| // SPDX-License-Identifier: GPL-2.0 | 
 | /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */ | 
 |  | 
 | #include <crypto/ctr.h> | 
 | #include "cc_driver.h" | 
 | #include "cc_ivgen.h" | 
 | #include "cc_request_mgr.h" | 
 | #include "cc_sram_mgr.h" | 
 | #include "cc_buffer_mgr.h" | 
 |  | 
 | /* The max. size of pool *MUST* be <= SRAM total size */ | 
 | #define CC_IVPOOL_SIZE 1024 | 
 | /* The first 32B fraction of pool are dedicated to the | 
 |  * next encryption "key" & "IV" for pool regeneration | 
 |  */ | 
 | #define CC_IVPOOL_META_SIZE (CC_AES_IV_SIZE + AES_KEYSIZE_128) | 
 | #define CC_IVPOOL_GEN_SEQ_LEN	4 | 
 |  | 
 | /** | 
 |  * struct cc_ivgen_ctx -IV pool generation context | 
 |  * @pool:          the start address of the iv-pool resides in internal RAM | 
 |  * @ctr_key_dma:   address of pool's encryption key material in internal RAM | 
 |  * @ctr_iv_dma:    address of pool's counter iv in internal RAM | 
 |  * @next_iv_ofs:   the offset to the next available IV in pool | 
 |  * @pool_meta:     virt. address of the initial enc. key/IV | 
 |  * @pool_meta_dma: phys. address of the initial enc. key/IV | 
 |  */ | 
 | struct cc_ivgen_ctx { | 
 | 	cc_sram_addr_t pool; | 
 | 	cc_sram_addr_t ctr_key; | 
 | 	cc_sram_addr_t ctr_iv; | 
 | 	u32 next_iv_ofs; | 
 | 	u8 *pool_meta; | 
 | 	dma_addr_t pool_meta_dma; | 
 | }; | 
 |  | 
 | /*! | 
 |  * Generates CC_IVPOOL_SIZE of random bytes by | 
 |  * encrypting 0's using AES128-CTR. | 
 |  * | 
 |  * \param ivgen iv-pool context | 
 |  * \param iv_seq IN/OUT array to the descriptors sequence | 
 |  * \param iv_seq_len IN/OUT pointer to the sequence length | 
 |  */ | 
 | static int cc_gen_iv_pool(struct cc_ivgen_ctx *ivgen_ctx, | 
 | 			  struct cc_hw_desc iv_seq[], unsigned int *iv_seq_len) | 
 | { | 
 | 	unsigned int idx = *iv_seq_len; | 
 |  | 
 | 	if ((*iv_seq_len + CC_IVPOOL_GEN_SEQ_LEN) > CC_IVPOOL_SEQ_LEN) { | 
 | 		/* The sequence will be longer than allowed */ | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* Setup key */ | 
 | 	hw_desc_init(&iv_seq[idx]); | 
 | 	set_din_sram(&iv_seq[idx], ivgen_ctx->ctr_key, AES_KEYSIZE_128); | 
 | 	set_setup_mode(&iv_seq[idx], SETUP_LOAD_KEY0); | 
 | 	set_cipher_config0(&iv_seq[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); | 
 | 	set_flow_mode(&iv_seq[idx], S_DIN_to_AES); | 
 | 	set_key_size_aes(&iv_seq[idx], CC_AES_128_BIT_KEY_SIZE); | 
 | 	set_cipher_mode(&iv_seq[idx], DRV_CIPHER_CTR); | 
 | 	idx++; | 
 |  | 
 | 	/* Setup cipher state */ | 
 | 	hw_desc_init(&iv_seq[idx]); | 
 | 	set_din_sram(&iv_seq[idx], ivgen_ctx->ctr_iv, CC_AES_IV_SIZE); | 
 | 	set_cipher_config0(&iv_seq[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); | 
 | 	set_flow_mode(&iv_seq[idx], S_DIN_to_AES); | 
 | 	set_setup_mode(&iv_seq[idx], SETUP_LOAD_STATE1); | 
 | 	set_key_size_aes(&iv_seq[idx], CC_AES_128_BIT_KEY_SIZE); | 
 | 	set_cipher_mode(&iv_seq[idx], DRV_CIPHER_CTR); | 
 | 	idx++; | 
 |  | 
 | 	/* Perform dummy encrypt to skip first block */ | 
 | 	hw_desc_init(&iv_seq[idx]); | 
 | 	set_din_const(&iv_seq[idx], 0, CC_AES_IV_SIZE); | 
 | 	set_dout_sram(&iv_seq[idx], ivgen_ctx->pool, CC_AES_IV_SIZE); | 
 | 	set_flow_mode(&iv_seq[idx], DIN_AES_DOUT); | 
 | 	idx++; | 
 |  | 
 | 	/* Generate IV pool */ | 
 | 	hw_desc_init(&iv_seq[idx]); | 
 | 	set_din_const(&iv_seq[idx], 0, CC_IVPOOL_SIZE); | 
 | 	set_dout_sram(&iv_seq[idx], ivgen_ctx->pool, CC_IVPOOL_SIZE); | 
 | 	set_flow_mode(&iv_seq[idx], DIN_AES_DOUT); | 
 | 	idx++; | 
 |  | 
 | 	*iv_seq_len = idx; /* Update sequence length */ | 
 |  | 
 | 	/* queue ordering assures pool readiness */ | 
 | 	ivgen_ctx->next_iv_ofs = CC_IVPOOL_META_SIZE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*! | 
 |  * Generates the initial pool in SRAM. | 
 |  * This function should be invoked when resuming driver. | 
 |  * | 
 |  * \param drvdata | 
 |  * | 
 |  * \return int Zero for success, negative value otherwise. | 
 |  */ | 
 | int cc_init_iv_sram(struct cc_drvdata *drvdata) | 
 | { | 
 | 	struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; | 
 | 	struct cc_hw_desc iv_seq[CC_IVPOOL_SEQ_LEN]; | 
 | 	unsigned int iv_seq_len = 0; | 
 | 	int rc; | 
 |  | 
 | 	/* Generate initial enc. key/iv */ | 
 | 	get_random_bytes(ivgen_ctx->pool_meta, CC_IVPOOL_META_SIZE); | 
 |  | 
 | 	/* The first 32B reserved for the enc. Key/IV */ | 
 | 	ivgen_ctx->ctr_key = ivgen_ctx->pool; | 
 | 	ivgen_ctx->ctr_iv = ivgen_ctx->pool + AES_KEYSIZE_128; | 
 |  | 
 | 	/* Copy initial enc. key and IV to SRAM at a single descriptor */ | 
 | 	hw_desc_init(&iv_seq[iv_seq_len]); | 
 | 	set_din_type(&iv_seq[iv_seq_len], DMA_DLLI, ivgen_ctx->pool_meta_dma, | 
 | 		     CC_IVPOOL_META_SIZE, NS_BIT); | 
 | 	set_dout_sram(&iv_seq[iv_seq_len], ivgen_ctx->pool, | 
 | 		      CC_IVPOOL_META_SIZE); | 
 | 	set_flow_mode(&iv_seq[iv_seq_len], BYPASS); | 
 | 	iv_seq_len++; | 
 |  | 
 | 	/* Generate initial pool */ | 
 | 	rc = cc_gen_iv_pool(ivgen_ctx, iv_seq, &iv_seq_len); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* Fire-and-forget */ | 
 | 	return send_request_init(drvdata, iv_seq, iv_seq_len); | 
 | } | 
 |  | 
 | /*! | 
 |  * Free iv-pool and ivgen context. | 
 |  * | 
 |  * \param drvdata | 
 |  */ | 
 | void cc_ivgen_fini(struct cc_drvdata *drvdata) | 
 | { | 
 | 	struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; | 
 | 	struct device *device = &drvdata->plat_dev->dev; | 
 |  | 
 | 	if (!ivgen_ctx) | 
 | 		return; | 
 |  | 
 | 	if (ivgen_ctx->pool_meta) { | 
 | 		memset(ivgen_ctx->pool_meta, 0, CC_IVPOOL_META_SIZE); | 
 | 		dma_free_coherent(device, CC_IVPOOL_META_SIZE, | 
 | 				  ivgen_ctx->pool_meta, | 
 | 				  ivgen_ctx->pool_meta_dma); | 
 | 	} | 
 |  | 
 | 	ivgen_ctx->pool = NULL_SRAM_ADDR; | 
 | } | 
 |  | 
 | /*! | 
 |  * Allocates iv-pool and maps resources. | 
 |  * This function generates the first IV pool. | 
 |  * | 
 |  * \param drvdata Driver's private context | 
 |  * | 
 |  * \return int Zero for success, negative value otherwise. | 
 |  */ | 
 | int cc_ivgen_init(struct cc_drvdata *drvdata) | 
 | { | 
 | 	struct cc_ivgen_ctx *ivgen_ctx; | 
 | 	struct device *device = &drvdata->plat_dev->dev; | 
 | 	int rc; | 
 |  | 
 | 	/* Allocate "this" context */ | 
 | 	ivgen_ctx = devm_kzalloc(device, sizeof(*ivgen_ctx), GFP_KERNEL); | 
 | 	if (!ivgen_ctx) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	drvdata->ivgen_handle = ivgen_ctx; | 
 |  | 
 | 	/* Allocate pool's header for initial enc. key/IV */ | 
 | 	ivgen_ctx->pool_meta = dma_alloc_coherent(device, CC_IVPOOL_META_SIZE, | 
 | 						  &ivgen_ctx->pool_meta_dma, | 
 | 						  GFP_KERNEL); | 
 | 	if (!ivgen_ctx->pool_meta) { | 
 | 		dev_err(device, "Not enough memory to allocate DMA of pool_meta (%u B)\n", | 
 | 			CC_IVPOOL_META_SIZE); | 
 | 		rc = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	/* Allocate IV pool in SRAM */ | 
 | 	ivgen_ctx->pool = cc_sram_alloc(drvdata, CC_IVPOOL_SIZE); | 
 | 	if (ivgen_ctx->pool == NULL_SRAM_ADDR) { | 
 | 		dev_err(device, "SRAM pool exhausted\n"); | 
 | 		rc = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	return cc_init_iv_sram(drvdata); | 
 |  | 
 | out: | 
 | 	cc_ivgen_fini(drvdata); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /*! | 
 |  * Acquires 16 Bytes IV from the iv-pool | 
 |  * | 
 |  * \param drvdata Driver private context | 
 |  * \param iv_out_dma Array of physical IV out addresses | 
 |  * \param iv_out_dma_len Length of iv_out_dma array (additional elements | 
 |  *                       of iv_out_dma array are ignore) | 
 |  * \param iv_out_size May be 8 or 16 bytes long | 
 |  * \param iv_seq IN/OUT array to the descriptors sequence | 
 |  * \param iv_seq_len IN/OUT pointer to the sequence length | 
 |  * | 
 |  * \return int Zero for success, negative value otherwise. | 
 |  */ | 
 | int cc_get_iv(struct cc_drvdata *drvdata, dma_addr_t iv_out_dma[], | 
 | 	      unsigned int iv_out_dma_len, unsigned int iv_out_size, | 
 | 	      struct cc_hw_desc iv_seq[], unsigned int *iv_seq_len) | 
 | { | 
 | 	struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; | 
 | 	unsigned int idx = *iv_seq_len; | 
 | 	struct device *dev = drvdata_to_dev(drvdata); | 
 | 	unsigned int t; | 
 |  | 
 | 	if (iv_out_size != CC_AES_IV_SIZE && | 
 | 	    iv_out_size != CTR_RFC3686_IV_SIZE) { | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if ((iv_out_dma_len + 1) > CC_IVPOOL_SEQ_LEN) { | 
 | 		/* The sequence will be longer than allowed */ | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* check that number of generated IV is limited to max dma address | 
 | 	 * iv buffer size | 
 | 	 */ | 
 | 	if (iv_out_dma_len > CC_MAX_IVGEN_DMA_ADDRESSES) { | 
 | 		/* The sequence will be longer than allowed */ | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	for (t = 0; t < iv_out_dma_len; t++) { | 
 | 		/* Acquire IV from pool */ | 
 | 		hw_desc_init(&iv_seq[idx]); | 
 | 		set_din_sram(&iv_seq[idx], (ivgen_ctx->pool + | 
 | 					    ivgen_ctx->next_iv_ofs), | 
 | 			     iv_out_size); | 
 | 		set_dout_dlli(&iv_seq[idx], iv_out_dma[t], iv_out_size, | 
 | 			      NS_BIT, 0); | 
 | 		set_flow_mode(&iv_seq[idx], BYPASS); | 
 | 		idx++; | 
 | 	} | 
 |  | 
 | 	/* Bypass operation is proceeded by crypto sequence, hence must | 
 | 	 *  assure bypass-write-transaction by a memory barrier | 
 | 	 */ | 
 | 	hw_desc_init(&iv_seq[idx]); | 
 | 	set_din_no_dma(&iv_seq[idx], 0, 0xfffff0); | 
 | 	set_dout_no_dma(&iv_seq[idx], 0, 0, 1); | 
 | 	idx++; | 
 |  | 
 | 	*iv_seq_len = idx; /* update seq length */ | 
 |  | 
 | 	/* Update iv index */ | 
 | 	ivgen_ctx->next_iv_ofs += iv_out_size; | 
 |  | 
 | 	if ((CC_IVPOOL_SIZE - ivgen_ctx->next_iv_ofs) < CC_AES_IV_SIZE) { | 
 | 		dev_dbg(dev, "Pool exhausted, regenerating iv-pool\n"); | 
 | 		/* pool is drained -regenerate it! */ | 
 | 		return cc_gen_iv_pool(ivgen_ctx, iv_seq, iv_seq_len); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } |