|  | #ifndef _ASM_POWERPC_IO_H | 
|  | #define _ASM_POWERPC_IO_H | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | #define ARCH_HAS_IOREMAP_WC | 
|  |  | 
|  | /* | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | /* Check of existence of legacy devices */ | 
|  | extern int check_legacy_ioport(unsigned long base_port); | 
|  | #define I8042_DATA_REG	0x60 | 
|  | #define FDC_BASE	0x3f0 | 
|  |  | 
|  | #if defined(CONFIG_PPC64) && defined(CONFIG_PCI) | 
|  | extern struct pci_dev *isa_bridge_pcidev; | 
|  | /* | 
|  | * has legacy ISA devices ? | 
|  | */ | 
|  | #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special) | 
|  | #endif | 
|  |  | 
|  | #include <linux/device.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | #include <linux/compiler.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/synch.h> | 
|  | #include <asm/delay.h> | 
|  | #include <asm/mmu.h> | 
|  |  | 
|  | #include <asm-generic/iomap.h> | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | #include <asm/paca.h> | 
|  | #endif | 
|  |  | 
|  | #define SIO_CONFIG_RA	0x398 | 
|  | #define SIO_CONFIG_RD	0x399 | 
|  |  | 
|  | #define SLOW_DOWN_IO | 
|  |  | 
|  | /* 32 bits uses slightly different variables for the various IO | 
|  | * bases. Most of this file only uses _IO_BASE though which we | 
|  | * define properly based on the platform | 
|  | */ | 
|  | #ifndef CONFIG_PCI | 
|  | #define _IO_BASE	0 | 
|  | #define _ISA_MEM_BASE	0 | 
|  | #define PCI_DRAM_OFFSET 0 | 
|  | #elif defined(CONFIG_PPC32) | 
|  | #define _IO_BASE	isa_io_base | 
|  | #define _ISA_MEM_BASE	isa_mem_base | 
|  | #define PCI_DRAM_OFFSET	pci_dram_offset | 
|  | #else | 
|  | #define _IO_BASE	pci_io_base | 
|  | #define _ISA_MEM_BASE	isa_mem_base | 
|  | #define PCI_DRAM_OFFSET	0 | 
|  | #endif | 
|  |  | 
|  | extern unsigned long isa_io_base; | 
|  | extern unsigned long pci_io_base; | 
|  | extern unsigned long pci_dram_offset; | 
|  |  | 
|  | extern resource_size_t isa_mem_base; | 
|  |  | 
|  | /* Boolean set by platform if PIO accesses are suppored while _IO_BASE | 
|  | * is not set or addresses cannot be translated to MMIO. This is typically | 
|  | * set when the platform supports "special" PIO accesses via a non memory | 
|  | * mapped mechanism, and allows things like the early udbg UART code to | 
|  | * function. | 
|  | */ | 
|  | extern bool isa_io_special; | 
|  |  | 
|  | #ifdef CONFIG_PPC32 | 
|  | #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) | 
|  | #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Low level MMIO accessors | 
|  | * | 
|  | * This provides the non-bus specific accessors to MMIO. Those are PowerPC | 
|  | * specific and thus shouldn't be used in generic code. The accessors | 
|  | * provided here are: | 
|  | * | 
|  | *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 | 
|  | *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 | 
|  | *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns | 
|  | * | 
|  | * Those operate directly on a kernel virtual address. Note that the prototype | 
|  | * for the out_* accessors has the arguments in opposite order from the usual | 
|  | * linux PCI accessors. Unlike those, they take the address first and the value | 
|  | * next. | 
|  | * | 
|  | * Note: I might drop the _ns suffix on the stream operations soon as it is | 
|  | * simply normal for stream operations to not swap in the first place. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0) | 
|  | #else | 
|  | #define IO_SET_SYNC_FLAG() | 
|  | #endif | 
|  |  | 
|  | /* gcc 4.0 and older doesn't have 'Z' constraint */ | 
|  | #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0) | 
|  | #define DEF_MMIO_IN_X(name, size, insn)				\ | 
|  | static inline u##size name(const volatile u##size __iomem *addr)	\ | 
|  | {									\ | 
|  | u##size ret;							\ | 
|  | __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\ | 
|  | : "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\ | 
|  | return ret;							\ | 
|  | } | 
|  |  | 
|  | #define DEF_MMIO_OUT_X(name, size, insn)				\ | 
|  | static inline void name(volatile u##size __iomem *addr, u##size val)	\ | 
|  | {									\ | 
|  | __asm__ __volatile__("sync;"#insn" %1,0,%2"			\ | 
|  | : "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\ | 
|  | IO_SET_SYNC_FLAG();						\ | 
|  | } | 
|  | #else /* newer gcc */ | 
|  | #define DEF_MMIO_IN_X(name, size, insn)				\ | 
|  | static inline u##size name(const volatile u##size __iomem *addr)	\ | 
|  | {									\ | 
|  | u##size ret;							\ | 
|  | __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\ | 
|  | : "=r" (ret) : "Z" (*addr) : "memory");			\ | 
|  | return ret;							\ | 
|  | } | 
|  |  | 
|  | #define DEF_MMIO_OUT_X(name, size, insn)				\ | 
|  | static inline void name(volatile u##size __iomem *addr, u##size val)	\ | 
|  | {									\ | 
|  | __asm__ __volatile__("sync;"#insn" %1,%y0"			\ | 
|  | : "=Z" (*addr) : "r" (val) : "memory");			\ | 
|  | IO_SET_SYNC_FLAG();						\ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define DEF_MMIO_IN_D(name, size, insn)				\ | 
|  | static inline u##size name(const volatile u##size __iomem *addr)	\ | 
|  | {									\ | 
|  | u##size ret;							\ | 
|  | __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ | 
|  | : "=r" (ret) : "m" (*addr) : "memory");			\ | 
|  | return ret;							\ | 
|  | } | 
|  |  | 
|  | #define DEF_MMIO_OUT_D(name, size, insn)				\ | 
|  | static inline void name(volatile u##size __iomem *addr, u##size val)	\ | 
|  | {									\ | 
|  | __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\ | 
|  | : "=m" (*addr) : "r" (val) : "memory");			\ | 
|  | IO_SET_SYNC_FLAG();						\ | 
|  | } | 
|  |  | 
|  | DEF_MMIO_IN_D(in_8,     8, lbz); | 
|  | DEF_MMIO_OUT_D(out_8,   8, stb); | 
|  |  | 
|  | #ifdef __BIG_ENDIAN__ | 
|  | DEF_MMIO_IN_D(in_be16, 16, lhz); | 
|  | DEF_MMIO_IN_D(in_be32, 32, lwz); | 
|  | DEF_MMIO_IN_X(in_le16, 16, lhbrx); | 
|  | DEF_MMIO_IN_X(in_le32, 32, lwbrx); | 
|  |  | 
|  | DEF_MMIO_OUT_D(out_be16, 16, sth); | 
|  | DEF_MMIO_OUT_D(out_be32, 32, stw); | 
|  | DEF_MMIO_OUT_X(out_le16, 16, sthbrx); | 
|  | DEF_MMIO_OUT_X(out_le32, 32, stwbrx); | 
|  | #else | 
|  | DEF_MMIO_IN_X(in_be16, 16, lhbrx); | 
|  | DEF_MMIO_IN_X(in_be32, 32, lwbrx); | 
|  | DEF_MMIO_IN_D(in_le16, 16, lhz); | 
|  | DEF_MMIO_IN_D(in_le32, 32, lwz); | 
|  |  | 
|  | DEF_MMIO_OUT_X(out_be16, 16, sthbrx); | 
|  | DEF_MMIO_OUT_X(out_be32, 32, stwbrx); | 
|  | DEF_MMIO_OUT_D(out_le16, 16, sth); | 
|  | DEF_MMIO_OUT_D(out_le32, 32, stw); | 
|  |  | 
|  | #endif /* __BIG_ENDIAN */ | 
|  |  | 
|  | /* | 
|  | * Cache inhibitied accessors for use in real mode, you don't want to use these | 
|  | * unless you know what you're doing. | 
|  | * | 
|  | * NB. These use the cpu byte ordering. | 
|  | */ | 
|  | DEF_MMIO_OUT_X(out_rm8,   8, stbcix); | 
|  | DEF_MMIO_OUT_X(out_rm16, 16, sthcix); | 
|  | DEF_MMIO_OUT_X(out_rm32, 32, stwcix); | 
|  | DEF_MMIO_IN_X(in_rm8,   8, lbzcix); | 
|  | DEF_MMIO_IN_X(in_rm16, 16, lhzcix); | 
|  | DEF_MMIO_IN_X(in_rm32, 32, lwzcix); | 
|  |  | 
|  | #ifdef __powerpc64__ | 
|  |  | 
|  | DEF_MMIO_OUT_X(out_rm64, 64, stdcix); | 
|  | DEF_MMIO_IN_X(in_rm64, 64, ldcix); | 
|  |  | 
|  | #ifdef __BIG_ENDIAN__ | 
|  | DEF_MMIO_OUT_D(out_be64, 64, std); | 
|  | DEF_MMIO_IN_D(in_be64, 64, ld); | 
|  |  | 
|  | /* There is no asm instructions for 64 bits reverse loads and stores */ | 
|  | static inline u64 in_le64(const volatile u64 __iomem *addr) | 
|  | { | 
|  | return swab64(in_be64(addr)); | 
|  | } | 
|  |  | 
|  | static inline void out_le64(volatile u64 __iomem *addr, u64 val) | 
|  | { | 
|  | out_be64(addr, swab64(val)); | 
|  | } | 
|  | #else | 
|  | DEF_MMIO_OUT_D(out_le64, 64, std); | 
|  | DEF_MMIO_IN_D(in_le64, 64, ld); | 
|  |  | 
|  | /* There is no asm instructions for 64 bits reverse loads and stores */ | 
|  | static inline u64 in_be64(const volatile u64 __iomem *addr) | 
|  | { | 
|  | return swab64(in_le64(addr)); | 
|  | } | 
|  |  | 
|  | static inline void out_be64(volatile u64 __iomem *addr, u64 val) | 
|  | { | 
|  | out_le64(addr, swab64(val)); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | #endif /* __powerpc64__ */ | 
|  |  | 
|  | /* | 
|  | * Low level IO stream instructions are defined out of line for now | 
|  | */ | 
|  | extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); | 
|  | extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); | 
|  | extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); | 
|  | extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); | 
|  | extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); | 
|  | extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); | 
|  |  | 
|  | /* The _ns naming is historical and will be removed. For now, just #define | 
|  | * the non _ns equivalent names | 
|  | */ | 
|  | #define _insw	_insw_ns | 
|  | #define _insl	_insl_ns | 
|  | #define _outsw	_outsw_ns | 
|  | #define _outsl	_outsl_ns | 
|  |  | 
|  |  | 
|  | /* | 
|  | * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line | 
|  | */ | 
|  |  | 
|  | extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); | 
|  | extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, | 
|  | unsigned long n); | 
|  | extern void _memcpy_toio(volatile void __iomem *dest, const void *src, | 
|  | unsigned long n); | 
|  |  | 
|  | /* | 
|  | * | 
|  | * PCI and standard ISA accessors | 
|  | * | 
|  | * Those are globally defined linux accessors for devices on PCI or ISA | 
|  | * busses. They follow the Linux defined semantics. The current implementation | 
|  | * for PowerPC is as close as possible to the x86 version of these, and thus | 
|  | * provides fairly heavy weight barriers for the non-raw versions | 
|  | * | 
|  | * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO | 
|  | * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its | 
|  | * own implementation of some or all of the accessors. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Include the EEH definitions when EEH is enabled only so they don't get | 
|  | * in the way when building for 32 bits | 
|  | */ | 
|  | #ifdef CONFIG_EEH | 
|  | #include <asm/eeh.h> | 
|  | #endif | 
|  |  | 
|  | /* Shortcut to the MMIO argument pointer */ | 
|  | #define PCI_IO_ADDR	volatile void __iomem * | 
|  |  | 
|  | /* Indirect IO address tokens: | 
|  | * | 
|  | * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks | 
|  | * on all MMIOs. (Note that this is all 64 bits only for now) | 
|  | * | 
|  | * To help platforms who may need to differenciate MMIO addresses in | 
|  | * their hooks, a bitfield is reserved for use by the platform near the | 
|  | * top of MMIO addresses (not PIO, those have to cope the hard way). | 
|  | * | 
|  | * This bit field is 12 bits and is at the top of the IO virtual | 
|  | * addresses PCI_IO_INDIRECT_TOKEN_MASK. | 
|  | * | 
|  | * The kernel virtual space is thus: | 
|  | * | 
|  | *  0xD000000000000000		: vmalloc | 
|  | *  0xD000080000000000		: PCI PHB IO space | 
|  | *  0xD000080080000000		: ioremap | 
|  | *  0xD0000fffffffffff		: end of ioremap region | 
|  | * | 
|  | * Since the top 4 bits are reserved as the region ID, we use thus | 
|  | * the next 12 bits and keep 4 bits available for the future if the | 
|  | * virtual address space is ever to be extended. | 
|  | * | 
|  | * The direct IO mapping operations will then mask off those bits | 
|  | * before doing the actual access, though that only happen when | 
|  | * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that | 
|  | * mechanism | 
|  | * | 
|  | * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes | 
|  | * all PIO functions call through a hook. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_INDIRECT_MMIO | 
|  | #define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul | 
|  | #define PCI_IO_IND_TOKEN_SHIFT	48 | 
|  | #define PCI_FIX_ADDR(addr)						\ | 
|  | ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) | 
|  | #define PCI_GET_ADDR_TOKEN(addr)					\ | 
|  | (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\ | 
|  | PCI_IO_IND_TOKEN_SHIFT) | 
|  | #define PCI_SET_ADDR_TOKEN(addr, token) 				\ | 
|  | do {									\ | 
|  | unsigned long __a = (unsigned long)(addr);			\ | 
|  | __a &= ~PCI_IO_IND_TOKEN_MASK;					\ | 
|  | __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\ | 
|  | (addr) = (void __iomem *)__a;					\ | 
|  | } while(0) | 
|  | #else | 
|  | #define PCI_FIX_ADDR(addr) (addr) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Non ordered and non-swapping "raw" accessors | 
|  | */ | 
|  |  | 
|  | static inline unsigned char __raw_readb(const volatile void __iomem *addr) | 
|  | { | 
|  | return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); | 
|  | } | 
|  | static inline unsigned short __raw_readw(const volatile void __iomem *addr) | 
|  | { | 
|  | return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); | 
|  | } | 
|  | static inline unsigned int __raw_readl(const volatile void __iomem *addr) | 
|  | { | 
|  | return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); | 
|  | } | 
|  | static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) | 
|  | { | 
|  | *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; | 
|  | } | 
|  | static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) | 
|  | { | 
|  | *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; | 
|  | } | 
|  | static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) | 
|  | { | 
|  | *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; | 
|  | } | 
|  |  | 
|  | #ifdef __powerpc64__ | 
|  | static inline unsigned long __raw_readq(const volatile void __iomem *addr) | 
|  | { | 
|  | return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); | 
|  | } | 
|  | static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) | 
|  | { | 
|  | *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; | 
|  | } | 
|  | #endif /* __powerpc64__ */ | 
|  |  | 
|  | /* | 
|  | * | 
|  | * PCI PIO and MMIO accessors. | 
|  | * | 
|  | * | 
|  | * On 32 bits, PIO operations have a recovery mechanism in case they trigger | 
|  | * machine checks (which they occasionally do when probing non existing | 
|  | * IO ports on some platforms, like PowerMac and 8xx). | 
|  | * I always found it to be of dubious reliability and I am tempted to get | 
|  | * rid of it one of these days. So if you think it's important to keep it, | 
|  | * please voice up asap. We never had it for 64 bits and I do not intend | 
|  | * to port it over | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_PPC32 | 
|  |  | 
|  | #define __do_in_asm(name, op)				\ | 
|  | static inline unsigned int name(unsigned int port)	\ | 
|  | {							\ | 
|  | unsigned int x;					\ | 
|  | __asm__ __volatile__(				\ | 
|  | "sync\n"				\ | 
|  | "0:"	op "	%0,0,%1\n"		\ | 
|  | "1:	twi	0,%0,0\n"		\ | 
|  | "2:	isync\n"			\ | 
|  | "3:	nop\n"				\ | 
|  | "4:\n"					\ | 
|  | ".section .fixup,\"ax\"\n"		\ | 
|  | "5:	li	%0,-1\n"		\ | 
|  | "	b	4b\n"			\ | 
|  | ".previous\n"				\ | 
|  | ".section __ex_table,\"a\"\n"		\ | 
|  | "	.align	2\n"			\ | 
|  | "	.long	0b,5b\n"		\ | 
|  | "	.long	1b,5b\n"		\ | 
|  | "	.long	2b,5b\n"		\ | 
|  | "	.long	3b,5b\n"		\ | 
|  | ".previous"				\ | 
|  | : "=&r" (x)				\ | 
|  | : "r" (port + _IO_BASE)			\ | 
|  | : "memory");  				\ | 
|  | return x;					\ | 
|  | } | 
|  |  | 
|  | #define __do_out_asm(name, op)				\ | 
|  | static inline void name(unsigned int val, unsigned int port) \ | 
|  | {							\ | 
|  | __asm__ __volatile__(				\ | 
|  | "sync\n"				\ | 
|  | "0:" op " %0,0,%1\n"			\ | 
|  | "1:	sync\n"				\ | 
|  | "2:\n"					\ | 
|  | ".section __ex_table,\"a\"\n"		\ | 
|  | "	.align	2\n"			\ | 
|  | "	.long	0b,2b\n"		\ | 
|  | "	.long	1b,2b\n"		\ | 
|  | ".previous"				\ | 
|  | : : "r" (val), "r" (port + _IO_BASE)	\ | 
|  | : "memory");   	   	   		\ | 
|  | } | 
|  |  | 
|  | __do_in_asm(_rec_inb, "lbzx") | 
|  | __do_in_asm(_rec_inw, "lhbrx") | 
|  | __do_in_asm(_rec_inl, "lwbrx") | 
|  | __do_out_asm(_rec_outb, "stbx") | 
|  | __do_out_asm(_rec_outw, "sthbrx") | 
|  | __do_out_asm(_rec_outl, "stwbrx") | 
|  |  | 
|  | #endif /* CONFIG_PPC32 */ | 
|  |  | 
|  | /* The "__do_*" operations below provide the actual "base" implementation | 
|  | * for each of the defined accessors. Some of them use the out_* functions | 
|  | * directly, some of them still use EEH, though we might change that in the | 
|  | * future. Those macros below provide the necessary argument swapping and | 
|  | * handling of the IO base for PIO. | 
|  | * | 
|  | * They are themselves used by the macros that define the actual accessors | 
|  | * and can be used by the hooks if any. | 
|  | * | 
|  | * Note that PIO operations are always defined in terms of their corresonding | 
|  | * MMIO operations. That allows platforms like iSeries who want to modify the | 
|  | * behaviour of both to only hook on the MMIO version and get both. It's also | 
|  | * possible to hook directly at the toplevel PIO operation if they have to | 
|  | * be handled differently | 
|  | */ | 
|  | #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val) | 
|  | #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val) | 
|  | #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val) | 
|  | #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val) | 
|  | #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) | 
|  | #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) | 
|  | #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) | 
|  |  | 
|  | #ifdef CONFIG_EEH | 
|  | #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr)) | 
|  | #else /* CONFIG_EEH */ | 
|  | #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr)) | 
|  | #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr)) | 
|  | #endif /* !defined(CONFIG_EEH) */ | 
|  |  | 
|  | #ifdef CONFIG_PPC32 | 
|  | #define __do_outb(val, port)	_rec_outb(val, port) | 
|  | #define __do_outw(val, port)	_rec_outw(val, port) | 
|  | #define __do_outl(val, port)	_rec_outl(val, port) | 
|  | #define __do_inb(port)		_rec_inb(port) | 
|  | #define __do_inw(port)		_rec_inw(port) | 
|  | #define __do_inl(port)		_rec_inl(port) | 
|  | #else /* CONFIG_PPC32 */ | 
|  | #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port); | 
|  | #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port); | 
|  | #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port); | 
|  | #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port); | 
|  | #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port); | 
|  | #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port); | 
|  | #endif /* !CONFIG_PPC32 */ | 
|  |  | 
|  | #ifdef CONFIG_EEH | 
|  | #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) | 
|  | #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) | 
|  | #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) | 
|  | #else /* CONFIG_EEH */ | 
|  | #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n)) | 
|  | #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n)) | 
|  | #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n)) | 
|  | #endif /* !CONFIG_EEH */ | 
|  | #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n)) | 
|  | #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n)) | 
|  | #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n)) | 
|  |  | 
|  | #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) | 
|  | #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) | 
|  | #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) | 
|  | #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) | 
|  | #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) | 
|  | #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) | 
|  |  | 
|  | #define __do_memset_io(addr, c, n)	\ | 
|  | _memset_io(PCI_FIX_ADDR(addr), c, n) | 
|  | #define __do_memcpy_toio(dst, src, n)	\ | 
|  | _memcpy_toio(PCI_FIX_ADDR(dst), src, n) | 
|  |  | 
|  | #ifdef CONFIG_EEH | 
|  | #define __do_memcpy_fromio(dst, src, n)	\ | 
|  | eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) | 
|  | #else /* CONFIG_EEH */ | 
|  | #define __do_memcpy_fromio(dst, src, n)	\ | 
|  | _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) | 
|  | #endif /* !CONFIG_EEH */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_INDIRECT_PIO | 
|  | #define DEF_PCI_HOOK_pio(x)	x | 
|  | #else | 
|  | #define DEF_PCI_HOOK_pio(x)	NULL | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PPC_INDIRECT_MMIO | 
|  | #define DEF_PCI_HOOK_mem(x)	x | 
|  | #else | 
|  | #define DEF_PCI_HOOK_mem(x)	NULL | 
|  | #endif | 
|  |  | 
|  | /* Structure containing all the hooks */ | 
|  | extern struct ppc_pci_io { | 
|  |  | 
|  | #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at; | 
|  | #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at; | 
|  |  | 
|  | #include <asm/io-defs.h> | 
|  |  | 
|  | #undef DEF_PCI_AC_RET | 
|  | #undef DEF_PCI_AC_NORET | 
|  |  | 
|  | } ppc_pci_io; | 
|  |  | 
|  | /* The inline wrappers */ | 
|  | #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\ | 
|  | static inline ret name at					\ | 
|  | {								\ | 
|  | if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\ | 
|  | return ppc_pci_io.name al;			\ | 
|  | return __do_##name al;					\ | 
|  | } | 
|  |  | 
|  | #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\ | 
|  | static inline void name at					\ | 
|  | {								\ | 
|  | if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\ | 
|  | ppc_pci_io.name al;				\ | 
|  | else							\ | 
|  | __do_##name al;					\ | 
|  | } | 
|  |  | 
|  | #include <asm/io-defs.h> | 
|  |  | 
|  | #undef DEF_PCI_AC_RET | 
|  | #undef DEF_PCI_AC_NORET | 
|  |  | 
|  | /* Some drivers check for the presence of readq & writeq with | 
|  | * a #ifdef, so we make them happy here. | 
|  | */ | 
|  | #ifdef __powerpc64__ | 
|  | #define readq	readq | 
|  | #define writeq	writeq | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Convert a physical pointer to a virtual kernel pointer for /dev/mem | 
|  | * access | 
|  | */ | 
|  | #define xlate_dev_mem_ptr(p)	__va(p) | 
|  |  | 
|  | /* | 
|  | * Convert a virtual cached pointer to an uncached pointer | 
|  | */ | 
|  | #define xlate_dev_kmem_ptr(p)	p | 
|  |  | 
|  | /* | 
|  | * We don't do relaxed operations yet, at least not with this semantic | 
|  | */ | 
|  | #define readb_relaxed(addr)	readb(addr) | 
|  | #define readw_relaxed(addr)	readw(addr) | 
|  | #define readl_relaxed(addr)	readl(addr) | 
|  | #define readq_relaxed(addr)	readq(addr) | 
|  | #define writeb_relaxed(v, addr)	writeb(v, addr) | 
|  | #define writew_relaxed(v, addr)	writew(v, addr) | 
|  | #define writel_relaxed(v, addr)	writel(v, addr) | 
|  | #define writeq_relaxed(v, addr)	writeq(v, addr) | 
|  |  | 
|  | #ifdef CONFIG_PPC32 | 
|  | #define mmiowb() | 
|  | #else | 
|  | /* | 
|  | * Enforce synchronisation of stores vs. spin_unlock | 
|  | * (this does it explicitly, though our implementation of spin_unlock | 
|  | * does it implicitely too) | 
|  | */ | 
|  | static inline void mmiowb(void) | 
|  | { | 
|  | unsigned long tmp; | 
|  |  | 
|  | __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" | 
|  | : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) | 
|  | : "memory"); | 
|  | } | 
|  | #endif /* !CONFIG_PPC32 */ | 
|  |  | 
|  | static inline void iosync(void) | 
|  | { | 
|  | __asm__ __volatile__ ("sync" : : : "memory"); | 
|  | } | 
|  |  | 
|  | /* Enforce in-order execution of data I/O. | 
|  | * No distinction between read/write on PPC; use eieio for all three. | 
|  | * Those are fairly week though. They don't provide a barrier between | 
|  | * MMIO and cacheable storage nor do they provide a barrier vs. locks, | 
|  | * they only provide barriers between 2 __raw MMIO operations and | 
|  | * possibly break write combining. | 
|  | */ | 
|  | #define iobarrier_rw() eieio() | 
|  | #define iobarrier_r()  eieio() | 
|  | #define iobarrier_w()  eieio() | 
|  |  | 
|  |  | 
|  | /* | 
|  | * output pause versions need a delay at least for the | 
|  | * w83c105 ide controller in a p610. | 
|  | */ | 
|  | #define inb_p(port)             inb(port) | 
|  | #define outb_p(val, port)       (udelay(1), outb((val), (port))) | 
|  | #define inw_p(port)             inw(port) | 
|  | #define outw_p(val, port)       (udelay(1), outw((val), (port))) | 
|  | #define inl_p(port)             inl(port) | 
|  | #define outl_p(val, port)       (udelay(1), outl((val), (port))) | 
|  |  | 
|  |  | 
|  | #define IO_SPACE_LIMIT ~(0UL) | 
|  |  | 
|  |  | 
|  | /** | 
|  | * ioremap     -   map bus memory into CPU space | 
|  | * @address:   bus address of the memory | 
|  | * @size:      size of the resource to map | 
|  | * | 
|  | * ioremap performs a platform specific sequence of operations to | 
|  | * make bus memory CPU accessible via the readb/readw/readl/writeb/ | 
|  | * writew/writel functions and the other mmio helpers. The returned | 
|  | * address is not guaranteed to be usable directly as a virtual | 
|  | * address. | 
|  | * | 
|  | * We provide a few variations of it: | 
|  | * | 
|  | * * ioremap is the standard one and provides non-cacheable guarded mappings | 
|  | *   and can be hooked by the platform via ppc_md | 
|  | * | 
|  | * * ioremap_prot allows to specify the page flags as an argument and can | 
|  | *   also be hooked by the platform via ppc_md. | 
|  | * | 
|  | * * ioremap_nocache is identical to ioremap | 
|  | * | 
|  | * * ioremap_wc enables write combining | 
|  | * | 
|  | * * iounmap undoes such a mapping and can be hooked | 
|  | * | 
|  | * * __ioremap_at (and the pending __iounmap_at) are low level functions to | 
|  | *   create hand-made mappings for use only by the PCI code and cannot | 
|  | *   currently be hooked. Must be page aligned. | 
|  | * | 
|  | * * __ioremap is the low level implementation used by ioremap and | 
|  | *   ioremap_prot and cannot be hooked (but can be used by a hook on one | 
|  | *   of the previous ones) | 
|  | * | 
|  | * * __ioremap_caller is the same as above but takes an explicit caller | 
|  | *   reference rather than using __builtin_return_address(0) | 
|  | * | 
|  | * * __iounmap, is the low level implementation used by iounmap and cannot | 
|  | *   be hooked (but can be used by a hook on iounmap) | 
|  | * | 
|  | */ | 
|  | extern void __iomem *ioremap(phys_addr_t address, unsigned long size); | 
|  | extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size, | 
|  | unsigned long flags); | 
|  | extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); | 
|  | #define ioremap_nocache(addr, size)	ioremap((addr), (size)) | 
|  | #define ioremap_uc(addr, size)		ioremap((addr), (size)) | 
|  |  | 
|  | extern void iounmap(volatile void __iomem *addr); | 
|  |  | 
|  | extern void __iomem *__ioremap(phys_addr_t, unsigned long size, | 
|  | unsigned long flags); | 
|  | extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, | 
|  | unsigned long flags, void *caller); | 
|  |  | 
|  | extern void __iounmap(volatile void __iomem *addr); | 
|  |  | 
|  | extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, | 
|  | unsigned long size, unsigned long flags); | 
|  | extern void __iounmap_at(void *ea, unsigned long size); | 
|  |  | 
|  | /* | 
|  | * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation | 
|  | * which needs some additional definitions here. They basically allow PIO | 
|  | * space overall to be 1GB. This will work as long as we never try to use | 
|  | * iomap to map MMIO below 1GB which should be fine on ppc64 | 
|  | */ | 
|  | #define HAVE_ARCH_PIO_SIZE		1 | 
|  | #define PIO_OFFSET			0x00000000UL | 
|  | #define PIO_MASK			(FULL_IO_SIZE - 1) | 
|  | #define PIO_RESERVED			(FULL_IO_SIZE) | 
|  |  | 
|  | #define mmio_read16be(addr)		readw_be(addr) | 
|  | #define mmio_read32be(addr)		readl_be(addr) | 
|  | #define mmio_write16be(val, addr)	writew_be(val, addr) | 
|  | #define mmio_write32be(val, addr)	writel_be(val, addr) | 
|  | #define mmio_insb(addr, dst, count)	readsb(addr, dst, count) | 
|  | #define mmio_insw(addr, dst, count)	readsw(addr, dst, count) | 
|  | #define mmio_insl(addr, dst, count)	readsl(addr, dst, count) | 
|  | #define mmio_outsb(addr, src, count)	writesb(addr, src, count) | 
|  | #define mmio_outsw(addr, src, count)	writesw(addr, src, count) | 
|  | #define mmio_outsl(addr, src, count)	writesl(addr, src, count) | 
|  |  | 
|  | /** | 
|  | *	virt_to_phys	-	map virtual addresses to physical | 
|  | *	@address: address to remap | 
|  | * | 
|  | *	The returned physical address is the physical (CPU) mapping for | 
|  | *	the memory address given. It is only valid to use this function on | 
|  | *	addresses directly mapped or allocated via kmalloc. | 
|  | * | 
|  | *	This function does not give bus mappings for DMA transfers. In | 
|  | *	almost all conceivable cases a device driver should not be using | 
|  | *	this function | 
|  | */ | 
|  | static inline unsigned long virt_to_phys(volatile void * address) | 
|  | { | 
|  | return __pa((unsigned long)address); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	phys_to_virt	-	map physical address to virtual | 
|  | *	@address: address to remap | 
|  | * | 
|  | *	The returned virtual address is a current CPU mapping for | 
|  | *	the memory address given. It is only valid to use this function on | 
|  | *	addresses that have a kernel mapping | 
|  | * | 
|  | *	This function does not handle bus mappings for DMA transfers. In | 
|  | *	almost all conceivable cases a device driver should not be using | 
|  | *	this function | 
|  | */ | 
|  | static inline void * phys_to_virt(unsigned long address) | 
|  | { | 
|  | return (void *)__va(address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change "struct page" to physical address. | 
|  | */ | 
|  | #define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT) | 
|  |  | 
|  | /* | 
|  | * 32 bits still uses virt_to_bus() for it's implementation of DMA | 
|  | * mappings se we have to keep it defined here. We also have some old | 
|  | * drivers (shame shame shame) that use bus_to_virt() and haven't been | 
|  | * fixed yet so I need to define it here. | 
|  | */ | 
|  | #ifdef CONFIG_PPC32 | 
|  |  | 
|  | static inline unsigned long virt_to_bus(volatile void * address) | 
|  | { | 
|  | if (address == NULL) | 
|  | return 0; | 
|  | return __pa(address) + PCI_DRAM_OFFSET; | 
|  | } | 
|  |  | 
|  | static inline void * bus_to_virt(unsigned long address) | 
|  | { | 
|  | if (address == 0) | 
|  | return NULL; | 
|  | return __va(address - PCI_DRAM_OFFSET); | 
|  | } | 
|  |  | 
|  | #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET) | 
|  |  | 
|  | #endif /* CONFIG_PPC32 */ | 
|  |  | 
|  | /* access ports */ | 
|  | #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v)) | 
|  | #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) | 
|  |  | 
|  | #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v)) | 
|  | #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) | 
|  |  | 
|  | #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v)) | 
|  | #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) | 
|  |  | 
|  | /* Clear and set bits in one shot.  These macros can be used to clear and | 
|  | * set multiple bits in a register using a single read-modify-write.  These | 
|  | * macros can also be used to set a multiple-bit bit pattern using a mask, | 
|  | * by specifying the mask in the 'clear' parameter and the new bit pattern | 
|  | * in the 'set' parameter. | 
|  | */ | 
|  |  | 
|  | #define clrsetbits(type, addr, clear, set) \ | 
|  | out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) | 
|  |  | 
|  | #ifdef __powerpc64__ | 
|  | #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) | 
|  | #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) | 
|  | #endif | 
|  |  | 
|  | #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) | 
|  | #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) | 
|  |  | 
|  | #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) | 
|  | #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) | 
|  |  | 
|  | #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif /* _ASM_POWERPC_IO_H */ |