| #ifndef _ASM_POWERPC_IO_H | 
 | #define _ASM_POWERPC_IO_H | 
 | #ifdef __KERNEL__ | 
 |  | 
 | #define ARCH_HAS_IOREMAP_WC | 
 | #ifdef CONFIG_PPC32 | 
 | #define ARCH_HAS_IOREMAP_WT | 
 | #endif | 
 |  | 
 | /* | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | /* Check of existence of legacy devices */ | 
 | extern int check_legacy_ioport(unsigned long base_port); | 
 | #define I8042_DATA_REG	0x60 | 
 | #define FDC_BASE	0x3f0 | 
 |  | 
 | #if defined(CONFIG_PPC64) && defined(CONFIG_PCI) | 
 | extern struct pci_dev *isa_bridge_pcidev; | 
 | /* | 
 |  * has legacy ISA devices ? | 
 |  */ | 
 | #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special) | 
 | #endif | 
 |  | 
 | #include <linux/device.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/mm.h> | 
 | #include <asm/page.h> | 
 | #include <asm/byteorder.h> | 
 | #include <asm/synch.h> | 
 | #include <asm/delay.h> | 
 | #include <asm/mmiowb.h> | 
 | #include <asm/mmu.h> | 
 | #include <asm/ppc_asm.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | #define SIO_CONFIG_RA	0x398 | 
 | #define SIO_CONFIG_RD	0x399 | 
 |  | 
 | #define SLOW_DOWN_IO | 
 |  | 
 | /* 32 bits uses slightly different variables for the various IO | 
 |  * bases. Most of this file only uses _IO_BASE though which we | 
 |  * define properly based on the platform | 
 |  */ | 
 | #ifndef CONFIG_PCI | 
 | #define _IO_BASE	0 | 
 | #define _ISA_MEM_BASE	0 | 
 | #define PCI_DRAM_OFFSET 0 | 
 | #elif defined(CONFIG_PPC32) | 
 | #define _IO_BASE	isa_io_base | 
 | #define _ISA_MEM_BASE	isa_mem_base | 
 | #define PCI_DRAM_OFFSET	pci_dram_offset | 
 | #else | 
 | #define _IO_BASE	pci_io_base | 
 | #define _ISA_MEM_BASE	isa_mem_base | 
 | #define PCI_DRAM_OFFSET	0 | 
 | #endif | 
 |  | 
 | extern unsigned long isa_io_base; | 
 | extern unsigned long pci_io_base; | 
 | extern unsigned long pci_dram_offset; | 
 |  | 
 | extern resource_size_t isa_mem_base; | 
 |  | 
 | /* Boolean set by platform if PIO accesses are suppored while _IO_BASE | 
 |  * is not set or addresses cannot be translated to MMIO. This is typically | 
 |  * set when the platform supports "special" PIO accesses via a non memory | 
 |  * mapped mechanism, and allows things like the early udbg UART code to | 
 |  * function. | 
 |  */ | 
 | extern bool isa_io_special; | 
 |  | 
 | #ifdef CONFIG_PPC32 | 
 | #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) | 
 | #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits | 
 | #endif | 
 | #endif | 
 |  | 
 | /* | 
 |  * | 
 |  * Low level MMIO accessors | 
 |  * | 
 |  * This provides the non-bus specific accessors to MMIO. Those are PowerPC | 
 |  * specific and thus shouldn't be used in generic code. The accessors | 
 |  * provided here are: | 
 |  * | 
 |  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 | 
 |  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 | 
 |  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns | 
 |  * | 
 |  * Those operate directly on a kernel virtual address. Note that the prototype | 
 |  * for the out_* accessors has the arguments in opposite order from the usual | 
 |  * linux PCI accessors. Unlike those, they take the address first and the value | 
 |  * next. | 
 |  * | 
 |  * Note: I might drop the _ns suffix on the stream operations soon as it is | 
 |  * simply normal for stream operations to not swap in the first place. | 
 |  * | 
 |  */ | 
 |  | 
 | #define DEF_MMIO_IN_X(name, size, insn)				\ | 
 | static inline u##size name(const volatile u##size __iomem *addr)	\ | 
 | {									\ | 
 | 	u##size ret;							\ | 
 | 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\ | 
 | 		: "=r" (ret) : "Z" (*addr) : "memory");			\ | 
 | 	return ret;							\ | 
 | } | 
 |  | 
 | #define DEF_MMIO_OUT_X(name, size, insn)				\ | 
 | static inline void name(volatile u##size __iomem *addr, u##size val)	\ | 
 | {									\ | 
 | 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\ | 
 | 		: "=Z" (*addr) : "r" (val) : "memory");			\ | 
 | 	mmiowb_set_pending();						\ | 
 | } | 
 |  | 
 | #define DEF_MMIO_IN_D(name, size, insn)				\ | 
 | static inline u##size name(const volatile u##size __iomem *addr)	\ | 
 | {									\ | 
 | 	u##size ret;							\ | 
 | 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ | 
 | 		: "=r" (ret) : "m" (*addr) : "memory");			\ | 
 | 	return ret;							\ | 
 | } | 
 |  | 
 | #define DEF_MMIO_OUT_D(name, size, insn)				\ | 
 | static inline void name(volatile u##size __iomem *addr, u##size val)	\ | 
 | {									\ | 
 | 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\ | 
 | 		: "=m" (*addr) : "r" (val) : "memory");			\ | 
 | 	mmiowb_set_pending();						\ | 
 | } | 
 |  | 
 | DEF_MMIO_IN_D(in_8,     8, lbz); | 
 | DEF_MMIO_OUT_D(out_8,   8, stb); | 
 |  | 
 | #ifdef __BIG_ENDIAN__ | 
 | DEF_MMIO_IN_D(in_be16, 16, lhz); | 
 | DEF_MMIO_IN_D(in_be32, 32, lwz); | 
 | DEF_MMIO_IN_X(in_le16, 16, lhbrx); | 
 | DEF_MMIO_IN_X(in_le32, 32, lwbrx); | 
 |  | 
 | DEF_MMIO_OUT_D(out_be16, 16, sth); | 
 | DEF_MMIO_OUT_D(out_be32, 32, stw); | 
 | DEF_MMIO_OUT_X(out_le16, 16, sthbrx); | 
 | DEF_MMIO_OUT_X(out_le32, 32, stwbrx); | 
 | #else | 
 | DEF_MMIO_IN_X(in_be16, 16, lhbrx); | 
 | DEF_MMIO_IN_X(in_be32, 32, lwbrx); | 
 | DEF_MMIO_IN_D(in_le16, 16, lhz); | 
 | DEF_MMIO_IN_D(in_le32, 32, lwz); | 
 |  | 
 | DEF_MMIO_OUT_X(out_be16, 16, sthbrx); | 
 | DEF_MMIO_OUT_X(out_be32, 32, stwbrx); | 
 | DEF_MMIO_OUT_D(out_le16, 16, sth); | 
 | DEF_MMIO_OUT_D(out_le32, 32, stw); | 
 |  | 
 | #endif /* __BIG_ENDIAN */ | 
 |  | 
 | #ifdef __powerpc64__ | 
 |  | 
 | #ifdef __BIG_ENDIAN__ | 
 | DEF_MMIO_OUT_D(out_be64, 64, std); | 
 | DEF_MMIO_IN_D(in_be64, 64, ld); | 
 |  | 
 | /* There is no asm instructions for 64 bits reverse loads and stores */ | 
 | static inline u64 in_le64(const volatile u64 __iomem *addr) | 
 | { | 
 | 	return swab64(in_be64(addr)); | 
 | } | 
 |  | 
 | static inline void out_le64(volatile u64 __iomem *addr, u64 val) | 
 | { | 
 | 	out_be64(addr, swab64(val)); | 
 | } | 
 | #else | 
 | DEF_MMIO_OUT_D(out_le64, 64, std); | 
 | DEF_MMIO_IN_D(in_le64, 64, ld); | 
 |  | 
 | /* There is no asm instructions for 64 bits reverse loads and stores */ | 
 | static inline u64 in_be64(const volatile u64 __iomem *addr) | 
 | { | 
 | 	return swab64(in_le64(addr)); | 
 | } | 
 |  | 
 | static inline void out_be64(volatile u64 __iomem *addr, u64 val) | 
 | { | 
 | 	out_le64(addr, swab64(val)); | 
 | } | 
 |  | 
 | #endif | 
 | #endif /* __powerpc64__ */ | 
 |  | 
 | /* | 
 |  * Low level IO stream instructions are defined out of line for now | 
 |  */ | 
 | extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); | 
 | extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); | 
 | extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); | 
 | extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); | 
 | extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); | 
 | extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); | 
 |  | 
 | /* The _ns naming is historical and will be removed. For now, just #define | 
 |  * the non _ns equivalent names | 
 |  */ | 
 | #define _insw	_insw_ns | 
 | #define _insl	_insl_ns | 
 | #define _outsw	_outsw_ns | 
 | #define _outsl	_outsl_ns | 
 |  | 
 |  | 
 | /* | 
 |  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line | 
 |  */ | 
 |  | 
 | extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); | 
 | extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, | 
 | 			   unsigned long n); | 
 | extern void _memcpy_toio(volatile void __iomem *dest, const void *src, | 
 | 			 unsigned long n); | 
 |  | 
 | /* | 
 |  * | 
 |  * PCI and standard ISA accessors | 
 |  * | 
 |  * Those are globally defined linux accessors for devices on PCI or ISA | 
 |  * busses. They follow the Linux defined semantics. The current implementation | 
 |  * for PowerPC is as close as possible to the x86 version of these, and thus | 
 |  * provides fairly heavy weight barriers for the non-raw versions | 
 |  * | 
 |  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO | 
 |  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its | 
 |  * own implementation of some or all of the accessors. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Include the EEH definitions when EEH is enabled only so they don't get | 
 |  * in the way when building for 32 bits | 
 |  */ | 
 | #ifdef CONFIG_EEH | 
 | #include <asm/eeh.h> | 
 | #endif | 
 |  | 
 | /* Shortcut to the MMIO argument pointer */ | 
 | #define PCI_IO_ADDR	volatile void __iomem * | 
 |  | 
 | /* Indirect IO address tokens: | 
 |  * | 
 |  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks | 
 |  * on all MMIOs. (Note that this is all 64 bits only for now) | 
 |  * | 
 |  * To help platforms who may need to differentiate MMIO addresses in | 
 |  * their hooks, a bitfield is reserved for use by the platform near the | 
 |  * top of MMIO addresses (not PIO, those have to cope the hard way). | 
 |  * | 
 |  * The highest address in the kernel virtual space are: | 
 |  * | 
 |  *  d0003fffffffffff	# with Hash MMU | 
 |  *  c00fffffffffffff	# with Radix MMU | 
 |  * | 
 |  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits | 
 |  * that can be used for the field. | 
 |  * | 
 |  * The direct IO mapping operations will then mask off those bits | 
 |  * before doing the actual access, though that only happen when | 
 |  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that | 
 |  * mechanism | 
 |  * | 
 |  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes | 
 |  * all PIO functions call through a hook. | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_PPC_INDIRECT_MMIO | 
 | #define PCI_IO_IND_TOKEN_SHIFT	52 | 
 | #define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT) | 
 | #define PCI_FIX_ADDR(addr)						\ | 
 | 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) | 
 | #define PCI_GET_ADDR_TOKEN(addr)					\ | 
 | 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\ | 
 | 		PCI_IO_IND_TOKEN_SHIFT) | 
 | #define PCI_SET_ADDR_TOKEN(addr, token) 				\ | 
 | do {									\ | 
 | 	unsigned long __a = (unsigned long)(addr);			\ | 
 | 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\ | 
 | 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\ | 
 | 	(addr) = (void __iomem *)__a;					\ | 
 | } while(0) | 
 | #else | 
 | #define PCI_FIX_ADDR(addr) (addr) | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * Non ordered and non-swapping "raw" accessors | 
 |  */ | 
 |  | 
 | static inline unsigned char __raw_readb(const volatile void __iomem *addr) | 
 | { | 
 | 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); | 
 | } | 
 | static inline unsigned short __raw_readw(const volatile void __iomem *addr) | 
 | { | 
 | 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); | 
 | } | 
 | static inline unsigned int __raw_readl(const volatile void __iomem *addr) | 
 | { | 
 | 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); | 
 | } | 
 | static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) | 
 | { | 
 | 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; | 
 | } | 
 | static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) | 
 | { | 
 | 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; | 
 | } | 
 | static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) | 
 | { | 
 | 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; | 
 | } | 
 |  | 
 | #ifdef __powerpc64__ | 
 | static inline unsigned long __raw_readq(const volatile void __iomem *addr) | 
 | { | 
 | 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); | 
 | } | 
 | static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) | 
 | { | 
 | 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; | 
 | } | 
 |  | 
 | static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr) | 
 | { | 
 | 	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr); | 
 | } | 
 |  | 
 | /* | 
 |  * Real mode versions of the above. Those instructions are only supposed | 
 |  * to be used in hypervisor real mode as per the architecture spec. | 
 |  */ | 
 | static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr) | 
 | { | 
 | 	__asm__ __volatile__("stbcix %0,0,%1" | 
 | 		: : "r" (val), "r" (paddr) : "memory"); | 
 | } | 
 |  | 
 | static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr) | 
 | { | 
 | 	__asm__ __volatile__("sthcix %0,0,%1" | 
 | 		: : "r" (val), "r" (paddr) : "memory"); | 
 | } | 
 |  | 
 | static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr) | 
 | { | 
 | 	__asm__ __volatile__("stwcix %0,0,%1" | 
 | 		: : "r" (val), "r" (paddr) : "memory"); | 
 | } | 
 |  | 
 | static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) | 
 | { | 
 | 	__asm__ __volatile__("stdcix %0,0,%1" | 
 | 		: : "r" (val), "r" (paddr) : "memory"); | 
 | } | 
 |  | 
 | static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr) | 
 | { | 
 | 	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr); | 
 | } | 
 |  | 
 | static inline u8 __raw_rm_readb(volatile void __iomem *paddr) | 
 | { | 
 | 	u8 ret; | 
 | 	__asm__ __volatile__("lbzcix %0,0, %1" | 
 | 			     : "=r" (ret) : "r" (paddr) : "memory"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline u16 __raw_rm_readw(volatile void __iomem *paddr) | 
 | { | 
 | 	u16 ret; | 
 | 	__asm__ __volatile__("lhzcix %0,0, %1" | 
 | 			     : "=r" (ret) : "r" (paddr) : "memory"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline u32 __raw_rm_readl(volatile void __iomem *paddr) | 
 | { | 
 | 	u32 ret; | 
 | 	__asm__ __volatile__("lwzcix %0,0, %1" | 
 | 			     : "=r" (ret) : "r" (paddr) : "memory"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline u64 __raw_rm_readq(volatile void __iomem *paddr) | 
 | { | 
 | 	u64 ret; | 
 | 	__asm__ __volatile__("ldcix %0,0, %1" | 
 | 			     : "=r" (ret) : "r" (paddr) : "memory"); | 
 | 	return ret; | 
 | } | 
 | #endif /* __powerpc64__ */ | 
 |  | 
 | /* | 
 |  * | 
 |  * PCI PIO and MMIO accessors. | 
 |  * | 
 |  * | 
 |  * On 32 bits, PIO operations have a recovery mechanism in case they trigger | 
 |  * machine checks (which they occasionally do when probing non existing | 
 |  * IO ports on some platforms, like PowerMac and 8xx). | 
 |  * I always found it to be of dubious reliability and I am tempted to get | 
 |  * rid of it one of these days. So if you think it's important to keep it, | 
 |  * please voice up asap. We never had it for 64 bits and I do not intend | 
 |  * to port it over | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_PPC32 | 
 |  | 
 | #define __do_in_asm(name, op)				\ | 
 | static inline unsigned int name(unsigned int port)	\ | 
 | {							\ | 
 | 	unsigned int x;					\ | 
 | 	__asm__ __volatile__(				\ | 
 | 		"sync\n"				\ | 
 | 		"0:"	op "	%0,0,%1\n"		\ | 
 | 		"1:	twi	0,%0,0\n"		\ | 
 | 		"2:	isync\n"			\ | 
 | 		"3:	nop\n"				\ | 
 | 		"4:\n"					\ | 
 | 		".section .fixup,\"ax\"\n"		\ | 
 | 		"5:	li	%0,-1\n"		\ | 
 | 		"	b	4b\n"			\ | 
 | 		".previous\n"				\ | 
 | 		EX_TABLE(0b, 5b)			\ | 
 | 		EX_TABLE(1b, 5b)			\ | 
 | 		EX_TABLE(2b, 5b)			\ | 
 | 		EX_TABLE(3b, 5b)			\ | 
 | 		: "=&r" (x)				\ | 
 | 		: "r" (port + _IO_BASE)			\ | 
 | 		: "memory");  				\ | 
 | 	return x;					\ | 
 | } | 
 |  | 
 | #define __do_out_asm(name, op)				\ | 
 | static inline void name(unsigned int val, unsigned int port) \ | 
 | {							\ | 
 | 	__asm__ __volatile__(				\ | 
 | 		"sync\n"				\ | 
 | 		"0:" op " %0,0,%1\n"			\ | 
 | 		"1:	sync\n"				\ | 
 | 		"2:\n"					\ | 
 | 		EX_TABLE(0b, 2b)			\ | 
 | 		EX_TABLE(1b, 2b)			\ | 
 | 		: : "r" (val), "r" (port + _IO_BASE)	\ | 
 | 		: "memory");   	   	   		\ | 
 | } | 
 |  | 
 | __do_in_asm(_rec_inb, "lbzx") | 
 | __do_in_asm(_rec_inw, "lhbrx") | 
 | __do_in_asm(_rec_inl, "lwbrx") | 
 | __do_out_asm(_rec_outb, "stbx") | 
 | __do_out_asm(_rec_outw, "sthbrx") | 
 | __do_out_asm(_rec_outl, "stwbrx") | 
 |  | 
 | #endif /* CONFIG_PPC32 */ | 
 |  | 
 | /* The "__do_*" operations below provide the actual "base" implementation | 
 |  * for each of the defined accessors. Some of them use the out_* functions | 
 |  * directly, some of them still use EEH, though we might change that in the | 
 |  * future. Those macros below provide the necessary argument swapping and | 
 |  * handling of the IO base for PIO. | 
 |  * | 
 |  * They are themselves used by the macros that define the actual accessors | 
 |  * and can be used by the hooks if any. | 
 |  * | 
 |  * Note that PIO operations are always defined in terms of their corresonding | 
 |  * MMIO operations. That allows platforms like iSeries who want to modify the | 
 |  * behaviour of both to only hook on the MMIO version and get both. It's also | 
 |  * possible to hook directly at the toplevel PIO operation if they have to | 
 |  * be handled differently | 
 |  */ | 
 | #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val) | 
 | #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val) | 
 | #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val) | 
 | #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val) | 
 | #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) | 
 | #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) | 
 | #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) | 
 |  | 
 | #ifdef CONFIG_EEH | 
 | #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr)) | 
 | #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr)) | 
 | #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr)) | 
 | #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr)) | 
 | #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr)) | 
 | #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr)) | 
 | #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr)) | 
 | #else /* CONFIG_EEH */ | 
 | #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr)) | 
 | #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr)) | 
 | #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr)) | 
 | #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr)) | 
 | #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr)) | 
 | #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr)) | 
 | #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr)) | 
 | #endif /* !defined(CONFIG_EEH) */ | 
 |  | 
 | #ifdef CONFIG_PPC32 | 
 | #define __do_outb(val, port)	_rec_outb(val, port) | 
 | #define __do_outw(val, port)	_rec_outw(val, port) | 
 | #define __do_outl(val, port)	_rec_outl(val, port) | 
 | #define __do_inb(port)		_rec_inb(port) | 
 | #define __do_inw(port)		_rec_inw(port) | 
 | #define __do_inl(port)		_rec_inl(port) | 
 | #else /* CONFIG_PPC32 */ | 
 | #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port); | 
 | #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port); | 
 | #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port); | 
 | #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port); | 
 | #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port); | 
 | #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port); | 
 | #endif /* !CONFIG_PPC32 */ | 
 |  | 
 | #ifdef CONFIG_EEH | 
 | #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) | 
 | #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) | 
 | #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) | 
 | #else /* CONFIG_EEH */ | 
 | #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n)) | 
 | #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n)) | 
 | #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n)) | 
 | #endif /* !CONFIG_EEH */ | 
 | #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n)) | 
 | #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n)) | 
 | #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n)) | 
 |  | 
 | #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) | 
 | #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) | 
 | #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) | 
 | #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) | 
 | #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) | 
 | #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) | 
 |  | 
 | #define __do_memset_io(addr, c, n)	\ | 
 | 				_memset_io(PCI_FIX_ADDR(addr), c, n) | 
 | #define __do_memcpy_toio(dst, src, n)	\ | 
 | 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n) | 
 |  | 
 | #ifdef CONFIG_EEH | 
 | #define __do_memcpy_fromio(dst, src, n)	\ | 
 | 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) | 
 | #else /* CONFIG_EEH */ | 
 | #define __do_memcpy_fromio(dst, src, n)	\ | 
 | 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n) | 
 | #endif /* !CONFIG_EEH */ | 
 |  | 
 | #ifdef CONFIG_PPC_INDIRECT_PIO | 
 | #define DEF_PCI_HOOK_pio(x)	x | 
 | #else | 
 | #define DEF_PCI_HOOK_pio(x)	NULL | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PPC_INDIRECT_MMIO | 
 | #define DEF_PCI_HOOK_mem(x)	x | 
 | #else | 
 | #define DEF_PCI_HOOK_mem(x)	NULL | 
 | #endif | 
 |  | 
 | /* Structure containing all the hooks */ | 
 | extern struct ppc_pci_io { | 
 |  | 
 | #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at; | 
 | #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at; | 
 |  | 
 | #include <asm/io-defs.h> | 
 |  | 
 | #undef DEF_PCI_AC_RET | 
 | #undef DEF_PCI_AC_NORET | 
 |  | 
 | } ppc_pci_io; | 
 |  | 
 | /* The inline wrappers */ | 
 | #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\ | 
 | static inline ret name at					\ | 
 | {								\ | 
 | 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\ | 
 | 		return ppc_pci_io.name al;			\ | 
 | 	return __do_##name al;					\ | 
 | } | 
 |  | 
 | #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\ | 
 | static inline void name at					\ | 
 | {								\ | 
 | 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\ | 
 | 		ppc_pci_io.name al;				\ | 
 | 	else							\ | 
 | 		__do_##name al;					\ | 
 | } | 
 |  | 
 | #include <asm/io-defs.h> | 
 |  | 
 | #undef DEF_PCI_AC_RET | 
 | #undef DEF_PCI_AC_NORET | 
 |  | 
 | /* Some drivers check for the presence of readq & writeq with | 
 |  * a #ifdef, so we make them happy here. | 
 |  */ | 
 | #ifdef __powerpc64__ | 
 | #define readq	readq | 
 | #define writeq	writeq | 
 | #endif | 
 |  | 
 | /* | 
 |  * Convert a physical pointer to a virtual kernel pointer for /dev/mem | 
 |  * access | 
 |  */ | 
 | #define xlate_dev_mem_ptr(p)	__va(p) | 
 |  | 
 | /* | 
 |  * Convert a virtual cached pointer to an uncached pointer | 
 |  */ | 
 | #define xlate_dev_kmem_ptr(p)	p | 
 |  | 
 | /* | 
 |  * We don't do relaxed operations yet, at least not with this semantic | 
 |  */ | 
 | #define readb_relaxed(addr)	readb(addr) | 
 | #define readw_relaxed(addr)	readw(addr) | 
 | #define readl_relaxed(addr)	readl(addr) | 
 | #define readq_relaxed(addr)	readq(addr) | 
 | #define writeb_relaxed(v, addr)	writeb(v, addr) | 
 | #define writew_relaxed(v, addr)	writew(v, addr) | 
 | #define writel_relaxed(v, addr)	writel(v, addr) | 
 | #define writeq_relaxed(v, addr)	writeq(v, addr) | 
 |  | 
 | #include <asm-generic/iomap.h> | 
 |  | 
 | static inline void iosync(void) | 
 | { | 
 |         __asm__ __volatile__ ("sync" : : : "memory"); | 
 | } | 
 |  | 
 | /* Enforce in-order execution of data I/O. | 
 |  * No distinction between read/write on PPC; use eieio for all three. | 
 |  * Those are fairly week though. They don't provide a barrier between | 
 |  * MMIO and cacheable storage nor do they provide a barrier vs. locks, | 
 |  * they only provide barriers between 2 __raw MMIO operations and | 
 |  * possibly break write combining. | 
 |  */ | 
 | #define iobarrier_rw() eieio() | 
 | #define iobarrier_r()  eieio() | 
 | #define iobarrier_w()  eieio() | 
 |  | 
 |  | 
 | /* | 
 |  * output pause versions need a delay at least for the | 
 |  * w83c105 ide controller in a p610. | 
 |  */ | 
 | #define inb_p(port)             inb(port) | 
 | #define outb_p(val, port)       (udelay(1), outb((val), (port))) | 
 | #define inw_p(port)             inw(port) | 
 | #define outw_p(val, port)       (udelay(1), outw((val), (port))) | 
 | #define inl_p(port)             inl(port) | 
 | #define outl_p(val, port)       (udelay(1), outl((val), (port))) | 
 |  | 
 |  | 
 | #define IO_SPACE_LIMIT ~(0UL) | 
 |  | 
 |  | 
 | /** | 
 |  * ioremap     -   map bus memory into CPU space | 
 |  * @address:   bus address of the memory | 
 |  * @size:      size of the resource to map | 
 |  * | 
 |  * ioremap performs a platform specific sequence of operations to | 
 |  * make bus memory CPU accessible via the readb/readw/readl/writeb/ | 
 |  * writew/writel functions and the other mmio helpers. The returned | 
 |  * address is not guaranteed to be usable directly as a virtual | 
 |  * address. | 
 |  * | 
 |  * We provide a few variations of it: | 
 |  * | 
 |  * * ioremap is the standard one and provides non-cacheable guarded mappings | 
 |  *   and can be hooked by the platform via ppc_md | 
 |  * | 
 |  * * ioremap_prot allows to specify the page flags as an argument and can | 
 |  *   also be hooked by the platform via ppc_md. | 
 |  * | 
 |  * * ioremap_nocache is identical to ioremap | 
 |  * | 
 |  * * ioremap_wc enables write combining | 
 |  * | 
 |  * * ioremap_wt enables write through | 
 |  * | 
 |  * * ioremap_coherent maps coherent cached memory | 
 |  * | 
 |  * * iounmap undoes such a mapping and can be hooked | 
 |  * | 
 |  * * __ioremap_at (and the pending __iounmap_at) are low level functions to | 
 |  *   create hand-made mappings for use only by the PCI code and cannot | 
 |  *   currently be hooked. Must be page aligned. | 
 |  * | 
 |  * * __ioremap is the low level implementation used by ioremap and | 
 |  *   ioremap_prot and cannot be hooked (but can be used by a hook on one | 
 |  *   of the previous ones) | 
 |  * | 
 |  * * __ioremap_caller is the same as above but takes an explicit caller | 
 |  *   reference rather than using __builtin_return_address(0) | 
 |  * | 
 |  * * __iounmap, is the low level implementation used by iounmap and cannot | 
 |  *   be hooked (but can be used by a hook on iounmap) | 
 |  * | 
 |  */ | 
 | extern void __iomem *ioremap(phys_addr_t address, unsigned long size); | 
 | extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size, | 
 | 				  unsigned long flags); | 
 | extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); | 
 | void __iomem *ioremap_wt(phys_addr_t address, unsigned long size); | 
 | void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size); | 
 | #define ioremap_nocache(addr, size)	ioremap((addr), (size)) | 
 | #define ioremap_uc(addr, size)		ioremap((addr), (size)) | 
 | #define ioremap_cache(addr, size) \ | 
 | 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL)) | 
 |  | 
 | extern void iounmap(volatile void __iomem *addr); | 
 |  | 
 | extern void __iomem *__ioremap(phys_addr_t, unsigned long size, | 
 | 			       unsigned long flags); | 
 | extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, | 
 | 				      pgprot_t prot, void *caller); | 
 |  | 
 | extern void __iounmap(volatile void __iomem *addr); | 
 |  | 
 | extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, | 
 | 				   unsigned long size, pgprot_t prot); | 
 | extern void __iounmap_at(void *ea, unsigned long size); | 
 |  | 
 | /* | 
 |  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation | 
 |  * which needs some additional definitions here. They basically allow PIO | 
 |  * space overall to be 1GB. This will work as long as we never try to use | 
 |  * iomap to map MMIO below 1GB which should be fine on ppc64 | 
 |  */ | 
 | #define HAVE_ARCH_PIO_SIZE		1 | 
 | #define PIO_OFFSET			0x00000000UL | 
 | #define PIO_MASK			(FULL_IO_SIZE - 1) | 
 | #define PIO_RESERVED			(FULL_IO_SIZE) | 
 |  | 
 | #define mmio_read16be(addr)		readw_be(addr) | 
 | #define mmio_read32be(addr)		readl_be(addr) | 
 | #define mmio_read64be(addr)		readq_be(addr) | 
 | #define mmio_write16be(val, addr)	writew_be(val, addr) | 
 | #define mmio_write32be(val, addr)	writel_be(val, addr) | 
 | #define mmio_write64be(val, addr)	writeq_be(val, addr) | 
 | #define mmio_insb(addr, dst, count)	readsb(addr, dst, count) | 
 | #define mmio_insw(addr, dst, count)	readsw(addr, dst, count) | 
 | #define mmio_insl(addr, dst, count)	readsl(addr, dst, count) | 
 | #define mmio_outsb(addr, src, count)	writesb(addr, src, count) | 
 | #define mmio_outsw(addr, src, count)	writesw(addr, src, count) | 
 | #define mmio_outsl(addr, src, count)	writesl(addr, src, count) | 
 |  | 
 | /** | 
 |  *	virt_to_phys	-	map virtual addresses to physical | 
 |  *	@address: address to remap | 
 |  * | 
 |  *	The returned physical address is the physical (CPU) mapping for | 
 |  *	the memory address given. It is only valid to use this function on | 
 |  *	addresses directly mapped or allocated via kmalloc. | 
 |  * | 
 |  *	This function does not give bus mappings for DMA transfers. In | 
 |  *	almost all conceivable cases a device driver should not be using | 
 |  *	this function | 
 |  */ | 
 | static inline unsigned long virt_to_phys(volatile void * address) | 
 | { | 
 | 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address)); | 
 |  | 
 | 	return __pa((unsigned long)address); | 
 | } | 
 |  | 
 | /** | 
 |  *	phys_to_virt	-	map physical address to virtual | 
 |  *	@address: address to remap | 
 |  * | 
 |  *	The returned virtual address is a current CPU mapping for | 
 |  *	the memory address given. It is only valid to use this function on | 
 |  *	addresses that have a kernel mapping | 
 |  * | 
 |  *	This function does not handle bus mappings for DMA transfers. In | 
 |  *	almost all conceivable cases a device driver should not be using | 
 |  *	this function | 
 |  */ | 
 | static inline void * phys_to_virt(unsigned long address) | 
 | { | 
 | 	return (void *)__va(address); | 
 | } | 
 |  | 
 | /* | 
 |  * Change "struct page" to physical address. | 
 |  */ | 
 | static inline phys_addr_t page_to_phys(struct page *page) | 
 | { | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 |  | 
 | 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn)); | 
 |  | 
 | 	return PFN_PHYS(pfn); | 
 | } | 
 |  | 
 | /* | 
 |  * 32 bits still uses virt_to_bus() for it's implementation of DMA | 
 |  * mappings se we have to keep it defined here. We also have some old | 
 |  * drivers (shame shame shame) that use bus_to_virt() and haven't been | 
 |  * fixed yet so I need to define it here. | 
 |  */ | 
 | #ifdef CONFIG_PPC32 | 
 |  | 
 | static inline unsigned long virt_to_bus(volatile void * address) | 
 | { | 
 |         if (address == NULL) | 
 | 		return 0; | 
 |         return __pa(address) + PCI_DRAM_OFFSET; | 
 | } | 
 |  | 
 | static inline void * bus_to_virt(unsigned long address) | 
 | { | 
 |         if (address == 0) | 
 | 		return NULL; | 
 |         return __va(address - PCI_DRAM_OFFSET); | 
 | } | 
 |  | 
 | #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET) | 
 |  | 
 | #endif /* CONFIG_PPC32 */ | 
 |  | 
 | /* access ports */ | 
 | #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v)) | 
 | #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) | 
 |  | 
 | #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v)) | 
 | #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) | 
 |  | 
 | #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v)) | 
 | #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) | 
 |  | 
 | /* Clear and set bits in one shot.  These macros can be used to clear and | 
 |  * set multiple bits in a register using a single read-modify-write.  These | 
 |  * macros can also be used to set a multiple-bit bit pattern using a mask, | 
 |  * by specifying the mask in the 'clear' parameter and the new bit pattern | 
 |  * in the 'set' parameter. | 
 |  */ | 
 |  | 
 | #define clrsetbits(type, addr, clear, set) \ | 
 | 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) | 
 |  | 
 | #ifdef __powerpc64__ | 
 | #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) | 
 | #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) | 
 | #endif | 
 |  | 
 | #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) | 
 | #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) | 
 |  | 
 | #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) | 
 | #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) | 
 |  | 
 | #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) | 
 |  | 
 | #endif /* __KERNEL__ */ | 
 |  | 
 | #endif /* _ASM_POWERPC_IO_H */ |