| /* This is included from relocs_32/64.c */ | 
 |  | 
 | #define ElfW(type)		_ElfW(ELF_BITS, type) | 
 | #define _ElfW(bits, type)	__ElfW(bits, type) | 
 | #define __ElfW(bits, type)	Elf##bits##_##type | 
 |  | 
 | #define Elf_Addr		ElfW(Addr) | 
 | #define Elf_Ehdr		ElfW(Ehdr) | 
 | #define Elf_Phdr		ElfW(Phdr) | 
 | #define Elf_Shdr		ElfW(Shdr) | 
 | #define Elf_Sym			ElfW(Sym) | 
 |  | 
 | static Elf_Ehdr ehdr; | 
 |  | 
 | struct relocs { | 
 | 	uint32_t	*offset; | 
 | 	unsigned long	count; | 
 | 	unsigned long	size; | 
 | }; | 
 |  | 
 | static struct relocs relocs16; | 
 | static struct relocs relocs32; | 
 | static struct relocs relocs64; | 
 |  | 
 | struct section { | 
 | 	Elf_Shdr       shdr; | 
 | 	struct section *link; | 
 | 	Elf_Sym        *symtab; | 
 | 	Elf_Rel        *reltab; | 
 | 	char           *strtab; | 
 | }; | 
 | static struct section *secs; | 
 |  | 
 | static const char * const sym_regex_kernel[S_NSYMTYPES] = { | 
 | /* | 
 |  * Following symbols have been audited. There values are constant and do | 
 |  * not change if bzImage is loaded at a different physical address than | 
 |  * the address for which it has been compiled. Don't warn user about | 
 |  * absolute relocations present w.r.t these symbols. | 
 |  */ | 
 | 	[S_ABS] = | 
 | 	"^(xen_irq_disable_direct_reloc$|" | 
 | 	"xen_save_fl_direct_reloc$|" | 
 | 	"VDSO|" | 
 | 	"__crc_)", | 
 |  | 
 | /* | 
 |  * These symbols are known to be relative, even if the linker marks them | 
 |  * as absolute (typically defined outside any section in the linker script.) | 
 |  */ | 
 | 	[S_REL] = | 
 | 	"^(__init_(begin|end)|" | 
 | 	"__x86_cpu_dev_(start|end)|" | 
 | 	"(__parainstructions|__alt_instructions)(|_end)|" | 
 | 	"(__iommu_table|__apicdrivers|__smp_locks)(|_end)|" | 
 | 	"__(start|end)_pci_.*|" | 
 | 	"__(start|end)_builtin_fw|" | 
 | 	"__(start|stop)___ksymtab(|_gpl|_unused|_unused_gpl|_gpl_future)|" | 
 | 	"__(start|stop)___kcrctab(|_gpl|_unused|_unused_gpl|_gpl_future)|" | 
 | 	"__(start|stop)___param|" | 
 | 	"__(start|stop)___modver|" | 
 | 	"__(start|stop)___bug_table|" | 
 | 	"__tracedata_(start|end)|" | 
 | 	"__(start|stop)_notes|" | 
 | 	"__end_rodata|" | 
 | 	"__initramfs_start|" | 
 | 	"(jiffies|jiffies_64)|" | 
 | #if ELF_BITS == 64 | 
 | 	"__per_cpu_load|" | 
 | 	"init_per_cpu__.*|" | 
 | 	"__end_rodata_hpage_align|" | 
 | 	"__vvar_page|" | 
 | #endif | 
 | 	"_end)$" | 
 | }; | 
 |  | 
 |  | 
 | static const char * const sym_regex_realmode[S_NSYMTYPES] = { | 
 | /* | 
 |  * These symbols are known to be relative, even if the linker marks them | 
 |  * as absolute (typically defined outside any section in the linker script.) | 
 |  */ | 
 | 	[S_REL] = | 
 | 	"^pa_", | 
 |  | 
 | /* | 
 |  * These are 16-bit segment symbols when compiling 16-bit code. | 
 |  */ | 
 | 	[S_SEG] = | 
 | 	"^real_mode_seg$", | 
 |  | 
 | /* | 
 |  * These are offsets belonging to segments, as opposed to linear addresses, | 
 |  * when compiling 16-bit code. | 
 |  */ | 
 | 	[S_LIN] = | 
 | 	"^pa_", | 
 | }; | 
 |  | 
 | static const char * const *sym_regex; | 
 |  | 
 | static regex_t sym_regex_c[S_NSYMTYPES]; | 
 | static int is_reloc(enum symtype type, const char *sym_name) | 
 | { | 
 | 	return sym_regex[type] && | 
 | 		!regexec(&sym_regex_c[type], sym_name, 0, NULL, 0); | 
 | } | 
 |  | 
 | static void regex_init(int use_real_mode) | 
 | { | 
 |         char errbuf[128]; | 
 |         int err; | 
 | 	int i; | 
 |  | 
 | 	if (use_real_mode) | 
 | 		sym_regex = sym_regex_realmode; | 
 | 	else | 
 | 		sym_regex = sym_regex_kernel; | 
 |  | 
 | 	for (i = 0; i < S_NSYMTYPES; i++) { | 
 | 		if (!sym_regex[i]) | 
 | 			continue; | 
 |  | 
 | 		err = regcomp(&sym_regex_c[i], sym_regex[i], | 
 | 			      REG_EXTENDED|REG_NOSUB); | 
 |  | 
 | 		if (err) { | 
 | 			regerror(err, &sym_regex_c[i], errbuf, sizeof errbuf); | 
 | 			die("%s", errbuf); | 
 | 		} | 
 |         } | 
 | } | 
 |  | 
 | static const char *sym_type(unsigned type) | 
 | { | 
 | 	static const char *type_name[] = { | 
 | #define SYM_TYPE(X) [X] = #X | 
 | 		SYM_TYPE(STT_NOTYPE), | 
 | 		SYM_TYPE(STT_OBJECT), | 
 | 		SYM_TYPE(STT_FUNC), | 
 | 		SYM_TYPE(STT_SECTION), | 
 | 		SYM_TYPE(STT_FILE), | 
 | 		SYM_TYPE(STT_COMMON), | 
 | 		SYM_TYPE(STT_TLS), | 
 | #undef SYM_TYPE | 
 | 	}; | 
 | 	const char *name = "unknown sym type name"; | 
 | 	if (type < ARRAY_SIZE(type_name)) { | 
 | 		name = type_name[type]; | 
 | 	} | 
 | 	return name; | 
 | } | 
 |  | 
 | static const char *sym_bind(unsigned bind) | 
 | { | 
 | 	static const char *bind_name[] = { | 
 | #define SYM_BIND(X) [X] = #X | 
 | 		SYM_BIND(STB_LOCAL), | 
 | 		SYM_BIND(STB_GLOBAL), | 
 | 		SYM_BIND(STB_WEAK), | 
 | #undef SYM_BIND | 
 | 	}; | 
 | 	const char *name = "unknown sym bind name"; | 
 | 	if (bind < ARRAY_SIZE(bind_name)) { | 
 | 		name = bind_name[bind]; | 
 | 	} | 
 | 	return name; | 
 | } | 
 |  | 
 | static const char *sym_visibility(unsigned visibility) | 
 | { | 
 | 	static const char *visibility_name[] = { | 
 | #define SYM_VISIBILITY(X) [X] = #X | 
 | 		SYM_VISIBILITY(STV_DEFAULT), | 
 | 		SYM_VISIBILITY(STV_INTERNAL), | 
 | 		SYM_VISIBILITY(STV_HIDDEN), | 
 | 		SYM_VISIBILITY(STV_PROTECTED), | 
 | #undef SYM_VISIBILITY | 
 | 	}; | 
 | 	const char *name = "unknown sym visibility name"; | 
 | 	if (visibility < ARRAY_SIZE(visibility_name)) { | 
 | 		name = visibility_name[visibility]; | 
 | 	} | 
 | 	return name; | 
 | } | 
 |  | 
 | static const char *rel_type(unsigned type) | 
 | { | 
 | 	static const char *type_name[] = { | 
 | #define REL_TYPE(X) [X] = #X | 
 | #if ELF_BITS == 64 | 
 | 		REL_TYPE(R_X86_64_NONE), | 
 | 		REL_TYPE(R_X86_64_64), | 
 | 		REL_TYPE(R_X86_64_PC32), | 
 | 		REL_TYPE(R_X86_64_GOT32), | 
 | 		REL_TYPE(R_X86_64_PLT32), | 
 | 		REL_TYPE(R_X86_64_COPY), | 
 | 		REL_TYPE(R_X86_64_GLOB_DAT), | 
 | 		REL_TYPE(R_X86_64_JUMP_SLOT), | 
 | 		REL_TYPE(R_X86_64_RELATIVE), | 
 | 		REL_TYPE(R_X86_64_GOTPCREL), | 
 | 		REL_TYPE(R_X86_64_32), | 
 | 		REL_TYPE(R_X86_64_32S), | 
 | 		REL_TYPE(R_X86_64_16), | 
 | 		REL_TYPE(R_X86_64_PC16), | 
 | 		REL_TYPE(R_X86_64_8), | 
 | 		REL_TYPE(R_X86_64_PC8), | 
 | #else | 
 | 		REL_TYPE(R_386_NONE), | 
 | 		REL_TYPE(R_386_32), | 
 | 		REL_TYPE(R_386_PC32), | 
 | 		REL_TYPE(R_386_GOT32), | 
 | 		REL_TYPE(R_386_PLT32), | 
 | 		REL_TYPE(R_386_COPY), | 
 | 		REL_TYPE(R_386_GLOB_DAT), | 
 | 		REL_TYPE(R_386_JMP_SLOT), | 
 | 		REL_TYPE(R_386_RELATIVE), | 
 | 		REL_TYPE(R_386_GOTOFF), | 
 | 		REL_TYPE(R_386_GOTPC), | 
 | 		REL_TYPE(R_386_8), | 
 | 		REL_TYPE(R_386_PC8), | 
 | 		REL_TYPE(R_386_16), | 
 | 		REL_TYPE(R_386_PC16), | 
 | #endif | 
 | #undef REL_TYPE | 
 | 	}; | 
 | 	const char *name = "unknown type rel type name"; | 
 | 	if (type < ARRAY_SIZE(type_name) && type_name[type]) { | 
 | 		name = type_name[type]; | 
 | 	} | 
 | 	return name; | 
 | } | 
 |  | 
 | static const char *sec_name(unsigned shndx) | 
 | { | 
 | 	const char *sec_strtab; | 
 | 	const char *name; | 
 | 	sec_strtab = secs[ehdr.e_shstrndx].strtab; | 
 | 	name = "<noname>"; | 
 | 	if (shndx < ehdr.e_shnum) { | 
 | 		name = sec_strtab + secs[shndx].shdr.sh_name; | 
 | 	} | 
 | 	else if (shndx == SHN_ABS) { | 
 | 		name = "ABSOLUTE"; | 
 | 	} | 
 | 	else if (shndx == SHN_COMMON) { | 
 | 		name = "COMMON"; | 
 | 	} | 
 | 	return name; | 
 | } | 
 |  | 
 | static const char *sym_name(const char *sym_strtab, Elf_Sym *sym) | 
 | { | 
 | 	const char *name; | 
 | 	name = "<noname>"; | 
 | 	if (sym->st_name) { | 
 | 		name = sym_strtab + sym->st_name; | 
 | 	} | 
 | 	else { | 
 | 		name = sec_name(sym->st_shndx); | 
 | 	} | 
 | 	return name; | 
 | } | 
 |  | 
 | static Elf_Sym *sym_lookup(const char *symname) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		struct section *sec = &secs[i]; | 
 | 		long nsyms; | 
 | 		char *strtab; | 
 | 		Elf_Sym *symtab; | 
 | 		Elf_Sym *sym; | 
 |  | 
 | 		if (sec->shdr.sh_type != SHT_SYMTAB) | 
 | 			continue; | 
 |  | 
 | 		nsyms = sec->shdr.sh_size/sizeof(Elf_Sym); | 
 | 		symtab = sec->symtab; | 
 | 		strtab = sec->link->strtab; | 
 |  | 
 | 		for (sym = symtab; --nsyms >= 0; sym++) { | 
 | 			if (!sym->st_name) | 
 | 				continue; | 
 | 			if (strcmp(symname, strtab + sym->st_name) == 0) | 
 | 				return sym; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if BYTE_ORDER == LITTLE_ENDIAN | 
 | #define le16_to_cpu(val) (val) | 
 | #define le32_to_cpu(val) (val) | 
 | #define le64_to_cpu(val) (val) | 
 | #endif | 
 | #if BYTE_ORDER == BIG_ENDIAN | 
 | #define le16_to_cpu(val) bswap_16(val) | 
 | #define le32_to_cpu(val) bswap_32(val) | 
 | #define le64_to_cpu(val) bswap_64(val) | 
 | #endif | 
 |  | 
 | static uint16_t elf16_to_cpu(uint16_t val) | 
 | { | 
 | 	return le16_to_cpu(val); | 
 | } | 
 |  | 
 | static uint32_t elf32_to_cpu(uint32_t val) | 
 | { | 
 | 	return le32_to_cpu(val); | 
 | } | 
 |  | 
 | #define elf_half_to_cpu(x)	elf16_to_cpu(x) | 
 | #define elf_word_to_cpu(x)	elf32_to_cpu(x) | 
 |  | 
 | #if ELF_BITS == 64 | 
 | static uint64_t elf64_to_cpu(uint64_t val) | 
 | { | 
 |         return le64_to_cpu(val); | 
 | } | 
 | #define elf_addr_to_cpu(x)	elf64_to_cpu(x) | 
 | #define elf_off_to_cpu(x)	elf64_to_cpu(x) | 
 | #define elf_xword_to_cpu(x)	elf64_to_cpu(x) | 
 | #else | 
 | #define elf_addr_to_cpu(x)	elf32_to_cpu(x) | 
 | #define elf_off_to_cpu(x)	elf32_to_cpu(x) | 
 | #define elf_xword_to_cpu(x)	elf32_to_cpu(x) | 
 | #endif | 
 |  | 
 | static void read_ehdr(FILE *fp) | 
 | { | 
 | 	if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) { | 
 | 		die("Cannot read ELF header: %s\n", | 
 | 			strerror(errno)); | 
 | 	} | 
 | 	if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) { | 
 | 		die("No ELF magic\n"); | 
 | 	} | 
 | 	if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) { | 
 | 		die("Not a %d bit executable\n", ELF_BITS); | 
 | 	} | 
 | 	if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) { | 
 | 		die("Not a LSB ELF executable\n"); | 
 | 	} | 
 | 	if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) { | 
 | 		die("Unknown ELF version\n"); | 
 | 	} | 
 | 	/* Convert the fields to native endian */ | 
 | 	ehdr.e_type      = elf_half_to_cpu(ehdr.e_type); | 
 | 	ehdr.e_machine   = elf_half_to_cpu(ehdr.e_machine); | 
 | 	ehdr.e_version   = elf_word_to_cpu(ehdr.e_version); | 
 | 	ehdr.e_entry     = elf_addr_to_cpu(ehdr.e_entry); | 
 | 	ehdr.e_phoff     = elf_off_to_cpu(ehdr.e_phoff); | 
 | 	ehdr.e_shoff     = elf_off_to_cpu(ehdr.e_shoff); | 
 | 	ehdr.e_flags     = elf_word_to_cpu(ehdr.e_flags); | 
 | 	ehdr.e_ehsize    = elf_half_to_cpu(ehdr.e_ehsize); | 
 | 	ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize); | 
 | 	ehdr.e_phnum     = elf_half_to_cpu(ehdr.e_phnum); | 
 | 	ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize); | 
 | 	ehdr.e_shnum     = elf_half_to_cpu(ehdr.e_shnum); | 
 | 	ehdr.e_shstrndx  = elf_half_to_cpu(ehdr.e_shstrndx); | 
 |  | 
 | 	if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN)) { | 
 | 		die("Unsupported ELF header type\n"); | 
 | 	} | 
 | 	if (ehdr.e_machine != ELF_MACHINE) { | 
 | 		die("Not for %s\n", ELF_MACHINE_NAME); | 
 | 	} | 
 | 	if (ehdr.e_version != EV_CURRENT) { | 
 | 		die("Unknown ELF version\n"); | 
 | 	} | 
 | 	if (ehdr.e_ehsize != sizeof(Elf_Ehdr)) { | 
 | 		die("Bad Elf header size\n"); | 
 | 	} | 
 | 	if (ehdr.e_phentsize != sizeof(Elf_Phdr)) { | 
 | 		die("Bad program header entry\n"); | 
 | 	} | 
 | 	if (ehdr.e_shentsize != sizeof(Elf_Shdr)) { | 
 | 		die("Bad section header entry\n"); | 
 | 	} | 
 | 	if (ehdr.e_shstrndx >= ehdr.e_shnum) { | 
 | 		die("String table index out of bounds\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void read_shdrs(FILE *fp) | 
 | { | 
 | 	int i; | 
 | 	Elf_Shdr shdr; | 
 |  | 
 | 	secs = calloc(ehdr.e_shnum, sizeof(struct section)); | 
 | 	if (!secs) { | 
 | 		die("Unable to allocate %d section headers\n", | 
 | 		    ehdr.e_shnum); | 
 | 	} | 
 | 	if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) { | 
 | 		die("Seek to %d failed: %s\n", | 
 | 			ehdr.e_shoff, strerror(errno)); | 
 | 	} | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		struct section *sec = &secs[i]; | 
 | 		if (fread(&shdr, sizeof shdr, 1, fp) != 1) | 
 | 			die("Cannot read ELF section headers %d/%d: %s\n", | 
 | 			    i, ehdr.e_shnum, strerror(errno)); | 
 | 		sec->shdr.sh_name      = elf_word_to_cpu(shdr.sh_name); | 
 | 		sec->shdr.sh_type      = elf_word_to_cpu(shdr.sh_type); | 
 | 		sec->shdr.sh_flags     = elf_xword_to_cpu(shdr.sh_flags); | 
 | 		sec->shdr.sh_addr      = elf_addr_to_cpu(shdr.sh_addr); | 
 | 		sec->shdr.sh_offset    = elf_off_to_cpu(shdr.sh_offset); | 
 | 		sec->shdr.sh_size      = elf_xword_to_cpu(shdr.sh_size); | 
 | 		sec->shdr.sh_link      = elf_word_to_cpu(shdr.sh_link); | 
 | 		sec->shdr.sh_info      = elf_word_to_cpu(shdr.sh_info); | 
 | 		sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign); | 
 | 		sec->shdr.sh_entsize   = elf_xword_to_cpu(shdr.sh_entsize); | 
 | 		if (sec->shdr.sh_link < ehdr.e_shnum) | 
 | 			sec->link = &secs[sec->shdr.sh_link]; | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void read_strtabs(FILE *fp) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		struct section *sec = &secs[i]; | 
 | 		if (sec->shdr.sh_type != SHT_STRTAB) { | 
 | 			continue; | 
 | 		} | 
 | 		sec->strtab = malloc(sec->shdr.sh_size); | 
 | 		if (!sec->strtab) { | 
 | 			die("malloc of %d bytes for strtab failed\n", | 
 | 				sec->shdr.sh_size); | 
 | 		} | 
 | 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { | 
 | 			die("Seek to %d failed: %s\n", | 
 | 				sec->shdr.sh_offset, strerror(errno)); | 
 | 		} | 
 | 		if (fread(sec->strtab, 1, sec->shdr.sh_size, fp) | 
 | 		    != sec->shdr.sh_size) { | 
 | 			die("Cannot read symbol table: %s\n", | 
 | 				strerror(errno)); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void read_symtabs(FILE *fp) | 
 | { | 
 | 	int i,j; | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		struct section *sec = &secs[i]; | 
 | 		if (sec->shdr.sh_type != SHT_SYMTAB) { | 
 | 			continue; | 
 | 		} | 
 | 		sec->symtab = malloc(sec->shdr.sh_size); | 
 | 		if (!sec->symtab) { | 
 | 			die("malloc of %d bytes for symtab failed\n", | 
 | 				sec->shdr.sh_size); | 
 | 		} | 
 | 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { | 
 | 			die("Seek to %d failed: %s\n", | 
 | 				sec->shdr.sh_offset, strerror(errno)); | 
 | 		} | 
 | 		if (fread(sec->symtab, 1, sec->shdr.sh_size, fp) | 
 | 		    != sec->shdr.sh_size) { | 
 | 			die("Cannot read symbol table: %s\n", | 
 | 				strerror(errno)); | 
 | 		} | 
 | 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) { | 
 | 			Elf_Sym *sym = &sec->symtab[j]; | 
 | 			sym->st_name  = elf_word_to_cpu(sym->st_name); | 
 | 			sym->st_value = elf_addr_to_cpu(sym->st_value); | 
 | 			sym->st_size  = elf_xword_to_cpu(sym->st_size); | 
 | 			sym->st_shndx = elf_half_to_cpu(sym->st_shndx); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void read_relocs(FILE *fp) | 
 | { | 
 | 	int i,j; | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		struct section *sec = &secs[i]; | 
 | 		if (sec->shdr.sh_type != SHT_REL_TYPE) { | 
 | 			continue; | 
 | 		} | 
 | 		sec->reltab = malloc(sec->shdr.sh_size); | 
 | 		if (!sec->reltab) { | 
 | 			die("malloc of %d bytes for relocs failed\n", | 
 | 				sec->shdr.sh_size); | 
 | 		} | 
 | 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { | 
 | 			die("Seek to %d failed: %s\n", | 
 | 				sec->shdr.sh_offset, strerror(errno)); | 
 | 		} | 
 | 		if (fread(sec->reltab, 1, sec->shdr.sh_size, fp) | 
 | 		    != sec->shdr.sh_size) { | 
 | 			die("Cannot read symbol table: %s\n", | 
 | 				strerror(errno)); | 
 | 		} | 
 | 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { | 
 | 			Elf_Rel *rel = &sec->reltab[j]; | 
 | 			rel->r_offset = elf_addr_to_cpu(rel->r_offset); | 
 | 			rel->r_info   = elf_xword_to_cpu(rel->r_info); | 
 | #if (SHT_REL_TYPE == SHT_RELA) | 
 | 			rel->r_addend = elf_xword_to_cpu(rel->r_addend); | 
 | #endif | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void print_absolute_symbols(void) | 
 | { | 
 | 	int i; | 
 | 	const char *format; | 
 |  | 
 | 	if (ELF_BITS == 64) | 
 | 		format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n"; | 
 | 	else | 
 | 		format = "%5d %08"PRIx32"  %5"PRId32" %10s %10s %12s %s\n"; | 
 |  | 
 | 	printf("Absolute symbols\n"); | 
 | 	printf(" Num:    Value Size  Type       Bind        Visibility  Name\n"); | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		struct section *sec = &secs[i]; | 
 | 		char *sym_strtab; | 
 | 		int j; | 
 |  | 
 | 		if (sec->shdr.sh_type != SHT_SYMTAB) { | 
 | 			continue; | 
 | 		} | 
 | 		sym_strtab = sec->link->strtab; | 
 | 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) { | 
 | 			Elf_Sym *sym; | 
 | 			const char *name; | 
 | 			sym = &sec->symtab[j]; | 
 | 			name = sym_name(sym_strtab, sym); | 
 | 			if (sym->st_shndx != SHN_ABS) { | 
 | 				continue; | 
 | 			} | 
 | 			printf(format, | 
 | 				j, sym->st_value, sym->st_size, | 
 | 				sym_type(ELF_ST_TYPE(sym->st_info)), | 
 | 				sym_bind(ELF_ST_BIND(sym->st_info)), | 
 | 				sym_visibility(ELF_ST_VISIBILITY(sym->st_other)), | 
 | 				name); | 
 | 		} | 
 | 	} | 
 | 	printf("\n"); | 
 | } | 
 |  | 
 | static void print_absolute_relocs(void) | 
 | { | 
 | 	int i, printed = 0; | 
 | 	const char *format; | 
 |  | 
 | 	if (ELF_BITS == 64) | 
 | 		format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64"  %s\n"; | 
 | 	else | 
 | 		format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32"  %s\n"; | 
 |  | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		struct section *sec = &secs[i]; | 
 | 		struct section *sec_applies, *sec_symtab; | 
 | 		char *sym_strtab; | 
 | 		Elf_Sym *sh_symtab; | 
 | 		int j; | 
 | 		if (sec->shdr.sh_type != SHT_REL_TYPE) { | 
 | 			continue; | 
 | 		} | 
 | 		sec_symtab  = sec->link; | 
 | 		sec_applies = &secs[sec->shdr.sh_info]; | 
 | 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) { | 
 | 			continue; | 
 | 		} | 
 | 		sh_symtab  = sec_symtab->symtab; | 
 | 		sym_strtab = sec_symtab->link->strtab; | 
 | 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { | 
 | 			Elf_Rel *rel; | 
 | 			Elf_Sym *sym; | 
 | 			const char *name; | 
 | 			rel = &sec->reltab[j]; | 
 | 			sym = &sh_symtab[ELF_R_SYM(rel->r_info)]; | 
 | 			name = sym_name(sym_strtab, sym); | 
 | 			if (sym->st_shndx != SHN_ABS) { | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* Absolute symbols are not relocated if bzImage is | 
 | 			 * loaded at a non-compiled address. Display a warning | 
 | 			 * to user at compile time about the absolute | 
 | 			 * relocations present. | 
 | 			 * | 
 | 			 * User need to audit the code to make sure | 
 | 			 * some symbols which should have been section | 
 | 			 * relative have not become absolute because of some | 
 | 			 * linker optimization or wrong programming usage. | 
 | 			 * | 
 | 			 * Before warning check if this absolute symbol | 
 | 			 * relocation is harmless. | 
 | 			 */ | 
 | 			if (is_reloc(S_ABS, name) || is_reloc(S_REL, name)) | 
 | 				continue; | 
 |  | 
 | 			if (!printed) { | 
 | 				printf("WARNING: Absolute relocations" | 
 | 					" present\n"); | 
 | 				printf("Offset     Info     Type     Sym.Value " | 
 | 					"Sym.Name\n"); | 
 | 				printed = 1; | 
 | 			} | 
 |  | 
 | 			printf(format, | 
 | 				rel->r_offset, | 
 | 				rel->r_info, | 
 | 				rel_type(ELF_R_TYPE(rel->r_info)), | 
 | 				sym->st_value, | 
 | 				name); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (printed) | 
 | 		printf("\n"); | 
 | } | 
 |  | 
 | static void add_reloc(struct relocs *r, uint32_t offset) | 
 | { | 
 | 	if (r->count == r->size) { | 
 | 		unsigned long newsize = r->size + 50000; | 
 | 		void *mem = realloc(r->offset, newsize * sizeof(r->offset[0])); | 
 |  | 
 | 		if (!mem) | 
 | 			die("realloc of %ld entries for relocs failed\n", | 
 |                                 newsize); | 
 | 		r->offset = mem; | 
 | 		r->size = newsize; | 
 | 	} | 
 | 	r->offset[r->count++] = offset; | 
 | } | 
 |  | 
 | static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel, | 
 | 			Elf_Sym *sym, const char *symname)) | 
 | { | 
 | 	int i; | 
 | 	/* Walk through the relocations */ | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		char *sym_strtab; | 
 | 		Elf_Sym *sh_symtab; | 
 | 		struct section *sec_applies, *sec_symtab; | 
 | 		int j; | 
 | 		struct section *sec = &secs[i]; | 
 |  | 
 | 		if (sec->shdr.sh_type != SHT_REL_TYPE) { | 
 | 			continue; | 
 | 		} | 
 | 		sec_symtab  = sec->link; | 
 | 		sec_applies = &secs[sec->shdr.sh_info]; | 
 | 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) { | 
 | 			continue; | 
 | 		} | 
 | 		sh_symtab = sec_symtab->symtab; | 
 | 		sym_strtab = sec_symtab->link->strtab; | 
 | 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { | 
 | 			Elf_Rel *rel = &sec->reltab[j]; | 
 | 			Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)]; | 
 | 			const char *symname = sym_name(sym_strtab, sym); | 
 |  | 
 | 			process(sec, rel, sym, symname); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The .data..percpu section is a special case for x86_64 SMP kernels. | 
 |  * It is used to initialize the actual per_cpu areas and to provide | 
 |  * definitions for the per_cpu variables that correspond to their offsets | 
 |  * within the percpu area. Since the values of all of the symbols need | 
 |  * to be offsets from the start of the per_cpu area the virtual address | 
 |  * (sh_addr) of .data..percpu is 0 in SMP kernels. | 
 |  * | 
 |  * This means that: | 
 |  * | 
 |  *	Relocations that reference symbols in the per_cpu area do not | 
 |  *	need further relocation (since the value is an offset relative | 
 |  *	to the start of the per_cpu area that does not change). | 
 |  * | 
 |  *	Relocations that apply to the per_cpu area need to have their | 
 |  *	offset adjusted by by the value of __per_cpu_load to make them | 
 |  *	point to the correct place in the loaded image (because the | 
 |  *	virtual address of .data..percpu is 0). | 
 |  * | 
 |  * For non SMP kernels .data..percpu is linked as part of the normal | 
 |  * kernel data and does not require special treatment. | 
 |  * | 
 |  */ | 
 | static int per_cpu_shndx	= -1; | 
 | Elf_Addr per_cpu_load_addr; | 
 |  | 
 | static void percpu_init(void) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < ehdr.e_shnum; i++) { | 
 | 		ElfW(Sym) *sym; | 
 | 		if (strcmp(sec_name(i), ".data..percpu")) | 
 | 			continue; | 
 |  | 
 | 		if (secs[i].shdr.sh_addr != 0)	/* non SMP kernel */ | 
 | 			return; | 
 |  | 
 | 		sym = sym_lookup("__per_cpu_load"); | 
 | 		if (!sym) | 
 | 			die("can't find __per_cpu_load\n"); | 
 |  | 
 | 		per_cpu_shndx = i; | 
 | 		per_cpu_load_addr = sym->st_value; | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | #if ELF_BITS == 64 | 
 |  | 
 | /* | 
 |  * Check to see if a symbol lies in the .data..percpu section. | 
 |  * For some as yet not understood reason the "__init_begin" | 
 |  * symbol which immediately preceeds the .data..percpu section | 
 |  * also shows up as it it were part of it so we do an explict | 
 |  * check for that symbol name and ignore it. | 
 |  */ | 
 | static int is_percpu_sym(ElfW(Sym) *sym, const char *symname) | 
 | { | 
 | 	return (sym->st_shndx == per_cpu_shndx) && | 
 | 		strcmp(symname, "__init_begin"); | 
 | } | 
 |  | 
 |  | 
 | static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym, | 
 | 		      const char *symname) | 
 | { | 
 | 	unsigned r_type = ELF64_R_TYPE(rel->r_info); | 
 | 	ElfW(Addr) offset = rel->r_offset; | 
 | 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); | 
 |  | 
 | 	if (sym->st_shndx == SHN_UNDEF) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Adjust the offset if this reloc applies to the percpu section. | 
 | 	 */ | 
 | 	if (sec->shdr.sh_info == per_cpu_shndx) | 
 | 		offset += per_cpu_load_addr; | 
 |  | 
 | 	switch (r_type) { | 
 | 	case R_X86_64_NONE: | 
 | 	case R_X86_64_PC32: | 
 | 		/* | 
 | 		 * NONE can be ignored and PC relative relocations don't | 
 | 		 * need to be adjusted. | 
 | 		 */ | 
 | 		break; | 
 |  | 
 | 	case R_X86_64_32: | 
 | 	case R_X86_64_32S: | 
 | 	case R_X86_64_64: | 
 | 		/* | 
 | 		 * References to the percpu area don't need to be adjusted. | 
 | 		 */ | 
 | 		if (is_percpu_sym(sym, symname)) | 
 | 			break; | 
 |  | 
 | 		if (shn_abs) { | 
 | 			/* | 
 | 			 * Whitelisted absolute symbols do not require | 
 | 			 * relocation. | 
 | 			 */ | 
 | 			if (is_reloc(S_ABS, symname)) | 
 | 				break; | 
 |  | 
 | 			die("Invalid absolute %s relocation: %s\n", | 
 | 			    rel_type(r_type), symname); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Relocation offsets for 64 bit kernels are output | 
 | 		 * as 32 bits and sign extended back to 64 bits when | 
 | 		 * the relocations are processed. | 
 | 		 * Make sure that the offset will fit. | 
 | 		 */ | 
 | 		if ((int32_t)offset != (int64_t)offset) | 
 | 			die("Relocation offset doesn't fit in 32 bits\n"); | 
 |  | 
 | 		if (r_type == R_X86_64_64) | 
 | 			add_reloc(&relocs64, offset); | 
 | 		else | 
 | 			add_reloc(&relocs32, offset); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		die("Unsupported relocation type: %s (%d)\n", | 
 | 		    rel_type(r_type), r_type); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, | 
 | 		      const char *symname) | 
 | { | 
 | 	unsigned r_type = ELF32_R_TYPE(rel->r_info); | 
 | 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); | 
 |  | 
 | 	switch (r_type) { | 
 | 	case R_386_NONE: | 
 | 	case R_386_PC32: | 
 | 	case R_386_PC16: | 
 | 	case R_386_PC8: | 
 | 		/* | 
 | 		 * NONE can be ignored and PC relative relocations don't | 
 | 		 * need to be adjusted. | 
 | 		 */ | 
 | 		break; | 
 |  | 
 | 	case R_386_32: | 
 | 		if (shn_abs) { | 
 | 			/* | 
 | 			 * Whitelisted absolute symbols do not require | 
 | 			 * relocation. | 
 | 			 */ | 
 | 			if (is_reloc(S_ABS, symname)) | 
 | 				break; | 
 |  | 
 | 			die("Invalid absolute %s relocation: %s\n", | 
 | 			    rel_type(r_type), symname); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		add_reloc(&relocs32, rel->r_offset); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		die("Unsupported relocation type: %s (%d)\n", | 
 | 		    rel_type(r_type), r_type); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, | 
 | 			 const char *symname) | 
 | { | 
 | 	unsigned r_type = ELF32_R_TYPE(rel->r_info); | 
 | 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); | 
 |  | 
 | 	switch (r_type) { | 
 | 	case R_386_NONE: | 
 | 	case R_386_PC32: | 
 | 	case R_386_PC16: | 
 | 	case R_386_PC8: | 
 | 		/* | 
 | 		 * NONE can be ignored and PC relative relocations don't | 
 | 		 * need to be adjusted. | 
 | 		 */ | 
 | 		break; | 
 |  | 
 | 	case R_386_16: | 
 | 		if (shn_abs) { | 
 | 			/* | 
 | 			 * Whitelisted absolute symbols do not require | 
 | 			 * relocation. | 
 | 			 */ | 
 | 			if (is_reloc(S_ABS, symname)) | 
 | 				break; | 
 |  | 
 | 			if (is_reloc(S_SEG, symname)) { | 
 | 				add_reloc(&relocs16, rel->r_offset); | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			if (!is_reloc(S_LIN, symname)) | 
 | 				break; | 
 | 		} | 
 | 		die("Invalid %s %s relocation: %s\n", | 
 | 		    shn_abs ? "absolute" : "relative", | 
 | 		    rel_type(r_type), symname); | 
 | 		break; | 
 |  | 
 | 	case R_386_32: | 
 | 		if (shn_abs) { | 
 | 			/* | 
 | 			 * Whitelisted absolute symbols do not require | 
 | 			 * relocation. | 
 | 			 */ | 
 | 			if (is_reloc(S_ABS, symname)) | 
 | 				break; | 
 |  | 
 | 			if (is_reloc(S_REL, symname)) { | 
 | 				add_reloc(&relocs32, rel->r_offset); | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			if (is_reloc(S_LIN, symname)) | 
 | 				add_reloc(&relocs32, rel->r_offset); | 
 | 			break; | 
 | 		} | 
 | 		die("Invalid %s %s relocation: %s\n", | 
 | 		    shn_abs ? "absolute" : "relative", | 
 | 		    rel_type(r_type), symname); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		die("Unsupported relocation type: %s (%d)\n", | 
 | 		    rel_type(r_type), r_type); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static int cmp_relocs(const void *va, const void *vb) | 
 | { | 
 | 	const uint32_t *a, *b; | 
 | 	a = va; b = vb; | 
 | 	return (*a == *b)? 0 : (*a > *b)? 1 : -1; | 
 | } | 
 |  | 
 | static void sort_relocs(struct relocs *r) | 
 | { | 
 | 	qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs); | 
 | } | 
 |  | 
 | static int write32(uint32_t v, FILE *f) | 
 | { | 
 | 	unsigned char buf[4]; | 
 |  | 
 | 	put_unaligned_le32(v, buf); | 
 | 	return fwrite(buf, 1, 4, f) == 4 ? 0 : -1; | 
 | } | 
 |  | 
 | static int write32_as_text(uint32_t v, FILE *f) | 
 | { | 
 | 	return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1; | 
 | } | 
 |  | 
 | static void emit_relocs(int as_text, int use_real_mode) | 
 | { | 
 | 	int i; | 
 | 	int (*write_reloc)(uint32_t, FILE *) = write32; | 
 | 	int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, | 
 | 			const char *symname); | 
 |  | 
 | #if ELF_BITS == 64 | 
 | 	if (!use_real_mode) | 
 | 		do_reloc = do_reloc64; | 
 | 	else | 
 | 		die("--realmode not valid for a 64-bit ELF file"); | 
 | #else | 
 | 	if (!use_real_mode) | 
 | 		do_reloc = do_reloc32; | 
 | 	else | 
 | 		do_reloc = do_reloc_real; | 
 | #endif | 
 |  | 
 | 	/* Collect up the relocations */ | 
 | 	walk_relocs(do_reloc); | 
 |  | 
 | 	if (relocs16.count && !use_real_mode) | 
 | 		die("Segment relocations found but --realmode not specified\n"); | 
 |  | 
 | 	/* Order the relocations for more efficient processing */ | 
 | 	sort_relocs(&relocs16); | 
 | 	sort_relocs(&relocs32); | 
 | 	sort_relocs(&relocs64); | 
 |  | 
 | 	/* Print the relocations */ | 
 | 	if (as_text) { | 
 | 		/* Print the relocations in a form suitable that | 
 | 		 * gas will like. | 
 | 		 */ | 
 | 		printf(".section \".data.reloc\",\"a\"\n"); | 
 | 		printf(".balign 4\n"); | 
 | 		write_reloc = write32_as_text; | 
 | 	} | 
 |  | 
 | 	if (use_real_mode) { | 
 | 		write_reloc(relocs16.count, stdout); | 
 | 		for (i = 0; i < relocs16.count; i++) | 
 | 			write_reloc(relocs16.offset[i], stdout); | 
 |  | 
 | 		write_reloc(relocs32.count, stdout); | 
 | 		for (i = 0; i < relocs32.count; i++) | 
 | 			write_reloc(relocs32.offset[i], stdout); | 
 | 	} else { | 
 | 		if (ELF_BITS == 64) { | 
 | 			/* Print a stop */ | 
 | 			write_reloc(0, stdout); | 
 |  | 
 | 			/* Now print each relocation */ | 
 | 			for (i = 0; i < relocs64.count; i++) | 
 | 				write_reloc(relocs64.offset[i], stdout); | 
 | 		} | 
 |  | 
 | 		/* Print a stop */ | 
 | 		write_reloc(0, stdout); | 
 |  | 
 | 		/* Now print each relocation */ | 
 | 		for (i = 0; i < relocs32.count; i++) | 
 | 			write_reloc(relocs32.offset[i], stdout); | 
 | 	} | 
 | } | 
 |  | 
 | #if ELF_BITS == 64 | 
 | # define process process_64 | 
 | #else | 
 | # define process process_32 | 
 | #endif | 
 |  | 
 | void process(FILE *fp, int use_real_mode, int as_text, | 
 | 	     int show_absolute_syms, int show_absolute_relocs) | 
 | { | 
 | 	regex_init(use_real_mode); | 
 | 	read_ehdr(fp); | 
 | 	read_shdrs(fp); | 
 | 	read_strtabs(fp); | 
 | 	read_symtabs(fp); | 
 | 	read_relocs(fp); | 
 | 	if (ELF_BITS == 64) | 
 | 		percpu_init(); | 
 | 	if (show_absolute_syms) { | 
 | 		print_absolute_symbols(); | 
 | 		return; | 
 | 	} | 
 | 	if (show_absolute_relocs) { | 
 | 		print_absolute_relocs(); | 
 | 		return; | 
 | 	} | 
 | 	emit_relocs(as_text, use_real_mode); | 
 | } |