typeof(*wq), entry); | 
|  | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | 
|  | out: | 
|  | return uwq; | 
|  | } | 
|  |  | 
|  | static inline struct userfaultfd_wait_queue *find_userfault( | 
|  | struct userfaultfd_ctx *ctx) | 
|  | { | 
|  | return find_userfault_in(&ctx->fault_pending_wqh); | 
|  | } | 
|  |  | 
|  | static inline struct userfaultfd_wait_queue *find_userfault_evt( | 
|  | struct userfaultfd_ctx *ctx) | 
|  | { | 
|  | return find_userfault_in(&ctx->event_wqh); | 
|  | } | 
|  |  | 
|  | static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx = file->private_data; | 
|  | __poll_t ret; | 
|  |  | 
|  | poll_wait(file, &ctx->fd_wqh, wait); | 
|  |  | 
|  | switch (ctx->state) { | 
|  | case UFFD_STATE_WAIT_API: | 
|  | return EPOLLERR; | 
|  | case UFFD_STATE_RUNNING: | 
|  | /* | 
|  | * poll() never guarantees that read won't block. | 
|  | * userfaults can be waken before they're read(). | 
|  | */ | 
|  | if (unlikely(!(file->f_flags & O_NONBLOCK))) | 
|  | return EPOLLERR; | 
|  | /* | 
|  | * lockless access to see if there are pending faults | 
|  | * __pollwait last action is the add_wait_queue but | 
|  | * the spin_unlock would allow the waitqueue_active to | 
|  | * pass above the actual list_add inside | 
|  | * add_wait_queue critical section. So use a full | 
|  | * memory barrier to serialize the list_add write of | 
|  | * add_wait_queue() with the waitqueue_active read | 
|  | * below. | 
|  | */ | 
|  | ret = 0; | 
|  | smp_mb(); | 
|  | if (waitqueue_active(&ctx->fault_pending_wqh)) | 
|  | ret = EPOLLIN; | 
|  | else if (waitqueue_active(&ctx->event_wqh)) | 
|  | ret = EPOLLIN; | 
|  |  | 
|  | return ret; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return EPOLLERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct file_operations userfaultfd_fops; | 
|  |  | 
|  | static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, | 
|  | struct userfaultfd_ctx *new, | 
|  | struct uffd_msg *msg) | 
|  | { | 
|  | int fd; | 
|  |  | 
|  | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, | 
|  | O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); | 
|  | if (fd < 0) | 
|  | return fd; | 
|  |  | 
|  | msg->arg.reserved.reserved1 = 0; | 
|  | msg->arg.fork.ufd = fd; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, | 
|  | struct uffd_msg *msg) | 
|  | { | 
|  | ssize_t ret; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | struct userfaultfd_wait_queue *uwq; | 
|  | /* | 
|  | * Handling fork event requires sleeping operations, so | 
|  | * we drop the event_wqh lock, then do these ops, then | 
|  | * lock it back and wake up the waiter. While the lock is | 
|  | * dropped the ewq may go away so we keep track of it | 
|  | * carefully. | 
|  | */ | 
|  | LIST_HEAD(fork_event); | 
|  | struct userfaultfd_ctx *fork_nctx = NULL; | 
|  |  | 
|  | /* always take the fd_wqh lock before the fault_pending_wqh lock */ | 
|  | spin_lock_irq(&ctx->fd_wqh.lock); | 
|  | __add_wait_queue(&ctx->fd_wqh, &wait); | 
|  | for (;;) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | spin_lock(&ctx->fault_pending_wqh.lock); | 
|  | uwq = find_userfault(ctx); | 
|  | if (uwq) { | 
|  | /* | 
|  | * Use a seqcount to repeat the lockless check | 
|  | * in wake_userfault() to avoid missing | 
|  | * wakeups because during the refile both | 
|  | * waitqueue could become empty if this is the | 
|  | * only userfault. | 
|  | */ | 
|  | write_seqcount_begin(&ctx->refile_seq); | 
|  |  | 
|  | /* | 
|  | * The fault_pending_wqh.lock prevents the uwq | 
|  | * to disappear from under us. | 
|  | * | 
|  | * Refile this userfault from | 
|  | * fault_pending_wqh to fault_wqh, it's not | 
|  | * pending anymore after we read it. | 
|  | * | 
|  | * Use list_del() by hand (as | 
|  | * userfaultfd_wake_function also uses | 
|  | * list_del_init() by hand) to be sure nobody | 
|  | * changes __remove_wait_queue() to use | 
|  | * list_del_init() in turn breaking the | 
|  | * !list_empty_careful() check in | 
|  | * handle_userfault(). The uwq->wq.head list | 
|  | * must never be empty at any time during the | 
|  | * refile, or the waitqueue could disappear | 
|  | * from under us. The "wait_queue_head_t" | 
|  | * parameter of __remove_wait_queue() is unused | 
|  | * anyway. | 
|  | */ | 
|  | list_del(&uwq->wq.entry); | 
|  | add_wait_queue(&ctx->fault_wqh, &uwq->wq); | 
|  |  | 
|  | write_seqcount_end(&ctx->refile_seq); | 
|  |  | 
|  | /* careful to always initialize msg if ret == 0 */ | 
|  | *msg = uwq->msg; | 
|  | spin_unlock(&ctx->fault_pending_wqh.lock); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | spin_unlock(&ctx->fault_pending_wqh.lock); | 
|  |  | 
|  | spin_lock(&ctx->event_wqh.lock); | 
|  | uwq = find_userfault_evt(ctx); | 
|  | if (uwq) { | 
|  | *msg = uwq->msg; | 
|  |  | 
|  | if (uwq->msg.event == UFFD_EVENT_FORK) { | 
|  | fork_nctx = (struct userfaultfd_ctx *) | 
|  | (unsigned long) | 
|  | uwq->msg.arg.reserved.reserved1; | 
|  | list_move(&uwq->wq.entry, &fork_event); | 
|  | /* | 
|  | * fork_nctx can be freed as soon as | 
|  | * we drop the lock, unless we take a | 
|  | * reference on it. | 
|  | */ | 
|  | userfaultfd_ctx_get(fork_nctx); | 
|  | spin_unlock(&ctx->event_wqh.lock); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | userfaultfd_event_complete(ctx, uwq); | 
|  | spin_unlock(&ctx->event_wqh.lock); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | spin_unlock(&ctx->event_wqh.lock); | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | ret = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  | if (no_wait) { | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  | spin_unlock_irq(&ctx->fd_wqh.lock); | 
|  | schedule(); | 
|  | spin_lock_irq(&ctx->fd_wqh.lock); | 
|  | } | 
|  | __remove_wait_queue(&ctx->fd_wqh, &wait); | 
|  | __set_current_state(TASK_RUNNING); | 
|  | spin_unlock_irq(&ctx->fd_wqh.lock); | 
|  |  | 
|  | if (!ret && msg->event == UFFD_EVENT_FORK) { | 
|  | ret = resolve_userfault_fork(ctx, fork_nctx, msg); | 
|  | spin_lock(&ctx->event_wqh.lock); | 
|  | if (!list_empty(&fork_event)) { | 
|  | /* | 
|  | * The fork thread didn't abort, so we can | 
|  | * drop the temporary refcount. | 
|  | */ | 
|  | userfaultfd_ctx_put(fork_nctx); | 
|  |  | 
|  | uwq = list_first_entry(&fork_event, | 
|  | typeof(*uwq), | 
|  | wq.entry); | 
|  | /* | 
|  | * If fork_event list wasn't empty and in turn | 
|  | * the event wasn't already released by fork | 
|  | * (the event is allocated on fork kernel | 
|  | * stack), put the event back to its place in | 
|  | * the event_wq. fork_event head will be freed | 
|  | * as soon as we return so the event cannot | 
|  | * stay queued there no matter the current | 
|  | * "ret" value. | 
|  | */ | 
|  | list_del(&uwq->wq.entry); | 
|  | __add_wait_queue(&ctx->event_wqh, &uwq->wq); | 
|  |  | 
|  | /* | 
|  | * Leave the event in the waitqueue and report | 
|  | * error to userland if we failed to resolve | 
|  | * the userfault fork. | 
|  | */ | 
|  | if (likely(!ret)) | 
|  | userfaultfd_event_complete(ctx, uwq); | 
|  | } else { | 
|  | /* | 
|  | * Here the fork thread aborted and the | 
|  | * refcount from the fork thread on fork_nctx | 
|  | * has already been released. We still hold | 
|  | * the reference we took before releasing the | 
|  | * lock above. If resolve_userfault_fork | 
|  | * failed we've to drop it because the | 
|  | * fork_nctx has to be freed in such case. If | 
|  | * it succeeded we'll hold it because the new | 
|  | * uffd references it. | 
|  | */ | 
|  | if (ret) | 
|  | userfaultfd_ctx_put(fork_nctx); | 
|  | } | 
|  | spin_unlock(&ctx->event_wqh.lock); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t userfaultfd_read(struct file *file, char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx = file->private_data; | 
|  | ssize_t _ret, ret = 0; | 
|  | struct uffd_msg msg; | 
|  | int no_wait = file->f_flags & O_NONBLOCK; | 
|  |  | 
|  | if (ctx->state == UFFD_STATE_WAIT_API) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (;;) { | 
|  | if (count < sizeof(msg)) | 
|  | return ret ? ret : -EINVAL; | 
|  | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); | 
|  | if (_ret < 0) | 
|  | return ret ? ret : _ret; | 
|  | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) | 
|  | return ret ? ret : -EFAULT; | 
|  | ret += sizeof(msg); | 
|  | buf += sizeof(msg); | 
|  | count -= sizeof(msg); | 
|  | /* | 
|  | * Allow to read more than one fault at time but only | 
|  | * block if waiting for the very first one. | 
|  | */ | 
|  | no_wait = O_NONBLOCK; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __wake_userfault(struct userfaultfd_ctx *ctx, | 
|  | struct userfaultfd_wake_range *range) | 
|  | { | 
|  | spin_lock(&ctx->fault_pending_wqh.lock); | 
|  | /* wake all in the range and autoremove */ | 
|  | if (waitqueue_active(&ctx->fault_pending_wqh)) | 
|  | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, | 
|  | range); | 
|  | if (waitqueue_active(&ctx->fault_wqh)) | 
|  | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); | 
|  | spin_unlock(&ctx->fault_pending_wqh.lock); | 
|  | } | 
|  |  | 
|  | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, | 
|  | struct userfaultfd_wake_range *range) | 
|  | { | 
|  | unsigned seq; | 
|  | bool need_wakeup; | 
|  |  | 
|  | /* | 
|  | * To be sure waitqueue_active() is not reordered by the CPU | 
|  | * before the pagetable update, use an explicit SMP memory | 
|  | * barrier here. PT lock release or up_read(mmap_sem) still | 
|  | * have release semantics that can allow the | 
|  | * waitqueue_active() to be reordered before the pte update. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * Use waitqueue_active because it's very frequent to | 
|  | * change the address space atomically even if there are no | 
|  | * userfaults yet. So we take the spinlock only when we're | 
|  | * sure we've userfaults to wake. | 
|  | */ | 
|  | do { | 
|  | seq = read_seqcount_begin(&ctx->refile_seq); | 
|  | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || | 
|  | waitqueue_active(&ctx->fault_wqh); | 
|  | cond_resched(); | 
|  | } while (read_seqcount_retry(&ctx->refile_seq, seq)); | 
|  | if (need_wakeup) | 
|  | __wake_userfault(ctx, range); | 
|  | } | 
|  |  | 
|  | static __always_inline int validate_range(struct mm_struct *mm, | 
|  | __u64 start, __u64 len) | 
|  | { | 
|  | __u64 task_size = mm->task_size; | 
|  |  | 
|  | if (start & ~PAGE_MASK) | 
|  | return -EINVAL; | 
|  | if (len & ~PAGE_MASK) | 
|  | return -EINVAL; | 
|  | if (!len) | 
|  | return -EINVAL; | 
|  | if (start < mmap_min_addr) | 
|  | return -EINVAL; | 
|  | if (start >= task_size) | 
|  | return -EINVAL; | 
|  | if (len > task_size - start) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool vma_can_userfault(struct vm_area_struct *vma) | 
|  | { | 
|  | return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || | 
|  | vma_is_shmem(vma); | 
|  | } | 
|  |  | 
|  | static int userfaultfd_register(struct userfaultfd_ctx *ctx, | 
|  | unsigned long arg) | 
|  | { | 
|  | struct mm_struct *mm = ctx->mm; | 
|  | struct vm_area_struct *vma, *prev, *cur; | 
|  | int ret; | 
|  | struct uffdio_register uffdio_register; | 
|  | struct uffdio_register __user *user_uffdio_register; | 
|  | unsigned long vm_flags, new_flags; | 
|  | bool found; | 
|  | bool basic_ioctls; | 
|  | unsigned long start, end, vma_end; | 
|  |  | 
|  | user_uffdio_register = (struct uffdio_register __user *) arg; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_user(&uffdio_register, user_uffdio_register, | 
|  | sizeof(uffdio_register)-sizeof(__u64))) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (!uffdio_register.mode) | 
|  | goto out; | 
|  | if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| | 
|  | UFFDIO_REGISTER_MODE_WP)) | 
|  | goto out; | 
|  | vm_flags = 0; | 
|  | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) | 
|  | vm_flags |= VM_UFFD_MISSING; | 
|  | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { | 
|  | vm_flags |= VM_UFFD_WP; | 
|  | /* | 
|  | * FIXME: remove the below error constraint by | 
|  | * implementing the wprotect tracking mode. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = validate_range(mm, uffdio_register.range.start, | 
|  | uffdio_register.range.len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | start = uffdio_register.range.start; | 
|  | end = start + uffdio_register.range.len; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | if (!mmget_not_zero(mm)) | 
|  | goto out; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | if (!mmget_still_valid(mm)) | 
|  | goto out_unlock; | 
|  | vma = find_vma_prev(mm, start, &prev); | 
|  | if (!vma) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* check that there's at least one vma in the range */ | 
|  | ret = -EINVAL; | 
|  | if (vma->vm_start >= end) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * If the first vma contains huge pages, make sure start address | 
|  | * is aligned to huge page size. | 
|  | */ | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | 
|  |  | 
|  | if (start & (vma_hpagesize - 1)) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for not compatible vmas. | 
|  | */ | 
|  | found = false; | 
|  | basic_ioctls = false; | 
|  | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | 
|  | cond_resched(); | 
|  |  | 
|  | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | 
|  | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | 
|  |  | 
|  | /* check not compatible vmas */ | 
|  | ret = -EINVAL; | 
|  | if (!vma_can_userfault(cur)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * UFFDIO_COPY will fill file holes even without | 
|  | * PROT_WRITE. This check enforces that if this is a | 
|  | * MAP_SHARED, the process has write permission to the backing | 
|  | * file. If VM_MAYWRITE is set it also enforces that on a | 
|  | * MAP_SHARED vma: there is no F_WRITE_SEAL and no further | 
|  | * F_WRITE_SEAL can be taken until the vma is destroyed. | 
|  | */ | 
|  | ret = -EPERM; | 
|  | if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * If this vma contains ending address, and huge pages | 
|  | * check alignment. | 
|  | */ | 
|  | if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && | 
|  | end > cur->vm_start) { | 
|  | unsigned long vma_hpagesize = vma_kernel_pagesize(cur); | 
|  |  | 
|  | ret = -EINVAL; | 
|  |  | 
|  | if (end & (vma_hpagesize - 1)) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that this vma isn't already owned by a | 
|  | * different userfaultfd. We can't allow more than one | 
|  | * userfaultfd to own a single vma simultaneously or we | 
|  | * wouldn't know which one to deliver the userfaults to. | 
|  | */ | 
|  | ret = -EBUSY; | 
|  | if (cur->vm_userfaultfd_ctx.ctx && | 
|  | cur->vm_userfaultfd_ctx.ctx != ctx) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Note vmas containing huge pages | 
|  | */ | 
|  | if (is_vm_hugetlb_page(cur)) | 
|  | basic_ioctls = true; | 
|  |  | 
|  | found = true; | 
|  | } | 
|  | BUG_ON(!found); | 
|  |  | 
|  | if (vma->vm_start < start) | 
|  | prev = vma; | 
|  |  | 
|  | ret = 0; | 
|  | do { | 
|  | cond_resched(); | 
|  |  | 
|  | BUG_ON(!vma_can_userfault(vma)); | 
|  | BUG_ON(vma->vm_userfaultfd_ctx.ctx && | 
|  | vma->vm_userfaultfd_ctx.ctx != ctx); | 
|  | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); | 
|  |  | 
|  | /* | 
|  | * Nothing to do: this vma is already registered into this | 
|  | * userfaultfd and with the right tracking mode too. | 
|  | */ | 
|  | if (vma->vm_userfaultfd_ctx.ctx == ctx && | 
|  | (vma->vm_flags & vm_flags) == vm_flags) | 
|  | goto skip; | 
|  |  | 
|  | if (vma->vm_start > start) | 
|  | start = vma->vm_start; | 
|  | vma_end = min(end, vma->vm_end); | 
|  |  | 
|  | new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; | 
|  | prev = vma_merge(mm, prev, start, vma_end, new_flags, | 
|  | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | 
|  | vma_policy(vma), | 
|  | ((struct vm_userfaultfd_ctx){ ctx })); | 
|  | if (prev) { | 
|  | vma = prev; | 
|  | goto next; | 
|  | } | 
|  | if (vma->vm_start < start) { | 
|  | ret = split_vma(mm, vma, start, 1); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | if (vma->vm_end > end) { | 
|  | ret = split_vma(mm, vma, end, 0); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | next: | 
|  | /* | 
|  | * In the vma_merge() successful mprotect-like case 8: | 
|  | * the next vma was merged into the current one and | 
|  | * the current one has not been updated yet. | 
|  | */ | 
|  | vma->vm_flags = new_flags; | 
|  | vma->vm_userfaultfd_ctx.ctx = ctx; | 
|  |  | 
|  | skip: | 
|  | prev = vma; | 
|  | start = vma->vm_end; | 
|  | vma = vma->vm_next; | 
|  | } while (vma && vma->vm_start < end); | 
|  | out_unlock: | 
|  | up_write(&mm->mmap_sem); | 
|  | mmput(mm); | 
|  | if (!ret) { | 
|  | /* | 
|  | * Now that we scanned all vmas we can already tell | 
|  | * userland which ioctls methods are guaranteed to | 
|  | * succeed on this range. | 
|  | */ | 
|  | if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : | 
|  | UFFD_API_RANGE_IOCTLS, | 
|  | &user_uffdio_register->ioctls)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, | 
|  | unsigned long arg) | 
|  | { | 
|  | struct mm_struct *mm = ctx->mm; | 
|  | struct vm_area_struct *vma, *prev, *cur; | 
|  | int ret; | 
|  | struct uffdio_range uffdio_unregister; | 
|  | unsigned long new_flags; | 
|  | bool found; | 
|  | unsigned long start, end, vma_end; | 
|  | const void __user *buf = (void __user *)arg; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) | 
|  | goto out; | 
|  |  | 
|  | ret = validate_range(mm, uffdio_unregister.start, | 
|  | uffdio_unregister.len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | start = uffdio_unregister.start; | 
|  | end = start + uffdio_unregister.len; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | if (!mmget_not_zero(mm)) | 
|  | goto out; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | if (!mmget_still_valid(mm)) | 
|  | goto out_unlock; | 
|  | vma = find_vma_prev(mm, start, &prev); | 
|  | if (!vma) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* check that there's at least one vma in the range */ | 
|  | ret = -EINVAL; | 
|  | if (vma->vm_start >= end) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * If the first vma contains huge pages, make sure start address | 
|  | * is aligned to huge page size. | 
|  | */ | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | 
|  |  | 
|  | if (start & (vma_hpagesize - 1)) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for not compatible vmas. | 
|  | */ | 
|  | found = false; | 
|  | ret = -EINVAL; | 
|  | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | 
|  | cond_resched(); | 
|  |  | 
|  | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | 
|  | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | 
|  |  | 
|  | /* | 
|  | * Check not compatible vmas, not strictly required | 
|  | * here as not compatible vmas cannot have an | 
|  | * userfaultfd_ctx registered on them, but this | 
|  | * provides for more strict behavior to notice | 
|  | * unregistration errors. | 
|  | */ | 
|  | if (!vma_can_userfault(cur)) | 
|  | goto out_unlock; | 
|  |  | 
|  | found = true; | 
|  | } | 
|  | BUG_ON(!found); | 
|  |  | 
|  | if (vma->vm_start < start) | 
|  | prev = vma; | 
|  |  | 
|  | ret = 0; | 
|  | do { | 
|  | cond_resched(); | 
|  |  | 
|  | BUG_ON(!vma_can_userfault(vma)); | 
|  |  | 
|  | /* | 
|  | * Nothing to do: this vma is already registered into this | 
|  | * userfaultfd and with the right tracking mode too. | 
|  | */ | 
|  | if (!vma->vm_userfaultfd_ctx.ctx) | 
|  | goto skip; | 
|  |  | 
|  | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); | 
|  |  | 
|  | if (vma->vm_start > start) | 
|  | start = vma->vm_start; | 
|  | vma_end = min(end, vma->vm_end); | 
|  |  | 
|  | if (userfaultfd_missing(vma)) { | 
|  | /* | 
|  | * Wake any concurrent pending userfault while | 
|  | * we unregister, so they will not hang | 
|  | * permanently and it avoids userland to call | 
|  | * UFFDIO_WAKE explicitly. | 
|  | */ | 
|  | struct userfaultfd_wake_range range; | 
|  | range.start = start; | 
|  | range.len = vma_end - start; | 
|  | wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); | 
|  | } | 
|  |  | 
|  | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | 
|  | prev = vma_merge(mm, prev, start, vma_end, new_flags, | 
|  | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | 
|  | vma_policy(vma), | 
|  | NULL_VM_UFFD_CTX); | 
|  | if (prev) { | 
|  | vma = prev; | 
|  | goto next; | 
|  | } | 
|  | if (vma->vm_start < start) { | 
|  | ret = split_vma(mm, vma, start, 1); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | if (vma->vm_end > end) { | 
|  | ret = split_vma(mm, vma, end, 0); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | next: | 
|  | /* | 
|  | * In the vma_merge() successful mprotect-like case 8: | 
|  | * the next vma was merged into the current one and | 
|  | * the current one has not been updated yet. | 
|  | */ | 
|  | vma->vm_flags = new_flags; | 
|  | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | 
|  |  | 
|  | skip: | 
|  | prev = vma; | 
|  | start = vma->vm_end; | 
|  | vma = vma->vm_next; | 
|  | } while (vma && vma->vm_start < end); | 
|  | out_unlock: | 
|  | up_write(&mm->mmap_sem); | 
|  | mmput(mm); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * userfaultfd_wake may be used in combination with the | 
|  | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. | 
|  | */ | 
|  | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, | 
|  | unsigned long arg) | 
|  | { | 
|  | int ret; | 
|  | struct uffdio_range uffdio_wake; | 
|  | struct userfaultfd_wake_range range; | 
|  | const void __user *buf = (void __user *)arg; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) | 
|  | goto out; | 
|  |  | 
|  | ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | range.start = uffdio_wake.start; | 
|  | range.len = uffdio_wake.len; | 
|  |  | 
|  | /* | 
|  | * len == 0 means wake all and we don't want to wake all here, | 
|  | * so check it again to be sure. | 
|  | */ | 
|  | VM_BUG_ON(!range.len); | 
|  |  | 
|  | wake_userfault(ctx, &range); | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, | 
|  | unsigned long arg) | 
|  | { | 
|  | __s64 ret; | 
|  | struct uffdio_copy uffdio_copy; | 
|  | struct uffdio_copy __user *user_uffdio_copy; | 
|  | struct userfaultfd_wake_range range; | 
|  |  | 
|  | user_uffdio_copy = (struct uffdio_copy __user *) arg; | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | if (READ_ONCE(ctx->mmap_changing)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_user(&uffdio_copy, user_uffdio_copy, | 
|  | /* don't copy "copy" last field */ | 
|  | sizeof(uffdio_copy)-sizeof(__s64))) | 
|  | goto out; | 
|  |  | 
|  | ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * double check for wraparound just in case. copy_from_user() | 
|  | * will later check uffdio_copy.src + uffdio_copy.len to fit | 
|  | * in the userland range. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) | 
|  | goto out; | 
|  | if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) | 
|  | goto out; | 
|  | if (mmget_not_zero(ctx->mm)) { | 
|  | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, | 
|  | uffdio_copy.len, &ctx->mmap_changing); | 
|  | mmput(ctx->mm); | 
|  | } else { | 
|  | return -ESRCH; | 
|  | } | 
|  | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) | 
|  | return -EFAULT; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | BUG_ON(!ret); | 
|  | /* len == 0 would wake all */ | 
|  | range.len = ret; | 
|  | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { | 
|  | range.start = uffdio_copy.dst; | 
|  | wake_userfault(ctx, &range); | 
|  | } | 
|  | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, | 
|  | unsigned long arg) | 
|  | { | 
|  | __s64 ret; | 
|  | struct uffdio_zeropage uffdio_zeropage; | 
|  | struct uffdio_zeropage __user *user_uffdio_zeropage; | 
|  | struct userfaultfd_wake_range range; | 
|  |  | 
|  | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | if (READ_ONCE(ctx->mmap_changing)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, | 
|  | /* don't copy "zeropage" last field */ | 
|  | sizeof(uffdio_zeropage)-sizeof(__s64))) | 
|  | goto out; | 
|  |  | 
|  | ret = validate_range(ctx->mm, uffdio_zeropage.range.start, | 
|  | uffdio_zeropage.range.len); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = -EINVAL; | 
|  | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) | 
|  | goto out; | 
|  |  | 
|  | if (mmget_not_zero(ctx->mm)) { | 
|  | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, | 
|  | uffdio_zeropage.range.len, | 
|  | &ctx->mmap_changing); | 
|  | mmput(ctx->mm); | 
|  | } else { | 
|  | return -ESRCH; | 
|  | } | 
|  | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) | 
|  | return -EFAULT; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | /* len == 0 would wake all */ | 
|  | BUG_ON(!ret); | 
|  | range.len = ret; | 
|  | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { | 
|  | range.start = uffdio_zeropage.range.start; | 
|  | wake_userfault(ctx, &range); | 
|  | } | 
|  | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline unsigned int uffd_ctx_features(__u64 user_features) | 
|  | { | 
|  | /* | 
|  | * For the current set of features the bits just coincide | 
|  | */ | 
|  | return (unsigned int)user_features; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * userland asks for a certain API version and we return which bits | 
|  | * and ioctl commands are implemented in this kernel for such API | 
|  | * version or -EINVAL if unknown. | 
|  | */ | 
|  | static int userfaultfd_api(struct userfaultfd_ctx *ctx, | 
|  | unsigned long arg) | 
|  | { | 
|  | struct uffdio_api uffdio_api; | 
|  | void __user *buf = (void __user *)arg; | 
|  | int ret; | 
|  | __u64 features; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (ctx->state != UFFD_STATE_WAIT_API) | 
|  | goto out; | 
|  | ret = -EFAULT; | 
|  | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) | 
|  | goto out; | 
|  | features = uffdio_api.features; | 
|  | if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { | 
|  | memset(&uffdio_api, 0, sizeof(uffdio_api)); | 
|  | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | 
|  | goto out; | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | /* report all available features and ioctls to userland */ | 
|  | uffdio_api.features = UFFD_API_FEATURES; | 
|  | uffdio_api.ioctls = UFFD_API_IOCTLS; | 
|  | ret = -EFAULT; | 
|  | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | 
|  | goto out; | 
|  | ctx->state = UFFD_STATE_RUNNING; | 
|  | /* only enable the requested features for this uffd context */ | 
|  | ctx->features = uffd_ctx_features(features); | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long userfaultfd_ioctl(struct file *file, unsigned cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | struct userfaultfd_ctx *ctx = file->private_data; | 
|  |  | 
|  | if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch(cmd) { | 
|  | case UFFDIO_API: | 
|  | ret = userfaultfd_api(ctx, arg); | 
|  | break; | 
|  | case UFFDIO_REGISTER: | 
|  | ret = userfaultfd_register(ctx, arg); | 
|  | break; | 
|  | case UFFDIO_UNREGISTER: | 
|  | ret = userfaultfd_unregister(ctx, arg); | 
|  | break; | 
|  | case UFFDIO_WAKE: | 
|  | ret = userfaultfd_wake(ctx, arg); | 
|  | break; | 
|  | case UFFDIO_COPY: | 
|  | ret = userfaultfd_copy(ctx, arg); | 
|  | break; | 
|  | case UFFDIO_ZEROPAGE: | 
|  | ret = userfaultfd_zeropage(ctx, arg); | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx = f->private_data; | 
|  | wait_queue_entry_t *wq; | 
|  | unsigned long pending = 0, total = 0; | 
|  |  | 
|  | spin_lock(&ctx->fault_pending_wqh.lock); | 
|  | list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { | 
|  | pending++; | 
|  | total++; | 
|  | } | 
|  | list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { | 
|  | total++; | 
|  | } | 
|  | spin_unlock(&ctx->fault_pending_wqh.lock); | 
|  |  | 
|  | /* | 
|  | * If more protocols will be added, there will be all shown | 
|  | * separated by a space. Like this: | 
|  | *	protocols: aa:... bb:... | 
|  | */ | 
|  | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", | 
|  | pending, total, UFFD_API, ctx->features, | 
|  | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct file_operations userfaultfd_fops = { | 
|  | #ifdef CONFIG_PROC_FS | 
|  | .show_fdinfo	= userfaultfd_show_fdinfo, | 
|  | #endif | 
|  | .release	= userfaultfd_release, | 
|  | .poll		= userfaultfd_poll, | 
|  | .read		= userfaultfd_read, | 
|  | .unlocked_ioctl = userfaultfd_ioctl, | 
|  | .compat_ioctl	= userfaultfd_ioctl, | 
|  | .llseek		= noop_llseek, | 
|  | }; | 
|  |  | 
|  | static void init_once_userfaultfd_ctx(void *mem) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; | 
|  |  | 
|  | init_waitqueue_head(&ctx->fault_pending_wqh); | 
|  | init_waitqueue_head(&ctx->fault_wqh); | 
|  | init_waitqueue_head(&ctx->event_wqh); | 
|  | init_waitqueue_head(&ctx->fd_wqh); | 
|  | seqcount_init(&ctx->refile_seq); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(userfaultfd, int, flags) | 
|  | { | 
|  | struct userfaultfd_ctx *ctx; | 
|  | int fd; | 
|  |  | 
|  | BUG_ON(!current->mm); | 
|  |  | 
|  | /* Check the UFFD_* constants for consistency.  */ | 
|  | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); | 
|  | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); | 
|  |  | 
|  | if (flags & ~UFFD_SHARED_FCNTL_FLAGS) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | refcount_set(&ctx->refcount, 1); | 
|  | ctx->flags = flags; | 
|  | ctx->features = 0; | 
|  | ctx->state = UFFD_STATE_WAIT_API; | 
|  | ctx->released = false; | 
|  | ctx->mmap_changing = false; | 
|  | ctx->mm = current->mm; | 
|  | /* prevent the mm struct to be freed */ | 
|  | mmgrab(ctx->mm); | 
|  |  | 
|  | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, | 
|  | O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); | 
|  | if (fd < 0) { | 
|  | mmdrop(ctx->mm); | 
|  | kmem_cache_free(userfaultfd_ctx_cachep, ctx); | 
|  | } | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static int __init userfaultfd_init(void) | 
|  | { | 
|  | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", | 
|  | sizeof(struct userfaultfd_ctx), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | 
|  | init_once_userfaultfd_ctx); | 
|  | return 0; | 
|  | } | 
|  | __initcall(userfaultfd_init); |