blob: 9608503d67f5475eda40eaea8efc252f5c123a9d [file] [log] [blame]
/*
* arch/arm/mach-orion5x/addr-map.c
*
* Address map functions for Marvell Orion 5x SoCs
*
* Maintainer: Tzachi Perelstein <tzachi@marvell.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mbus.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include "common.h"
/*
* The Orion has fully programable address map. There's a separate address
* map for each of the device _master_ interfaces, e.g. CPU, PCI, PCIe, USB,
* Gigabit Ethernet, DMA/XOR engines, etc. Each interface has its own
* address decode windows that allow it to access any of the Orion resources.
*
* CPU address decoding --
* Linux assumes that it is the boot loader that already setup the access to
* DDR and internal registers.
* Setup access to PCI and PCIe IO/MEM space is issued by this file.
* Setup access to various devices located on the device bus interface (e.g.
* flashes, RTC, etc) should be issued by machine-setup.c according to
* specific board population (by using orion5x_setup_*_win()).
*
* Non-CPU Masters address decoding --
* Unlike the CPU, we setup the access from Orion's master interfaces to DDR
* banks only (the typical use case).
* Setup access for each master to DDR is issued by common.c.
*
* Note: although orion_setbits() and orion_clrbits() are not atomic
* no locking is necessary here since code in this file is only called
* at boot time when there is no concurrency issues.
*/
/*
* Generic Address Decode Windows bit settings
*/
#define TARGET_DDR 0
#define TARGET_DEV_BUS 1
#define TARGET_PCI 3
#define TARGET_PCIE 4
#define ATTR_DDR_CS(n) (((n) ==0) ? 0xe : \
((n) == 1) ? 0xd : \
((n) == 2) ? 0xb : \
((n) == 3) ? 0x7 : 0xf)
#define ATTR_PCIE_MEM 0x59
#define ATTR_PCIE_IO 0x51
#define ATTR_PCIE_WA 0x79
#define ATTR_PCI_MEM 0x59
#define ATTR_PCI_IO 0x51
#define ATTR_DEV_CS0 0x1e
#define ATTR_DEV_CS1 0x1d
#define ATTR_DEV_CS2 0x1b
#define ATTR_DEV_BOOT 0xf
#define WIN_EN 1
/*
* Helpers to get DDR bank info
*/
#define DDR_BASE_CS(n) ORION5X_DDR_REG(0x1500 + ((n) * 8))
#define DDR_SIZE_CS(n) ORION5X_DDR_REG(0x1504 + ((n) * 8))
#define DDR_MAX_CS 4
#define DDR_REG_TO_SIZE(reg) (((reg) | 0xffffff) + 1)
#define DDR_REG_TO_BASE(reg) ((reg) & 0xff000000)
#define DDR_BANK_EN 1
/*
* CPU Address Decode Windows registers
*/
#define CPU_WIN_CTRL(n) ORION5X_BRIDGE_REG(0x000 | ((n) << 4))
#define CPU_WIN_BASE(n) ORION5X_BRIDGE_REG(0x004 | ((n) << 4))
#define CPU_WIN_REMAP_LO(n) ORION5X_BRIDGE_REG(0x008 | ((n) << 4))
#define CPU_WIN_REMAP_HI(n) ORION5X_BRIDGE_REG(0x00c | ((n) << 4))
/*
* Gigabit Ethernet Address Decode Windows registers
*/
#define ETH_WIN_BASE(win) ORION5X_ETH_REG(0x200 + ((win) * 8))
#define ETH_WIN_SIZE(win) ORION5X_ETH_REG(0x204 + ((win) * 8))
#define ETH_WIN_REMAP(win) ORION5X_ETH_REG(0x280 + ((win) * 4))
#define ETH_WIN_EN ORION5X_ETH_REG(0x290)
#define ETH_WIN_PROT ORION5X_ETH_REG(0x294)
#define ETH_MAX_WIN 6
#define ETH_MAX_REMAP_WIN 4
struct mbus_dram_target_info orion5x_mbus_dram_info;
static int __init orion5x_cpu_win_can_remap(int win)
{
u32 dev, rev;
orion5x_pcie_id(&dev, &rev);
if ((dev == MV88F5281_DEV_ID && win < 4)
|| (dev == MV88F5182_DEV_ID && win < 2)
|| (dev == MV88F5181_DEV_ID && win < 2))
return 1;
return 0;
}
static void __init setup_cpu_win(int win, u32 base, u32 size,
u8 target, u8 attr, int remap)
{
orion5x_write(CPU_WIN_BASE(win), base & 0xffff0000);
orion5x_write(CPU_WIN_CTRL(win),
((size - 1) & 0xffff0000) | (attr << 8) | (target << 4) | 1);
if (orion5x_cpu_win_can_remap(win)) {
if (remap < 0)
remap = base;
orion5x_write(CPU_WIN_REMAP_LO(win), remap & 0xffff0000);
orion5x_write(CPU_WIN_REMAP_HI(win), 0);
}
}
void __init orion5x_setup_cpu_mbus_bridge(void)
{
int i;
int cs;
/*
* First, disable and clear windows.
*/
for (i = 0; i < 8; i++) {
orion5x_write(CPU_WIN_BASE(i), 0);
orion5x_write(CPU_WIN_CTRL(i), 0);
if (orion5x_cpu_win_can_remap(i)) {
orion5x_write(CPU_WIN_REMAP_LO(i), 0);
orion5x_write(CPU_WIN_REMAP_HI(i), 0);
}
}
/*
* Setup windows for PCI+PCIe IO+MEM space.
*/
setup_cpu_win(0, ORION5X_PCIE_IO_PHYS_BASE, ORION5X_PCIE_IO_SIZE,
TARGET_PCIE, ATTR_PCIE_IO, ORION5X_PCIE_IO_BUS_BASE);
setup_cpu_win(1, ORION5X_PCI_IO_PHYS_BASE, ORION5X_PCI_IO_SIZE,
TARGET_PCI, ATTR_PCI_IO, ORION5X_PCI_IO_BUS_BASE);
setup_cpu_win(2, ORION5X_PCIE_MEM_PHYS_BASE, ORION5X_PCIE_MEM_SIZE,
TARGET_PCIE, ATTR_PCIE_MEM, -1);
setup_cpu_win(3, ORION5X_PCI_MEM_PHYS_BASE, ORION5X_PCI_MEM_SIZE,
TARGET_PCI, ATTR_PCI_MEM, -1);
/*
* Setup MBUS dram target info.
*/
orion5x_mbus_dram_info.mbus_dram_target_id = TARGET_DDR;
for (i = 0, cs = 0; i < 4; i++) {
u32 base = readl(DDR_BASE_CS(i));
u32 size = readl(DDR_SIZE_CS(i));
/*
* Chip select enabled?
*/
if (size & 1) {
struct mbus_dram_window *w;
w = &orion5x_mbus_dram_info.cs[cs++];
w->cs_index = i;
w->mbus_attr = 0xf & ~(1 << i);
w->base = base & 0xff000000;
w->size = (size | 0x00ffffff) + 1;
}
}
orion5x_mbus_dram_info.num_cs = cs;
}
void __init orion5x_setup_dev_boot_win(u32 base, u32 size)
{
setup_cpu_win(4, base, size, TARGET_DEV_BUS, ATTR_DEV_BOOT, -1);
}
void __init orion5x_setup_dev0_win(u32 base, u32 size)
{
setup_cpu_win(5, base, size, TARGET_DEV_BUS, ATTR_DEV_CS0, -1);
}
void __init orion5x_setup_dev1_win(u32 base, u32 size)
{
setup_cpu_win(6, base, size, TARGET_DEV_BUS, ATTR_DEV_CS1, -1);
}
void __init orion5x_setup_dev2_win(u32 base, u32 size)
{
setup_cpu_win(7, base, size, TARGET_DEV_BUS, ATTR_DEV_CS2, -1);
}
void __init orion5x_setup_pcie_wa_win(u32 base, u32 size)
{
setup_cpu_win(7, base, size, TARGET_PCIE, ATTR_PCIE_WA, -1);
}
void __init orion5x_setup_eth_wins(void)
{
int i;
/*
* First, disable and clear windows
*/
for (i = 0; i < ETH_MAX_WIN; i++) {
orion5x_write(ETH_WIN_BASE(i), 0);
orion5x_write(ETH_WIN_SIZE(i), 0);
orion5x_setbits(ETH_WIN_EN, 1 << i);
orion5x_clrbits(ETH_WIN_PROT, 0x3 << (i * 2));
if (i < ETH_MAX_REMAP_WIN)
orion5x_write(ETH_WIN_REMAP(i), 0);
}
/*
* Setup windows for DDR banks.
*/
for (i = 0; i < DDR_MAX_CS; i++) {
u32 base, size;
size = orion5x_read(DDR_SIZE_CS(i));
base = orion5x_read(DDR_BASE_CS(i));
if (size & DDR_BANK_EN) {
base = DDR_REG_TO_BASE(base);
size = DDR_REG_TO_SIZE(size);
orion5x_write(ETH_WIN_SIZE(i), (size-1) & 0xffff0000);
orion5x_write(ETH_WIN_BASE(i), (base & 0xffff0000) |
(ATTR_DDR_CS(i) << 8) |
TARGET_DDR);
orion5x_clrbits(ETH_WIN_EN, 1 << i);
orion5x_setbits(ETH_WIN_PROT, 0x3 << (i * 2));
}
}
}