| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * SLUB: A slab allocator that limits cache line use instead of queuing | 
 |  * objects in per cpu and per node lists. | 
 |  * | 
 |  * The allocator synchronizes using per slab locks or atomic operations | 
 |  * and only uses a centralized lock to manage a pool of partial slabs. | 
 |  * | 
 |  * (C) 2007 SGI, Christoph Lameter | 
 |  * (C) 2011 Linux Foundation, Christoph Lameter | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> /* struct reclaim_state */ | 
 | #include <linux/module.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/slab.h> | 
 | #include "slab.h" | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/kasan.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/debugobjects.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/kfence.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/fault-inject.h> | 
 | #include <linux/stacktrace.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/random.h> | 
 |  | 
 | #include <trace/events/kmem.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * Lock order: | 
 |  *   1. slab_mutex (Global Mutex) | 
 |  *   2. node->list_lock | 
 |  *   3. slab_lock(page) (Only on some arches and for debugging) | 
 |  * | 
 |  *   slab_mutex | 
 |  * | 
 |  *   The role of the slab_mutex is to protect the list of all the slabs | 
 |  *   and to synchronize major metadata changes to slab cache structures. | 
 |  * | 
 |  *   The slab_lock is only used for debugging and on arches that do not | 
 |  *   have the ability to do a cmpxchg_double. It only protects: | 
 |  *	A. page->freelist	-> List of object free in a page | 
 |  *	B. page->inuse		-> Number of objects in use | 
 |  *	C. page->objects	-> Number of objects in page | 
 |  *	D. page->frozen		-> frozen state | 
 |  * | 
 |  *   If a slab is frozen then it is exempt from list management. It is not | 
 |  *   on any list except per cpu partial list. The processor that froze the | 
 |  *   slab is the one who can perform list operations on the page. Other | 
 |  *   processors may put objects onto the freelist but the processor that | 
 |  *   froze the slab is the only one that can retrieve the objects from the | 
 |  *   page's freelist. | 
 |  * | 
 |  *   The list_lock protects the partial and full list on each node and | 
 |  *   the partial slab counter. If taken then no new slabs may be added or | 
 |  *   removed from the lists nor make the number of partial slabs be modified. | 
 |  *   (Note that the total number of slabs is an atomic value that may be | 
 |  *   modified without taking the list lock). | 
 |  * | 
 |  *   The list_lock is a centralized lock and thus we avoid taking it as | 
 |  *   much as possible. As long as SLUB does not have to handle partial | 
 |  *   slabs, operations can continue without any centralized lock. F.e. | 
 |  *   allocating a long series of objects that fill up slabs does not require | 
 |  *   the list lock. | 
 |  *   Interrupts are disabled during allocation and deallocation in order to | 
 |  *   make the slab allocator safe to use in the context of an irq. In addition | 
 |  *   interrupts are disabled to ensure that the processor does not change | 
 |  *   while handling per_cpu slabs, due to kernel preemption. | 
 |  * | 
 |  * SLUB assigns one slab for allocation to each processor. | 
 |  * Allocations only occur from these slabs called cpu slabs. | 
 |  * | 
 |  * Slabs with free elements are kept on a partial list and during regular | 
 |  * operations no list for full slabs is used. If an object in a full slab is | 
 |  * freed then the slab will show up again on the partial lists. | 
 |  * We track full slabs for debugging purposes though because otherwise we | 
 |  * cannot scan all objects. | 
 |  * | 
 |  * Slabs are freed when they become empty. Teardown and setup is | 
 |  * minimal so we rely on the page allocators per cpu caches for | 
 |  * fast frees and allocs. | 
 |  * | 
 |  * page->frozen		The slab is frozen and exempt from list processing. | 
 |  * 			This means that the slab is dedicated to a purpose | 
 |  * 			such as satisfying allocations for a specific | 
 |  * 			processor. Objects may be freed in the slab while | 
 |  * 			it is frozen but slab_free will then skip the usual | 
 |  * 			list operations. It is up to the processor holding | 
 |  * 			the slab to integrate the slab into the slab lists | 
 |  * 			when the slab is no longer needed. | 
 |  * | 
 |  * 			One use of this flag is to mark slabs that are | 
 |  * 			used for allocations. Then such a slab becomes a cpu | 
 |  * 			slab. The cpu slab may be equipped with an additional | 
 |  * 			freelist that allows lockless access to | 
 |  * 			free objects in addition to the regular freelist | 
 |  * 			that requires the slab lock. | 
 |  * | 
 |  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug | 
 |  * 			options set. This moves	slab handling out of | 
 |  * 			the fast path and disables lockless freelists. | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | #ifdef CONFIG_SLUB_DEBUG_ON | 
 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | 
 | #else | 
 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | 
 | #endif | 
 | #endif | 
 |  | 
 | static inline bool kmem_cache_debug(struct kmem_cache *s) | 
 | { | 
 | 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | 
 | } | 
 |  | 
 | void *fixup_red_left(struct kmem_cache *s, void *p) | 
 | { | 
 | 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) | 
 | 		p += s->red_left_pad; | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) | 
 | { | 
 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 	return !kmem_cache_debug(s); | 
 | #else | 
 | 	return false; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Issues still to be resolved: | 
 |  * | 
 |  * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
 |  * | 
 |  * - Variable sizing of the per node arrays | 
 |  */ | 
 |  | 
 | /* Enable to test recovery from slab corruption on boot */ | 
 | #undef SLUB_RESILIENCY_TEST | 
 |  | 
 | /* Enable to log cmpxchg failures */ | 
 | #undef SLUB_DEBUG_CMPXCHG | 
 |  | 
 | /* | 
 |  * Minimum number of partial slabs. These will be left on the partial | 
 |  * lists even if they are empty. kmem_cache_shrink may reclaim them. | 
 |  */ | 
 | #define MIN_PARTIAL 5 | 
 |  | 
 | /* | 
 |  * Maximum number of desirable partial slabs. | 
 |  * The existence of more partial slabs makes kmem_cache_shrink | 
 |  * sort the partial list by the number of objects in use. | 
 |  */ | 
 | #define MAX_PARTIAL 10 | 
 |  | 
 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ | 
 | 				SLAB_POISON | SLAB_STORE_USER) | 
 |  | 
 | /* | 
 |  * These debug flags cannot use CMPXCHG because there might be consistency | 
 |  * issues when checking or reading debug information | 
 |  */ | 
 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | 
 | 				SLAB_TRACE) | 
 |  | 
 |  | 
 | /* | 
 |  * Debugging flags that require metadata to be stored in the slab.  These get | 
 |  * disabled when slub_debug=O is used and a cache's min order increases with | 
 |  * metadata. | 
 |  */ | 
 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | 
 |  | 
 | #define OO_SHIFT	16 | 
 | #define OO_MASK		((1 << OO_SHIFT) - 1) | 
 | #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */ | 
 |  | 
 | /* Internal SLUB flags */ | 
 | /* Poison object */ | 
 | #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U) | 
 | /* Use cmpxchg_double */ | 
 | #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U) | 
 |  | 
 | /* | 
 |  * Tracking user of a slab. | 
 |  */ | 
 | #define TRACK_ADDRS_COUNT 16 | 
 | struct track { | 
 | 	unsigned long addr;	/* Called from address */ | 
 | #ifdef CONFIG_STACKTRACE | 
 | 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */ | 
 | #endif | 
 | 	int cpu;		/* Was running on cpu */ | 
 | 	int pid;		/* Pid context */ | 
 | 	unsigned long when;	/* When did the operation occur */ | 
 | }; | 
 |  | 
 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | static int sysfs_slab_add(struct kmem_cache *); | 
 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
 | #else | 
 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 
 | 							{ return 0; } | 
 | #endif | 
 |  | 
 | static inline void stat(const struct kmem_cache *s, enum stat_item si) | 
 | { | 
 | #ifdef CONFIG_SLUB_STATS | 
 | 	/* | 
 | 	 * The rmw is racy on a preemptible kernel but this is acceptable, so | 
 | 	 * avoid this_cpu_add()'s irq-disable overhead. | 
 | 	 */ | 
 | 	raw_cpu_inc(s->cpu_slab->stat[si]); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. | 
 |  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily | 
 |  * differ during memory hotplug/hotremove operations. | 
 |  * Protected by slab_mutex. | 
 |  */ | 
 | static nodemask_t slab_nodes; | 
 |  | 
 | /******************************************************************** | 
 |  * 			Core slab cache functions | 
 |  *******************************************************************/ | 
 |  | 
 | /* | 
 |  * Returns freelist pointer (ptr). With hardening, this is obfuscated | 
 |  * with an XOR of the address where the pointer is held and a per-cache | 
 |  * random number. | 
 |  */ | 
 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | 
 | 				 unsigned long ptr_addr) | 
 | { | 
 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
 | 	/* | 
 | 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. | 
 | 	 * Normally, this doesn't cause any issues, as both set_freepointer() | 
 | 	 * and get_freepointer() are called with a pointer with the same tag. | 
 | 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For | 
 | 	 * example, when __free_slub() iterates over objects in a cache, it | 
 | 	 * passes untagged pointers to check_object(). check_object() in turns | 
 | 	 * calls get_freepointer() with an untagged pointer, which causes the | 
 | 	 * freepointer to be restored incorrectly. | 
 | 	 */ | 
 | 	return (void *)((unsigned long)ptr ^ s->random ^ | 
 | 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); | 
 | #else | 
 | 	return ptr; | 
 | #endif | 
 | } | 
 |  | 
 | /* Returns the freelist pointer recorded at location ptr_addr. */ | 
 | static inline void *freelist_dereference(const struct kmem_cache *s, | 
 | 					 void *ptr_addr) | 
 | { | 
 | 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | 
 | 			    (unsigned long)ptr_addr); | 
 | } | 
 |  | 
 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 
 | { | 
 | 	object = kasan_reset_tag(object); | 
 | 	return freelist_dereference(s, object + s->offset); | 
 | } | 
 |  | 
 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) | 
 | { | 
 | 	prefetch(object + s->offset); | 
 | } | 
 |  | 
 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) | 
 | { | 
 | 	unsigned long freepointer_addr; | 
 | 	void *p; | 
 |  | 
 | 	if (!debug_pagealloc_enabled_static()) | 
 | 		return get_freepointer(s, object); | 
 |  | 
 | 	freepointer_addr = (unsigned long)object + s->offset; | 
 | 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); | 
 | 	return freelist_ptr(s, p, freepointer_addr); | 
 | } | 
 |  | 
 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
 | { | 
 | 	unsigned long freeptr_addr = (unsigned long)object + s->offset; | 
 |  | 
 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
 | 	BUG_ON(object == fp); /* naive detection of double free or corruption */ | 
 | #endif | 
 |  | 
 | 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); | 
 | 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); | 
 | } | 
 |  | 
 | /* Loop over all objects in a slab */ | 
 | #define for_each_object(__p, __s, __addr, __objects) \ | 
 | 	for (__p = fixup_red_left(__s, __addr); \ | 
 | 		__p < (__addr) + (__objects) * (__s)->size; \ | 
 | 		__p += (__s)->size) | 
 |  | 
 | static inline unsigned int order_objects(unsigned int order, unsigned int size) | 
 | { | 
 | 	return ((unsigned int)PAGE_SIZE << order) / size; | 
 | } | 
 |  | 
 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, | 
 | 		unsigned int size) | 
 | { | 
 | 	struct kmem_cache_order_objects x = { | 
 | 		(order << OO_SHIFT) + order_objects(order, size) | 
 | 	}; | 
 |  | 
 | 	return x; | 
 | } | 
 |  | 
 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) | 
 | { | 
 | 	return x.x >> OO_SHIFT; | 
 | } | 
 |  | 
 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) | 
 | { | 
 | 	return x.x & OO_MASK; | 
 | } | 
 |  | 
 | /* | 
 |  * Per slab locking using the pagelock | 
 |  */ | 
 | static __always_inline void slab_lock(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 	bit_spin_lock(PG_locked, &page->flags); | 
 | } | 
 |  | 
 | static __always_inline void slab_unlock(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 	__bit_spin_unlock(PG_locked, &page->flags); | 
 | } | 
 |  | 
 | /* Interrupts must be disabled (for the fallback code to work right) */ | 
 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
 | 		void *freelist_old, unsigned long counters_old, | 
 | 		void *freelist_new, unsigned long counters_new, | 
 | 		const char *n) | 
 | { | 
 | 	VM_BUG_ON(!irqs_disabled()); | 
 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 	if (s->flags & __CMPXCHG_DOUBLE) { | 
 | 		if (cmpxchg_double(&page->freelist, &page->counters, | 
 | 				   freelist_old, counters_old, | 
 | 				   freelist_new, counters_new)) | 
 | 			return true; | 
 | 	} else | 
 | #endif | 
 | 	{ | 
 | 		slab_lock(page); | 
 | 		if (page->freelist == freelist_old && | 
 | 					page->counters == counters_old) { | 
 | 			page->freelist = freelist_new; | 
 | 			page->counters = counters_new; | 
 | 			slab_unlock(page); | 
 | 			return true; | 
 | 		} | 
 | 		slab_unlock(page); | 
 | 	} | 
 |  | 
 | 	cpu_relax(); | 
 | 	stat(s, CMPXCHG_DOUBLE_FAIL); | 
 |  | 
 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 	pr_info("%s %s: cmpxchg double redo ", n, s->name); | 
 | #endif | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
 | 		void *freelist_old, unsigned long counters_old, | 
 | 		void *freelist_new, unsigned long counters_new, | 
 | 		const char *n) | 
 | { | 
 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 	if (s->flags & __CMPXCHG_DOUBLE) { | 
 | 		if (cmpxchg_double(&page->freelist, &page->counters, | 
 | 				   freelist_old, counters_old, | 
 | 				   freelist_new, counters_new)) | 
 | 			return true; | 
 | 	} else | 
 | #endif | 
 | 	{ | 
 | 		unsigned long flags; | 
 |  | 
 | 		local_irq_save(flags); | 
 | 		slab_lock(page); | 
 | 		if (page->freelist == freelist_old && | 
 | 					page->counters == counters_old) { | 
 | 			page->freelist = freelist_new; | 
 | 			page->counters = counters_new; | 
 | 			slab_unlock(page); | 
 | 			local_irq_restore(flags); | 
 | 			return true; | 
 | 		} | 
 | 		slab_unlock(page); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 |  | 
 | 	cpu_relax(); | 
 | 	stat(s, CMPXCHG_DOUBLE_FAIL); | 
 |  | 
 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 	pr_info("%s %s: cmpxchg double redo ", n, s->name); | 
 | #endif | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; | 
 | static DEFINE_SPINLOCK(object_map_lock); | 
 |  | 
 | /* | 
 |  * Determine a map of object in use on a page. | 
 |  * | 
 |  * Node listlock must be held to guarantee that the page does | 
 |  * not vanish from under us. | 
 |  */ | 
 | static unsigned long *get_map(struct kmem_cache *s, struct page *page) | 
 | 	__acquires(&object_map_lock) | 
 | { | 
 | 	void *p; | 
 | 	void *addr = page_address(page); | 
 |  | 
 | 	VM_BUG_ON(!irqs_disabled()); | 
 |  | 
 | 	spin_lock(&object_map_lock); | 
 |  | 
 | 	bitmap_zero(object_map, page->objects); | 
 |  | 
 | 	for (p = page->freelist; p; p = get_freepointer(s, p)) | 
 | 		set_bit(__obj_to_index(s, addr, p), object_map); | 
 |  | 
 | 	return object_map; | 
 | } | 
 |  | 
 | static void put_map(unsigned long *map) __releases(&object_map_lock) | 
 | { | 
 | 	VM_BUG_ON(map != object_map); | 
 | 	spin_unlock(&object_map_lock); | 
 | } | 
 |  | 
 | static inline unsigned int size_from_object(struct kmem_cache *s) | 
 | { | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		return s->size - s->red_left_pad; | 
 |  | 
 | 	return s->size; | 
 | } | 
 |  | 
 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | 
 | { | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		p -= s->red_left_pad; | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | /* | 
 |  * Debug settings: | 
 |  */ | 
 | #if defined(CONFIG_SLUB_DEBUG_ON) | 
 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; | 
 | #else | 
 | static slab_flags_t slub_debug; | 
 | #endif | 
 |  | 
 | static char *slub_debug_string; | 
 | static int disable_higher_order_debug; | 
 |  | 
 | /* | 
 |  * slub is about to manipulate internal object metadata.  This memory lies | 
 |  * outside the range of the allocated object, so accessing it would normally | 
 |  * be reported by kasan as a bounds error.  metadata_access_enable() is used | 
 |  * to tell kasan that these accesses are OK. | 
 |  */ | 
 | static inline void metadata_access_enable(void) | 
 | { | 
 | 	kasan_disable_current(); | 
 | } | 
 |  | 
 | static inline void metadata_access_disable(void) | 
 | { | 
 | 	kasan_enable_current(); | 
 | } | 
 |  | 
 | /* | 
 |  * Object debugging | 
 |  */ | 
 |  | 
 | /* Verify that a pointer has an address that is valid within a slab page */ | 
 | static inline int check_valid_pointer(struct kmem_cache *s, | 
 | 				struct page *page, void *object) | 
 | { | 
 | 	void *base; | 
 |  | 
 | 	if (!object) | 
 | 		return 1; | 
 |  | 
 | 	base = page_address(page); | 
 | 	object = kasan_reset_tag(object); | 
 | 	object = restore_red_left(s, object); | 
 | 	if (object < base || object >= base + page->objects * s->size || | 
 | 		(object - base) % s->size) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void print_section(char *level, char *text, u8 *addr, | 
 | 			  unsigned int length) | 
 | { | 
 | 	metadata_access_enable(); | 
 | 	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS, | 
 | 			16, 1, addr, length, 1); | 
 | 	metadata_access_disable(); | 
 | } | 
 |  | 
 | /* | 
 |  * See comment in calculate_sizes(). | 
 |  */ | 
 | static inline bool freeptr_outside_object(struct kmem_cache *s) | 
 | { | 
 | 	return s->offset >= s->inuse; | 
 | } | 
 |  | 
 | /* | 
 |  * Return offset of the end of info block which is inuse + free pointer if | 
 |  * not overlapping with object. | 
 |  */ | 
 | static inline unsigned int get_info_end(struct kmem_cache *s) | 
 | { | 
 | 	if (freeptr_outside_object(s)) | 
 | 		return s->inuse + sizeof(void *); | 
 | 	else | 
 | 		return s->inuse; | 
 | } | 
 |  | 
 | static struct track *get_track(struct kmem_cache *s, void *object, | 
 | 	enum track_item alloc) | 
 | { | 
 | 	struct track *p; | 
 |  | 
 | 	p = object + get_info_end(s); | 
 |  | 
 | 	return kasan_reset_tag(p + alloc); | 
 | } | 
 |  | 
 | static void set_track(struct kmem_cache *s, void *object, | 
 | 			enum track_item alloc, unsigned long addr) | 
 | { | 
 | 	struct track *p = get_track(s, object, alloc); | 
 |  | 
 | 	if (addr) { | 
 | #ifdef CONFIG_STACKTRACE | 
 | 		unsigned int nr_entries; | 
 |  | 
 | 		metadata_access_enable(); | 
 | 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), | 
 | 					      TRACK_ADDRS_COUNT, 3); | 
 | 		metadata_access_disable(); | 
 |  | 
 | 		if (nr_entries < TRACK_ADDRS_COUNT) | 
 | 			p->addrs[nr_entries] = 0; | 
 | #endif | 
 | 		p->addr = addr; | 
 | 		p->cpu = smp_processor_id(); | 
 | 		p->pid = current->pid; | 
 | 		p->when = jiffies; | 
 | 	} else { | 
 | 		memset(p, 0, sizeof(struct track)); | 
 | 	} | 
 | } | 
 |  | 
 | static void init_tracking(struct kmem_cache *s, void *object) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	set_track(s, object, TRACK_FREE, 0UL); | 
 | 	set_track(s, object, TRACK_ALLOC, 0UL); | 
 | } | 
 |  | 
 | static void print_track(const char *s, struct track *t, unsigned long pr_time) | 
 | { | 
 | 	if (!t->addr) | 
 | 		return; | 
 |  | 
 | 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", | 
 | 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); | 
 | #ifdef CONFIG_STACKTRACE | 
 | 	{ | 
 | 		int i; | 
 | 		for (i = 0; i < TRACK_ADDRS_COUNT; i++) | 
 | 			if (t->addrs[i]) | 
 | 				pr_err("\t%pS\n", (void *)t->addrs[i]); | 
 | 			else | 
 | 				break; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | void print_tracking(struct kmem_cache *s, void *object) | 
 | { | 
 | 	unsigned long pr_time = jiffies; | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); | 
 | 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | 
 | } | 
 |  | 
 | static void print_page_info(struct page *page) | 
 | { | 
 | 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n", | 
 | 	       page, page->objects, page->inuse, page->freelist, | 
 | 	       page->flags, &page->flags); | 
 |  | 
 | } | 
 |  | 
 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 
 | { | 
 | 	struct va_format vaf; | 
 | 	va_list args; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vaf.fmt = fmt; | 
 | 	vaf.va = &args; | 
 | 	pr_err("=============================================================================\n"); | 
 | 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); | 
 | 	pr_err("-----------------------------------------------------------------------------\n\n"); | 
 |  | 
 | 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
 | 	va_end(args); | 
 | } | 
 |  | 
 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 
 | { | 
 | 	struct va_format vaf; | 
 | 	va_list args; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vaf.fmt = fmt; | 
 | 	vaf.va = &args; | 
 | 	pr_err("FIX %s: %pV\n", s->name, &vaf); | 
 | 	va_end(args); | 
 | } | 
 |  | 
 | static bool freelist_corrupted(struct kmem_cache *s, struct page *page, | 
 | 			       void **freelist, void *nextfree) | 
 | { | 
 | 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | 
 | 	    !check_valid_pointer(s, page, nextfree) && freelist) { | 
 | 		object_err(s, page, *freelist, "Freechain corrupt"); | 
 | 		*freelist = NULL; | 
 | 		slab_fix(s, "Isolate corrupted freechain"); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 
 | { | 
 | 	unsigned int off;	/* Offset of last byte */ | 
 | 	u8 *addr = page_address(page); | 
 |  | 
 | 	print_tracking(s, p); | 
 |  | 
 | 	print_page_info(page); | 
 |  | 
 | 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", | 
 | 	       p, p - addr, get_freepointer(s, p)); | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, | 
 | 			      s->red_left_pad); | 
 | 	else if (p > addr + 16) | 
 | 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); | 
 |  | 
 | 	print_section(KERN_ERR, "Object ", p, | 
 | 		      min_t(unsigned int, s->object_size, PAGE_SIZE)); | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		print_section(KERN_ERR, "Redzone ", p + s->object_size, | 
 | 			s->inuse - s->object_size); | 
 |  | 
 | 	off = get_info_end(s); | 
 |  | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		off += 2 * sizeof(struct track); | 
 |  | 
 | 	off += kasan_metadata_size(s); | 
 |  | 
 | 	if (off != size_from_object(s)) | 
 | 		/* Beginning of the filler is the free pointer */ | 
 | 		print_section(KERN_ERR, "Padding ", p + off, | 
 | 			      size_from_object(s) - off); | 
 |  | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | void object_err(struct kmem_cache *s, struct page *page, | 
 | 			u8 *object, char *reason) | 
 | { | 
 | 	slab_bug(s, "%s", reason); | 
 | 	print_trailer(s, page, object); | 
 | } | 
 |  | 
 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, | 
 | 			const char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char buf[100]; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vsnprintf(buf, sizeof(buf), fmt, args); | 
 | 	va_end(args); | 
 | 	slab_bug(s, "%s", buf); | 
 | 	print_page_info(page); | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | static void init_object(struct kmem_cache *s, void *object, u8 val) | 
 | { | 
 | 	u8 *p = kasan_reset_tag(object); | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		memset(p - s->red_left_pad, val, s->red_left_pad); | 
 |  | 
 | 	if (s->flags & __OBJECT_POISON) { | 
 | 		memset(p, POISON_FREE, s->object_size - 1); | 
 | 		p[s->object_size - 1] = POISON_END; | 
 | 	} | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		memset(p + s->object_size, val, s->inuse - s->object_size); | 
 | } | 
 |  | 
 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
 | 						void *from, void *to) | 
 | { | 
 | 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 
 | 	memset(from, data, to - from); | 
 | } | 
 |  | 
 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 
 | 			u8 *object, char *what, | 
 | 			u8 *start, unsigned int value, unsigned int bytes) | 
 | { | 
 | 	u8 *fault; | 
 | 	u8 *end; | 
 | 	u8 *addr = page_address(page); | 
 |  | 
 | 	metadata_access_enable(); | 
 | 	fault = memchr_inv(kasan_reset_tag(start), value, bytes); | 
 | 	metadata_access_disable(); | 
 | 	if (!fault) | 
 | 		return 1; | 
 |  | 
 | 	end = start + bytes; | 
 | 	while (end > fault && end[-1] == value) | 
 | 		end--; | 
 |  | 
 | 	slab_bug(s, "%s overwritten", what); | 
 | 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", | 
 | 					fault, end - 1, fault - addr, | 
 | 					fault[0], value); | 
 | 	print_trailer(s, page, object); | 
 |  | 
 | 	restore_bytes(s, what, value, fault, end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Object layout: | 
 |  * | 
 |  * object address | 
 |  * 	Bytes of the object to be managed. | 
 |  * 	If the freepointer may overlay the object then the free | 
 |  *	pointer is at the middle of the object. | 
 |  * | 
 |  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
 |  * 	0xa5 (POISON_END) | 
 |  * | 
 |  * object + s->object_size | 
 |  * 	Padding to reach word boundary. This is also used for Redzoning. | 
 |  * 	Padding is extended by another word if Redzoning is enabled and | 
 |  * 	object_size == inuse. | 
 |  * | 
 |  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
 |  * 	0xcc (RED_ACTIVE) for objects in use. | 
 |  * | 
 |  * object + s->inuse | 
 |  * 	Meta data starts here. | 
 |  * | 
 |  * 	A. Free pointer (if we cannot overwrite object on free) | 
 |  * 	B. Tracking data for SLAB_STORE_USER | 
 |  *	C. Padding to reach required alignment boundary or at minimum | 
 |  * 		one word if debugging is on to be able to detect writes | 
 |  * 		before the word boundary. | 
 |  * | 
 |  *	Padding is done using 0x5a (POISON_INUSE) | 
 |  * | 
 |  * object + s->size | 
 |  * 	Nothing is used beyond s->size. | 
 |  * | 
 |  * If slabcaches are merged then the object_size and inuse boundaries are mostly | 
 |  * ignored. And therefore no slab options that rely on these boundaries | 
 |  * may be used with merged slabcaches. | 
 |  */ | 
 |  | 
 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
 | { | 
 | 	unsigned long off = get_info_end(s);	/* The end of info */ | 
 |  | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		/* We also have user information there */ | 
 | 		off += 2 * sizeof(struct track); | 
 |  | 
 | 	off += kasan_metadata_size(s); | 
 |  | 
 | 	if (size_from_object(s) == off) | 
 | 		return 1; | 
 |  | 
 | 	return check_bytes_and_report(s, page, p, "Object padding", | 
 | 			p + off, POISON_INUSE, size_from_object(s) - off); | 
 | } | 
 |  | 
 | /* Check the pad bytes at the end of a slab page */ | 
 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	u8 *start; | 
 | 	u8 *fault; | 
 | 	u8 *end; | 
 | 	u8 *pad; | 
 | 	int length; | 
 | 	int remainder; | 
 |  | 
 | 	if (!(s->flags & SLAB_POISON)) | 
 | 		return 1; | 
 |  | 
 | 	start = page_address(page); | 
 | 	length = page_size(page); | 
 | 	end = start + length; | 
 | 	remainder = length % s->size; | 
 | 	if (!remainder) | 
 | 		return 1; | 
 |  | 
 | 	pad = end - remainder; | 
 | 	metadata_access_enable(); | 
 | 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); | 
 | 	metadata_access_disable(); | 
 | 	if (!fault) | 
 | 		return 1; | 
 | 	while (end > fault && end[-1] == POISON_INUSE) | 
 | 		end--; | 
 |  | 
 | 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", | 
 | 			fault, end - 1, fault - start); | 
 | 	print_section(KERN_ERR, "Padding ", pad, remainder); | 
 |  | 
 | 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_object(struct kmem_cache *s, struct page *page, | 
 | 					void *object, u8 val) | 
 | { | 
 | 	u8 *p = object; | 
 | 	u8 *endobject = object + s->object_size; | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) { | 
 | 		if (!check_bytes_and_report(s, page, object, "Redzone", | 
 | 			object - s->red_left_pad, val, s->red_left_pad)) | 
 | 			return 0; | 
 |  | 
 | 		if (!check_bytes_and_report(s, page, object, "Redzone", | 
 | 			endobject, val, s->inuse - s->object_size)) | 
 | 			return 0; | 
 | 	} else { | 
 | 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { | 
 | 			check_bytes_and_report(s, page, p, "Alignment padding", | 
 | 				endobject, POISON_INUSE, | 
 | 				s->inuse - s->object_size); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (s->flags & SLAB_POISON) { | 
 | 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && | 
 | 			(!check_bytes_and_report(s, page, p, "Poison", p, | 
 | 					POISON_FREE, s->object_size - 1) || | 
 | 			 !check_bytes_and_report(s, page, p, "Poison", | 
 | 				p + s->object_size - 1, POISON_END, 1))) | 
 | 			return 0; | 
 | 		/* | 
 | 		 * check_pad_bytes cleans up on its own. | 
 | 		 */ | 
 | 		check_pad_bytes(s, page, p); | 
 | 	} | 
 |  | 
 | 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) | 
 | 		/* | 
 | 		 * Object and freepointer overlap. Cannot check | 
 | 		 * freepointer while object is allocated. | 
 | 		 */ | 
 | 		return 1; | 
 |  | 
 | 	/* Check free pointer validity */ | 
 | 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
 | 		object_err(s, page, p, "Freepointer corrupt"); | 
 | 		/* | 
 | 		 * No choice but to zap it and thus lose the remainder | 
 | 		 * of the free objects in this slab. May cause | 
 | 		 * another error because the object count is now wrong. | 
 | 		 */ | 
 | 		set_freepointer(s, p, NULL); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int check_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	int maxobj; | 
 |  | 
 | 	VM_BUG_ON(!irqs_disabled()); | 
 |  | 
 | 	if (!PageSlab(page)) { | 
 | 		slab_err(s, page, "Not a valid slab page"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	maxobj = order_objects(compound_order(page), s->size); | 
 | 	if (page->objects > maxobj) { | 
 | 		slab_err(s, page, "objects %u > max %u", | 
 | 			page->objects, maxobj); | 
 | 		return 0; | 
 | 	} | 
 | 	if (page->inuse > page->objects) { | 
 | 		slab_err(s, page, "inuse %u > max %u", | 
 | 			page->inuse, page->objects); | 
 | 		return 0; | 
 | 	} | 
 | 	/* Slab_pad_check fixes things up after itself */ | 
 | 	slab_pad_check(s, page); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine if a certain object on a page is on the freelist. Must hold the | 
 |  * slab lock to guarantee that the chains are in a consistent state. | 
 |  */ | 
 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
 | { | 
 | 	int nr = 0; | 
 | 	void *fp; | 
 | 	void *object = NULL; | 
 | 	int max_objects; | 
 |  | 
 | 	fp = page->freelist; | 
 | 	while (fp && nr <= page->objects) { | 
 | 		if (fp == search) | 
 | 			return 1; | 
 | 		if (!check_valid_pointer(s, page, fp)) { | 
 | 			if (object) { | 
 | 				object_err(s, page, object, | 
 | 					"Freechain corrupt"); | 
 | 				set_freepointer(s, object, NULL); | 
 | 			} else { | 
 | 				slab_err(s, page, "Freepointer corrupt"); | 
 | 				page->freelist = NULL; | 
 | 				page->inuse = page->objects; | 
 | 				slab_fix(s, "Freelist cleared"); | 
 | 				return 0; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		object = fp; | 
 | 		fp = get_freepointer(s, object); | 
 | 		nr++; | 
 | 	} | 
 |  | 
 | 	max_objects = order_objects(compound_order(page), s->size); | 
 | 	if (max_objects > MAX_OBJS_PER_PAGE) | 
 | 		max_objects = MAX_OBJS_PER_PAGE; | 
 |  | 
 | 	if (page->objects != max_objects) { | 
 | 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d", | 
 | 			 page->objects, max_objects); | 
 | 		page->objects = max_objects; | 
 | 		slab_fix(s, "Number of objects adjusted."); | 
 | 	} | 
 | 	if (page->inuse != page->objects - nr) { | 
 | 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", | 
 | 			 page->inuse, page->objects - nr); | 
 | 		page->inuse = page->objects - nr; | 
 | 		slab_fix(s, "Object count adjusted."); | 
 | 	} | 
 | 	return search == NULL; | 
 | } | 
 |  | 
 | static void trace(struct kmem_cache *s, struct page *page, void *object, | 
 | 								int alloc) | 
 | { | 
 | 	if (s->flags & SLAB_TRACE) { | 
 | 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 
 | 			s->name, | 
 | 			alloc ? "alloc" : "free", | 
 | 			object, page->inuse, | 
 | 			page->freelist); | 
 |  | 
 | 		if (!alloc) | 
 | 			print_section(KERN_INFO, "Object ", (void *)object, | 
 | 					s->object_size); | 
 |  | 
 | 		dump_stack(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Tracking of fully allocated slabs for debugging purposes. | 
 |  */ | 
 | static void add_full(struct kmem_cache *s, | 
 | 	struct kmem_cache_node *n, struct page *page) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	lockdep_assert_held(&n->list_lock); | 
 | 	list_add(&page->slab_list, &n->full); | 
 | } | 
 |  | 
 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	lockdep_assert_held(&n->list_lock); | 
 | 	list_del(&page->slab_list); | 
 | } | 
 |  | 
 | /* Tracking of the number of slabs for debugging purposes */ | 
 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	return atomic_long_read(&n->nr_slabs); | 
 | } | 
 |  | 
 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
 | { | 
 | 	return atomic_long_read(&n->nr_slabs); | 
 | } | 
 |  | 
 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	/* | 
 | 	 * May be called early in order to allocate a slab for the | 
 | 	 * kmem_cache_node structure. Solve the chicken-egg | 
 | 	 * dilemma by deferring the increment of the count during | 
 | 	 * bootstrap (see early_kmem_cache_node_alloc). | 
 | 	 */ | 
 | 	if (likely(n)) { | 
 | 		atomic_long_inc(&n->nr_slabs); | 
 | 		atomic_long_add(objects, &n->total_objects); | 
 | 	} | 
 | } | 
 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	atomic_long_dec(&n->nr_slabs); | 
 | 	atomic_long_sub(objects, &n->total_objects); | 
 | } | 
 |  | 
 | /* Object debug checks for alloc/free paths */ | 
 | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 
 | 								void *object) | 
 | { | 
 | 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) | 
 | 		return; | 
 |  | 
 | 	init_object(s, object, SLUB_RED_INACTIVE); | 
 | 	init_tracking(s, object); | 
 | } | 
 |  | 
 | static | 
 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) | 
 | { | 
 | 	if (!kmem_cache_debug_flags(s, SLAB_POISON)) | 
 | 		return; | 
 |  | 
 | 	metadata_access_enable(); | 
 | 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); | 
 | 	metadata_access_disable(); | 
 | } | 
 |  | 
 | static inline int alloc_consistency_checks(struct kmem_cache *s, | 
 | 					struct page *page, void *object) | 
 | { | 
 | 	if (!check_slab(s, page)) | 
 | 		return 0; | 
 |  | 
 | 	if (!check_valid_pointer(s, page, object)) { | 
 | 		object_err(s, page, object, "Freelist Pointer check fails"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!check_object(s, page, object, SLUB_RED_INACTIVE)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static noinline int alloc_debug_processing(struct kmem_cache *s, | 
 | 					struct page *page, | 
 | 					void *object, unsigned long addr) | 
 | { | 
 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
 | 		if (!alloc_consistency_checks(s, page, object)) | 
 | 			goto bad; | 
 | 	} | 
 |  | 
 | 	/* Success perform special debug activities for allocs */ | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		set_track(s, object, TRACK_ALLOC, addr); | 
 | 	trace(s, page, object, 1); | 
 | 	init_object(s, object, SLUB_RED_ACTIVE); | 
 | 	return 1; | 
 |  | 
 | bad: | 
 | 	if (PageSlab(page)) { | 
 | 		/* | 
 | 		 * If this is a slab page then lets do the best we can | 
 | 		 * to avoid issues in the future. Marking all objects | 
 | 		 * as used avoids touching the remaining objects. | 
 | 		 */ | 
 | 		slab_fix(s, "Marking all objects used"); | 
 | 		page->inuse = page->objects; | 
 | 		page->freelist = NULL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int free_consistency_checks(struct kmem_cache *s, | 
 | 		struct page *page, void *object, unsigned long addr) | 
 | { | 
 | 	if (!check_valid_pointer(s, page, object)) { | 
 | 		slab_err(s, page, "Invalid object pointer 0x%p", object); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (on_freelist(s, page, object)) { | 
 | 		object_err(s, page, object, "Object already free"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!check_object(s, page, object, SLUB_RED_ACTIVE)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(s != page->slab_cache)) { | 
 | 		if (!PageSlab(page)) { | 
 | 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab", | 
 | 				 object); | 
 | 		} else if (!page->slab_cache) { | 
 | 			pr_err("SLUB <none>: no slab for object 0x%p.\n", | 
 | 			       object); | 
 | 			dump_stack(); | 
 | 		} else | 
 | 			object_err(s, page, object, | 
 | 					"page slab pointer corrupt."); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Supports checking bulk free of a constructed freelist */ | 
 | static noinline int free_debug_processing( | 
 | 	struct kmem_cache *s, struct page *page, | 
 | 	void *head, void *tail, int bulk_cnt, | 
 | 	unsigned long addr) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
 | 	void *object = head; | 
 | 	int cnt = 0; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 	slab_lock(page); | 
 |  | 
 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
 | 		if (!check_slab(s, page)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | next_object: | 
 | 	cnt++; | 
 |  | 
 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
 | 		if (!free_consistency_checks(s, page, object, addr)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		set_track(s, object, TRACK_FREE, addr); | 
 | 	trace(s, page, object, 0); | 
 | 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ | 
 | 	init_object(s, object, SLUB_RED_INACTIVE); | 
 |  | 
 | 	/* Reached end of constructed freelist yet? */ | 
 | 	if (object != tail) { | 
 | 		object = get_freepointer(s, object); | 
 | 		goto next_object; | 
 | 	} | 
 | 	ret = 1; | 
 |  | 
 | out: | 
 | 	if (cnt != bulk_cnt) | 
 | 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | 
 | 			 bulk_cnt, cnt); | 
 |  | 
 | 	slab_unlock(page); | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	if (!ret) | 
 | 		slab_fix(s, "Object at 0x%p not freed", object); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Parse a block of slub_debug options. Blocks are delimited by ';' | 
 |  * | 
 |  * @str:    start of block | 
 |  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | 
 |  * @slabs:  return start of list of slabs, or NULL when there's no list | 
 |  * @init:   assume this is initial parsing and not per-kmem-create parsing | 
 |  * | 
 |  * returns the start of next block if there's any, or NULL | 
 |  */ | 
 | static char * | 
 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | 
 | { | 
 | 	bool higher_order_disable = false; | 
 |  | 
 | 	/* Skip any completely empty blocks */ | 
 | 	while (*str && *str == ';') | 
 | 		str++; | 
 |  | 
 | 	if (*str == ',') { | 
 | 		/* | 
 | 		 * No options but restriction on slabs. This means full | 
 | 		 * debugging for slabs matching a pattern. | 
 | 		 */ | 
 | 		*flags = DEBUG_DEFAULT_FLAGS; | 
 | 		goto check_slabs; | 
 | 	} | 
 | 	*flags = 0; | 
 |  | 
 | 	/* Determine which debug features should be switched on */ | 
 | 	for (; *str && *str != ',' && *str != ';'; str++) { | 
 | 		switch (tolower(*str)) { | 
 | 		case '-': | 
 | 			*flags = 0; | 
 | 			break; | 
 | 		case 'f': | 
 | 			*flags |= SLAB_CONSISTENCY_CHECKS; | 
 | 			break; | 
 | 		case 'z': | 
 | 			*flags |= SLAB_RED_ZONE; | 
 | 			break; | 
 | 		case 'p': | 
 | 			*flags |= SLAB_POISON; | 
 | 			break; | 
 | 		case 'u': | 
 | 			*flags |= SLAB_STORE_USER; | 
 | 			break; | 
 | 		case 't': | 
 | 			*flags |= SLAB_TRACE; | 
 | 			break; | 
 | 		case 'a': | 
 | 			*flags |= SLAB_FAILSLAB; | 
 | 			break; | 
 | 		case 'o': | 
 | 			/* | 
 | 			 * Avoid enabling debugging on caches if its minimum | 
 | 			 * order would increase as a result. | 
 | 			 */ | 
 | 			higher_order_disable = true; | 
 | 			break; | 
 | 		default: | 
 | 			if (init) | 
 | 				pr_err("slub_debug option '%c' unknown. skipped\n", *str); | 
 | 		} | 
 | 	} | 
 | check_slabs: | 
 | 	if (*str == ',') | 
 | 		*slabs = ++str; | 
 | 	else | 
 | 		*slabs = NULL; | 
 |  | 
 | 	/* Skip over the slab list */ | 
 | 	while (*str && *str != ';') | 
 | 		str++; | 
 |  | 
 | 	/* Skip any completely empty blocks */ | 
 | 	while (*str && *str == ';') | 
 | 		str++; | 
 |  | 
 | 	if (init && higher_order_disable) | 
 | 		disable_higher_order_debug = 1; | 
 |  | 
 | 	if (*str) | 
 | 		return str; | 
 | 	else | 
 | 		return NULL; | 
 | } | 
 |  | 
 | static int __init setup_slub_debug(char *str) | 
 | { | 
 | 	slab_flags_t flags; | 
 | 	char *saved_str; | 
 | 	char *slab_list; | 
 | 	bool global_slub_debug_changed = false; | 
 | 	bool slab_list_specified = false; | 
 |  | 
 | 	slub_debug = DEBUG_DEFAULT_FLAGS; | 
 | 	if (*str++ != '=' || !*str) | 
 | 		/* | 
 | 		 * No options specified. Switch on full debugging. | 
 | 		 */ | 
 | 		goto out; | 
 |  | 
 | 	saved_str = str; | 
 | 	while (str) { | 
 | 		str = parse_slub_debug_flags(str, &flags, &slab_list, true); | 
 |  | 
 | 		if (!slab_list) { | 
 | 			slub_debug = flags; | 
 | 			global_slub_debug_changed = true; | 
 | 		} else { | 
 | 			slab_list_specified = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For backwards compatibility, a single list of flags with list of | 
 | 	 * slabs means debugging is only enabled for those slabs, so the global | 
 | 	 * slub_debug should be 0. We can extended that to multiple lists as | 
 | 	 * long as there is no option specifying flags without a slab list. | 
 | 	 */ | 
 | 	if (slab_list_specified) { | 
 | 		if (!global_slub_debug_changed) | 
 | 			slub_debug = 0; | 
 | 		slub_debug_string = saved_str; | 
 | 	} | 
 | out: | 
 | 	if (slub_debug != 0 || slub_debug_string) | 
 | 		static_branch_enable(&slub_debug_enabled); | 
 | 	if ((static_branch_unlikely(&init_on_alloc) || | 
 | 	     static_branch_unlikely(&init_on_free)) && | 
 | 	    (slub_debug & SLAB_POISON)) | 
 | 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_debug", setup_slub_debug); | 
 |  | 
 | /* | 
 |  * kmem_cache_flags - apply debugging options to the cache | 
 |  * @object_size:	the size of an object without meta data | 
 |  * @flags:		flags to set | 
 |  * @name:		name of the cache | 
 |  * | 
 |  * Debug option(s) are applied to @flags. In addition to the debug | 
 |  * option(s), if a slab name (or multiple) is specified i.e. | 
 |  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... | 
 |  * then only the select slabs will receive the debug option(s). | 
 |  */ | 
 | slab_flags_t kmem_cache_flags(unsigned int object_size, | 
 | 	slab_flags_t flags, const char *name) | 
 | { | 
 | 	char *iter; | 
 | 	size_t len; | 
 | 	char *next_block; | 
 | 	slab_flags_t block_flags; | 
 | 	slab_flags_t slub_debug_local = slub_debug; | 
 |  | 
 | 	/* | 
 | 	 * If the slab cache is for debugging (e.g. kmemleak) then | 
 | 	 * don't store user (stack trace) information by default, | 
 | 	 * but let the user enable it via the command line below. | 
 | 	 */ | 
 | 	if (flags & SLAB_NOLEAKTRACE) | 
 | 		slub_debug_local &= ~SLAB_STORE_USER; | 
 |  | 
 | 	len = strlen(name); | 
 | 	next_block = slub_debug_string; | 
 | 	/* Go through all blocks of debug options, see if any matches our slab's name */ | 
 | 	while (next_block) { | 
 | 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | 
 | 		if (!iter) | 
 | 			continue; | 
 | 		/* Found a block that has a slab list, search it */ | 
 | 		while (*iter) { | 
 | 			char *end, *glob; | 
 | 			size_t cmplen; | 
 |  | 
 | 			end = strchrnul(iter, ','); | 
 | 			if (next_block && next_block < end) | 
 | 				end = next_block - 1; | 
 |  | 
 | 			glob = strnchr(iter, end - iter, '*'); | 
 | 			if (glob) | 
 | 				cmplen = glob - iter; | 
 | 			else | 
 | 				cmplen = max_t(size_t, len, (end - iter)); | 
 |  | 
 | 			if (!strncmp(name, iter, cmplen)) { | 
 | 				flags |= block_flags; | 
 | 				return flags; | 
 | 			} | 
 |  | 
 | 			if (!*end || *end == ';') | 
 | 				break; | 
 | 			iter = end + 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return flags | slub_debug_local; | 
 | } | 
 | #else /* !CONFIG_SLUB_DEBUG */ | 
 | static inline void setup_object_debug(struct kmem_cache *s, | 
 | 			struct page *page, void *object) {} | 
 | static inline | 
 | void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} | 
 |  | 
 | static inline int alloc_debug_processing(struct kmem_cache *s, | 
 | 	struct page *page, void *object, unsigned long addr) { return 0; } | 
 |  | 
 | static inline int free_debug_processing( | 
 | 	struct kmem_cache *s, struct page *page, | 
 | 	void *head, void *tail, int bulk_cnt, | 
 | 	unsigned long addr) { return 0; } | 
 |  | 
 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 
 | 			{ return 1; } | 
 | static inline int check_object(struct kmem_cache *s, struct page *page, | 
 | 			void *object, u8 val) { return 1; } | 
 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
 | 					struct page *page) {} | 
 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
 | 					struct page *page) {} | 
 | slab_flags_t kmem_cache_flags(unsigned int object_size, | 
 | 	slab_flags_t flags, const char *name) | 
 | { | 
 | 	return flags; | 
 | } | 
 | #define slub_debug 0 | 
 |  | 
 | #define disable_higher_order_debug 0 | 
 |  | 
 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
 | 							{ return 0; } | 
 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
 | 							{ return 0; } | 
 | static inline void inc_slabs_node(struct kmem_cache *s, int node, | 
 | 							int objects) {} | 
 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | 
 | 							int objects) {} | 
 |  | 
 | static bool freelist_corrupted(struct kmem_cache *s, struct page *page, | 
 | 			       void **freelist, void *nextfree) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_SLUB_DEBUG */ | 
 |  | 
 | /* | 
 |  * Hooks for other subsystems that check memory allocations. In a typical | 
 |  * production configuration these hooks all should produce no code at all. | 
 |  */ | 
 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) | 
 | { | 
 | 	ptr = kasan_kmalloc_large(ptr, size, flags); | 
 | 	/* As ptr might get tagged, call kmemleak hook after KASAN. */ | 
 | 	kmemleak_alloc(ptr, size, 1, flags); | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static __always_inline void kfree_hook(void *x) | 
 | { | 
 | 	kmemleak_free(x); | 
 | 	kasan_kfree_large(x); | 
 | } | 
 |  | 
 | static __always_inline bool slab_free_hook(struct kmem_cache *s, | 
 | 						void *x, bool init) | 
 | { | 
 | 	kmemleak_free_recursive(x, s->flags); | 
 |  | 
 | 	/* | 
 | 	 * Trouble is that we may no longer disable interrupts in the fast path | 
 | 	 * So in order to make the debug calls that expect irqs to be | 
 | 	 * disabled we need to disable interrupts temporarily. | 
 | 	 */ | 
 | #ifdef CONFIG_LOCKDEP | 
 | 	{ | 
 | 		unsigned long flags; | 
 |  | 
 | 		local_irq_save(flags); | 
 | 		debug_check_no_locks_freed(x, s->object_size); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | #endif | 
 | 	if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 
 | 		debug_check_no_obj_freed(x, s->object_size); | 
 |  | 
 | 	/* Use KCSAN to help debug racy use-after-free. */ | 
 | 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) | 
 | 		__kcsan_check_access(x, s->object_size, | 
 | 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | 
 |  | 
 | 	/* | 
 | 	 * As memory initialization might be integrated into KASAN, | 
 | 	 * kasan_slab_free and initialization memset's must be | 
 | 	 * kept together to avoid discrepancies in behavior. | 
 | 	 * | 
 | 	 * The initialization memset's clear the object and the metadata, | 
 | 	 * but don't touch the SLAB redzone. | 
 | 	 */ | 
 | 	if (init) { | 
 | 		int rsize; | 
 |  | 
 | 		if (!kasan_has_integrated_init()) | 
 | 			memset(kasan_reset_tag(x), 0, s->object_size); | 
 | 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; | 
 | 		memset((char *)kasan_reset_tag(x) + s->inuse, 0, | 
 | 		       s->size - s->inuse - rsize); | 
 | 	} | 
 | 	/* KASAN might put x into memory quarantine, delaying its reuse. */ | 
 | 	return kasan_slab_free(s, x, init); | 
 | } | 
 |  | 
 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, | 
 | 					   void **head, void **tail) | 
 | { | 
 |  | 
 | 	void *object; | 
 | 	void *next = *head; | 
 | 	void *old_tail = *tail ? *tail : *head; | 
 |  | 
 | 	if (is_kfence_address(next)) { | 
 | 		slab_free_hook(s, next, false); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* Head and tail of the reconstructed freelist */ | 
 | 	*head = NULL; | 
 | 	*tail = NULL; | 
 |  | 
 | 	do { | 
 | 		object = next; | 
 | 		next = get_freepointer(s, object); | 
 |  | 
 | 		/* If object's reuse doesn't have to be delayed */ | 
 | 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { | 
 | 			/* Move object to the new freelist */ | 
 | 			set_freepointer(s, object, *head); | 
 | 			*head = object; | 
 | 			if (!*tail) | 
 | 				*tail = object; | 
 | 		} | 
 | 	} while (object != old_tail); | 
 |  | 
 | 	if (*head == *tail) | 
 | 		*tail = NULL; | 
 |  | 
 | 	return *head != NULL; | 
 | } | 
 |  | 
 | static void *setup_object(struct kmem_cache *s, struct page *page, | 
 | 				void *object) | 
 | { | 
 | 	setup_object_debug(s, page, object); | 
 | 	object = kasan_init_slab_obj(s, object); | 
 | 	if (unlikely(s->ctor)) { | 
 | 		kasan_unpoison_object_data(s, object); | 
 | 		s->ctor(object); | 
 | 		kasan_poison_object_data(s, object); | 
 | 	} | 
 | 	return object; | 
 | } | 
 |  | 
 | /* | 
 |  * Slab allocation and freeing | 
 |  */ | 
 | static inline struct page *alloc_slab_page(struct kmem_cache *s, | 
 | 		gfp_t flags, int node, struct kmem_cache_order_objects oo) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned int order = oo_order(oo); | 
 |  | 
 | 	if (node == NUMA_NO_NODE) | 
 | 		page = alloc_pages(flags, order); | 
 | 	else | 
 | 		page = __alloc_pages_node(node, flags, order); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
 | /* Pre-initialize the random sequence cache */ | 
 | static int init_cache_random_seq(struct kmem_cache *s) | 
 | { | 
 | 	unsigned int count = oo_objects(s->oo); | 
 | 	int err; | 
 |  | 
 | 	/* Bailout if already initialised */ | 
 | 	if (s->random_seq) | 
 | 		return 0; | 
 |  | 
 | 	err = cache_random_seq_create(s, count, GFP_KERNEL); | 
 | 	if (err) { | 
 | 		pr_err("SLUB: Unable to initialize free list for %s\n", | 
 | 			s->name); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Transform to an offset on the set of pages */ | 
 | 	if (s->random_seq) { | 
 | 		unsigned int i; | 
 |  | 
 | 		for (i = 0; i < count; i++) | 
 | 			s->random_seq[i] *= s->size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Initialize each random sequence freelist per cache */ | 
 | static void __init init_freelist_randomization(void) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	mutex_lock(&slab_mutex); | 
 |  | 
 | 	list_for_each_entry(s, &slab_caches, list) | 
 | 		init_cache_random_seq(s); | 
 |  | 
 | 	mutex_unlock(&slab_mutex); | 
 | } | 
 |  | 
 | /* Get the next entry on the pre-computed freelist randomized */ | 
 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | 
 | 				unsigned long *pos, void *start, | 
 | 				unsigned long page_limit, | 
 | 				unsigned long freelist_count) | 
 | { | 
 | 	unsigned int idx; | 
 |  | 
 | 	/* | 
 | 	 * If the target page allocation failed, the number of objects on the | 
 | 	 * page might be smaller than the usual size defined by the cache. | 
 | 	 */ | 
 | 	do { | 
 | 		idx = s->random_seq[*pos]; | 
 | 		*pos += 1; | 
 | 		if (*pos >= freelist_count) | 
 | 			*pos = 0; | 
 | 	} while (unlikely(idx >= page_limit)); | 
 |  | 
 | 	return (char *)start + idx; | 
 | } | 
 |  | 
 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | 
 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	void *start; | 
 | 	void *cur; | 
 | 	void *next; | 
 | 	unsigned long idx, pos, page_limit, freelist_count; | 
 |  | 
 | 	if (page->objects < 2 || !s->random_seq) | 
 | 		return false; | 
 |  | 
 | 	freelist_count = oo_objects(s->oo); | 
 | 	pos = get_random_int() % freelist_count; | 
 |  | 
 | 	page_limit = page->objects * s->size; | 
 | 	start = fixup_red_left(s, page_address(page)); | 
 |  | 
 | 	/* First entry is used as the base of the freelist */ | 
 | 	cur = next_freelist_entry(s, page, &pos, start, page_limit, | 
 | 				freelist_count); | 
 | 	cur = setup_object(s, page, cur); | 
 | 	page->freelist = cur; | 
 |  | 
 | 	for (idx = 1; idx < page->objects; idx++) { | 
 | 		next = next_freelist_entry(s, page, &pos, start, page_limit, | 
 | 			freelist_count); | 
 | 		next = setup_object(s, page, next); | 
 | 		set_freepointer(s, cur, next); | 
 | 		cur = next; | 
 | 	} | 
 | 	set_freepointer(s, cur, NULL); | 
 |  | 
 | 	return true; | 
 | } | 
 | #else | 
 | static inline int init_cache_random_seq(struct kmem_cache *s) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static inline void init_freelist_randomization(void) { } | 
 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
 |  | 
 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kmem_cache_order_objects oo = s->oo; | 
 | 	gfp_t alloc_gfp; | 
 | 	void *start, *p, *next; | 
 | 	int idx; | 
 | 	bool shuffle; | 
 |  | 
 | 	flags &= gfp_allowed_mask; | 
 |  | 
 | 	if (gfpflags_allow_blocking(flags)) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	flags |= s->allocflags; | 
 |  | 
 | 	/* | 
 | 	 * Let the initial higher-order allocation fail under memory pressure | 
 | 	 * so we fall-back to the minimum order allocation. | 
 | 	 */ | 
 | 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | 
 | 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) | 
 | 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); | 
 |  | 
 | 	page = alloc_slab_page(s, alloc_gfp, node, oo); | 
 | 	if (unlikely(!page)) { | 
 | 		oo = s->min; | 
 | 		alloc_gfp = flags; | 
 | 		/* | 
 | 		 * Allocation may have failed due to fragmentation. | 
 | 		 * Try a lower order alloc if possible | 
 | 		 */ | 
 | 		page = alloc_slab_page(s, alloc_gfp, node, oo); | 
 | 		if (unlikely(!page)) | 
 | 			goto out; | 
 | 		stat(s, ORDER_FALLBACK); | 
 | 	} | 
 |  | 
 | 	page->objects = oo_objects(oo); | 
 |  | 
 | 	account_slab_page(page, oo_order(oo), s, flags); | 
 |  | 
 | 	page->slab_cache = s; | 
 | 	__SetPageSlab(page); | 
 | 	if (page_is_pfmemalloc(page)) | 
 | 		SetPageSlabPfmemalloc(page); | 
 |  | 
 | 	kasan_poison_slab(page); | 
 |  | 
 | 	start = page_address(page); | 
 |  | 
 | 	setup_page_debug(s, page, start); | 
 |  | 
 | 	shuffle = shuffle_freelist(s, page); | 
 |  | 
 | 	if (!shuffle) { | 
 | 		start = fixup_red_left(s, start); | 
 | 		start = setup_object(s, page, start); | 
 | 		page->freelist = start; | 
 | 		for (idx = 0, p = start; idx < page->objects - 1; idx++) { | 
 | 			next = p + s->size; | 
 | 			next = setup_object(s, page, next); | 
 | 			set_freepointer(s, p, next); | 
 | 			p = next; | 
 | 		} | 
 | 		set_freepointer(s, p, NULL); | 
 | 	} | 
 |  | 
 | 	page->inuse = page->objects; | 
 | 	page->frozen = 1; | 
 |  | 
 | out: | 
 | 	if (gfpflags_allow_blocking(flags)) | 
 | 		local_irq_disable(); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	inc_slabs_node(s, page_to_nid(page), page->objects); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
 | { | 
 | 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) | 
 | 		flags = kmalloc_fix_flags(flags); | 
 |  | 
 | 	return allocate_slab(s, | 
 | 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 
 | } | 
 |  | 
 | static void __free_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	int order = compound_order(page); | 
 | 	int pages = 1 << order; | 
 |  | 
 | 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { | 
 | 		void *p; | 
 |  | 
 | 		slab_pad_check(s, page); | 
 | 		for_each_object(p, s, page_address(page), | 
 | 						page->objects) | 
 | 			check_object(s, page, p, SLUB_RED_INACTIVE); | 
 | 	} | 
 |  | 
 | 	__ClearPageSlabPfmemalloc(page); | 
 | 	__ClearPageSlab(page); | 
 | 	/* In union with page->mapping where page allocator expects NULL */ | 
 | 	page->slab_cache = NULL; | 
 | 	if (current->reclaim_state) | 
 | 		current->reclaim_state->reclaimed_slab += pages; | 
 | 	unaccount_slab_page(page, order, s); | 
 | 	__free_pages(page, order); | 
 | } | 
 |  | 
 | static void rcu_free_slab(struct rcu_head *h) | 
 | { | 
 | 	struct page *page = container_of(h, struct page, rcu_head); | 
 |  | 
 | 	__free_slab(page->slab_cache, page); | 
 | } | 
 |  | 
 | static void free_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { | 
 | 		call_rcu(&page->rcu_head, rcu_free_slab); | 
 | 	} else | 
 | 		__free_slab(s, page); | 
 | } | 
 |  | 
 | static void discard_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	dec_slabs_node(s, page_to_nid(page), page->objects); | 
 | 	free_slab(s, page); | 
 | } | 
 |  | 
 | /* | 
 |  * Management of partially allocated slabs. | 
 |  */ | 
 | static inline void | 
 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | 
 | { | 
 | 	n->nr_partial++; | 
 | 	if (tail == DEACTIVATE_TO_TAIL) | 
 | 		list_add_tail(&page->slab_list, &n->partial); | 
 | 	else | 
 | 		list_add(&page->slab_list, &n->partial); | 
 | } | 
 |  | 
 | static inline void add_partial(struct kmem_cache_node *n, | 
 | 				struct page *page, int tail) | 
 | { | 
 | 	lockdep_assert_held(&n->list_lock); | 
 | 	__add_partial(n, page, tail); | 
 | } | 
 |  | 
 | static inline void remove_partial(struct kmem_cache_node *n, | 
 | 					struct page *page) | 
 | { | 
 | 	lockdep_assert_held(&n->list_lock); | 
 | 	list_del(&page->slab_list); | 
 | 	n->nr_partial--; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove slab from the partial list, freeze it and | 
 |  * return the pointer to the freelist. | 
 |  * | 
 |  * Returns a list of objects or NULL if it fails. | 
 |  */ | 
 | static inline void *acquire_slab(struct kmem_cache *s, | 
 | 		struct kmem_cache_node *n, struct page *page, | 
 | 		int mode, int *objects) | 
 | { | 
 | 	void *freelist; | 
 | 	unsigned long counters; | 
 | 	struct page new; | 
 |  | 
 | 	lockdep_assert_held(&n->list_lock); | 
 |  | 
 | 	/* | 
 | 	 * Zap the freelist and set the frozen bit. | 
 | 	 * The old freelist is the list of objects for the | 
 | 	 * per cpu allocation list. | 
 | 	 */ | 
 | 	freelist = page->freelist; | 
 | 	counters = page->counters; | 
 | 	new.counters = counters; | 
 | 	*objects = new.objects - new.inuse; | 
 | 	if (mode) { | 
 | 		new.inuse = page->objects; | 
 | 		new.freelist = NULL; | 
 | 	} else { | 
 | 		new.freelist = freelist; | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON(new.frozen); | 
 | 	new.frozen = 1; | 
 |  | 
 | 	if (!__cmpxchg_double_slab(s, page, | 
 | 			freelist, counters, | 
 | 			new.freelist, new.counters, | 
 | 			"acquire_slab")) | 
 | 		return NULL; | 
 |  | 
 | 	remove_partial(n, page); | 
 | 	WARN_ON(!freelist); | 
 | 	return freelist; | 
 | } | 
 |  | 
 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); | 
 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); | 
 |  | 
 | /* | 
 |  * Try to allocate a partial slab from a specific node. | 
 |  */ | 
 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, | 
 | 				struct kmem_cache_cpu *c, gfp_t flags) | 
 | { | 
 | 	struct page *page, *page2; | 
 | 	void *object = NULL; | 
 | 	unsigned int available = 0; | 
 | 	int objects; | 
 |  | 
 | 	/* | 
 | 	 * Racy check. If we mistakenly see no partial slabs then we | 
 | 	 * just allocate an empty slab. If we mistakenly try to get a | 
 | 	 * partial slab and there is none available then get_partial() | 
 | 	 * will return NULL. | 
 | 	 */ | 
 | 	if (!n || !n->nr_partial) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock(&n->list_lock); | 
 | 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) { | 
 | 		void *t; | 
 |  | 
 | 		if (!pfmemalloc_match(page, flags)) | 
 | 			continue; | 
 |  | 
 | 		t = acquire_slab(s, n, page, object == NULL, &objects); | 
 | 		if (!t) | 
 | 			break; | 
 |  | 
 | 		available += objects; | 
 | 		if (!object) { | 
 | 			c->page = page; | 
 | 			stat(s, ALLOC_FROM_PARTIAL); | 
 | 			object = t; | 
 | 		} else { | 
 | 			put_cpu_partial(s, page, 0); | 
 | 			stat(s, CPU_PARTIAL_NODE); | 
 | 		} | 
 | 		if (!kmem_cache_has_cpu_partial(s) | 
 | 			|| available > slub_cpu_partial(s) / 2) | 
 | 			break; | 
 |  | 
 | 	} | 
 | 	spin_unlock(&n->list_lock); | 
 | 	return object; | 
 | } | 
 |  | 
 | /* | 
 |  * Get a page from somewhere. Search in increasing NUMA distances. | 
 |  */ | 
 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, | 
 | 		struct kmem_cache_cpu *c) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	struct zonelist *zonelist; | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	enum zone_type highest_zoneidx = gfp_zone(flags); | 
 | 	void *object; | 
 | 	unsigned int cpuset_mems_cookie; | 
 |  | 
 | 	/* | 
 | 	 * The defrag ratio allows a configuration of the tradeoffs between | 
 | 	 * inter node defragmentation and node local allocations. A lower | 
 | 	 * defrag_ratio increases the tendency to do local allocations | 
 | 	 * instead of attempting to obtain partial slabs from other nodes. | 
 | 	 * | 
 | 	 * If the defrag_ratio is set to 0 then kmalloc() always | 
 | 	 * returns node local objects. If the ratio is higher then kmalloc() | 
 | 	 * may return off node objects because partial slabs are obtained | 
 | 	 * from other nodes and filled up. | 
 | 	 * | 
 | 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 | 
 | 	 * (which makes defrag_ratio = 1000) then every (well almost) | 
 | 	 * allocation will first attempt to defrag slab caches on other nodes. | 
 | 	 * This means scanning over all nodes to look for partial slabs which | 
 | 	 * may be expensive if we do it every time we are trying to find a slab | 
 | 	 * with available objects. | 
 | 	 */ | 
 | 	if (!s->remote_node_defrag_ratio || | 
 | 			get_cycles() % 1024 > s->remote_node_defrag_ratio) | 
 | 		return NULL; | 
 |  | 
 | 	do { | 
 | 		cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 		zonelist = node_zonelist(mempolicy_slab_node(), flags); | 
 | 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { | 
 | 			struct kmem_cache_node *n; | 
 |  | 
 | 			n = get_node(s, zone_to_nid(zone)); | 
 |  | 
 | 			if (n && cpuset_zone_allowed(zone, flags) && | 
 | 					n->nr_partial > s->min_partial) { | 
 | 				object = get_partial_node(s, n, c, flags); | 
 | 				if (object) { | 
 | 					/* | 
 | 					 * Don't check read_mems_allowed_retry() | 
 | 					 * here - if mems_allowed was updated in | 
 | 					 * parallel, that was a harmless race | 
 | 					 * between allocation and the cpuset | 
 | 					 * update | 
 | 					 */ | 
 | 					return object; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
 | #endif	/* CONFIG_NUMA */ | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Get a partial page, lock it and return it. | 
 |  */ | 
 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, | 
 | 		struct kmem_cache_cpu *c) | 
 | { | 
 | 	void *object; | 
 | 	int searchnode = node; | 
 |  | 
 | 	if (node == NUMA_NO_NODE) | 
 | 		searchnode = numa_mem_id(); | 
 |  | 
 | 	object = get_partial_node(s, get_node(s, searchnode), c, flags); | 
 | 	if (object || node != NUMA_NO_NODE) | 
 | 		return object; | 
 |  | 
 | 	return get_any_partial(s, flags, c); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPTION | 
 | /* | 
 |  * Calculate the next globally unique transaction for disambiguation | 
 |  * during cmpxchg. The transactions start with the cpu number and are then | 
 |  * incremented by CONFIG_NR_CPUS. | 
 |  */ | 
 | #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS) | 
 | #else | 
 | /* | 
 |  * No preemption supported therefore also no need to check for | 
 |  * different cpus. | 
 |  */ | 
 | #define TID_STEP 1 | 
 | #endif | 
 |  | 
 | static inline unsigned long next_tid(unsigned long tid) | 
 | { | 
 | 	return tid + TID_STEP; | 
 | } | 
 |  | 
 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | static inline unsigned int tid_to_cpu(unsigned long tid) | 
 | { | 
 | 	return tid % TID_STEP; | 
 | } | 
 |  | 
 | static inline unsigned long tid_to_event(unsigned long tid) | 
 | { | 
 | 	return tid / TID_STEP; | 
 | } | 
 | #endif | 
 |  | 
 | static inline unsigned int init_tid(int cpu) | 
 | { | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static inline void note_cmpxchg_failure(const char *n, | 
 | 		const struct kmem_cache *s, unsigned long tid) | 
 | { | 
 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | 
 |  | 
 | 	pr_info("%s %s: cmpxchg redo ", n, s->name); | 
 |  | 
 | #ifdef CONFIG_PREEMPTION | 
 | 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | 
 | 		pr_warn("due to cpu change %d -> %d\n", | 
 | 			tid_to_cpu(tid), tid_to_cpu(actual_tid)); | 
 | 	else | 
 | #endif | 
 | 	if (tid_to_event(tid) != tid_to_event(actual_tid)) | 
 | 		pr_warn("due to cpu running other code. Event %ld->%ld\n", | 
 | 			tid_to_event(tid), tid_to_event(actual_tid)); | 
 | 	else | 
 | 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", | 
 | 			actual_tid, tid, next_tid(tid)); | 
 | #endif | 
 | 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL); | 
 | } | 
 |  | 
 | static void init_kmem_cache_cpus(struct kmem_cache *s) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the cpu slab | 
 |  */ | 
 | static void deactivate_slab(struct kmem_cache *s, struct page *page, | 
 | 				void *freelist, struct kmem_cache_cpu *c) | 
 | { | 
 | 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; | 
 | 	struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
 | 	int lock = 0, free_delta = 0; | 
 | 	enum slab_modes l = M_NONE, m = M_NONE; | 
 | 	void *nextfree, *freelist_iter, *freelist_tail; | 
 | 	int tail = DEACTIVATE_TO_HEAD; | 
 | 	struct page new; | 
 | 	struct page old; | 
 |  | 
 | 	if (page->freelist) { | 
 | 		stat(s, DEACTIVATE_REMOTE_FREES); | 
 | 		tail = DEACTIVATE_TO_TAIL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Stage one: Count the objects on cpu's freelist as free_delta and | 
 | 	 * remember the last object in freelist_tail for later splicing. | 
 | 	 */ | 
 | 	freelist_tail = NULL; | 
 | 	freelist_iter = freelist; | 
 | 	while (freelist_iter) { | 
 | 		nextfree = get_freepointer(s, freelist_iter); | 
 |  | 
 | 		/* | 
 | 		 * If 'nextfree' is invalid, it is possible that the object at | 
 | 		 * 'freelist_iter' is already corrupted.  So isolate all objects | 
 | 		 * starting at 'freelist_iter' by skipping them. | 
 | 		 */ | 
 | 		if (freelist_corrupted(s, page, &freelist_iter, nextfree)) | 
 | 			break; | 
 |  | 
 | 		freelist_tail = freelist_iter; | 
 | 		free_delta++; | 
 |  | 
 | 		freelist_iter = nextfree; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Stage two: Unfreeze the page while splicing the per-cpu | 
 | 	 * freelist to the head of page's freelist. | 
 | 	 * | 
 | 	 * Ensure that the page is unfrozen while the list presence | 
 | 	 * reflects the actual number of objects during unfreeze. | 
 | 	 * | 
 | 	 * We setup the list membership and then perform a cmpxchg | 
 | 	 * with the count. If there is a mismatch then the page | 
 | 	 * is not unfrozen but the page is on the wrong list. | 
 | 	 * | 
 | 	 * Then we restart the process which may have to remove | 
 | 	 * the page from the list that we just put it on again | 
 | 	 * because the number of objects in the slab may have | 
 | 	 * changed. | 
 | 	 */ | 
 | redo: | 
 |  | 
 | 	old.freelist = READ_ONCE(page->freelist); | 
 | 	old.counters = READ_ONCE(page->counters); | 
 | 	VM_BUG_ON(!old.frozen); | 
 |  | 
 | 	/* Determine target state of the slab */ | 
 | 	new.counters = old.counters; | 
 | 	if (freelist_tail) { | 
 | 		new.inuse -= free_delta; | 
 | 		set_freepointer(s, freelist_tail, old.freelist); | 
 | 		new.freelist = freelist; | 
 | 	} else | 
 | 		new.freelist = old.freelist; | 
 |  | 
 | 	new.frozen = 0; | 
 |  | 
 | 	if (!new.inuse && n->nr_partial >= s->min_partial) | 
 | 		m = M_FREE; | 
 | 	else if (new.freelist) { | 
 | 		m = M_PARTIAL; | 
 | 		if (!lock) { | 
 | 			lock = 1; | 
 | 			/* | 
 | 			 * Taking the spinlock removes the possibility | 
 | 			 * that acquire_slab() will see a slab page that | 
 | 			 * is frozen | 
 | 			 */ | 
 | 			spin_lock(&n->list_lock); | 
 | 		} | 
 | 	} else { | 
 | 		m = M_FULL; | 
 | 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { | 
 | 			lock = 1; | 
 | 			/* | 
 | 			 * This also ensures that the scanning of full | 
 | 			 * slabs from diagnostic functions will not see | 
 | 			 * any frozen slabs. | 
 | 			 */ | 
 | 			spin_lock(&n->list_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (l != m) { | 
 | 		if (l == M_PARTIAL) | 
 | 			remove_partial(n, page); | 
 | 		else if (l == M_FULL) | 
 | 			remove_full(s, n, page); | 
 |  | 
 | 		if (m == M_PARTIAL) | 
 | 			add_partial(n, page, tail); | 
 | 		else if (m == M_FULL) | 
 | 			add_full(s, n, page); | 
 | 	} | 
 |  | 
 | 	l = m; | 
 | 	if (!__cmpxchg_double_slab(s, page, | 
 | 				old.freelist, old.counters, | 
 | 				new.freelist, new.counters, | 
 | 				"unfreezing slab")) | 
 | 		goto redo; | 
 |  | 
 | 	if (lock) | 
 | 		spin_unlock(&n->list_lock); | 
 |  | 
 | 	if (m == M_PARTIAL) | 
 | 		stat(s, tail); | 
 | 	else if (m == M_FULL) | 
 | 		stat(s, DEACTIVATE_FULL); | 
 | 	else if (m == M_FREE) { | 
 | 		stat(s, DEACTIVATE_EMPTY); | 
 | 		discard_slab(s, page); | 
 | 		stat(s, FREE_SLAB); | 
 | 	} | 
 |  | 
 | 	c->page = NULL; | 
 | 	c->freelist = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Unfreeze all the cpu partial slabs. | 
 |  * | 
 |  * This function must be called with interrupts disabled | 
 |  * for the cpu using c (or some other guarantee must be there | 
 |  * to guarantee no concurrent accesses). | 
 |  */ | 
 | static void unfreeze_partials(struct kmem_cache *s, | 
 | 		struct kmem_cache_cpu *c) | 
 | { | 
 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 	struct kmem_cache_node *n = NULL, *n2 = NULL; | 
 | 	struct page *page, *discard_page = NULL; | 
 |  | 
 | 	while ((page = slub_percpu_partial(c))) { | 
 | 		struct page new; | 
 | 		struct page old; | 
 |  | 
 | 		slub_set_percpu_partial(c, page); | 
 |  | 
 | 		n2 = get_node(s, page_to_nid(page)); | 
 | 		if (n != n2) { | 
 | 			if (n) | 
 | 				spin_unlock(&n->list_lock); | 
 |  | 
 | 			n = n2; | 
 | 			spin_lock(&n->list_lock); | 
 | 		} | 
 |  | 
 | 		do { | 
 |  | 
 | 			old.freelist = page->freelist; | 
 | 			old.counters = page->counters; | 
 | 			VM_BUG_ON(!old.frozen); | 
 |  | 
 | 			new.counters = old.counters; | 
 | 			new.freelist = old.freelist; | 
 |  | 
 | 			new.frozen = 0; | 
 |  | 
 | 		} while (!__cmpxchg_double_slab(s, page, | 
 | 				old.freelist, old.counters, | 
 | 				new.freelist, new.counters, | 
 | 				"unfreezing slab")); | 
 |  | 
 | 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { | 
 | 			page->next = discard_page; | 
 | 			discard_page = page; | 
 | 		} else { | 
 | 			add_partial(n, page, DEACTIVATE_TO_TAIL); | 
 | 			stat(s, FREE_ADD_PARTIAL); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (n) | 
 | 		spin_unlock(&n->list_lock); | 
 |  | 
 | 	while (discard_page) { | 
 | 		page = discard_page; | 
 | 		discard_page = discard_page->next; | 
 |  | 
 | 		stat(s, DEACTIVATE_EMPTY); | 
 | 		discard_slab(s, page); | 
 | 		stat(s, FREE_SLAB); | 
 | 	} | 
 | #endif	/* CONFIG_SLUB_CPU_PARTIAL */ | 
 | } | 
 |  | 
 | /* | 
 |  * Put a page that was just frozen (in __slab_free|get_partial_node) into a | 
 |  * partial page slot if available. | 
 |  * | 
 |  * If we did not find a slot then simply move all the partials to the | 
 |  * per node partial list. | 
 |  */ | 
 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) | 
 | { | 
 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 	struct page *oldpage; | 
 | 	int pages; | 
 | 	int pobjects; | 
 |  | 
 | 	preempt_disable(); | 
 | 	do { | 
 | 		pages = 0; | 
 | 		pobjects = 0; | 
 | 		oldpage = this_cpu_read(s->cpu_slab->partial); | 
 |  | 
 | 		if (oldpage) { | 
 | 			pobjects = oldpage->pobjects; | 
 | 			pages = oldpage->pages; | 
 | 			if (drain && pobjects > slub_cpu_partial(s)) { | 
 | 				unsigned long flags; | 
 | 				/* | 
 | 				 * partial array is full. Move the existing | 
 | 				 * set to the per node partial list. | 
 | 				 */ | 
 | 				local_irq_save(flags); | 
 | 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | 
 | 				local_irq_restore(flags); | 
 | 				oldpage = NULL; | 
 | 				pobjects = 0; | 
 | 				pages = 0; | 
 | 				stat(s, CPU_PARTIAL_DRAIN); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		pages++; | 
 | 		pobjects += page->objects - page->inuse; | 
 |  | 
 | 		page->pages = pages; | 
 | 		page->pobjects = pobjects; | 
 | 		page->next = oldpage; | 
 |  | 
 | 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) | 
 | 								!= oldpage); | 
 | 	if (unlikely(!slub_cpu_partial(s))) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		local_irq_save(flags); | 
 | 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | 	preempt_enable(); | 
 | #endif	/* CONFIG_SLUB_CPU_PARTIAL */ | 
 | } | 
 |  | 
 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
 | { | 
 | 	stat(s, CPUSLAB_FLUSH); | 
 | 	deactivate_slab(s, c->page, c->freelist, c); | 
 |  | 
 | 	c->tid = next_tid(c->tid); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush cpu slab. | 
 |  * | 
 |  * Called from IPI handler with interrupts disabled. | 
 |  */ | 
 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
 | { | 
 | 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
 |  | 
 | 	if (c->page) | 
 | 		flush_slab(s, c); | 
 |  | 
 | 	unfreeze_partials(s, c); | 
 | } | 
 |  | 
 | static void flush_cpu_slab(void *d) | 
 | { | 
 | 	struct kmem_cache *s = d; | 
 |  | 
 | 	__flush_cpu_slab(s, smp_processor_id()); | 
 | } | 
 |  | 
 | static bool has_cpu_slab(int cpu, void *info) | 
 | { | 
 | 	struct kmem_cache *s = info; | 
 | 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
 |  | 
 | 	return c->page || slub_percpu_partial(c); | 
 | } | 
 |  | 
 | static void flush_all(struct kmem_cache *s) | 
 | { | 
 | 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Use the cpu notifier to insure that the cpu slabs are flushed when | 
 |  * necessary. | 
 |  */ | 
 | static int slub_cpu_dead(unsigned int cpu) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	unsigned long flags; | 
 |  | 
 | 	mutex_lock(&slab_mutex); | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		local_irq_save(flags); | 
 | 		__flush_cpu_slab(s, cpu); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | 	mutex_unlock(&slab_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if the objects in a per cpu structure fit numa | 
 |  * locality expectations. | 
 |  */ | 
 | static inline int node_match(struct page *page, int node) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	if (node != NUMA_NO_NODE && page_to_nid(page) != node) | 
 | 		return 0; | 
 | #endif | 
 | 	return 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static int count_free(struct page *page) | 
 | { | 
 | 	return page->objects - page->inuse; | 
 | } | 
 |  | 
 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) | 
 | { | 
 | 	return atomic_long_read(&n->total_objects); | 
 | } | 
 | #endif /* CONFIG_SLUB_DEBUG */ | 
 |  | 
 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | 
 | static unsigned long count_partial(struct kmem_cache_node *n, | 
 | 					int (*get_count)(struct page *)) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long x = 0; | 
 | 	struct page *page; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 	list_for_each_entry(page, &n->partial, slab_list) | 
 | 		x += get_count(page); | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	return x; | 
 | } | 
 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ | 
 |  | 
 | static noinline void | 
 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | 
 | { | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
 | 				      DEFAULT_RATELIMIT_BURST); | 
 | 	int node; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) | 
 | 		return; | 
 |  | 
 | 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", | 
 | 		nid, gfpflags, &gfpflags); | 
 | 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", | 
 | 		s->name, s->object_size, s->size, oo_order(s->oo), | 
 | 		oo_order(s->min)); | 
 |  | 
 | 	if (oo_order(s->min) > get_order(s->object_size)) | 
 | 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n", | 
 | 			s->name); | 
 |  | 
 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 		unsigned long nr_slabs; | 
 | 		unsigned long nr_objs; | 
 | 		unsigned long nr_free; | 
 |  | 
 | 		nr_free  = count_partial(n, count_free); | 
 | 		nr_slabs = node_nr_slabs(n); | 
 | 		nr_objs  = node_nr_objs(n); | 
 |  | 
 | 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n", | 
 | 			node, nr_slabs, nr_objs, nr_free); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, | 
 | 			int node, struct kmem_cache_cpu **pc) | 
 | { | 
 | 	void *freelist; | 
 | 	struct kmem_cache_cpu *c = *pc; | 
 | 	struct page *page; | 
 |  | 
 | 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); | 
 |  | 
 | 	freelist = get_partial(s, flags, node, c); | 
 |  | 
 | 	if (freelist) | 
 | 		return freelist; | 
 |  | 
 | 	page = new_slab(s, flags, node); | 
 | 	if (page) { | 
 | 		c = raw_cpu_ptr(s->cpu_slab); | 
 | 		if (c->page) | 
 | 			flush_slab(s, c); | 
 |  | 
 | 		/* | 
 | 		 * No other reference to the page yet so we can | 
 | 		 * muck around with it freely without cmpxchg | 
 | 		 */ | 
 | 		freelist = page->freelist; | 
 | 		page->freelist = NULL; | 
 |  | 
 | 		stat(s, ALLOC_SLAB); | 
 | 		c->page = page; | 
 | 		*pc = c; | 
 | 	} | 
 |  | 
 | 	return freelist; | 
 | } | 
 |  | 
 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) | 
 | { | 
 | 	if (unlikely(PageSlabPfmemalloc(page))) | 
 | 		return gfp_pfmemalloc_allowed(gfpflags); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Check the page->freelist of a page and either transfer the freelist to the | 
 |  * per cpu freelist or deactivate the page. | 
 |  * | 
 |  * The page is still frozen if the return value is not NULL. | 
 |  * | 
 |  * If this function returns NULL then the page has been unfrozen. | 
 |  * | 
 |  * This function must be called with interrupt disabled. | 
 |  */ | 
 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	struct page new; | 
 | 	unsigned long counters; | 
 | 	void *freelist; | 
 |  | 
 | 	do { | 
 | 		freelist = page->freelist; | 
 | 		counters = page->counters; | 
 |  | 
 | 		new.counters = counters; | 
 | 		VM_BUG_ON(!new.frozen); | 
 |  | 
 | 		new.inuse = page->objects; | 
 | 		new.frozen = freelist != NULL; | 
 |  | 
 | 	} while (!__cmpxchg_double_slab(s, page, | 
 | 		freelist, counters, | 
 | 		NULL, new.counters, | 
 | 		"get_freelist")); | 
 |  | 
 | 	return freelist; | 
 | } | 
 |  | 
 | /* | 
 |  * Slow path. The lockless freelist is empty or we need to perform | 
 |  * debugging duties. | 
 |  * | 
 |  * Processing is still very fast if new objects have been freed to the | 
 |  * regular freelist. In that case we simply take over the regular freelist | 
 |  * as the lockless freelist and zap the regular freelist. | 
 |  * | 
 |  * If that is not working then we fall back to the partial lists. We take the | 
 |  * first element of the freelist as the object to allocate now and move the | 
 |  * rest of the freelist to the lockless freelist. | 
 |  * | 
 |  * And if we were unable to get a new slab from the partial slab lists then | 
 |  * we need to allocate a new slab. This is the slowest path since it involves | 
 |  * a call to the page allocator and the setup of a new slab. | 
 |  * | 
 |  * Version of __slab_alloc to use when we know that interrupts are | 
 |  * already disabled (which is the case for bulk allocation). | 
 |  */ | 
 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
 | 			  unsigned long addr, struct kmem_cache_cpu *c) | 
 | { | 
 | 	void *freelist; | 
 | 	struct page *page; | 
 |  | 
 | 	stat(s, ALLOC_SLOWPATH); | 
 |  | 
 | 	page = c->page; | 
 | 	if (!page) { | 
 | 		/* | 
 | 		 * if the node is not online or has no normal memory, just | 
 | 		 * ignore the node constraint | 
 | 		 */ | 
 | 		if (unlikely(node != NUMA_NO_NODE && | 
 | 			     !node_isset(node, slab_nodes))) | 
 | 			node = NUMA_NO_NODE; | 
 | 		goto new_slab; | 
 | 	} | 
 | redo: | 
 |  | 
 | 	if (unlikely(!node_match(page, node))) { | 
 | 		/* | 
 | 		 * same as above but node_match() being false already | 
 | 		 * implies node != NUMA_NO_NODE | 
 | 		 */ | 
 | 		if (!node_isset(node, slab_nodes)) { | 
 | 			node = NUMA_NO_NODE; | 
 | 			goto redo; | 
 | 		} else { | 
 | 			stat(s, ALLOC_NODE_MISMATCH); | 
 | 			deactivate_slab(s, page, c->freelist, c); | 
 | 			goto new_slab; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * By rights, we should be searching for a slab page that was | 
 | 	 * PFMEMALLOC but right now, we are losing the pfmemalloc | 
 | 	 * information when the page leaves the per-cpu allocator | 
 | 	 */ | 
 | 	if (unlikely(!pfmemalloc_match(page, gfpflags))) { | 
 | 		deactivate_slab(s, page, c->freelist, c); | 
 | 		goto new_slab; | 
 | 	} | 
 |  | 
 | 	/* must check again c->freelist in case of cpu migration or IRQ */ | 
 | 	freelist = c->freelist; | 
 | 	if (freelist) | 
 | 		goto load_freelist; | 
 |  | 
 | 	freelist = get_freelist(s, page); | 
 |  | 
 | 	if (!freelist) { | 
 | 		c->page = NULL; | 
 | 		stat(s, DEACTIVATE_BYPASS); | 
 | 		goto new_slab; | 
 | 	} | 
 |  | 
 | 	stat(s, ALLOC_REFILL); | 
 |  | 
 | load_freelist: | 
 | 	/* | 
 | 	 * freelist is pointing to the list of objects to be used. | 
 | 	 * page is pointing to the page from which the objects are obtained. | 
 | 	 * That page must be frozen for per cpu allocations to work. | 
 | 	 */ | 
 | 	VM_BUG_ON(!c->page->frozen); | 
 | 	c->freelist = get_freepointer(s, freelist); | 
 | 	c->tid = next_tid(c->tid); | 
 | 	return freelist; | 
 |  | 
 | new_slab: | 
 |  | 
 | 	if (slub_percpu_partial(c)) { | 
 | 		page = c->page = slub_percpu_partial(c); | 
 | 		slub_set_percpu_partial(c, page); | 
 | 		stat(s, CPU_PARTIAL_ALLOC); | 
 | 		goto redo; | 
 | 	} | 
 |  | 
 | 	freelist = new_slab_objects(s, gfpflags, node, &c); | 
 |  | 
 | 	if (unlikely(!freelist)) { | 
 | 		slab_out_of_memory(s, gfpflags, node); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	page = c->page; | 
 | 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) | 
 | 		goto load_freelist; | 
 |  | 
 | 	/* Only entered in the debug case */ | 
 | 	if (kmem_cache_debug(s) && | 
 | 			!alloc_debug_processing(s, page, freelist, addr)) | 
 | 		goto new_slab;	/* Slab failed checks. Next slab needed */ | 
 |  | 
 | 	deactivate_slab(s, page, get_freepointer(s, freelist), c); | 
 | 	return freelist; | 
 | } | 
 |  | 
 | /* | 
 |  * Another one that disabled interrupt and compensates for possible | 
 |  * cpu changes by refetching the per cpu area pointer. | 
 |  */ | 
 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
 | 			  unsigned long addr, struct kmem_cache_cpu *c) | 
 | { | 
 | 	void *p; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | #ifdef CONFIG_PREEMPTION | 
 | 	/* | 
 | 	 * We may have been preempted and rescheduled on a different | 
 | 	 * cpu before disabling interrupts. Need to reload cpu area | 
 | 	 * pointer. | 
 | 	 */ | 
 | 	c = this_cpu_ptr(s->cpu_slab); | 
 | #endif | 
 |  | 
 | 	p = ___slab_alloc(s, gfpflags, node, addr, c); | 
 | 	local_irq_restore(flags); | 
 | 	return p; | 
 | } | 
 |  | 
 | /* | 
 |  * If the object has been wiped upon free, make sure it's fully initialized by | 
 |  * zeroing out freelist pointer. | 
 |  */ | 
 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | 
 | 						   void *obj) | 
 | { | 
 | 	if (unlikely(slab_want_init_on_free(s)) && obj) | 
 | 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset), | 
 | 			0, sizeof(void *)); | 
 | } | 
 |  | 
 | /* | 
 |  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 
 |  * have the fastpath folded into their functions. So no function call | 
 |  * overhead for requests that can be satisfied on the fastpath. | 
 |  * | 
 |  * The fastpath works by first checking if the lockless freelist can be used. | 
 |  * If not then __slab_alloc is called for slow processing. | 
 |  * | 
 |  * Otherwise we can simply pick the next object from the lockless free list. | 
 |  */ | 
 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, | 
 | 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) | 
 | { | 
 | 	void *object; | 
 | 	struct kmem_cache_cpu *c; | 
 | 	struct page *page; | 
 | 	unsigned long tid; | 
 | 	struct obj_cgroup *objcg = NULL; | 
 | 	bool init = false; | 
 |  | 
 | 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); | 
 | 	if (!s) | 
 | 		return NULL; | 
 |  | 
 | 	object = kfence_alloc(s, orig_size, gfpflags); | 
 | 	if (unlikely(object)) | 
 | 		goto out; | 
 |  | 
 | redo: | 
 | 	/* | 
 | 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is | 
 | 	 * enabled. We may switch back and forth between cpus while | 
 | 	 * reading from one cpu area. That does not matter as long | 
 | 	 * as we end up on the original cpu again when doing the cmpxchg. | 
 | 	 * | 
 | 	 * We should guarantee that tid and kmem_cache are retrieved on | 
 | 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need | 
 | 	 * to check if it is matched or not. | 
 | 	 */ | 
 | 	do { | 
 | 		tid = this_cpu_read(s->cpu_slab->tid); | 
 | 		c = raw_cpu_ptr(s->cpu_slab); | 
 | 	} while (IS_ENABLED(CONFIG_PREEMPTION) && | 
 | 		 unlikely(tid != READ_ONCE(c->tid))); | 
 |  | 
 | 	/* | 
 | 	 * Irqless object alloc/free algorithm used here depends on sequence | 
 | 	 * of fetching cpu_slab's data. tid should be fetched before anything | 
 | 	 * on c to guarantee that object and page associated with previous tid | 
 | 	 * won't be used with current tid. If we fetch tid first, object and | 
 | 	 * page could be one associated with next tid and our alloc/free | 
 | 	 * request will be failed. In this case, we will retry. So, no problem. | 
 | 	 */ | 
 | 	barrier(); | 
 |  | 
 | 	/* | 
 | 	 * The transaction ids are globally unique per cpu and per operation on | 
 | 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | 
 | 	 * occurs on the right processor and that there was no operation on the | 
 | 	 * linked list in between. | 
 | 	 */ | 
 |  | 
 | 	object = c->freelist; | 
 | 	page = c->page; | 
 | 	if (unlikely(!object || !page || !node_match(page, node))) { | 
 | 		object = __slab_alloc(s, gfpflags, node, addr, c); | 
 | 	} else { | 
 | 		void *next_object = get_freepointer_safe(s, object); | 
 |  | 
 | 		/* | 
 | 		 * The cmpxchg will only match if there was no additional | 
 | 		 * operation and if we are on the right processor. | 
 | 		 * | 
 | 		 * The cmpxchg does the following atomically (without lock | 
 | 		 * semantics!) | 
 | 		 * 1. Relocate first pointer to the current per cpu area. | 
 | 		 * 2. Verify that tid and freelist have not been changed | 
 | 		 * 3. If they were not changed replace tid and freelist | 
 | 		 * | 
 | 		 * Since this is without lock semantics the protection is only | 
 | 		 * against code executing on this cpu *not* from access by | 
 | 		 * other cpus. | 
 | 		 */ | 
 | 		if (unlikely(!this_cpu_cmpxchg_double( | 
 | 				s->cpu_slab->freelist, s->cpu_slab->tid, | 
 | 				object, tid, | 
 | 				next_object, next_tid(tid)))) { | 
 |  | 
 | 			note_cmpxchg_failure("slab_alloc", s, tid); | 
 | 			goto redo; | 
 | 		} | 
 | 		prefetch_freepointer(s, next_object); | 
 | 		stat(s, ALLOC_FASTPATH); | 
 | 	} | 
 |  | 
 | 	maybe_wipe_obj_freeptr(s, object); | 
 | 	init = slab_want_init_on_alloc(gfpflags, s); | 
 |  | 
 | out: | 
 | 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); | 
 |  | 
 | 	return object; | 
 | } | 
 |  | 
 | static __always_inline void *slab_alloc(struct kmem_cache *s, | 
 | 		gfp_t gfpflags, unsigned long addr, size_t orig_size) | 
 | { | 
 | 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); | 
 | } | 
 |  | 
 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
 | { | 
 | 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); | 
 |  | 
 | 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, | 
 | 				s->size, gfpflags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc); | 
 |  | 
 | #ifdef CONFIG_TRACING | 
 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) | 
 | { | 
 | 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); | 
 | 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); | 
 | 	ret = kasan_kmalloc(s, ret, size, gfpflags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
 | { | 
 | 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); | 
 |  | 
 | 	trace_kmem_cache_alloc_node(_RET_IP_, ret, | 
 | 				    s->object_size, s->size, gfpflags, node); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
 |  | 
 | #ifdef CONFIG_TRACING | 
 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, | 
 | 				    gfp_t gfpflags, | 
 | 				    int node, size_t size) | 
 | { | 
 | 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); | 
 |  | 
 | 	trace_kmalloc_node(_RET_IP_, ret, | 
 | 			   size, s->size, gfpflags, node); | 
 |  | 
 | 	ret = kasan_kmalloc(s, ret, size, gfpflags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); | 
 | #endif | 
 | #endif	/* CONFIG_NUMA */ | 
 |  | 
 | /* | 
 |  * Slow path handling. This may still be called frequently since objects | 
 |  * have a longer lifetime than the cpu slabs in most processing loads. | 
 |  * | 
 |  * So we still attempt to reduce cache line usage. Just take the slab | 
 |  * lock and free the item. If there is no additional partial page | 
 |  * handling required then we can return immediately. | 
 |  */ | 
 | static void __slab_free(struct kmem_cache *s, struct page *page, | 
 | 			void *head, void *tail, int cnt, | 
 | 			unsigned long addr) | 
 |  | 
 | { | 
 | 	void *prior; | 
 | 	int was_frozen; | 
 | 	struct page new; | 
 | 	unsigned long counters; | 
 | 	struct kmem_cache_node *n = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	stat(s, FREE_SLOWPATH); | 
 |  | 
 | 	if (kfence_free(head)) | 
 | 		return; | 
 |  | 
 | 	if (kmem_cache_debug(s) && | 
 | 	    !free_debug_processing(s, page, head, tail, cnt, addr)) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		if (unlikely(n)) { | 
 | 			spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 			n = NULL; | 
 | 		} | 
 | 		prior = page->freelist; | 
 | 		counters = page->counters; | 
 | 		set_freepointer(s, tail, prior); | 
 | 		new.counters = counters; | 
 | 		was_frozen = new.frozen; | 
 | 		new.inuse -= cnt; | 
 | 		if ((!new.inuse || !prior) && !was_frozen) { | 
 |  | 
 | 			if (kmem_cache_has_cpu_partial(s) && !prior) { | 
 |  | 
 | 				/* | 
 | 				 * Slab was on no list before and will be | 
 | 				 * partially empty | 
 | 				 * We can defer the list move and instead | 
 | 				 * freeze it. | 
 | 				 */ | 
 | 				new.frozen = 1; | 
 |  | 
 | 			} else { /* Needs to be taken off a list */ | 
 |  | 
 | 				n = get_node(s, page_to_nid(page)); | 
 | 				/* | 
 | 				 * Speculatively acquire the list_lock. | 
 | 				 * If the cmpxchg does not succeed then we may | 
 | 				 * drop the list_lock without any processing. | 
 | 				 * | 
 | 				 * Otherwise the list_lock will synchronize with | 
 | 				 * other processors updating the list of slabs. | 
 | 				 */ | 
 | 				spin_lock_irqsave(&n->list_lock, flags); | 
 |  | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} while (!cmpxchg_double_slab(s, page, | 
 | 		prior, counters, | 
 | 		head, new.counters, | 
 | 		"__slab_free")); | 
 |  | 
 | 	if (likely(!n)) { | 
 |  | 
 | 		if (likely(was_frozen)) { | 
 | 			/* | 
 | 			 * The list lock was not taken therefore no list | 
 | 			 * activity can be necessary. | 
 | 			 */ | 
 | 			stat(s, FREE_FROZEN); | 
 | 		} else if (new.frozen) { | 
 | 			/* | 
 | 			 * If we just froze the page then put it onto the | 
 | 			 * per cpu partial list. | 
 | 			 */ | 
 | 			put_cpu_partial(s, page, 1); | 
 | 			stat(s, CPU_PARTIAL_FREE); | 
 | 		} | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) | 
 | 		goto slab_empty; | 
 |  | 
 | 	/* | 
 | 	 * Objects left in the slab. If it was not on the partial list before | 
 | 	 * then add it. | 
 | 	 */ | 
 | 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { | 
 | 		remove_full(s, n, page); | 
 | 		add_partial(n, page, DEACTIVATE_TO_TAIL); | 
 | 		stat(s, FREE_ADD_PARTIAL); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	return; | 
 |  | 
 | slab_empty: | 
 | 	if (prior) { | 
 | 		/* | 
 | 		 * Slab on the partial list. | 
 | 		 */ | 
 | 		remove_partial(n, page); | 
 | 		stat(s, FREE_REMOVE_PARTIAL); | 
 | 	} else { | 
 | 		/* Slab must be on the full list */ | 
 | 		remove_full(s, n, page); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	stat(s, FREE_SLAB); | 
 | 	discard_slab(s, page); | 
 | } | 
 |  | 
 | /* | 
 |  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 
 |  * can perform fastpath freeing without additional function calls. | 
 |  * | 
 |  * The fastpath is only possible if we are freeing to the current cpu slab | 
 |  * of this processor. This typically the case if we have just allocated | 
 |  * the item before. | 
 |  * | 
 |  * If fastpath is not possible then fall back to __slab_free where we deal | 
 |  * with all sorts of special processing. | 
 |  * | 
 |  * Bulk free of a freelist with several objects (all pointing to the | 
 |  * same page) possible by specifying head and tail ptr, plus objects | 
 |  * count (cnt). Bulk free indicated by tail pointer being set. | 
 |  */ | 
 | static __always_inline void do_slab_free(struct kmem_cache *s, | 
 | 				struct page *page, void *head, void *tail, | 
 | 				int cnt, unsigned long addr) | 
 | { | 
 | 	void *tail_obj = tail ? : head; | 
 | 	struct kmem_cache_cpu *c; | 
 | 	unsigned long tid; | 
 |  | 
 | 	memcg_slab_free_hook(s, &head, 1); | 
 | redo: | 
 | 	/* | 
 | 	 * Determine the currently cpus per cpu slab. | 
 | 	 * The cpu may change afterward. However that does not matter since | 
 | 	 * data is retrieved via this pointer. If we are on the same cpu | 
 | 	 * during the cmpxchg then the free will succeed. | 
 | 	 */ | 
 | 	do { | 
 | 		tid = this_cpu_read(s->cpu_slab->tid); | 
 | 		c = raw_cpu_ptr(s->cpu_slab); | 
 | 	} while (IS_ENABLED(CONFIG_PREEMPTION) && | 
 | 		 unlikely(tid != READ_ONCE(c->tid))); | 
 |  | 
 | 	/* Same with comment on barrier() in slab_alloc_node() */ | 
 | 	barrier(); | 
 |  | 
 | 	if (likely(page == c->page)) { | 
 | 		void **freelist = READ_ONCE(c->freelist); | 
 |  | 
 | 		set_freepointer(s, tail_obj, freelist); | 
 |  | 
 | 		if (unlikely(!this_cpu_cmpxchg_double( | 
 | 				s->cpu_slab->freelist, s->cpu_slab->tid, | 
 | 				freelist, tid, | 
 | 				head, next_tid(tid)))) { | 
 |  | 
 | 			note_cmpxchg_failure("slab_free", s, tid); | 
 | 			goto redo; | 
 | 		} | 
 | 		stat(s, FREE_FASTPATH); | 
 | 	} else | 
 | 		__slab_free(s, page, head, tail_obj, cnt, addr); | 
 |  | 
 | } | 
 |  | 
 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, | 
 | 				      void *head, void *tail, int cnt, | 
 | 				      unsigned long addr) | 
 | { | 
 | 	/* | 
 | 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist | 
 | 	 * to remove objects, whose reuse must be delayed. | 
 | 	 */ | 
 | 	if (slab_free_freelist_hook(s, &head, &tail)) | 
 | 		do_slab_free(s, page, head, tail, cnt, addr); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KASAN_GENERIC | 
 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) | 
 | { | 
 | 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | 
 | } | 
 | #endif | 
 |  | 
 | void kmem_cache_free(struct kmem_cache *s, void *x) | 
 | { | 
 | 	s = cache_from_obj(s, x); | 
 | 	if (!s) | 
 | 		return; | 
 | 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); | 
 | 	trace_kmem_cache_free(_RET_IP_, x, s->name); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free); | 
 |  | 
 | struct detached_freelist { | 
 | 	struct page *page; | 
 | 	void *tail; | 
 | 	void *freelist; | 
 | 	int cnt; | 
 | 	struct kmem_cache *s; | 
 | }; | 
 |  | 
 | /* | 
 |  * This function progressively scans the array with free objects (with | 
 |  * a limited look ahead) and extract objects belonging to the same | 
 |  * page.  It builds a detached freelist directly within the given | 
 |  * page/objects.  This can happen without any need for | 
 |  * synchronization, because the objects are owned by running process. | 
 |  * The freelist is build up as a single linked list in the objects. | 
 |  * The idea is, that this detached freelist can then be bulk | 
 |  * transferred to the real freelist(s), but only requiring a single | 
 |  * synchronization primitive.  Look ahead in the array is limited due | 
 |  * to performance reasons. | 
 |  */ | 
 | static inline | 
 | int build_detached_freelist(struct kmem_cache *s, size_t size, | 
 | 			    void **p, struct detached_freelist *df) | 
 | { | 
 | 	size_t first_skipped_index = 0; | 
 | 	int lookahead = 3; | 
 | 	void *object; | 
 | 	struct page *page; | 
 |  | 
 | 	/* Always re-init detached_freelist */ | 
 | 	df->page = NULL; | 
 |  | 
 | 	do { | 
 | 		object = p[--size]; | 
 | 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ | 
 | 	} while (!object && size); | 
 |  | 
 | 	if (!object) | 
 | 		return 0; | 
 |  | 
 | 	page = virt_to_head_page(object); | 
 | 	if (!s) { | 
 | 		/* Handle kalloc'ed objects */ | 
 | 		if (unlikely(!PageSlab(page))) { | 
 | 			BUG_ON(!PageCompound(page)); | 
 | 			kfree_hook(object); | 
 | 			__free_pages(page, compound_order(page)); | 
 | 			p[size] = NULL; /* mark object processed */ | 
 | 			return size; | 
 | 		} | 
 | 		/* Derive kmem_cache from object */ | 
 | 		df->s = page->slab_cache; | 
 | 	} else { | 
 | 		df->s = cache_from_obj(s, object); /* Support for memcg */ | 
 | 	} | 
 |  | 
 | 	if (is_kfence_address(object)) { | 
 | 		slab_free_hook(df->s, object, false); | 
 | 		__kfence_free(object); | 
 | 		p[size] = NULL; /* mark object processed */ | 
 | 		return size; | 
 | 	} | 
 |  | 
 | 	/* Start new detached freelist */ | 
 | 	df->page = page; | 
 | 	set_freepointer(df->s, object, NULL); | 
 | 	df->tail = object; | 
 | 	df->freelist = object; | 
 | 	p[size] = NULL; /* mark object processed */ | 
 | 	df->cnt = 1; | 
 |  | 
 | 	while (size) { | 
 | 		object = p[--size]; | 
 | 		if (!object) | 
 | 			continue; /* Skip processed objects */ | 
 |  | 
 | 		/* df->page is always set at this point */ | 
 | 		if (df->page == virt_to_head_page(object)) { | 
 | 			/* Opportunity build freelist */ | 
 | 			set_freepointer(df->s, object, df->freelist); | 
 | 			df->freelist = object; | 
 | 			df->cnt++; | 
 | 			p[size] = NULL; /* mark object processed */ | 
 |  | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Limit look ahead search */ | 
 | 		if (!--lookahead) | 
 | 			break; | 
 |  | 
 | 		if (!first_skipped_index) | 
 | 			first_skipped_index = size + 1; | 
 | 	} | 
 |  | 
 | 	return first_skipped_index; | 
 | } | 
 |  | 
 | /* Note that interrupts must be enabled when calling this function. */ | 
 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) | 
 | { | 
 | 	if (WARN_ON(!size)) | 
 | 		return; | 
 |  | 
 | 	memcg_slab_free_hook(s, p, size); | 
 | 	do { | 
 | 		struct detached_freelist df; | 
 |  | 
 | 		size = build_detached_freelist(s, size, p, &df); | 
 | 		if (!df.page) | 
 | 			continue; | 
 |  | 
 | 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); | 
 | 	} while (likely(size)); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free_bulk); | 
 |  | 
 | /* Note that interrupts must be enabled when calling this function. */ | 
 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | 
 | 			  void **p) | 
 | { | 
 | 	struct kmem_cache_cpu *c; | 
 | 	int i; | 
 | 	struct obj_cgroup *objcg = NULL; | 
 |  | 
 | 	/* memcg and kmem_cache debug support */ | 
 | 	s = slab_pre_alloc_hook(s, &objcg, size, flags); | 
 | 	if (unlikely(!s)) | 
 | 		return false; | 
 | 	/* | 
 | 	 * Drain objects in the per cpu slab, while disabling local | 
 | 	 * IRQs, which protects against PREEMPT and interrupts | 
 | 	 * handlers invoking normal fastpath. | 
 | 	 */ | 
 | 	local_irq_disable(); | 
 | 	c = this_cpu_ptr(s->cpu_slab); | 
 |  | 
 | 	for (i = 0; i < size; i++) { | 
 | 		void *object = kfence_alloc(s, s->object_size, flags); | 
 |  | 
 | 		if (unlikely(object)) { | 
 | 			p[i] = object; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		object = c->freelist; | 
 | 		if (unlikely(!object)) { | 
 | 			/* | 
 | 			 * We may have removed an object from c->freelist using | 
 | 			 * the fastpath in the previous iteration; in that case, | 
 | 			 * c->tid has not been bumped yet. | 
 | 			 * Since ___slab_alloc() may reenable interrupts while | 
 | 			 * allocating memory, we should bump c->tid now. | 
 | 			 */ | 
 | 			c->tid = next_tid(c->tid); | 
 |  | 
 | 			/* | 
 | 			 * Invoking slow path likely have side-effect | 
 | 			 * of re-populating per CPU c->freelist | 
 | 			 */ | 
 | 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, | 
 | 					    _RET_IP_, c); | 
 | 			if (unlikely(!p[i])) | 
 | 				goto error; | 
 |  | 
 | 			c = this_cpu_ptr(s->cpu_slab); | 
 | 			maybe_wipe_obj_freeptr(s, p[i]); | 
 |  | 
 | 			continue; /* goto for-loop */ | 
 | 		} | 
 | 		c->freelist = get_freepointer(s, object); | 
 | 		p[i] = object; | 
 | 		maybe_wipe_obj_freeptr(s, p[i]); | 
 | 	} | 
 | 	c->tid = next_tid(c->tid); | 
 | 	local_irq_enable(); | 
 |  | 
 | 	/* | 
 | 	 * memcg and kmem_cache debug support and memory initialization. | 
 | 	 * Done outside of the IRQ disabled fastpath loop. | 
 | 	 */ | 
 | 	slab_post_alloc_hook(s, objcg, flags, size, p, | 
 | 				slab_want_init_on_alloc(flags, s)); | 
 | 	return i; | 
 | error: | 
 | 	local_irq_enable(); | 
 | 	slab_post_alloc_hook(s, objcg, flags, i, p, false); | 
 | 	__kmem_cache_free_bulk(s, i, p); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | 
 |  | 
 |  | 
 | /* | 
 |  * Object placement in a slab is made very easy because we always start at | 
 |  * offset 0. If we tune the size of the object to the alignment then we can | 
 |  * get the required alignment by putting one properly sized object after | 
 |  * another. | 
 |  * | 
 |  * Notice that the allocation order determines the sizes of the per cpu | 
 |  * caches. Each processor has always one slab available for allocations. | 
 |  * Increasing the allocation order reduces the number of times that slabs | 
 |  * must be moved on and off the partial lists and is therefore a factor in | 
 |  * locking overhead. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Minimum / Maximum order of slab pages. This influences locking overhead | 
 |  * and slab fragmentation. A higher order reduces the number of partial slabs | 
 |  * and increases the number of allocations possible without having to | 
 |  * take the list_lock. | 
 |  */ | 
 | static unsigned int slub_min_order; | 
 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | 
 | static unsigned int slub_min_objects; | 
 |  | 
 | /* | 
 |  * Calculate the order of allocation given an slab object size. | 
 |  * | 
 |  * The order of allocation has significant impact on performance and other | 
 |  * system components. Generally order 0 allocations should be preferred since | 
 |  * order 0 does not cause fragmentation in the page allocator. Larger objects | 
 |  * be problematic to put into order 0 slabs because there may be too much | 
 |  * unused space left. We go to a higher order if more than 1/16th of the slab | 
 |  * would be wasted. | 
 |  * | 
 |  * In order to reach satisfactory performance we must ensure that a minimum | 
 |  * number of objects is in one slab. Otherwise we may generate too much | 
 |  * activity on the partial lists which requires taking the list_lock. This is | 
 |  * less a concern for large slabs though which are rarely used. | 
 |  * | 
 |  * slub_max_order specifies the order where we begin to stop considering the | 
 |  * number of objects in a slab as critical. If we reach slub_max_order then | 
 |  * we try to keep the page order as low as possible. So we accept more waste | 
 |  * of space in favor of a small page order. | 
 |  * | 
 |  * Higher order allocations also allow the placement of more objects in a | 
 |  * slab and thereby reduce object handling overhead. If the user has | 
 |  * requested a higher minimum order then we start with that one instead of | 
 |  * the smallest order which will fit the object. | 
 |  */ | 
 | static inline unsigned int slab_order(unsigned int size, | 
 | 		unsigned int min_objects, unsigned int max_order, | 
 | 		unsigned int fract_leftover) | 
 | { | 
 | 	unsigned int min_order = slub_min_order; | 
 | 	unsigned int order; | 
 |  | 
 | 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) | 
 | 		return get_order(size * MAX_OBJS_PER_PAGE) - 1; | 
 |  | 
 | 	for (order = max(min_order, (unsigned int)get_order(min_objects * size)); | 
 | 			order <= max_order; order++) { | 
 |  | 
 | 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order; | 
 | 		unsigned int rem; | 
 |  | 
 | 		rem = slab_size % size; | 
 |  | 
 | 		if (rem <= slab_size / fract_leftover) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return order; | 
 | } | 
 |  | 
 | static inline int calculate_order(unsigned int size) | 
 | { | 
 | 	unsigned int order; | 
 | 	unsigned int min_objects; | 
 | 	unsigned int max_objects; | 
 | 	unsigned int nr_cpus; | 
 |  | 
 | 	/* | 
 | 	 * Attempt to find best configuration for a slab. This | 
 | 	 * works by first attempting to generate a layout with | 
 | 	 * the best configuration and backing off gradually. | 
 | 	 * | 
 | 	 * First we increase the acceptable waste in a slab. Then | 
 | 	 * we reduce the minimum objects required in a slab. | 
 | 	 */ | 
 | 	min_objects = slub_min_objects; | 
 | 	if (!min_objects) { | 
 | 		/* | 
 | 		 * Some architectures will only update present cpus when | 
 | 		 * onlining them, so don't trust the number if it's just 1. But | 
 | 		 * we also don't want to use nr_cpu_ids always, as on some other | 
 | 		 * architectures, there can be many possible cpus, but never | 
 | 		 * onlined. Here we compromise between trying to avoid too high | 
 | 		 * order on systems that appear larger than they are, and too | 
 | 		 * low order on systems that appear smaller than they are. | 
 | 		 */ | 
 | 		nr_cpus = num_present_cpus(); | 
 | 		if (nr_cpus <= 1) | 
 | 			nr_cpus = nr_cpu_ids; | 
 | 		min_objects = 4 * (fls(nr_cpus) + 1); | 
 | 	} | 
 | 	max_objects = order_objects(slub_max_order, size); | 
 | 	min_objects = min(min_objects, max_objects); | 
 |  | 
 | 	while (min_objects > 1) { | 
 | 		unsigned int fraction; | 
 |  | 
 | 		fraction = 16; | 
 | 		while (fraction >= 4) { | 
 | 			order = slab_order(size, min_objects, | 
 | 					slub_max_order, fraction); | 
 | 			if (order <= slub_max_order) | 
 | 				return order; | 
 | 			fraction /= 2; | 
 | 		} | 
 | 		min_objects--; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We were unable to place multiple objects in a slab. Now | 
 | 	 * lets see if we can place a single object there. | 
 | 	 */ | 
 | 	order = slab_order(size, 1, slub_max_order, 1); | 
 | 	if (order <= slub_max_order) | 
 | 		return order; | 
 |  | 
 | 	/* | 
 | 	 * Doh this slab cannot be placed using slub_max_order. | 
 | 	 */ | 
 | 	order = slab_order(size, 1, MAX_ORDER, 1); | 
 | 	if (order < MAX_ORDER) | 
 | 		return order; | 
 | 	return -ENOSYS; | 
 | } | 
 |  | 
 | static void | 
 | init_kmem_cache_node(struct kmem_cache_node *n) | 
 | { | 
 | 	n->nr_partial = 0; | 
 | 	spin_lock_init(&n->list_lock); | 
 | 	INIT_LIST_HEAD(&n->partial); | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	atomic_long_set(&n->nr_slabs, 0); | 
 | 	atomic_long_set(&n->total_objects, 0); | 
 | 	INIT_LIST_HEAD(&n->full); | 
 | #endif | 
 | } | 
 |  | 
 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | 
 | { | 
 | 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < | 
 | 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); | 
 |  | 
 | 	/* | 
 | 	 * Must align to double word boundary for the double cmpxchg | 
 | 	 * instructions to work; see __pcpu_double_call_return_bool(). | 
 | 	 */ | 
 | 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), | 
 | 				     2 * sizeof(void *)); | 
 |  | 
 | 	if (!s->cpu_slab) | 
 | 		return 0; | 
 |  | 
 | 	init_kmem_cache_cpus(s); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static struct kmem_cache *kmem_cache_node; | 
 |  | 
 | /* | 
 |  * No kmalloc_node yet so do it by hand. We know that this is the first | 
 |  * slab on the node for this slabcache. There are no concurrent accesses | 
 |  * possible. | 
 |  * | 
 |  * Note that this function only works on the kmem_cache_node | 
 |  * when allocating for the kmem_cache_node. This is used for bootstrapping | 
 |  * memory on a fresh node that has no slab structures yet. | 
 |  */ | 
 | static void early_kmem_cache_node_alloc(int node) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); | 
 |  | 
 | 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node); | 
 |  | 
 | 	BUG_ON(!page); | 
 | 	if (page_to_nid(page) != node) { | 
 | 		pr_err("SLUB: Unable to allocate memory from node %d\n", node); | 
 | 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | 
 | 	} | 
 |  | 
 | 	n = page->freelist; | 
 | 	BUG_ON(!n); | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); | 
 | 	init_tracking(kmem_cache_node, n); | 
 | #endif | 
 | 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); | 
 | 	page->freelist = get_freepointer(kmem_cache_node, n); | 
 | 	page->inuse = 1; | 
 | 	page->frozen = 0; | 
 | 	kmem_cache_node->node[node] = n; | 
 | 	init_kmem_cache_node(n); | 
 | 	inc_slabs_node(kmem_cache_node, node, page->objects); | 
 |  | 
 | 	/* | 
 | 	 * No locks need to be taken here as it has just been | 
 | 	 * initialized and there is no concurrent access. | 
 | 	 */ | 
 | 	__add_partial(n, page, DEACTIVATE_TO_HEAD); | 
 | } | 
 |  | 
 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 		s->node[node] = NULL; | 
 | 		kmem_cache_free(kmem_cache_node, n); | 
 | 	} | 
 | } | 
 |  | 
 | void __kmem_cache_release(struct kmem_cache *s) | 
 | { | 
 | 	cache_random_seq_destroy(s); | 
 | 	free_percpu(s->cpu_slab); | 
 | 	free_kmem_cache_nodes(s); | 
 | } | 
 |  | 
 | static int init_kmem_cache_nodes(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_node_mask(node, slab_nodes) { | 
 | 		struct kmem_cache_node *n; | 
 |  | 
 | 		if (slab_state == DOWN) { | 
 | 			early_kmem_cache_node_alloc(node); | 
 | 			continue; | 
 | 		} | 
 | 		n = kmem_cache_alloc_node(kmem_cache_node, | 
 | 						GFP_KERNEL, node); | 
 |  | 
 | 		if (!n) { | 
 | 			free_kmem_cache_nodes(s); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		init_kmem_cache_node(n); | 
 | 		s->node[node] = n; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void set_min_partial(struct kmem_cache *s, unsigned long min) | 
 | { | 
 | 	if (min < MIN_PARTIAL) | 
 | 		min = MIN_PARTIAL; | 
 | 	else if (min > MAX_PARTIAL) | 
 | 		min = MAX_PARTIAL; | 
 | 	s->min_partial = min; | 
 | } | 
 |  | 
 | static void set_cpu_partial(struct kmem_cache *s) | 
 | { | 
 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 	/* | 
 | 	 * cpu_partial determined the maximum number of objects kept in the | 
 | 	 * per cpu partial lists of a processor. | 
 | 	 * | 
 | 	 * Per cpu partial lists mainly contain slabs that just have one | 
 | 	 * object freed. If they are used for allocation then they can be | 
 | 	 * filled up again with minimal effort. The slab will never hit the | 
 | 	 * per node partial lists and therefore no locking will be required. | 
 | 	 * | 
 | 	 * This setting also determines | 
 | 	 * | 
 | 	 * A) The number of objects from per cpu partial slabs dumped to the | 
 | 	 *    per node list when we reach the limit. | 
 | 	 * B) The number of objects in cpu partial slabs to extract from the | 
 | 	 *    per node list when we run out of per cpu objects. We only fetch | 
 | 	 *    50% to keep some capacity around for frees. | 
 | 	 */ | 
 | 	if (!kmem_cache_has_cpu_partial(s)) | 
 | 		slub_set_cpu_partial(s, 0); | 
 | 	else if (s->size >= PAGE_SIZE) | 
 | 		slub_set_cpu_partial(s, 2); | 
 | 	else if (s->size >= 1024) | 
 | 		slub_set_cpu_partial(s, 6); | 
 | 	else if (s->size >= 256) | 
 | 		slub_set_cpu_partial(s, 13); | 
 | 	else | 
 | 		slub_set_cpu_partial(s, 30); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * calculate_sizes() determines the order and the distribution of data within | 
 |  * a slab object. | 
 |  */ | 
 | static int calculate_sizes(struct kmem_cache *s, int forced_order) | 
 | { | 
 | 	slab_flags_t flags = s->flags; | 
 | 	unsigned int size = s->object_size; | 
 | 	unsigned int freepointer_area; | 
 | 	unsigned int order; | 
 |  | 
 | 	/* | 
 | 	 * Round up object size to the next word boundary. We can only | 
 | 	 * place the free pointer at word boundaries and this determines | 
 | 	 * the possible location of the free pointer. | 
 | 	 */ | 
 | 	size = ALIGN(size, sizeof(void *)); | 
 | 	/* | 
 | 	 * This is the area of the object where a freepointer can be | 
 | 	 * safely written. If redzoning adds more to the inuse size, we | 
 | 	 * can't use that portion for writing the freepointer, so | 
 | 	 * s->offset must be limited within this for the general case. | 
 | 	 */ | 
 | 	freepointer_area = size; | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	/* | 
 | 	 * Determine if we can poison the object itself. If the user of | 
 | 	 * the slab may touch the object after free or before allocation | 
 | 	 * then we should never poison the object itself. | 
 | 	 */ | 
 | 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && | 
 | 			!s->ctor) | 
 | 		s->flags |= __OBJECT_POISON; | 
 | 	else | 
 | 		s->flags &= ~__OBJECT_POISON; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * If we are Redzoning then check if there is some space between the | 
 | 	 * end of the object and the free pointer. If not then add an | 
 | 	 * additional word to have some bytes to store Redzone information. | 
 | 	 */ | 
 | 	if ((flags & SLAB_RED_ZONE) && size == s->object_size) | 
 | 		size += sizeof(void *); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * With that we have determined the number of bytes in actual use | 
 | 	 * by the object. This is the potential offset to the free pointer. | 
 | 	 */ | 
 | 	s->inuse = size; | 
 |  | 
 | 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || | 
 | 		s->ctor)) { | 
 | 		/* | 
 | 		 * Relocate free pointer after the object if it is not | 
 | 		 * permitted to overwrite the first word of the object on | 
 | 		 * kmem_cache_free. | 
 | 		 * | 
 | 		 * This is the case if we do RCU, have a constructor or | 
 | 		 * destructor or are poisoning the objects. | 
 | 		 * | 
 | 		 * The assumption that s->offset >= s->inuse means free | 
 | 		 * pointer is outside of the object is used in the | 
 | 		 * freeptr_outside_object() function. If that is no | 
 | 		 * longer true, the function needs to be modified. | 
 | 		 */ | 
 | 		s->offset = size; | 
 | 		size += sizeof(void *); | 
 | 	} else if (freepointer_area > sizeof(void *)) { | 
 | 		/* | 
 | 		 * Store freelist pointer near middle of object to keep | 
 | 		 * it away from the edges of the object to avoid small | 
 | 		 * sized over/underflows from neighboring allocations. | 
 | 		 */ | 
 | 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	if (flags & SLAB_STORE_USER) | 
 | 		/* | 
 | 		 * Need to store information about allocs and frees after | 
 | 		 * the object. | 
 | 		 */ | 
 | 		size += 2 * sizeof(struct track); | 
 | #endif | 
 |  | 
 | 	kasan_cache_create(s, &size, &s->flags); | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	if (flags & SLAB_RED_ZONE) { | 
 | 		/* | 
 | 		 * Add some empty padding so that we can catch | 
 | 		 * overwrites from earlier objects rather than let | 
 | 		 * tracking information or the free pointer be | 
 | 		 * corrupted if a user writes before the start | 
 | 		 * of the object. | 
 | 		 */ | 
 | 		size += sizeof(void *); | 
 |  | 
 | 		s->red_left_pad = sizeof(void *); | 
 | 		s->red_left_pad = ALIGN(s->red_left_pad, s->align); | 
 | 		size += s->red_left_pad; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * SLUB stores one object immediately after another beginning from | 
 | 	 * offset 0. In order to align the objects we have to simply size | 
 | 	 * each object to conform to the alignment. | 
 | 	 */ | 
 | 	size = ALIGN(size, s->align); | 
 | 	s->size = size; | 
 | 	s->reciprocal_size = reciprocal_value(size); | 
 | 	if (forced_order >= 0) | 
 | 		order = forced_order; | 
 | 	else | 
 | 		order = calculate_order(size); | 
 |  | 
 | 	if ((int)order < 0) | 
 | 		return 0; | 
 |  | 
 | 	s->allocflags = 0; | 
 | 	if (order) | 
 | 		s->allocflags |= __GFP_COMP; | 
 |  | 
 | 	if (s->flags & SLAB_CACHE_DMA) | 
 | 		s->allocflags |= GFP_DMA; | 
 |  | 
 | 	if (s->flags & SLAB_CACHE_DMA32) | 
 | 		s->allocflags |= GFP_DMA32; | 
 |  | 
 | 	if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		s->allocflags |= __GFP_RECLAIMABLE; | 
 |  | 
 | 	/* | 
 | 	 * Determine the number of objects per slab | 
 | 	 */ | 
 | 	s->oo = oo_make(order, size); | 
 | 	s->min = oo_make(get_order(size), size); | 
 | 	if (oo_objects(s->oo) > oo_objects(s->max)) | 
 | 		s->max = s->oo; | 
 |  | 
 | 	return !!oo_objects(s->oo); | 
 | } | 
 |  | 
 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) | 
 | { | 
 | 	s->flags = kmem_cache_flags(s->size, flags, s->name); | 
 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
 | 	s->random = get_random_long(); | 
 | #endif | 
 |  | 
 | 	if (!calculate_sizes(s, -1)) | 
 | 		goto error; | 
 | 	if (disable_higher_order_debug) { | 
 | 		/* | 
 | 		 * Disable debugging flags that store metadata if the min slab | 
 | 		 * order increased. | 
 | 		 */ | 
 | 		if (get_order(s->size) > get_order(s->object_size)) { | 
 | 			s->flags &= ~DEBUG_METADATA_FLAGS; | 
 | 			s->offset = 0; | 
 | 			if (!calculate_sizes(s, -1)) | 
 | 				goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) | 
 | 		/* Enable fast mode */ | 
 | 		s->flags |= __CMPXCHG_DOUBLE; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * The larger the object size is, the more pages we want on the partial | 
 | 	 * list to avoid pounding the page allocator excessively. | 
 | 	 */ | 
 | 	set_min_partial(s, ilog2(s->size) / 2); | 
 |  | 
 | 	set_cpu_partial(s); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	s->remote_node_defrag_ratio = 1000; | 
 | #endif | 
 |  | 
 | 	/* Initialize the pre-computed randomized freelist if slab is up */ | 
 | 	if (slab_state >= UP) { | 
 | 		if (init_cache_random_seq(s)) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	if (!init_kmem_cache_nodes(s)) | 
 | 		goto error; | 
 |  | 
 | 	if (alloc_kmem_cache_cpus(s)) | 
 | 		return 0; | 
 |  | 
 | 	free_kmem_cache_nodes(s); | 
 | error: | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static void list_slab_objects(struct kmem_cache *s, struct page *page, | 
 | 			      const char *text) | 
 | { | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	void *addr = page_address(page); | 
 | 	unsigned long *map; | 
 | 	void *p; | 
 |  | 
 | 	slab_err(s, page, text, s->name); | 
 | 	slab_lock(page); | 
 |  | 
 | 	map = get_map(s, page); | 
 | 	for_each_object(p, s, addr, page->objects) { | 
 |  | 
 | 		if (!test_bit(__obj_to_index(s, addr, p), map)) { | 
 | 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr); | 
 | 			print_tracking(s, p); | 
 | 		} | 
 | 	} | 
 | 	put_map(map); | 
 | 	slab_unlock(page); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to free all partial slabs on a node. | 
 |  * This is called from __kmem_cache_shutdown(). We must take list_lock | 
 |  * because sysfs file might still access partial list after the shutdowning. | 
 |  */ | 
 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | 
 | { | 
 | 	LIST_HEAD(discard); | 
 | 	struct page *page, *h; | 
 |  | 
 | 	BUG_ON(irqs_disabled()); | 
 | 	spin_lock_irq(&n->list_lock); | 
 | 	list_for_each_entry_safe(page, h, &n->partial, slab_list) { | 
 | 		if (!page->inuse) { | 
 | 			remove_partial(n, page); | 
 | 			list_add(&page->slab_list, &discard); | 
 | 		} else { | 
 | 			list_slab_objects(s, page, | 
 | 			  "Objects remaining in %s on __kmem_cache_shutdown()"); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(&n->list_lock); | 
 |  | 
 | 	list_for_each_entry_safe(page, h, &discard, slab_list) | 
 | 		discard_slab(s, page); | 
 | } | 
 |  | 
 | bool __kmem_cache_empty(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	for_each_kmem_cache_node(s, node, n) | 
 | 		if (n->nr_partial || slabs_node(s, node)) | 
 | 			return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Release all resources used by a slab cache. | 
 |  */ | 
 | int __kmem_cache_shutdown(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	flush_all(s); | 
 | 	/* Attempt to free all objects */ | 
 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 		free_partial(s, n); | 
 | 		if (n->nr_partial || slabs_node(s, node)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PRINTK | 
 | void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page) | 
 | { | 
 | 	void *base; | 
 | 	int __maybe_unused i; | 
 | 	unsigned int objnr; | 
 | 	void *objp; | 
 | 	void *objp0; | 
 | 	struct kmem_cache *s = page->slab_cache; | 
 | 	struct track __maybe_unused *trackp; | 
 |  | 
 | 	kpp->kp_ptr = object; | 
 | 	kpp->kp_page = page; | 
 | 	kpp->kp_slab_cache = s; | 
 | 	base = page_address(page); | 
 | 	objp0 = kasan_reset_tag(object); | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	objp = restore_red_left(s, objp0); | 
 | #else | 
 | 	objp = objp0; | 
 | #endif | 
 | 	objnr = obj_to_index(s, page, objp); | 
 | 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); | 
 | 	objp = base + s->size * objnr; | 
 | 	kpp->kp_objp = objp; | 
 | 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) || | 
 | 	    !(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	trackp = get_track(s, objp, TRACK_ALLOC); | 
 | 	kpp->kp_ret = (void *)trackp->addr; | 
 | #ifdef CONFIG_STACKTRACE | 
 | 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { | 
 | 		kpp->kp_stack[i] = (void *)trackp->addrs[i]; | 
 | 		if (!kpp->kp_stack[i]) | 
 | 			break; | 
 | 	} | 
 | #endif | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | /******************************************************************** | 
 |  *		Kmalloc subsystem | 
 |  *******************************************************************/ | 
 |  | 
 | static int __init setup_slub_min_order(char *str) | 
 | { | 
 | 	get_option(&str, (int *)&slub_min_order); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_min_order=", setup_slub_min_order); | 
 |  | 
 | static int __init setup_slub_max_order(char *str) | 
 | { | 
 | 	get_option(&str, (int *)&slub_max_order); | 
 | 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_max_order=", setup_slub_max_order); | 
 |  | 
 | static int __init setup_slub_min_objects(char *str) | 
 | { | 
 | 	get_option(&str, (int *)&slub_min_objects); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_min_objects=", setup_slub_min_objects); | 
 |  | 
 | void *__kmalloc(size_t size, gfp_t flags) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) | 
 | 		return kmalloc_large(size, flags); | 
 |  | 
 | 	s = kmalloc_slab(size, flags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	ret = slab_alloc(s, flags, _RET_IP_, size); | 
 |  | 
 | 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 
 |  | 
 | 	ret = kasan_kmalloc(s, ret, size, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | 
 | { | 
 | 	struct page *page; | 
 | 	void *ptr = NULL; | 
 | 	unsigned int order = get_order(size); | 
 |  | 
 | 	flags |= __GFP_COMP; | 
 | 	page = alloc_pages_node(node, flags, order); | 
 | 	if (page) { | 
 | 		ptr = page_address(page); | 
 | 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, | 
 | 				      PAGE_SIZE << order); | 
 | 	} | 
 |  | 
 | 	return kmalloc_large_node_hook(ptr, size, flags); | 
 | } | 
 |  | 
 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
 | 		ret = kmalloc_large_node(size, flags, node); | 
 |  | 
 | 		trace_kmalloc_node(_RET_IP_, ret, | 
 | 				   size, PAGE_SIZE << get_order(size), | 
 | 				   flags, node); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	s = kmalloc_slab(size, flags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size); | 
 |  | 
 | 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); | 
 |  | 
 | 	ret = kasan_kmalloc(s, ret, size, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node); | 
 | #endif	/* CONFIG_NUMA */ | 
 |  | 
 | #ifdef CONFIG_HARDENED_USERCOPY | 
 | /* | 
 |  * Rejects incorrectly sized objects and objects that are to be copied | 
 |  * to/from userspace but do not fall entirely within the containing slab | 
 |  * cache's usercopy region. | 
 |  * | 
 |  * Returns NULL if check passes, otherwise const char * to name of cache | 
 |  * to indicate an error. | 
 |  */ | 
 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, | 
 | 			 bool to_user) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	unsigned int offset; | 
 | 	size_t object_size; | 
 | 	bool is_kfence = is_kfence_address(ptr); | 
 |  | 
 | 	ptr = kasan_reset_tag(ptr); | 
 |  | 
 | 	/* Find object and usable object size. */ | 
 | 	s = page->slab_cache; | 
 |  | 
 | 	/* Reject impossible pointers. */ | 
 | 	if (ptr < page_address(page)) | 
 | 		usercopy_abort("SLUB object not in SLUB page?!", NULL, | 
 | 			       to_user, 0, n); | 
 |  | 
 | 	/* Find offset within object. */ | 
 | 	if (is_kfence) | 
 | 		offset = ptr - kfence_object_start(ptr); | 
 | 	else | 
 | 		offset = (ptr - page_address(page)) % s->size; | 
 |  | 
 | 	/* Adjust for redzone and reject if within the redzone. */ | 
 | 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { | 
 | 		if (offset < s->red_left_pad) | 
 | 			usercopy_abort("SLUB object in left red zone", | 
 | 				       s->name, to_user, offset, n); | 
 | 		offset -= s->red_left_pad; | 
 | 	} | 
 |  | 
 | 	/* Allow address range falling entirely within usercopy region. */ | 
 | 	if (offset >= s->useroffset && | 
 | 	    offset - s->useroffset <= s->usersize && | 
 | 	    n <= s->useroffset - offset + s->usersize) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the copy is still within the allocated object, produce | 
 | 	 * a warning instead of rejecting the copy. This is intended | 
 | 	 * to be a temporary method to find any missing usercopy | 
 | 	 * whitelists. | 
 | 	 */ | 
 | 	object_size = slab_ksize(s); | 
 | 	if (usercopy_fallback && | 
 | 	    offset <= object_size && n <= object_size - offset) { | 
 | 		usercopy_warn("SLUB object", s->name, to_user, offset, n); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	usercopy_abort("SLUB object", s->name, to_user, offset, n); | 
 | } | 
 | #endif /* CONFIG_HARDENED_USERCOPY */ | 
 |  | 
 | size_t __ksize(const void *object) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (unlikely(object == ZERO_SIZE_PTR)) | 
 | 		return 0; | 
 |  | 
 | 	page = virt_to_head_page(object); | 
 |  | 
 | 	if (unlikely(!PageSlab(page))) { | 
 | 		WARN_ON(!PageCompound(page)); | 
 | 		return page_size(page); | 
 | 	} | 
 |  | 
 | 	return slab_ksize(page->slab_cache); | 
 | } | 
 | EXPORT_SYMBOL(__ksize); | 
 |  | 
 | void kfree(const void *x) | 
 | { | 
 | 	struct page *page; | 
 | 	void *object = (void *)x; | 
 |  | 
 | 	trace_kfree(_RET_IP_, x); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(x))) | 
 | 		return; | 
 |  | 
 | 	page = virt_to_head_page(x); | 
 | 	if (unlikely(!PageSlab(page))) { | 
 | 		unsigned int order = compound_order(page); | 
 |  | 
 | 		BUG_ON(!PageCompound(page)); | 
 | 		kfree_hook(object); | 
 | 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, | 
 | 				      -(PAGE_SIZE << order)); | 
 | 		__free_pages(page, order); | 
 | 		return; | 
 | 	} | 
 | 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(kfree); | 
 |  | 
 | #define SHRINK_PROMOTE_MAX 32 | 
 |  | 
 | /* | 
 |  * kmem_cache_shrink discards empty slabs and promotes the slabs filled | 
 |  * up most to the head of the partial lists. New allocations will then | 
 |  * fill those up and thus they can be removed from the partial lists. | 
 |  * | 
 |  * The slabs with the least items are placed last. This results in them | 
 |  * being allocated from last increasing the chance that the last objects | 
 |  * are freed in them. | 
 |  */ | 
 | int __kmem_cache_shrink(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	int i; | 
 | 	struct kmem_cache_node *n; | 
 | 	struct page *page; | 
 | 	struct page *t; | 
 | 	struct list_head discard; | 
 | 	struct list_head promote[SHRINK_PROMOTE_MAX]; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	flush_all(s); | 
 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 		INIT_LIST_HEAD(&discard); | 
 | 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | 
 | 			INIT_LIST_HEAD(promote + i); | 
 |  | 
 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 |  | 
 | 		/* | 
 | 		 * Build lists of slabs to discard or promote. | 
 | 		 * | 
 | 		 * Note that concurrent frees may occur while we hold the | 
 | 		 * list_lock. page->inuse here is the upper limit. | 
 | 		 */ | 
 | 		list_for_each_entry_safe(page, t, &n->partial, slab_list) { | 
 | 			int free = page->objects - page->inuse; | 
 |  | 
 | 			/* Do not reread page->inuse */ | 
 | 			barrier(); | 
 |  | 
 | 			/* We do not keep full slabs on the list */ | 
 | 			BUG_ON(free <= 0); | 
 |  | 
 | 			if (free == page->objects) { | 
 | 				list_move(&page->slab_list, &discard); | 
 | 				n->nr_partial--; | 
 | 			} else if (free <= SHRINK_PROMOTE_MAX) | 
 | 				list_move(&page->slab_list, promote + free - 1); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Promote the slabs filled up most to the head of the | 
 | 		 * partial list. | 
 | 		 */ | 
 | 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) | 
 | 			list_splice(promote + i, &n->partial); | 
 |  | 
 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 |  | 
 | 		/* Release empty slabs */ | 
 | 		list_for_each_entry_safe(page, t, &discard, slab_list) | 
 | 			discard_slab(s, page); | 
 |  | 
 | 		if (slabs_node(s, node)) | 
 | 			ret = 1; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int slab_mem_going_offline_callback(void *arg) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	mutex_lock(&slab_mutex); | 
 | 	list_for_each_entry(s, &slab_caches, list) | 
 | 		__kmem_cache_shrink(s); | 
 | 	mutex_unlock(&slab_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void slab_mem_offline_callback(void *arg) | 
 | { | 
 | 	struct memory_notify *marg = arg; | 
 | 	int offline_node; | 
 |  | 
 | 	offline_node = marg->status_change_nid_normal; | 
 |  | 
 | 	/* | 
 | 	 * If the node still has available memory. we need kmem_cache_node | 
 | 	 * for it yet. | 
 | 	 */ | 
 | 	if (offline_node < 0) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&slab_mutex); | 
 | 	node_clear(offline_node, slab_nodes); | 
 | 	/* | 
 | 	 * We no longer free kmem_cache_node structures here, as it would be | 
 | 	 * racy with all get_node() users, and infeasible to protect them with | 
 | 	 * slab_mutex. | 
 | 	 */ | 
 | 	mutex_unlock(&slab_mutex); | 
 | } | 
 |  | 
 | static int slab_mem_going_online_callback(void *arg) | 
 | { | 
 | 	struct kmem_cache_node *n; | 
 | 	struct kmem_cache *s; | 
 | 	struct memory_notify *marg = arg; | 
 | 	int nid = marg->status_change_nid_normal; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the node's memory is already available, then kmem_cache_node is | 
 | 	 * already created. Nothing to do. | 
 | 	 */ | 
 | 	if (nid < 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We are bringing a node online. No memory is available yet. We must | 
 | 	 * allocate a kmem_cache_node structure in order to bring the node | 
 | 	 * online. | 
 | 	 */ | 
 | 	mutex_lock(&slab_mutex); | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		/* | 
 | 		 * The structure may already exist if the node was previously | 
 | 		 * onlined and offlined. | 
 | 		 */ | 
 | 		if (get_node(s, nid)) | 
 | 			continue; | 
 | 		/* | 
 | 		 * XXX: kmem_cache_alloc_node will fallback to other nodes | 
 | 		 *      since memory is not yet available from the node that | 
 | 		 *      is brought up. | 
 | 		 */ | 
 | 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); | 
 | 		if (!n) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		init_kmem_cache_node(n); | 
 | 		s->node[nid] = n; | 
 | 	} | 
 | 	/* | 
 | 	 * Any cache created after this point will also have kmem_cache_node | 
 | 	 * initialized for the new node. | 
 | 	 */ | 
 | 	node_set(nid, slab_nodes); | 
 | out: | 
 | 	mutex_unlock(&slab_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int slab_memory_callback(struct notifier_block *self, | 
 | 				unsigned long action, void *arg) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_ONLINE: | 
 | 		ret = slab_mem_going_online_callback(arg); | 
 | 		break; | 
 | 	case MEM_GOING_OFFLINE: | 
 | 		ret = slab_mem_going_offline_callback(arg); | 
 | 		break; | 
 | 	case MEM_OFFLINE: | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 		slab_mem_offline_callback(arg); | 
 | 		break; | 
 | 	case MEM_ONLINE: | 
 | 	case MEM_CANCEL_OFFLINE: | 
 | 		break; | 
 | 	} | 
 | 	if (ret) | 
 | 		ret = notifier_from_errno(ret); | 
 | 	else | 
 | 		ret = NOTIFY_OK; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct notifier_block slab_memory_callback_nb = { | 
 | 	.notifier_call = slab_memory_callback, | 
 | 	.priority = SLAB_CALLBACK_PRI, | 
 | }; | 
 |  | 
 | /******************************************************************** | 
 |  *			Basic setup of slabs | 
 |  *******************************************************************/ | 
 |  | 
 | /* | 
 |  * Used for early kmem_cache structures that were allocated using | 
 |  * the page allocator. Allocate them properly then fix up the pointers | 
 |  * that may be pointing to the wrong kmem_cache structure. | 
 |  */ | 
 |  | 
 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) | 
 | { | 
 | 	int node; | 
 | 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	memcpy(s, static_cache, kmem_cache->object_size); | 
 |  | 
 | 	/* | 
 | 	 * This runs very early, and only the boot processor is supposed to be | 
 | 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire | 
 | 	 * IPIs around. | 
 | 	 */ | 
 | 	__flush_cpu_slab(s, smp_processor_id()); | 
 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 		struct page *p; | 
 |  | 
 | 		list_for_each_entry(p, &n->partial, slab_list) | 
 | 			p->slab_cache = s; | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 		list_for_each_entry(p, &n->full, slab_list) | 
 | 			p->slab_cache = s; | 
 | #endif | 
 | 	} | 
 | 	list_add(&s->list, &slab_caches); | 
 | 	return s; | 
 | } | 
 |  | 
 | void __init kmem_cache_init(void) | 
 | { | 
 | 	static __initdata struct kmem_cache boot_kmem_cache, | 
 | 		boot_kmem_cache_node; | 
 | 	int node; | 
 |  | 
 | 	if (debug_guardpage_minorder()) | 
 | 		slub_max_order = 0; | 
 |  | 
 | 	kmem_cache_node = &boot_kmem_cache_node; | 
 | 	kmem_cache = &boot_kmem_cache; | 
 |  | 
 | 	/* | 
 | 	 * Initialize the nodemask for which we will allocate per node | 
 | 	 * structures. Here we don't need taking slab_mutex yet. | 
 | 	 */ | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) | 
 | 		node_set(node, slab_nodes); | 
 |  | 
 | 	create_boot_cache(kmem_cache_node, "kmem_cache_node", | 
 | 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); | 
 |  | 
 | 	register_hotmemory_notifier(&slab_memory_callback_nb); | 
 |  | 
 | 	/* Able to allocate the per node structures */ | 
 | 	slab_state = PARTIAL; | 
 |  | 
 | 	create_boot_cache(kmem_cache, "kmem_cache", | 
 | 			offsetof(struct kmem_cache, node) + | 
 | 				nr_node_ids * sizeof(struct kmem_cache_node *), | 
 | 		       SLAB_HWCACHE_ALIGN, 0, 0); | 
 |  | 
 | 	kmem_cache = bootstrap(&boot_kmem_cache); | 
 | 	kmem_cache_node = bootstrap(&boot_kmem_cache_node); | 
 |  | 
 | 	/* Now we can use the kmem_cache to allocate kmalloc slabs */ | 
 | 	setup_kmalloc_cache_index_table(); | 
 | 	create_kmalloc_caches(0); | 
 |  | 
 | 	/* Setup random freelists for each cache */ | 
 | 	init_freelist_randomization(); | 
 |  | 
 | 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, | 
 | 				  slub_cpu_dead); | 
 |  | 
 | 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", | 
 | 		cache_line_size(), | 
 | 		slub_min_order, slub_max_order, slub_min_objects, | 
 | 		nr_cpu_ids, nr_node_ids); | 
 | } | 
 |  | 
 | void __init kmem_cache_init_late(void) | 
 | { | 
 | } | 
 |  | 
 | struct kmem_cache * | 
 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, | 
 | 		   slab_flags_t flags, void (*ctor)(void *)) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	s = find_mergeable(size, align, flags, name, ctor); | 
 | 	if (s) { | 
 | 		s->refcount++; | 
 |  | 
 | 		/* | 
 | 		 * Adjust the object sizes so that we clear | 
 | 		 * the complete object on kzalloc. | 
 | 		 */ | 
 | 		s->object_size = max(s->object_size, size); | 
 | 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); | 
 |  | 
 | 		if (sysfs_slab_alias(s, name)) { | 
 | 			s->refcount--; | 
 | 			s = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return s; | 
 | } | 
 |  | 
 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = kmem_cache_open(s, flags); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Mutex is not taken during early boot */ | 
 | 	if (slab_state <= UP) | 
 | 		return 0; | 
 |  | 
 | 	err = sysfs_slab_add(s); | 
 | 	if (err) | 
 | 		__kmem_cache_release(s); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) | 
 | 		return kmalloc_large(size, gfpflags); | 
 |  | 
 | 	s = kmalloc_slab(size, gfpflags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	ret = slab_alloc(s, gfpflags, caller, size); | 
 |  | 
 | 	/* Honor the call site pointer we received. */ | 
 | 	trace_kmalloc(caller, ret, size, s->size, gfpflags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_track_caller); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
 | 					int node, unsigned long caller) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
 | 		ret = kmalloc_large_node(size, gfpflags, node); | 
 |  | 
 | 		trace_kmalloc_node(caller, ret, | 
 | 				   size, PAGE_SIZE << get_order(size), | 
 | 				   gfpflags, node); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	s = kmalloc_slab(size, gfpflags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	ret = slab_alloc_node(s, gfpflags, node, caller, size); | 
 |  | 
 | 	/* Honor the call site pointer we received. */ | 
 | 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | static int count_inuse(struct page *page) | 
 | { | 
 | 	return page->inuse; | 
 | } | 
 |  | 
 | static int count_total(struct page *page) | 
 | { | 
 | 	return page->objects; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static void validate_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	void *p; | 
 | 	void *addr = page_address(page); | 
 | 	unsigned long *map; | 
 |  | 
 | 	slab_lock(page); | 
 |  | 
 | 	if (!check_slab(s, page) || !on_freelist(s, page, NULL)) | 
 | 		goto unlock; | 
 |  | 
 | 	/* Now we know that a valid freelist exists */ | 
 | 	map = get_map(s, page); | 
 | 	for_each_object(p, s, addr, page->objects) { | 
 | 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ? | 
 | 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; | 
 |  | 
 | 		if (!check_object(s, page, p, val)) | 
 | 			break; | 
 | 	} | 
 | 	put_map(map); | 
 | unlock: | 
 | 	slab_unlock(page); | 
 | } | 
 |  | 
 | static int validate_slab_node(struct kmem_cache *s, | 
 | 		struct kmem_cache_node *n) | 
 | { | 
 | 	unsigned long count = 0; | 
 | 	struct page *page; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 |  | 
 | 	list_for_each_entry(page, &n->partial, slab_list) { | 
 | 		validate_slab(s, page); | 
 | 		count++; | 
 | 	} | 
 | 	if (count != n->nr_partial) | 
 | 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", | 
 | 		       s->name, count, n->nr_partial); | 
 |  | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry(page, &n->full, slab_list) { | 
 | 		validate_slab(s, page); | 
 | 		count++; | 
 | 	} | 
 | 	if (count != atomic_long_read(&n->nr_slabs)) | 
 | 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", | 
 | 		       s->name, count, atomic_long_read(&n->nr_slabs)); | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	return count; | 
 | } | 
 |  | 
 | static long validate_slab_cache(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	unsigned long count = 0; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	flush_all(s); | 
 | 	for_each_kmem_cache_node(s, node, n) | 
 | 		count += validate_slab_node(s, n); | 
 |  | 
 | 	return count; | 
 | } | 
 | /* | 
 |  * Generate lists of code addresses where slabcache objects are allocated | 
 |  * and freed. | 
 |  */ | 
 |  | 
 | struct location { | 
 | 	unsigned long count; | 
 | 	unsigned long addr; | 
 | 	long long sum_time; | 
 | 	long min_time; | 
 | 	long max_time; | 
 | 	long min_pid; | 
 | 	long max_pid; | 
 | 	DECLARE_BITMAP(cpus, NR_CPUS); | 
 | 	nodemask_t nodes; | 
 | }; | 
 |  | 
 | struct loc_track { | 
 | 	unsigned long max; | 
 | 	unsigned long count; | 
 | 	struct location *loc; | 
 | }; | 
 |  | 
 | static void free_loc_track(struct loc_track *t) | 
 | { | 
 | 	if (t->max) | 
 | 		free_pages((unsigned long)t->loc, | 
 | 			get_order(sizeof(struct location) * t->max)); | 
 | } | 
 |  | 
 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 
 | { | 
 | 	struct location *l; | 
 | 	int order; | 
 |  | 
 | 	order = get_order(sizeof(struct location) * max); | 
 |  | 
 | 	l = (void *)__get_free_pages(flags, order); | 
 | 	if (!l) | 
 | 		return 0; | 
 |  | 
 | 	if (t->count) { | 
 | 		memcpy(l, t->loc, sizeof(struct location) * t->count); | 
 | 		free_loc_track(t); | 
 | 	} | 
 | 	t->max = max; | 
 | 	t->loc = l; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int add_location(struct loc_track *t, struct kmem_cache *s, | 
 | 				const struct track *track) | 
 | { | 
 | 	long start, end, pos; | 
 | 	struct location *l; | 
 | 	unsigned long caddr; | 
 | 	unsigned long age = jiffies - track->when; | 
 |  | 
 | 	start = -1; | 
 | 	end = t->count; | 
 |  | 
 | 	for ( ; ; ) { | 
 | 		pos = start + (end - start + 1) / 2; | 
 |  | 
 | 		/* | 
 | 		 * There is nothing at "end". If we end up there | 
 | 		 * we need to add something to before end. | 
 | 		 */ | 
 | 		if (pos == end) | 
 | 			break; | 
 |  | 
 | 		caddr = t->loc[pos].addr; | 
 | 		if (track->addr == caddr) { | 
 |  | 
 | 			l = &t->loc[pos]; | 
 | 			l->count++; | 
 | 			if (track->when) { | 
 | 				l->sum_time += age; | 
 | 				if (age < l->min_time) | 
 | 					l->min_time = age; | 
 | 				if (age > l->max_time) | 
 | 					l->max_time = age; | 
 |  | 
 | 				if (track->pid < l->min_pid) | 
 | 					l->min_pid = track->pid; | 
 | 				if (track->pid > l->max_pid) | 
 | 					l->max_pid = track->pid; | 
 |  | 
 | 				cpumask_set_cpu(track->cpu, | 
 | 						to_cpumask(l->cpus)); | 
 | 			} | 
 | 			node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		if (track->addr < caddr) | 
 | 			end = pos; | 
 | 		else | 
 | 			start = pos; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Not found. Insert new tracking element. | 
 | 	 */ | 
 | 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 
 | 		return 0; | 
 |  | 
 | 	l = t->loc + pos; | 
 | 	if (pos < t->count) | 
 | 		memmove(l + 1, l, | 
 | 			(t->count - pos) * sizeof(struct location)); | 
 | 	t->count++; | 
 | 	l->count = 1; | 
 | 	l->addr = track->addr; | 
 | 	l->sum_time = age; | 
 | 	l->min_time = age; | 
 | 	l->max_time = age; | 
 | 	l->min_pid = track->pid; | 
 | 	l->max_pid = track->pid; | 
 | 	cpumask_clear(to_cpumask(l->cpus)); | 
 | 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | 
 | 	nodes_clear(l->nodes); | 
 | 	node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 
 | 		struct page *page, enum track_item alloc) | 
 | { | 
 | 	void *addr = page_address(page); | 
 | 	void *p; | 
 | 	unsigned long *map; | 
 |  | 
 | 	map = get_map(s, page); | 
 | 	for_each_object(p, s, addr, page->objects) | 
 | 		if (!test_bit(__obj_to_index(s, addr, p), map)) | 
 | 			add_location(t, s, get_track(s, p, alloc)); | 
 | 	put_map(map); | 
 | } | 
 |  | 
 | static int list_locations(struct kmem_cache *s, char *buf, | 
 | 			  enum track_item alloc) | 
 | { | 
 | 	int len = 0; | 
 | 	unsigned long i; | 
 | 	struct loc_track t = { 0, 0, NULL }; | 
 | 	int node; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 
 | 			     GFP_KERNEL)) { | 
 | 		return sysfs_emit(buf, "Out of memory\n"); | 
 | 	} | 
 | 	/* Push back cpu slabs */ | 
 | 	flush_all(s); | 
 |  | 
 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 		unsigned long flags; | 
 | 		struct page *page; | 
 |  | 
 | 		if (!atomic_long_read(&n->nr_slabs)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 | 		list_for_each_entry(page, &n->partial, slab_list) | 
 | 			process_slab(&t, s, page, alloc); | 
 | 		list_for_each_entry(page, &n->full, slab_list) | 
 | 			process_slab(&t, s, page, alloc); | 
 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < t.count; i++) { | 
 | 		struct location *l = &t.loc[i]; | 
 |  | 
 | 		len += sysfs_emit_at(buf, len, "%7ld ", l->count); | 
 |  | 
 | 		if (l->addr) | 
 | 			len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr); | 
 | 		else | 
 | 			len += sysfs_emit_at(buf, len, "<not-available>"); | 
 |  | 
 | 		if (l->sum_time != l->min_time) | 
 | 			len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld", | 
 | 					     l->min_time, | 
 | 					     (long)div_u64(l->sum_time, | 
 | 							   l->count), | 
 | 					     l->max_time); | 
 | 		else | 
 | 			len += sysfs_emit_at(buf, len, " age=%ld", l->min_time); | 
 |  | 
 | 		if (l->min_pid != l->max_pid) | 
 | 			len += sysfs_emit_at(buf, len, " pid=%ld-%ld", | 
 | 					     l->min_pid, l->max_pid); | 
 | 		else | 
 | 			len += sysfs_emit_at(buf, len, " pid=%ld", | 
 | 					     l->min_pid); | 
 |  | 
 | 		if (num_online_cpus() > 1 && | 
 | 		    !cpumask_empty(to_cpumask(l->cpus))) | 
 | 			len += sysfs_emit_at(buf, len, " cpus=%*pbl", | 
 | 					     cpumask_pr_args(to_cpumask(l->cpus))); | 
 |  | 
 | 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) | 
 | 			len += sysfs_emit_at(buf, len, " nodes=%*pbl", | 
 | 					     nodemask_pr_args(&l->nodes)); | 
 |  | 
 | 		len += sysfs_emit_at(buf, len, "\n"); | 
 | 	} | 
 |  | 
 | 	free_loc_track(&t); | 
 | 	if (!t.count) | 
 | 		len += sysfs_emit_at(buf, len, "No data\n"); | 
 |  | 
 | 	return len; | 
 | } | 
 | #endif	/* CONFIG_SLUB_DEBUG */ | 
 |  | 
 | #ifdef SLUB_RESILIENCY_TEST | 
 | static void __init resiliency_test(void) | 
 | { | 
 | 	u8 *p; | 
 | 	int type = KMALLOC_NORMAL; | 
 |  | 
 | 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); | 
 |  | 
 | 	pr_err("SLUB resiliency testing\n"); | 
 | 	pr_err("-----------------------\n"); | 
 | 	pr_err("A. Corruption after allocation\n"); | 
 |  | 
 | 	p = kzalloc(16, GFP_KERNEL); | 
 | 	p[16] = 0x12; | 
 | 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", | 
 | 	       p + 16); | 
 |  | 
 | 	validate_slab_cache(kmalloc_caches[type][4]); | 
 |  | 
 | 	/* Hmmm... The next two are dangerous */ | 
 | 	p = kzalloc(32, GFP_KERNEL); | 
 | 	p[32 + sizeof(void *)] = 0x34; | 
 | 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", | 
 | 	       p); | 
 | 	pr_err("If allocated object is overwritten then not detectable\n\n"); | 
 |  | 
 | 	validate_slab_cache(kmalloc_caches[type][5]); | 
 | 	p = kzalloc(64, GFP_KERNEL); | 
 | 	p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
 | 	*p = 0x56; | 
 | 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
 | 	       p); | 
 | 	pr_err("If allocated object is overwritten then not detectable\n\n"); | 
 | 	validate_slab_cache(kmalloc_caches[type][6]); | 
 |  | 
 | 	pr_err("\nB. Corruption after free\n"); | 
 | 	p = kzalloc(128, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	*p = 0x78; | 
 | 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
 | 	validate_slab_cache(kmalloc_caches[type][7]); | 
 |  | 
 | 	p = kzalloc(256, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	p[50] = 0x9a; | 
 | 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | 
 | 	validate_slab_cache(kmalloc_caches[type][8]); | 
 |  | 
 | 	p = kzalloc(512, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	p[512] = 0xab; | 
 | 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
 | 	validate_slab_cache(kmalloc_caches[type][9]); | 
 | } | 
 | #else | 
 | #ifdef CONFIG_SYSFS | 
 | static void resiliency_test(void) {}; | 
 | #endif | 
 | #endif	/* SLUB_RESILIENCY_TEST */ | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | enum slab_stat_type { | 
 | 	SL_ALL,			/* All slabs */ | 
 | 	SL_PARTIAL,		/* Only partially allocated slabs */ | 
 | 	SL_CPU,			/* Only slabs used for cpu caches */ | 
 | 	SL_OBJECTS,		/* Determine allocated objects not slabs */ | 
 | 	SL_TOTAL		/* Determine object capacity not slabs */ | 
 | }; | 
 |  | 
 | #define SO_ALL		(1 << SL_ALL) | 
 | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
 | #define SO_CPU		(1 << SL_CPU) | 
 | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
 | #define SO_TOTAL	(1 << SL_TOTAL) | 
 |  | 
 | static ssize_t show_slab_objects(struct kmem_cache *s, | 
 | 				 char *buf, unsigned long flags) | 
 | { | 
 | 	unsigned long total = 0; | 
 | 	int node; | 
 | 	int x; | 
 | 	unsigned long *nodes; | 
 | 	int len = 0; | 
 |  | 
 | 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); | 
 | 	if (!nodes) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (flags & SO_CPU) { | 
 | 		int cpu; | 
 |  | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, | 
 | 							       cpu); | 
 | 			int node; | 
 | 			struct page *page; | 
 |  | 
 | 			page = READ_ONCE(c->page); | 
 | 			if (!page) | 
 | 				continue; | 
 |  | 
 | 			node = page_to_nid(page); | 
 | 			if (flags & SO_TOTAL) | 
 | 				x = page->objects; | 
 | 			else if (flags & SO_OBJECTS) | 
 | 				x = page->inuse; | 
 | 			else | 
 | 				x = 1; | 
 |  | 
 | 			total += x; | 
 | 			nodes[node] += x; | 
 |  | 
 | 			page = slub_percpu_partial_read_once(c); | 
 | 			if (page) { | 
 | 				node = page_to_nid(page); | 
 | 				if (flags & SO_TOTAL) | 
 | 					WARN_ON_ONCE(1); | 
 | 				else if (flags & SO_OBJECTS) | 
 | 					WARN_ON_ONCE(1); | 
 | 				else | 
 | 					x = page->pages; | 
 | 				total += x; | 
 | 				nodes[node] += x; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | 
 | 	 * already held which will conflict with an existing lock order: | 
 | 	 * | 
 | 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex | 
 | 	 * | 
 | 	 * We don't really need mem_hotplug_lock (to hold off | 
 | 	 * slab_mem_going_offline_callback) here because slab's memory hot | 
 | 	 * unplug code doesn't destroy the kmem_cache->node[] data. | 
 | 	 */ | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	if (flags & SO_ALL) { | 
 | 		struct kmem_cache_node *n; | 
 |  | 
 | 		for_each_kmem_cache_node(s, node, n) { | 
 |  | 
 | 			if (flags & SO_TOTAL) | 
 | 				x = atomic_long_read(&n->total_objects); | 
 | 			else if (flags & SO_OBJECTS) | 
 | 				x = atomic_long_read(&n->total_objects) - | 
 | 					count_partial(n, count_free); | 
 | 			else | 
 | 				x = atomic_long_read(&n->nr_slabs); | 
 | 			total += x; | 
 | 			nodes[node] += x; | 
 | 		} | 
 |  | 
 | 	} else | 
 | #endif | 
 | 	if (flags & SO_PARTIAL) { | 
 | 		struct kmem_cache_node *n; | 
 |  | 
 | 		for_each_kmem_cache_node(s, node, n) { | 
 | 			if (flags & SO_TOTAL) | 
 | 				x = count_partial(n, count_total); | 
 | 			else if (flags & SO_OBJECTS) | 
 | 				x = count_partial(n, count_inuse); | 
 | 			else | 
 | 				x = n->nr_partial; | 
 | 			total += x; | 
 | 			nodes[node] += x; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	len += sysfs_emit_at(buf, len, "%lu", total); | 
 | #ifdef CONFIG_NUMA | 
 | 	for (node = 0; node < nr_node_ids; node++) { | 
 | 		if (nodes[node]) | 
 | 			len += sysfs_emit_at(buf, len, " N%d=%lu", | 
 | 					     node, nodes[node]); | 
 | 	} | 
 | #endif | 
 | 	len += sysfs_emit_at(buf, len, "\n"); | 
 | 	kfree(nodes); | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) | 
 |  | 
 | struct slab_attribute { | 
 | 	struct attribute attr; | 
 | 	ssize_t (*show)(struct kmem_cache *s, char *buf); | 
 | 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
 | }; | 
 |  | 
 | #define SLAB_ATTR_RO(_name) \ | 
 | 	static struct slab_attribute _name##_attr = \ | 
 | 	__ATTR(_name, 0400, _name##_show, NULL) | 
 |  | 
 | #define SLAB_ATTR(_name) \ | 
 | 	static struct slab_attribute _name##_attr =  \ | 
 | 	__ATTR(_name, 0600, _name##_show, _name##_store) | 
 |  | 
 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", s->size); | 
 | } | 
 | SLAB_ATTR_RO(slab_size); | 
 |  | 
 | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", s->align); | 
 | } | 
 | SLAB_ATTR_RO(align); | 
 |  | 
 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", s->object_size); | 
 | } | 
 | SLAB_ATTR_RO(object_size); | 
 |  | 
 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); | 
 | } | 
 | SLAB_ATTR_RO(objs_per_slab); | 
 |  | 
 | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", oo_order(s->oo)); | 
 | } | 
 | SLAB_ATTR_RO(order); | 
 |  | 
 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", s->min_partial); | 
 | } | 
 |  | 
 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | 
 | 				 size_t length) | 
 | { | 
 | 	unsigned long min; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &min); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	set_min_partial(s, min); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(min_partial); | 
 |  | 
 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); | 
 | } | 
 |  | 
 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | 
 | 				 size_t length) | 
 | { | 
 | 	unsigned int objects; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &objects); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (objects && !kmem_cache_has_cpu_partial(s)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	slub_set_cpu_partial(s, objects); | 
 | 	flush_all(s); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(cpu_partial); | 
 |  | 
 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (!s->ctor) | 
 | 		return 0; | 
 | 	return sysfs_emit(buf, "%pS\n", s->ctor); | 
 | } | 
 | SLAB_ATTR_RO(ctor); | 
 |  | 
 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); | 
 | } | 
 | SLAB_ATTR_RO(aliases); | 
 |  | 
 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_PARTIAL); | 
 | } | 
 | SLAB_ATTR_RO(partial); | 
 |  | 
 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_CPU); | 
 | } | 
 | SLAB_ATTR_RO(cpu_slabs); | 
 |  | 
 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | 
 | } | 
 | SLAB_ATTR_RO(objects); | 
 |  | 
 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | 
 | } | 
 | SLAB_ATTR_RO(objects_partial); | 
 |  | 
 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	int objects = 0; | 
 | 	int pages = 0; | 
 | 	int cpu; | 
 | 	int len = 0; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | 
 |  | 
 | 		if (page) { | 
 | 			pages += page->pages; | 
 | 			objects += page->pobjects; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | 
 | 		if (page) | 
 | 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)", | 
 | 					     cpu, page->pobjects, page->pages); | 
 | 	} | 
 | #endif | 
 | 	len += sysfs_emit_at(buf, len, "\n"); | 
 |  | 
 | 	return len; | 
 | } | 
 | SLAB_ATTR_RO(slabs_cpu_partial); | 
 |  | 
 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
 | } | 
 | SLAB_ATTR_RO(reclaim_account); | 
 |  | 
 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 
 | } | 
 | SLAB_ATTR_RO(hwcache_align); | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
 | } | 
 | SLAB_ATTR_RO(cache_dma); | 
 | #endif | 
 |  | 
 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", s->usersize); | 
 | } | 
 | SLAB_ATTR_RO(usersize); | 
 |  | 
 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); | 
 | } | 
 | SLAB_ATTR_RO(destroy_by_rcu); | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL); | 
 | } | 
 | SLAB_ATTR_RO(slabs); | 
 |  | 
 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | 
 | } | 
 | SLAB_ATTR_RO(total_objects); | 
 |  | 
 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); | 
 | } | 
 | SLAB_ATTR_RO(sanity_checks); | 
 |  | 
 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
 | } | 
 | SLAB_ATTR_RO(trace); | 
 |  | 
 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
 | } | 
 |  | 
 | SLAB_ATTR_RO(red_zone); | 
 |  | 
 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
 | } | 
 |  | 
 | SLAB_ATTR_RO(poison); | 
 |  | 
 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
 | } | 
 |  | 
 | SLAB_ATTR_RO(store_user); | 
 |  | 
 | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t validate_store(struct kmem_cache *s, | 
 | 			const char *buf, size_t length) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	if (buf[0] == '1') { | 
 | 		ret = validate_slab_cache(s); | 
 | 		if (ret >= 0) | 
 | 			ret = length; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | SLAB_ATTR(validate); | 
 |  | 
 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return -ENOSYS; | 
 | 	return list_locations(s, buf, TRACK_ALLOC); | 
 | } | 
 | SLAB_ATTR_RO(alloc_calls); | 
 |  | 
 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return -ENOSYS; | 
 | 	return list_locations(s, buf, TRACK_FREE); | 
 | } | 
 | SLAB_ATTR_RO(free_calls); | 
 | #endif /* CONFIG_SLUB_DEBUG */ | 
 |  | 
 | #ifdef CONFIG_FAILSLAB | 
 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | 
 | } | 
 | SLAB_ATTR_RO(failslab); | 
 | #endif | 
 |  | 
 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t shrink_store(struct kmem_cache *s, | 
 | 			const char *buf, size_t length) | 
 | { | 
 | 	if (buf[0] == '1') | 
 | 		kmem_cache_shrink(s); | 
 | 	else | 
 | 		return -EINVAL; | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(shrink); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); | 
 | } | 
 |  | 
 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	unsigned int ratio; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &ratio); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (ratio > 100) | 
 | 		return -ERANGE; | 
 |  | 
 | 	s->remote_node_defrag_ratio = ratio * 10; | 
 |  | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(remote_node_defrag_ratio); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SLUB_STATS | 
 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | 
 | { | 
 | 	unsigned long sum  = 0; | 
 | 	int cpu; | 
 | 	int len = 0; | 
 | 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); | 
 |  | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; | 
 |  | 
 | 		data[cpu] = x; | 
 | 		sum += x; | 
 | 	} | 
 |  | 
 | 	len += sysfs_emit_at(buf, len, "%lu", sum); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (data[cpu]) | 
 | 			len += sysfs_emit_at(buf, len, " C%d=%u", | 
 | 					     cpu, data[cpu]); | 
 | 	} | 
 | #endif | 
 | 	kfree(data); | 
 | 	len += sysfs_emit_at(buf, len, "\n"); | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | static void clear_stat(struct kmem_cache *s, enum stat_item si) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; | 
 | } | 
 |  | 
 | #define STAT_ATTR(si, text) 					\ | 
 | static ssize_t text##_show(struct kmem_cache *s, char *buf)	\ | 
 | {								\ | 
 | 	return show_stat(s, buf, si);				\ | 
 | }								\ | 
 | static ssize_t text##_store(struct kmem_cache *s,		\ | 
 | 				const char *buf, size_t length)	\ | 
 | {								\ | 
 | 	if (buf[0] != '0')					\ | 
 | 		return -EINVAL;					\ | 
 | 	clear_stat(s, si);					\ | 
 | 	return length;						\ | 
 | }								\ | 
 | SLAB_ATTR(text);						\ | 
 |  | 
 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | 
 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | 
 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | 
 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | 
 | STAT_ATTR(FREE_FROZEN, free_frozen); | 
 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | 
 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | 
 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | 
 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | 
 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | 
 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); | 
 | STAT_ATTR(FREE_SLAB, free_slab); | 
 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | 
 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | 
 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | 
 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | 
 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | 
 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | 
 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); | 
 | STAT_ATTR(ORDER_FALLBACK, order_fallback); | 
 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); | 
 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | 
 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); | 
 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | 
 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); | 
 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | 
 | #endif	/* CONFIG_SLUB_STATS */ | 
 |  | 
 | static struct attribute *slab_attrs[] = { | 
 | 	&slab_size_attr.attr, | 
 | 	&object_size_attr.attr, | 
 | 	&objs_per_slab_attr.attr, | 
 | 	&order_attr.attr, | 
 | 	&min_partial_attr.attr, | 
 | 	&cpu_partial_attr.attr, | 
 | 	&objects_attr.attr, | 
 | 	&objects_partial_attr.attr, | 
 | 	&partial_attr.attr, | 
 | 	&cpu_slabs_attr.attr, | 
 | 	&ctor_attr.attr, | 
 | 	&aliases_attr.attr, | 
 | 	&align_attr.attr, | 
 | 	&hwcache_align_attr.attr, | 
 | 	&reclaim_account_attr.attr, | 
 | 	&destroy_by_rcu_attr.attr, | 
 | 	&shrink_attr.attr, | 
 | 	&slabs_cpu_partial_attr.attr, | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	&total_objects_attr.attr, | 
 | 	&slabs_attr.attr, | 
 | 	&sanity_checks_attr.attr, | 
 | 	&trace_attr.attr, | 
 | 	&red_zone_attr.attr, | 
 | 	&poison_attr.attr, | 
 | 	&store_user_attr.attr, | 
 | 	&validate_attr.attr, | 
 | 	&alloc_calls_attr.attr, | 
 | 	&free_calls_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	&cache_dma_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_NUMA | 
 | 	&remote_node_defrag_ratio_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_SLUB_STATS | 
 | 	&alloc_fastpath_attr.attr, | 
 | 	&alloc_slowpath_attr.attr, | 
 | 	&free_fastpath_attr.attr, | 
 | 	&free_slowpath_attr.attr, | 
 | 	&free_frozen_attr.attr, | 
 | 	&free_add_partial_attr.attr, | 
 | 	&free_remove_partial_attr.attr, | 
 | 	&alloc_from_partial_attr.attr, | 
 | 	&alloc_slab_attr.attr, | 
 | 	&alloc_refill_attr.attr, | 
 | 	&alloc_node_mismatch_attr.attr, | 
 | 	&free_slab_attr.attr, | 
 | 	&cpuslab_flush_attr.attr, | 
 | 	&deactivate_full_attr.attr, | 
 | 	&deactivate_empty_attr.attr, | 
 | 	&deactivate_to_head_attr.attr, | 
 | 	&deactivate_to_tail_attr.attr, | 
 | 	&deactivate_remote_frees_attr.attr, | 
 | 	&deactivate_bypass_attr.attr, | 
 | 	&order_fallback_attr.attr, | 
 | 	&cmpxchg_double_fail_attr.attr, | 
 | 	&cmpxchg_double_cpu_fail_attr.attr, | 
 | 	&cpu_partial_alloc_attr.attr, | 
 | 	&cpu_partial_free_attr.attr, | 
 | 	&cpu_partial_node_attr.attr, | 
 | 	&cpu_partial_drain_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_FAILSLAB | 
 | 	&failslab_attr.attr, | 
 | #endif | 
 | 	&usersize_attr.attr, | 
 |  | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const struct attribute_group slab_attr_group = { | 
 | 	.attrs = slab_attrs, | 
 | }; | 
 |  | 
 | static ssize_t slab_attr_show(struct kobject *kobj, | 
 | 				struct attribute *attr, | 
 | 				char *buf) | 
 | { | 
 | 	struct slab_attribute *attribute; | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	attribute = to_slab_attr(attr); | 
 | 	s = to_slab(kobj); | 
 |  | 
 | 	if (!attribute->show) | 
 | 		return -EIO; | 
 |  | 
 | 	err = attribute->show(s, buf); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static ssize_t slab_attr_store(struct kobject *kobj, | 
 | 				struct attribute *attr, | 
 | 				const char *buf, size_t len) | 
 | { | 
 | 	struct slab_attribute *attribute; | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	attribute = to_slab_attr(attr); | 
 | 	s = to_slab(kobj); | 
 |  | 
 | 	if (!attribute->store) | 
 | 		return -EIO; | 
 |  | 
 | 	err = attribute->store(s, buf, len); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void kmem_cache_release(struct kobject *k) | 
 | { | 
 | 	slab_kmem_cache_release(to_slab(k)); | 
 | } | 
 |  | 
 | static const struct sysfs_ops slab_sysfs_ops = { | 
 | 	.show = slab_attr_show, | 
 | 	.store = slab_attr_store, | 
 | }; | 
 |  | 
 | static struct kobj_type slab_ktype = { | 
 | 	.sysfs_ops = &slab_sysfs_ops, | 
 | 	.release = kmem_cache_release, | 
 | }; | 
 |  | 
 | static struct kset *slab_kset; | 
 |  | 
 | static inline struct kset *cache_kset(struct kmem_cache *s) | 
 | { | 
 | 	return slab_kset; | 
 | } | 
 |  | 
 | #define ID_STR_LENGTH 64 | 
 |  | 
 | /* Create a unique string id for a slab cache: | 
 |  * | 
 |  * Format	:[flags-]size | 
 |  */ | 
 | static char *create_unique_id(struct kmem_cache *s) | 
 | { | 
 | 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
 | 	char *p = name; | 
 |  | 
 | 	BUG_ON(!name); | 
 |  | 
 | 	*p++ = ':'; | 
 | 	/* | 
 | 	 * First flags affecting slabcache operations. We will only | 
 | 	 * get here for aliasable slabs so we do not need to support | 
 | 	 * too many flags. The flags here must cover all flags that | 
 | 	 * are matched during merging to guarantee that the id is | 
 | 	 * unique. | 
 | 	 */ | 
 | 	if (s->flags & SLAB_CACHE_DMA) | 
 | 		*p++ = 'd'; | 
 | 	if (s->flags & SLAB_CACHE_DMA32) | 
 | 		*p++ = 'D'; | 
 | 	if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		*p++ = 'a'; | 
 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) | 
 | 		*p++ = 'F'; | 
 | 	if (s->flags & SLAB_ACCOUNT) | 
 | 		*p++ = 'A'; | 
 | 	if (p != name + 1) | 
 | 		*p++ = '-'; | 
 | 	p += sprintf(p, "%07u", s->size); | 
 |  | 
 | 	BUG_ON(p > name + ID_STR_LENGTH - 1); | 
 | 	return name; | 
 | } | 
 |  | 
 | static int sysfs_slab_add(struct kmem_cache *s) | 
 | { | 
 | 	int err; | 
 | 	const char *name; | 
 | 	struct kset *kset = cache_kset(s); | 
 | 	int unmergeable = slab_unmergeable(s); | 
 |  | 
 | 	if (!kset) { | 
 | 		kobject_init(&s->kobj, &slab_ktype); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!unmergeable && disable_higher_order_debug && | 
 | 			(slub_debug & DEBUG_METADATA_FLAGS)) | 
 | 		unmergeable = 1; | 
 |  | 
 | 	if (unmergeable) { | 
 | 		/* | 
 | 		 * Slabcache can never be merged so we can use the name proper. | 
 | 		 * This is typically the case for debug situations. In that | 
 | 		 * case we can catch duplicate names easily. | 
 | 		 */ | 
 | 		sysfs_remove_link(&slab_kset->kobj, s->name); | 
 | 		name = s->name; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Create a unique name for the slab as a target | 
 | 		 * for the symlinks. | 
 | 		 */ | 
 | 		name = create_unique_id(s); | 
 | 	} | 
 |  | 
 | 	s->kobj.kset = kset; | 
 | 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
 | 	if (err) | 
 | 		goto out_del_kobj; | 
 |  | 
 | 	if (!unmergeable) { | 
 | 		/* Setup first alias */ | 
 | 		sysfs_slab_alias(s, s->name); | 
 | 	} | 
 | out: | 
 | 	if (!unmergeable) | 
 | 		kfree(name); | 
 | 	return err; | 
 | out_del_kobj: | 
 | 	kobject_del(&s->kobj); | 
 | 	goto out; | 
 | } | 
 |  | 
 | void sysfs_slab_unlink(struct kmem_cache *s) | 
 | { | 
 | 	if (slab_state >= FULL) | 
 | 		kobject_del(&s->kobj); | 
 | } | 
 |  | 
 | void sysfs_slab_release(struct kmem_cache *s) | 
 | { | 
 | 	if (slab_state >= FULL) | 
 | 		kobject_put(&s->kobj); | 
 | } | 
 |  | 
 | /* | 
 |  * Need to buffer aliases during bootup until sysfs becomes | 
 |  * available lest we lose that information. | 
 |  */ | 
 | struct saved_alias { | 
 | 	struct kmem_cache *s; | 
 | 	const char *name; | 
 | 	struct saved_alias *next; | 
 | }; | 
 |  | 
 | static struct saved_alias *alias_list; | 
 |  | 
 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
 | { | 
 | 	struct saved_alias *al; | 
 |  | 
 | 	if (slab_state == FULL) { | 
 | 		/* | 
 | 		 * If we have a leftover link then remove it. | 
 | 		 */ | 
 | 		sysfs_remove_link(&slab_kset->kobj, name); | 
 | 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | 
 | 	} | 
 |  | 
 | 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
 | 	if (!al) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	al->s = s; | 
 | 	al->name = name; | 
 | 	al->next = alias_list; | 
 | 	alias_list = al; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init slab_sysfs_init(void) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	mutex_lock(&slab_mutex); | 
 |  | 
 | 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); | 
 | 	if (!slab_kset) { | 
 | 		mutex_unlock(&slab_mutex); | 
 | 		pr_err("Cannot register slab subsystem.\n"); | 
 | 		return -ENOSYS; | 
 | 	} | 
 |  | 
 | 	slab_state = FULL; | 
 |  | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		err = sysfs_slab_add(s); | 
 | 		if (err) | 
 | 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n", | 
 | 			       s->name); | 
 | 	} | 
 |  | 
 | 	while (alias_list) { | 
 | 		struct saved_alias *al = alias_list; | 
 |  | 
 | 		alias_list = alias_list->next; | 
 | 		err = sysfs_slab_alias(al->s, al->name); | 
 | 		if (err) | 
 | 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", | 
 | 			       al->name); | 
 | 		kfree(al); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&slab_mutex); | 
 | 	resiliency_test(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initcall(slab_sysfs_init); | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | /* | 
 |  * The /proc/slabinfo ABI | 
 |  */ | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) | 
 | { | 
 | 	unsigned long nr_slabs = 0; | 
 | 	unsigned long nr_objs = 0; | 
 | 	unsigned long nr_free = 0; | 
 | 	int node; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 		nr_slabs += node_nr_slabs(n); | 
 | 		nr_objs += node_nr_objs(n); | 
 | 		nr_free += count_partial(n, count_free); | 
 | 	} | 
 |  | 
 | 	sinfo->active_objs = nr_objs - nr_free; | 
 | 	sinfo->num_objs = nr_objs; | 
 | 	sinfo->active_slabs = nr_slabs; | 
 | 	sinfo->num_slabs = nr_slabs; | 
 | 	sinfo->objects_per_slab = oo_objects(s->oo); | 
 | 	sinfo->cache_order = oo_order(s->oo); | 
 | } | 
 |  | 
 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) | 
 | { | 
 | } | 
 |  | 
 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
 | 		       size_t count, loff_t *ppos) | 
 | { | 
 | 	return -EIO; | 
 | } | 
 | #endif /* CONFIG_SLUB_DEBUG */ |