blob: 0d3424eda0380f622d0b96053132ad873f310e7f [file] [log] [blame]
/*
* linux/drivers/usb/gadget/lh7a40x_udc.c
* Sharp LH7A40x on-chip full speed USB device controllers
*
* Copyright (C) 2004 Mikko Lahteenmaki, Nordic ID
* Copyright (C) 2004 Bo Henriksen, Nordic ID
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/platform_device.h>
#include "lh7a40x_udc.h"
//#define DEBUG printk
//#define DEBUG_EP0 printk
//#define DEBUG_SETUP printk
#ifndef DEBUG_EP0
# define DEBUG_EP0(fmt,args...)
#endif
#ifndef DEBUG_SETUP
# define DEBUG_SETUP(fmt,args...)
#endif
#ifndef DEBUG
# define NO_STATES
# define DEBUG(fmt,args...)
#endif
#define DRIVER_DESC "LH7A40x USB Device Controller"
#define DRIVER_VERSION __DATE__
#ifndef _BIT /* FIXME - what happended to _BIT in 2.6.7bk18? */
#define _BIT(x) (1<<(x))
#endif
struct lh7a40x_udc *the_controller;
static const char driver_name[] = "lh7a40x_udc";
static const char driver_desc[] = DRIVER_DESC;
static const char ep0name[] = "ep0-control";
/*
Local definintions.
*/
#ifndef NO_STATES
static char *state_names[] = {
"WAIT_FOR_SETUP",
"DATA_STATE_XMIT",
"DATA_STATE_NEED_ZLP",
"WAIT_FOR_OUT_STATUS",
"DATA_STATE_RECV"
};
#endif
/*
Local declarations.
*/
static int lh7a40x_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *);
static int lh7a40x_ep_disable(struct usb_ep *ep);
static struct usb_request *lh7a40x_alloc_request(struct usb_ep *ep, gfp_t);
static void lh7a40x_free_request(struct usb_ep *ep, struct usb_request *);
static void *lh7a40x_alloc_buffer(struct usb_ep *ep, unsigned, dma_addr_t *,
gfp_t);
static void lh7a40x_free_buffer(struct usb_ep *ep, void *, dma_addr_t,
unsigned);
static int lh7a40x_queue(struct usb_ep *ep, struct usb_request *, gfp_t);
static int lh7a40x_dequeue(struct usb_ep *ep, struct usb_request *);
static int lh7a40x_set_halt(struct usb_ep *ep, int);
static int lh7a40x_fifo_status(struct usb_ep *ep);
static int lh7a40x_fifo_status(struct usb_ep *ep);
static void lh7a40x_fifo_flush(struct usb_ep *ep);
static void lh7a40x_ep0_kick(struct lh7a40x_udc *dev, struct lh7a40x_ep *ep);
static void lh7a40x_handle_ep0(struct lh7a40x_udc *dev, u32 intr);
static void done(struct lh7a40x_ep *ep, struct lh7a40x_request *req,
int status);
static void pio_irq_enable(int bEndpointAddress);
static void pio_irq_disable(int bEndpointAddress);
static void stop_activity(struct lh7a40x_udc *dev,
struct usb_gadget_driver *driver);
static void flush(struct lh7a40x_ep *ep);
static void udc_enable(struct lh7a40x_udc *dev);
static void udc_set_address(struct lh7a40x_udc *dev, unsigned char address);
static struct usb_ep_ops lh7a40x_ep_ops = {
.enable = lh7a40x_ep_enable,
.disable = lh7a40x_ep_disable,
.alloc_request = lh7a40x_alloc_request,
.free_request = lh7a40x_free_request,
.alloc_buffer = lh7a40x_alloc_buffer,
.free_buffer = lh7a40x_free_buffer,
.queue = lh7a40x_queue,
.dequeue = lh7a40x_dequeue,
.set_halt = lh7a40x_set_halt,
.fifo_status = lh7a40x_fifo_status,
.fifo_flush = lh7a40x_fifo_flush,
};
/* Inline code */
static __inline__ int write_packet(struct lh7a40x_ep *ep,
struct lh7a40x_request *req, int max)
{
u8 *buf;
int length, count;
volatile u32 *fifo = (volatile u32 *)ep->fifo;
buf = req->req.buf + req->req.actual;
prefetch(buf);
length = req->req.length - req->req.actual;
length = min(length, max);
req->req.actual += length;
DEBUG("Write %d (max %d), fifo %p\n", length, max, fifo);
count = length;
while (count--) {
*fifo = *buf++;
}
return length;
}
static __inline__ void usb_set_index(u32 ep)
{
*(volatile u32 *)io_p2v(USB_INDEX) = ep;
}
static __inline__ u32 usb_read(u32 port)
{
return *(volatile u32 *)io_p2v(port);
}
static __inline__ void usb_write(u32 val, u32 port)
{
*(volatile u32 *)io_p2v(port) = val;
}
static __inline__ void usb_set(u32 val, u32 port)
{
volatile u32 *ioport = (volatile u32 *)io_p2v(port);
u32 after = (*ioport) | val;
*ioport = after;
}
static __inline__ void usb_clear(u32 val, u32 port)
{
volatile u32 *ioport = (volatile u32 *)io_p2v(port);
u32 after = (*ioport) & ~val;
*ioport = after;
}
/*-------------------------------------------------------------------------*/
#define GPIO_PORTC_DR (0x80000E08)
#define GPIO_PORTC_DDR (0x80000E18)
#define GPIO_PORTC_PDR (0x80000E70)
/* get port C pin data register */
#define get_portc_pdr(bit) ((usb_read(GPIO_PORTC_PDR) & _BIT(bit)) != 0)
/* get port C data direction register */
#define get_portc_ddr(bit) ((usb_read(GPIO_PORTC_DDR) & _BIT(bit)) != 0)
/* set port C data register */
#define set_portc_dr(bit, val) (val ? usb_set(_BIT(bit), GPIO_PORTC_DR) : usb_clear(_BIT(bit), GPIO_PORTC_DR))
/* set port C data direction register */
#define set_portc_ddr(bit, val) (val ? usb_set(_BIT(bit), GPIO_PORTC_DDR) : usb_clear(_BIT(bit), GPIO_PORTC_DDR))
/*
* LPD7A404 GPIO's:
* Port C bit 1 = USB Port 1 Power Enable
* Port C bit 2 = USB Port 1 Data Carrier Detect
*/
#define is_usb_connected() get_portc_pdr(2)
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
static const char proc_node_name[] = "driver/udc";
static int
udc_proc_read(char *page, char **start, off_t off, int count,
int *eof, void *_dev)
{
char *buf = page;
struct lh7a40x_udc *dev = _dev;
char *next = buf;
unsigned size = count;
unsigned long flags;
int t;
if (off != 0)
return 0;
local_irq_save(flags);
/* basic device status */
t = scnprintf(next, size,
DRIVER_DESC "\n"
"%s version: %s\n"
"Gadget driver: %s\n"
"Host: %s\n\n",
driver_name, DRIVER_VERSION,
dev->driver ? dev->driver->driver.name : "(none)",
is_usb_connected()? "full speed" : "disconnected");
size -= t;
next += t;
t = scnprintf(next, size,
"GPIO:\n"
" Port C bit 1: %d, dir %d\n"
" Port C bit 2: %d, dir %d\n\n",
get_portc_pdr(1), get_portc_ddr(1),
get_portc_pdr(2), get_portc_ddr(2)
);
size -= t;
next += t;
t = scnprintf(next, size,
"DCP pullup: %d\n\n",
(usb_read(USB_PM) & PM_USB_DCP) != 0);
size -= t;
next += t;
local_irq_restore(flags);
*eof = 1;
return count - size;
}
#define create_proc_files() create_proc_read_entry(proc_node_name, 0, NULL, udc_proc_read, dev)
#define remove_proc_files() remove_proc_entry(proc_node_name, NULL)
#else /* !CONFIG_USB_GADGET_DEBUG_FILES */
#define create_proc_files() do {} while (0)
#define remove_proc_files() do {} while (0)
#endif /* CONFIG_USB_GADGET_DEBUG_FILES */
/*
* udc_disable - disable USB device controller
*/
static void udc_disable(struct lh7a40x_udc *dev)
{
DEBUG("%s, %p\n", __FUNCTION__, dev);
udc_set_address(dev, 0);
/* Disable interrupts */
usb_write(0, USB_IN_INT_EN);
usb_write(0, USB_OUT_INT_EN);
usb_write(0, USB_INT_EN);
/* Disable the USB */
usb_write(0, USB_PM);
#ifdef CONFIG_ARCH_LH7A404
/* Disable USB power */
set_portc_dr(1, 0);
#endif
/* if hardware supports it, disconnect from usb */
/* make_usb_disappear(); */
dev->ep0state = WAIT_FOR_SETUP;
dev->gadget.speed = USB_SPEED_UNKNOWN;
dev->usb_address = 0;
}
/*
* udc_reinit - initialize software state
*/
static void udc_reinit(struct lh7a40x_udc *dev)
{
u32 i;
DEBUG("%s, %p\n", __FUNCTION__, dev);
/* device/ep0 records init */
INIT_LIST_HEAD(&dev->gadget.ep_list);
INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
dev->ep0state = WAIT_FOR_SETUP;
/* basic endpoint records init */
for (i = 0; i < UDC_MAX_ENDPOINTS; i++) {
struct lh7a40x_ep *ep = &dev->ep[i];
if (i != 0)
list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
ep->desc = 0;
ep->stopped = 0;
INIT_LIST_HEAD(&ep->queue);
ep->pio_irqs = 0;
}
/* the rest was statically initialized, and is read-only */
}
#define BYTES2MAXP(x) (x / 8)
#define MAXP2BYTES(x) (x * 8)
/* until it's enabled, this UDC should be completely invisible
* to any USB host.
*/
static void udc_enable(struct lh7a40x_udc *dev)
{
int ep;
DEBUG("%s, %p\n", __FUNCTION__, dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
#ifdef CONFIG_ARCH_LH7A404
/* Set Port C bit 1 & 2 as output */
set_portc_ddr(1, 1);
set_portc_ddr(2, 1);
/* Enable USB power */
set_portc_dr(1, 0);
#endif
/*
* C.f Chapter 18.1.3.1 Initializing the USB
*/
/* Disable the USB */
usb_clear(PM_USB_ENABLE, USB_PM);
/* Reset APB & I/O sides of the USB */
usb_set(USB_RESET_APB | USB_RESET_IO, USB_RESET);
mdelay(5);
usb_clear(USB_RESET_APB | USB_RESET_IO, USB_RESET);
/* Set MAXP values for each */
for (ep = 0; ep < UDC_MAX_ENDPOINTS; ep++) {
struct lh7a40x_ep *ep_reg = &dev->ep[ep];
u32 csr;
usb_set_index(ep);
switch (ep_reg->ep_type) {
case ep_bulk_in:
case ep_interrupt:
usb_clear(USB_IN_CSR2_USB_DMA_EN | USB_IN_CSR2_AUTO_SET,
ep_reg->csr2);
/* Fall through */
case ep_control:
usb_write(BYTES2MAXP(ep_maxpacket(ep_reg)),
USB_IN_MAXP);
break;
case ep_bulk_out:
usb_clear(USB_OUT_CSR2_USB_DMA_EN |
USB_OUT_CSR2_AUTO_CLR, ep_reg->csr2);
usb_write(BYTES2MAXP(ep_maxpacket(ep_reg)),
USB_OUT_MAXP);
break;
}
/* Read & Write CSR1, just in case */
csr = usb_read(ep_reg->csr1);
usb_write(csr, ep_reg->csr1);
flush(ep_reg);
}
/* Disable interrupts */
usb_write(0, USB_IN_INT_EN);
usb_write(0, USB_OUT_INT_EN);
usb_write(0, USB_INT_EN);
/* Enable interrupts */
usb_set(USB_IN_INT_EP0, USB_IN_INT_EN);
usb_set(USB_INT_RESET_INT | USB_INT_RESUME_INT, USB_INT_EN);
/* Dont enable rest of the interrupts */
/* usb_set(USB_IN_INT_EP3 | USB_IN_INT_EP1 | USB_IN_INT_EP0, USB_IN_INT_EN);
usb_set(USB_OUT_INT_EP2, USB_OUT_INT_EN); */
/* Enable SUSPEND */
usb_set(PM_ENABLE_SUSPEND, USB_PM);
/* Enable the USB */
usb_set(PM_USB_ENABLE, USB_PM);
#ifdef CONFIG_ARCH_LH7A404
/* NOTE: DOES NOT WORK! */
/* Let host detect UDC:
* Software must write a 0 to the PMR:DCP_CTRL bit to turn this
* transistor on and pull the USBDP pin HIGH.
*/
/* usb_clear(PM_USB_DCP, USB_PM);
usb_set(PM_USB_DCP, USB_PM); */
#endif
}
/*
Register entry point for the peripheral controller driver.
*/
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct lh7a40x_udc *dev = the_controller;
int retval;
DEBUG("%s: %s\n", __FUNCTION__, driver->driver.name);
if (!driver
|| driver->speed != USB_SPEED_FULL
|| !driver->bind
|| !driver->unbind || !driver->disconnect || !driver->setup)
return -EINVAL;
if (!dev)
return -ENODEV;
if (dev->driver)
return -EBUSY;
/* first hook up the driver ... */
dev->driver = driver;
dev->gadget.dev.driver = &driver->driver;
device_add(&dev->gadget.dev);
retval = driver->bind(&dev->gadget);
if (retval) {
printk("%s: bind to driver %s --> error %d\n", dev->gadget.name,
driver->driver.name, retval);
device_del(&dev->gadget.dev);
dev->driver = 0;
dev->gadget.dev.driver = 0;
return retval;
}
/* ... then enable host detection and ep0; and we're ready
* for set_configuration as well as eventual disconnect.
* NOTE: this shouldn't power up until later.
*/
printk("%s: registered gadget driver '%s'\n", dev->gadget.name,
driver->driver.name);
udc_enable(dev);
return 0;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
/*
Unregister entry point for the peripheral controller driver.
*/
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct lh7a40x_udc *dev = the_controller;
unsigned long flags;
if (!dev)
return -ENODEV;
if (!driver || driver != dev->driver)
return -EINVAL;
spin_lock_irqsave(&dev->lock, flags);
dev->driver = 0;
stop_activity(dev, driver);
spin_unlock_irqrestore(&dev->lock, flags);
driver->unbind(&dev->gadget);
device_del(&dev->gadget.dev);
udc_disable(dev);
DEBUG("unregistered gadget driver '%s'\n", driver->driver.name);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
/*-------------------------------------------------------------------------*/
/** Write request to FIFO (max write == maxp size)
* Return: 0 = still running, 1 = completed, negative = errno
* NOTE: INDEX register must be set for EP
*/
static int write_fifo(struct lh7a40x_ep *ep, struct lh7a40x_request *req)
{
u32 max;
u32 csr;
max = le16_to_cpu(ep->desc->wMaxPacketSize);
csr = usb_read(ep->csr1);
DEBUG("CSR: %x %d\n", csr, csr & USB_IN_CSR1_FIFO_NOT_EMPTY);
if (!(csr & USB_IN_CSR1_FIFO_NOT_EMPTY)) {
unsigned count;
int is_last, is_short;
count = write_packet(ep, req, max);
usb_set(USB_IN_CSR1_IN_PKT_RDY, ep->csr1);
/* last packet is usually short (or a zlp) */
if (unlikely(count != max))
is_last = is_short = 1;
else {
if (likely(req->req.length != req->req.actual)
|| req->req.zero)
is_last = 0;
else
is_last = 1;
/* interrupt/iso maxpacket may not fill the fifo */
is_short = unlikely(max < ep_maxpacket(ep));
}
DEBUG("%s: wrote %s %d bytes%s%s %d left %p\n", __FUNCTION__,
ep->ep.name, count,
is_last ? "/L" : "", is_short ? "/S" : "",
req->req.length - req->req.actual, req);
/* requests complete when all IN data is in the FIFO */
if (is_last) {
done(ep, req, 0);
if (list_empty(&ep->queue)) {
pio_irq_disable(ep_index(ep));
}
return 1;
}
} else {
DEBUG("Hmm.. %d ep FIFO is not empty!\n", ep_index(ep));
}
return 0;
}
/** Read to request from FIFO (max read == bytes in fifo)
* Return: 0 = still running, 1 = completed, negative = errno
* NOTE: INDEX register must be set for EP
*/
static int read_fifo(struct lh7a40x_ep *ep, struct lh7a40x_request *req)
{
u32 csr;
u8 *buf;
unsigned bufferspace, count, is_short;
volatile u32 *fifo = (volatile u32 *)ep->fifo;
/* make sure there's a packet in the FIFO. */
csr = usb_read(ep->csr1);
if (!(csr & USB_OUT_CSR1_OUT_PKT_RDY)) {
DEBUG("%s: Packet NOT ready!\n", __FUNCTION__);
return -EINVAL;
}
buf = req->req.buf + req->req.actual;
prefetchw(buf);
bufferspace = req->req.length - req->req.actual;
/* read all bytes from this packet */
count = usb_read(USB_OUT_FIFO_WC1);
req->req.actual += min(count, bufferspace);
is_short = (count < ep->ep.maxpacket);
DEBUG("read %s %02x, %d bytes%s req %p %d/%d\n",
ep->ep.name, csr, count,
is_short ? "/S" : "", req, req->req.actual, req->req.length);
while (likely(count-- != 0)) {
u8 byte = (u8) (*fifo & 0xff);
if (unlikely(bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
printk("%s overflow %d\n", ep->ep.name, count);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
bufferspace--;
}
}
usb_clear(USB_OUT_CSR1_OUT_PKT_RDY, ep->csr1);
/* completion */
if (is_short || req->req.actual == req->req.length) {
done(ep, req, 0);
usb_set(USB_OUT_CSR1_FIFO_FLUSH, ep->csr1);
if (list_empty(&ep->queue))
pio_irq_disable(ep_index(ep));
return 1;
}
/* finished that packet. the next one may be waiting... */
return 0;
}
/*
* done - retire a request; caller blocked irqs
* INDEX register is preserved to keep same
*/
static void done(struct lh7a40x_ep *ep, struct lh7a40x_request *req, int status)
{
unsigned int stopped = ep->stopped;
u32 index;
DEBUG("%s, %p\n", __FUNCTION__, ep);
list_del_init(&req->queue);
if (likely(req->req.status == -EINPROGRESS))
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
DEBUG("complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
/* Read current index (completion may modify it) */
index = usb_read(USB_INDEX);
spin_unlock(&ep->dev->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&ep->dev->lock);
/* Restore index */
usb_set_index(index);
ep->stopped = stopped;
}
/** Enable EP interrupt */
static void pio_irq_enable(int ep)
{
DEBUG("%s: %d\n", __FUNCTION__, ep);
switch (ep) {
case 1:
usb_set(USB_IN_INT_EP1, USB_IN_INT_EN);
break;
case 2:
usb_set(USB_OUT_INT_EP2, USB_OUT_INT_EN);
break;
case 3:
usb_set(USB_IN_INT_EP3, USB_IN_INT_EN);
break;
default:
DEBUG("Unknown endpoint: %d\n", ep);
break;
}
}
/** Disable EP interrupt */
static void pio_irq_disable(int ep)
{
DEBUG("%s: %d\n", __FUNCTION__, ep);
switch (ep) {
case 1:
usb_clear(USB_IN_INT_EP1, USB_IN_INT_EN);
break;
case 2:
usb_clear(USB_OUT_INT_EP2, USB_OUT_INT_EN);
break;
case 3:
usb_clear(USB_IN_INT_EP3, USB_IN_INT_EN);
break;
default:
DEBUG("Unknown endpoint: %d\n", ep);
break;
}
}
/*
* nuke - dequeue ALL requests
*/
void nuke(struct lh7a40x_ep *ep, int status)
{
struct lh7a40x_request *req;
DEBUG("%s, %p\n", __FUNCTION__, ep);
/* Flush FIFO */
flush(ep);
/* called with irqs blocked */
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct lh7a40x_request, queue);
done(ep, req, status);
}
/* Disable IRQ if EP is enabled (has descriptor) */
if (ep->desc)
pio_irq_disable(ep_index(ep));
}
/*
void nuke_all(struct lh7a40x_udc *dev)
{
int n;
for(n=0; n<UDC_MAX_ENDPOINTS; n++) {
struct lh7a40x_ep *ep = &dev->ep[n];
usb_set_index(n);
nuke(ep, 0);
}
}*/
/*
static void flush_all(struct lh7a40x_udc *dev)
{
int n;
for (n = 0; n < UDC_MAX_ENDPOINTS; n++)
{
struct lh7a40x_ep *ep = &dev->ep[n];
flush(ep);
}
}
*/
/** Flush EP
* NOTE: INDEX register must be set before this call
*/
static void flush(struct lh7a40x_ep *ep)
{
DEBUG("%s, %p\n", __FUNCTION__, ep);
switch (ep->ep_type) {
case ep_control:
/* check, by implication c.f. 15.1.2.11 */
break;
case ep_bulk_in:
case ep_interrupt:
/* if(csr & USB_IN_CSR1_IN_PKT_RDY) */
usb_set(USB_IN_CSR1_FIFO_FLUSH, ep->csr1);
break;
case ep_bulk_out:
/* if(csr & USB_OUT_CSR1_OUT_PKT_RDY) */
usb_set(USB_OUT_CSR1_FIFO_FLUSH, ep->csr1);
break;
}
}
/**
* lh7a40x_in_epn - handle IN interrupt
*/
static void lh7a40x_in_epn(struct lh7a40x_udc *dev, u32 ep_idx, u32 intr)
{
u32 csr;
struct lh7a40x_ep *ep = &dev->ep[ep_idx];
struct lh7a40x_request *req;
usb_set_index(ep_idx);
csr = usb_read(ep->csr1);
DEBUG("%s: %d, csr %x\n", __FUNCTION__, ep_idx, csr);
if (csr & USB_IN_CSR1_SENT_STALL) {
DEBUG("USB_IN_CSR1_SENT_STALL\n");
usb_set(USB_IN_CSR1_SENT_STALL /*|USB_IN_CSR1_SEND_STALL */ ,
ep->csr1);
return;
}
if (!ep->desc) {
DEBUG("%s: NO EP DESC\n", __FUNCTION__);
return;
}
if (list_empty(&ep->queue))
req = 0;
else
req = list_entry(ep->queue.next, struct lh7a40x_request, queue);
DEBUG("req: %p\n", req);
if (!req)
return;
write_fifo(ep, req);
}
/* ********************************************************************************************* */
/* Bulk OUT (recv)
*/
static void lh7a40x_out_epn(struct lh7a40x_udc *dev, u32 ep_idx, u32 intr)
{
struct lh7a40x_ep *ep = &dev->ep[ep_idx];
struct lh7a40x_request *req;
DEBUG("%s: %d\n", __FUNCTION__, ep_idx);
usb_set_index(ep_idx);
if (ep->desc) {
u32 csr;
csr = usb_read(ep->csr1);
while ((csr =
usb_read(ep->
csr1)) & (USB_OUT_CSR1_OUT_PKT_RDY |
USB_OUT_CSR1_SENT_STALL)) {
DEBUG("%s: %x\n", __FUNCTION__, csr);
if (csr & USB_OUT_CSR1_SENT_STALL) {
DEBUG("%s: stall sent, flush fifo\n",
__FUNCTION__);
/* usb_set(USB_OUT_CSR1_FIFO_FLUSH, ep->csr1); */
flush(ep);
} else if (csr & USB_OUT_CSR1_OUT_PKT_RDY) {
if (list_empty(&ep->queue))
req = 0;
else
req =
list_entry(ep->queue.next,
struct lh7a40x_request,
queue);
if (!req) {
printk("%s: NULL REQ %d\n",
__FUNCTION__, ep_idx);
flush(ep);
break;
} else {
read_fifo(ep, req);
}
}
}
} else {
/* Throw packet away.. */
printk("%s: No descriptor?!?\n", __FUNCTION__);
flush(ep);
}
}
static void stop_activity(struct lh7a40x_udc *dev,
struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect drivers more than once */
if (dev->gadget.speed == USB_SPEED_UNKNOWN)
driver = 0;
dev->gadget.speed = USB_SPEED_UNKNOWN;
/* prevent new request submissions, kill any outstanding requests */
for (i = 0; i < UDC_MAX_ENDPOINTS; i++) {
struct lh7a40x_ep *ep = &dev->ep[i];
ep->stopped = 1;
usb_set_index(i);
nuke(ep, -ESHUTDOWN);
}
/* report disconnect; the driver is already quiesced */
if (driver) {
spin_unlock(&dev->lock);
driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
}
/* re-init driver-visible data structures */
udc_reinit(dev);
}
/** Handle USB RESET interrupt
*/
static void lh7a40x_reset_intr(struct lh7a40x_udc *dev)
{
#if 0 /* def CONFIG_ARCH_LH7A404 */
/* Does not work always... */
DEBUG("%s: %d\n", __FUNCTION__, dev->usb_address);
if (!dev->usb_address) {
/*usb_set(USB_RESET_IO, USB_RESET);
mdelay(5);
usb_clear(USB_RESET_IO, USB_RESET); */
return;
}
/* Put the USB controller into reset. */
usb_set(USB_RESET_IO, USB_RESET);
/* Set Device ID to 0 */
udc_set_address(dev, 0);
/* Let PLL2 settle down */
mdelay(5);
/* Release the USB controller from reset */
usb_clear(USB_RESET_IO, USB_RESET);
/* Re-enable UDC */
udc_enable(dev);
#endif
dev->gadget.speed = USB_SPEED_FULL;
}
/*
* lh7a40x usb client interrupt handler.
*/
static irqreturn_t lh7a40x_udc_irq(int irq, void *_dev, struct pt_regs *r)
{
struct lh7a40x_udc *dev = _dev;
DEBUG("\n\n");
spin_lock(&dev->lock);
for (;;) {
u32 intr_in = usb_read(USB_IN_INT);
u32 intr_out = usb_read(USB_OUT_INT);
u32 intr_int = usb_read(USB_INT);
/* Test also against enable bits.. (lh7a40x errata).. Sigh.. */
u32 in_en = usb_read(USB_IN_INT_EN);
u32 out_en = usb_read(USB_OUT_INT_EN);
if (!intr_out && !intr_in && !intr_int)
break;
DEBUG("%s (on state %s)\n", __FUNCTION__,
state_names[dev->ep0state]);
DEBUG("intr_out = %x\n", intr_out);
DEBUG("intr_in = %x\n", intr_in);
DEBUG("intr_int = %x\n", intr_int);
if (intr_in) {
usb_write(intr_in, USB_IN_INT);
if ((intr_in & USB_IN_INT_EP1)
&& (in_en & USB_IN_INT_EP1)) {
DEBUG("USB_IN_INT_EP1\n");
lh7a40x_in_epn(dev, 1, intr_in);
}
if ((intr_in & USB_IN_INT_EP3)
&& (in_en & USB_IN_INT_EP3)) {
DEBUG("USB_IN_INT_EP3\n");
lh7a40x_in_epn(dev, 3, intr_in);
}
if (intr_in & USB_IN_INT_EP0) {
DEBUG("USB_IN_INT_EP0 (control)\n");
lh7a40x_handle_ep0(dev, intr_in);
}
}
if (intr_out) {
usb_write(intr_out, USB_OUT_INT);
if ((intr_out & USB_OUT_INT_EP2)
&& (out_en & USB_OUT_INT_EP2)) {
DEBUG("USB_OUT_INT_EP2\n");
lh7a40x_out_epn(dev, 2, intr_out);
}
}
if (intr_int) {
usb_write(intr_int, USB_INT);
if (intr_int & USB_INT_RESET_INT) {
lh7a40x_reset_intr(dev);
}
if (intr_int & USB_INT_RESUME_INT) {
DEBUG("USB resume\n");
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->resume
&& is_usb_connected()) {
dev->driver->resume(&dev->gadget);
}
}
if (intr_int & USB_INT_SUSPEND_INT) {
DEBUG("USB suspend%s\n",
is_usb_connected()? "" : "+disconnect");
if (!is_usb_connected()) {
stop_activity(dev, dev->driver);
} else if (dev->gadget.speed !=
USB_SPEED_UNKNOWN && dev->driver
&& dev->driver->suspend) {
dev->driver->suspend(&dev->gadget);
}
}
}
}
spin_unlock(&dev->lock);
return IRQ_HANDLED;
}
static int lh7a40x_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct lh7a40x_ep *ep;
struct lh7a40x_udc *dev;
unsigned long flags;
DEBUG("%s, %p\n", __FUNCTION__, _ep);
ep = container_of(_ep, struct lh7a40x_ep, ep);
if (!_ep || !desc || ep->desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| ep->bEndpointAddress != desc->bEndpointAddress
|| ep_maxpacket(ep) < le16_to_cpu(desc->wMaxPacketSize)) {
DEBUG("%s, bad ep or descriptor\n", __FUNCTION__);
return -EINVAL;
}
/* xfer types must match, except that interrupt ~= bulk */
if (ep->bmAttributes != desc->bmAttributes
&& ep->bmAttributes != USB_ENDPOINT_XFER_BULK
&& desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
DEBUG("%s, %s type mismatch\n", __FUNCTION__, _ep->name);
return -EINVAL;
}
/* hardware _could_ do smaller, but driver doesn't */
if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
&& le16_to_cpu(desc->wMaxPacketSize) != ep_maxpacket(ep))
|| !desc->wMaxPacketSize) {
DEBUG("%s, bad %s maxpacket\n", __FUNCTION__, _ep->name);
return -ERANGE;
}
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) {
DEBUG("%s, bogus device state\n", __FUNCTION__);
return -ESHUTDOWN;
}
spin_lock_irqsave(&ep->dev->lock, flags);
ep->stopped = 0;
ep->desc = desc;
ep->pio_irqs = 0;
ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
spin_unlock_irqrestore(&ep->dev->lock, flags);
/* Reset halt state (does flush) */
lh7a40x_set_halt(_ep, 0);
DEBUG("%s: enabled %s\n", __FUNCTION__, _ep->name);
return 0;
}
/** Disable EP
* NOTE: Sets INDEX register
*/
static int lh7a40x_ep_disable(struct usb_ep *_ep)
{
struct lh7a40x_ep *ep;
unsigned long flags;
DEBUG("%s, %p\n", __FUNCTION__, _ep);
ep = container_of(_ep, struct lh7a40x_ep, ep);
if (!_ep || !ep->desc) {
DEBUG("%s, %s not enabled\n", __FUNCTION__,
_ep ? ep->ep.name : NULL);
return -EINVAL;
}
spin_lock_irqsave(&ep->dev->lock, flags);
usb_set_index(ep_index(ep));
/* Nuke all pending requests (does flush) */
nuke(ep, -ESHUTDOWN);
/* Disable ep IRQ */
pio_irq_disable(ep_index(ep));
ep->desc = 0;
ep->stopped = 1;
spin_unlock_irqrestore(&ep->dev->lock, flags);
DEBUG("%s: disabled %s\n", __FUNCTION__, _ep->name);
return 0;
}
static struct usb_request *lh7a40x_alloc_request(struct usb_ep *ep,
gfp_t gfp_flags)
{
struct lh7a40x_request *req;
DEBUG("%s, %p\n", __FUNCTION__, ep);
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return 0;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void lh7a40x_free_request(struct usb_ep *ep, struct usb_request *_req)
{
struct lh7a40x_request *req;
DEBUG("%s, %p\n", __FUNCTION__, ep);
req = container_of(_req, struct lh7a40x_request, req);
WARN_ON(!list_empty(&req->queue));
kfree(req);
}
static void *lh7a40x_alloc_buffer(struct usb_ep *ep, unsigned bytes,
dma_addr_t * dma, gfp_t gfp_flags)
{
char *retval;
DEBUG("%s (%p, %d, %d)\n", __FUNCTION__, ep, bytes, gfp_flags);
retval = kmalloc(bytes, gfp_flags & ~(__GFP_DMA | __GFP_HIGHMEM));
if (retval)
*dma = virt_to_bus(retval);
return retval;
}
static void lh7a40x_free_buffer(struct usb_ep *ep, void *buf, dma_addr_t dma,
unsigned bytes)
{
DEBUG("%s, %p\n", __FUNCTION__, ep);
kfree(buf);
}
/** Queue one request
* Kickstart transfer if needed
* NOTE: Sets INDEX register
*/
static int lh7a40x_queue(struct usb_ep *_ep, struct usb_request *_req,
gfp_t gfp_flags)
{
struct lh7a40x_request *req;
struct lh7a40x_ep *ep;
struct lh7a40x_udc *dev;
unsigned long flags;
DEBUG("\n\n\n%s, %p\n", __FUNCTION__, _ep);
req = container_of(_req, struct lh7a40x_request, req);
if (unlikely
(!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue))) {
DEBUG("%s, bad params\n", __FUNCTION__);
return -EINVAL;
}
ep = container_of(_ep, struct lh7a40x_ep, ep);
if (unlikely(!_ep || (!ep->desc && ep->ep.name != ep0name))) {
DEBUG("%s, bad ep\n", __FUNCTION__);
return -EINVAL;
}
dev = ep->dev;
if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
DEBUG("%s, bogus device state %p\n", __FUNCTION__, dev->driver);
return -ESHUTDOWN;
}
DEBUG("%s queue req %p, len %d buf %p\n", _ep->name, _req, _req->length,
_req->buf);
spin_lock_irqsave(&dev->lock, flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
/* kickstart this i/o queue? */
DEBUG("Add to %d Q %d %d\n", ep_index(ep), list_empty(&ep->queue),
ep->stopped);
if (list_empty(&ep->queue) && likely(!ep->stopped)) {
u32 csr;
if (unlikely(ep_index(ep) == 0)) {
/* EP0 */
list_add_tail(&req->queue, &ep->queue);
lh7a40x_ep0_kick(dev, ep);
req = 0;
} else if (ep_is_in(ep)) {
/* EP1 & EP3 */
usb_set_index(ep_index(ep));
csr = usb_read(ep->csr1);
pio_irq_enable(ep_index(ep));
if ((csr & USB_IN_CSR1_FIFO_NOT_EMPTY) == 0) {
if (write_fifo(ep, req) == 1)
req = 0;
}
} else {
/* EP2 */
usb_set_index(ep_index(ep));
csr = usb_read(ep->csr1);
pio_irq_enable(ep_index(ep));
if (!(csr & USB_OUT_CSR1_FIFO_FULL)) {
if (read_fifo(ep, req) == 1)
req = 0;
}
}
}
/* pio or dma irq handler advances the queue. */
if (likely(req != 0))
list_add_tail(&req->queue, &ep->queue);
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
/* dequeue JUST ONE request */
static int lh7a40x_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct lh7a40x_ep *ep;
struct lh7a40x_request *req;
unsigned long flags;
DEBUG("%s, %p\n", __FUNCTION__, _ep);
ep = container_of(_ep, struct lh7a40x_ep, ep);
if (!_ep || ep->ep.name == ep0name)
return -EINVAL;
spin_lock_irqsave(&ep->dev->lock, flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
spin_unlock_irqrestore(&ep->dev->lock, flags);
return -EINVAL;
}
done(ep, req, -ECONNRESET);
spin_unlock_irqrestore(&ep->dev->lock, flags);
return 0;
}
/** Halt specific EP
* Return 0 if success
* NOTE: Sets INDEX register to EP !
*/
static int lh7a40x_set_halt(struct usb_ep *_ep, int value)
{
struct lh7a40x_ep *ep;
unsigned long flags;
ep = container_of(_ep, struct lh7a40x_ep, ep);
if (unlikely(!_ep || (!ep->desc && ep->ep.name != ep0name))) {
DEBUG("%s, bad ep\n", __FUNCTION__);
return -EINVAL;
}
usb_set_index(ep_index(ep));
DEBUG("%s, ep %d, val %d\n", __FUNCTION__, ep_index(ep), value);
spin_lock_irqsave(&ep->dev->lock, flags);
if (ep_index(ep) == 0) {
/* EP0 */
usb_set(EP0_SEND_STALL, ep->csr1);
} else if (ep_is_in(ep)) {
u32 csr = usb_read(ep->csr1);
if (value && ((csr & USB_IN_CSR1_FIFO_NOT_EMPTY)
|| !list_empty(&ep->queue))) {
/*
* Attempts to halt IN endpoints will fail (returning -EAGAIN)
* if any transfer requests are still queued, or if the controller
* FIFO still holds bytes that the host hasnÂ’t collected.
*/
spin_unlock_irqrestore(&ep->dev->lock, flags);
DEBUG
("Attempt to halt IN endpoint failed (returning -EAGAIN) %d %d\n",
(csr & USB_IN_CSR1_FIFO_NOT_EMPTY),
!list_empty(&ep->queue));
return -EAGAIN;
}
flush(ep);
if (value)
usb_set(USB_IN_CSR1_SEND_STALL, ep->csr1);
else {
usb_clear(USB_IN_CSR1_SEND_STALL, ep->csr1);
usb_set(USB_IN_CSR1_CLR_DATA_TOGGLE, ep->csr1);
}
} else {
flush(ep);
if (value)
usb_set(USB_OUT_CSR1_SEND_STALL, ep->csr1);
else {
usb_clear(USB_OUT_CSR1_SEND_STALL, ep->csr1);
usb_set(USB_OUT_CSR1_CLR_DATA_REG, ep->csr1);
}
}
if (value) {
ep->stopped = 1;
} else {
ep->stopped = 0;
}
spin_unlock_irqrestore(&ep->dev->lock, flags);
DEBUG("%s %s halted\n", _ep->name, value == 0 ? "NOT" : "IS");
return 0;
}
/** Return bytes in EP FIFO
* NOTE: Sets INDEX register to EP
*/
static int lh7a40x_fifo_status(struct usb_ep *_ep)
{
u32 csr;
int count = 0;
struct lh7a40x_ep *ep;
ep = container_of(_ep, struct lh7a40x_ep, ep);
if (!_ep) {
DEBUG("%s, bad ep\n", __FUNCTION__);
return -ENODEV;
}
DEBUG("%s, %d\n", __FUNCTION__, ep_index(ep));
/* LPD can't report unclaimed bytes from IN fifos */
if (ep_is_in(ep))
return -EOPNOTSUPP;
usb_set_index(ep_index(ep));
csr = usb_read(ep->csr1);
if (ep->dev->gadget.speed != USB_SPEED_UNKNOWN ||
csr & USB_OUT_CSR1_OUT_PKT_RDY) {
count = usb_read(USB_OUT_FIFO_WC1);
}
return count;
}
/** Flush EP FIFO
* NOTE: Sets INDEX register to EP
*/
static void lh7a40x_fifo_flush(struct usb_ep *_ep)
{
struct lh7a40x_ep *ep;
ep = container_of(_ep, struct lh7a40x_ep, ep);
if (unlikely(!_ep || (!ep->desc && ep->ep.name != ep0name))) {
DEBUG("%s, bad ep\n", __FUNCTION__);
return;
}
usb_set_index(ep_index(ep));
flush(ep);
}
/****************************************************************/
/* End Point 0 related functions */
/****************************************************************/
/* return: 0 = still running, 1 = completed, negative = errno */
static int write_fifo_ep0(struct lh7a40x_ep *ep, struct lh7a40x_request *req)
{
u32 max;
unsigned count;
int is_last;
max = ep_maxpacket(ep);
DEBUG_EP0("%s\n", __FUNCTION__);
count = write_packet(ep, req, max);
/* last packet is usually short (or a zlp) */
if (unlikely(count != max))
is_last = 1;
else {
if (likely(req->req.length != req->req.actual) || req->req.zero)
is_last = 0;
else
is_last = 1;
}
DEBUG_EP0("%s: wrote %s %d bytes%s %d left %p\n", __FUNCTION__,
ep->ep.name, count,
is_last ? "/L" : "", req->req.length - req->req.actual, req);
/* requests complete when all IN data is in the FIFO */
if (is_last) {
done(ep, req, 0);
return 1;
}
return 0;
}
static __inline__ int lh7a40x_fifo_read(struct lh7a40x_ep *ep,
unsigned char *cp, int max)
{
int bytes;
int count = usb_read(USB_OUT_FIFO_WC1);
volatile u32 *fifo = (volatile u32 *)ep->fifo;
if (count > max)
count = max;
bytes = count;
while (count--)
*cp++ = *fifo & 0xFF;
return bytes;
}
static __inline__ void lh7a40x_fifo_write(struct lh7a40x_ep *ep,
unsigned char *cp, int count)
{
volatile u32 *fifo = (volatile u32 *)ep->fifo;
DEBUG_EP0("fifo_write: %d %d\n", ep_index(ep), count);
while (count--)
*fifo = *cp++;
}
static int read_fifo_ep0(struct lh7a40x_ep *ep, struct lh7a40x_request *req)
{
u32 csr;
u8 *buf;
unsigned bufferspace, count, is_short;
volatile u32 *fifo = (volatile u32 *)ep->fifo;
DEBUG_EP0("%s\n", __FUNCTION__);
csr = usb_read(USB_EP0_CSR);
if (!(csr & USB_OUT_CSR1_OUT_PKT_RDY))
return 0;
buf = req->req.buf + req->req.actual;
prefetchw(buf);
bufferspace = req->req.length - req->req.actual;
/* read all bytes from this packet */
if (likely(csr & EP0_OUT_PKT_RDY)) {
count = usb_read(USB_OUT_FIFO_WC1);
req->req.actual += min(count, bufferspace);
} else /* zlp */
count = 0;
is_short = (count < ep->ep.maxpacket);
DEBUG_EP0("read %s %02x, %d bytes%s req %p %d/%d\n",
ep->ep.name, csr, count,
is_short ? "/S" : "", req, req->req.actual, req->req.length);
while (likely(count-- != 0)) {
u8 byte = (u8) (*fifo & 0xff);
if (unlikely(bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
DEBUG_EP0("%s overflow %d\n", ep->ep.name,
count);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
bufferspace--;
}
}
/* completion */
if (is_short || req->req.actual == req->req.length) {
done(ep, req, 0);
return 1;
}
/* finished that packet. the next one may be waiting... */
return 0;
}
/**
* udc_set_address - set the USB address for this device
* @address:
*
* Called from control endpoint function after it decodes a set address setup packet.
*/
static void udc_set_address(struct lh7a40x_udc *dev, unsigned char address)
{
DEBUG_EP0("%s: %d\n", __FUNCTION__, address);
/* c.f. 15.1.2.2 Table 15-4 address will be used after DATA_END is set */
dev->usb_address = address;
usb_set((address & USB_FA_FUNCTION_ADDR), USB_FA);
usb_set(USB_FA_ADDR_UPDATE | (address & USB_FA_FUNCTION_ADDR), USB_FA);
/* usb_read(USB_FA); */
}
/*
* DATA_STATE_RECV (OUT_PKT_RDY)
* - if error
* set EP0_CLR_OUT | EP0_DATA_END | EP0_SEND_STALL bits
* - else
* set EP0_CLR_OUT bit
if last set EP0_DATA_END bit
*/
static void lh7a40x_ep0_out(struct lh7a40x_udc *dev, u32 csr)
{
struct lh7a40x_request *req;
struct lh7a40x_ep *ep = &dev->ep[0];
int ret;
DEBUG_EP0("%s: %x\n", __FUNCTION__, csr);
if (list_empty(&ep->queue))
req = 0;
else
req = list_entry(ep->queue.next, struct lh7a40x_request, queue);
if (req) {
if (req->req.length == 0) {
DEBUG_EP0("ZERO LENGTH OUT!\n");
usb_set((EP0_CLR_OUT | EP0_DATA_END), USB_EP0_CSR);
dev->ep0state = WAIT_FOR_SETUP;
return;
}
ret = read_fifo_ep0(ep, req);
if (ret) {
/* Done! */
DEBUG_EP0("%s: finished, waiting for status\n",
__FUNCTION__);
usb_set((EP0_CLR_OUT | EP0_DATA_END), USB_EP0_CSR);
dev->ep0state = WAIT_FOR_SETUP;
} else {
/* Not done yet.. */
DEBUG_EP0("%s: not finished\n", __FUNCTION__);
usb_set(EP0_CLR_OUT, USB_EP0_CSR);
}
} else {
DEBUG_EP0("NO REQ??!\n");
}
}
/*
* DATA_STATE_XMIT
*/
static int lh7a40x_ep0_in(struct lh7a40x_udc *dev, u32 csr)
{
struct lh7a40x_request *req;
struct lh7a40x_ep *ep = &dev->ep[0];
int ret, need_zlp = 0;
DEBUG_EP0("%s: %x\n", __FUNCTION__, csr);
if (list_empty(&ep->queue))
req = 0;
else
req = list_entry(ep->queue.next, struct lh7a40x_request, queue);
if (!req) {
DEBUG_EP0("%s: NULL REQ\n", __FUNCTION__);
return 0;
}
if (req->req.length == 0) {
usb_set((EP0_IN_PKT_RDY | EP0_DATA_END), USB_EP0_CSR);
dev->ep0state = WAIT_FOR_SETUP;
return 1;
}
if (req->req.length - req->req.actual == EP0_PACKETSIZE) {
/* Next write will end with the packet size, */
/* so we need Zero-length-packet */
need_zlp = 1;
}
ret = write_fifo_ep0(ep, req);
if (ret == 1 && !need_zlp) {
/* Last packet */
DEBUG_EP0("%s: finished, waiting for status\n", __FUNCTION__);
usb_set((EP0_IN_PKT_RDY | EP0_DATA_END), USB_EP0_CSR);
dev->ep0state = WAIT_FOR_SETUP;
} else {
DEBUG_EP0("%s: not finished\n", __FUNCTION__);
usb_set(EP0_IN_PKT_RDY, USB_EP0_CSR);
}
if (need_zlp) {
DEBUG_EP0("%s: Need ZLP!\n", __FUNCTION__);
usb_set(EP0_IN_PKT_RDY, USB_EP0_CSR);
dev->ep0state = DATA_STATE_NEED_ZLP;
}
return 1;
}
static int lh7a40x_handle_get_status(struct lh7a40x_udc *dev,
struct usb_ctrlrequest *ctrl)
{
struct lh7a40x_ep *ep0 = &dev->ep[0];
struct lh7a40x_ep *qep;
int reqtype = (ctrl->bRequestType & USB_RECIP_MASK);
u16 val = 0;
if (reqtype == USB_RECIP_INTERFACE) {
/* This is not supported.
* And according to the USB spec, this one does nothing..
* Just return 0
*/
DEBUG_SETUP("GET_STATUS: USB_RECIP_INTERFACE\n");
} else if (reqtype == USB_RECIP_DEVICE) {
DEBUG_SETUP("GET_STATUS: USB_RECIP_DEVICE\n");
val |= (1 << 0); /* Self powered */
/*val |= (1<<1); *//* Remote wakeup */
} else if (reqtype == USB_RECIP_ENDPOINT) {
int ep_num = (ctrl->wIndex & ~USB_DIR_IN);
DEBUG_SETUP
("GET_STATUS: USB_RECIP_ENDPOINT (%d), ctrl->wLength = %d\n",
ep_num, ctrl->wLength);
if (ctrl->wLength > 2 || ep_num > 3)
return -EOPNOTSUPP;
qep = &dev->ep[ep_num];
if (ep_is_in(qep) != ((ctrl->wIndex & USB_DIR_IN) ? 1 : 0)
&& ep_index(qep) != 0) {
return -EOPNOTSUPP;
}
usb_set_index(ep_index(qep));
/* Return status on next IN token */
switch (qep->ep_type) {
case ep_control:
val =
(usb_read(qep->csr1) & EP0_SEND_STALL) ==
EP0_SEND_STALL;
break;
case ep_bulk_in:
case ep_interrupt:
val =
(usb_read(qep->csr1) & USB_IN_CSR1_SEND_STALL) ==
USB_IN_CSR1_SEND_STALL;
break;
case ep_bulk_out:
val =
(usb_read(qep->csr1) & USB_OUT_CSR1_SEND_STALL) ==
USB_OUT_CSR1_SEND_STALL;
break;
}
/* Back to EP0 index */
usb_set_index(0);
DEBUG_SETUP("GET_STATUS, ep: %d (%x), val = %d\n", ep_num,
ctrl->wIndex, val);
} else {
DEBUG_SETUP("Unknown REQ TYPE: %d\n", reqtype);
return -EOPNOTSUPP;
}
/* Clear "out packet ready" */
usb_set((EP0_CLR_OUT), USB_EP0_CSR);
/* Put status to FIFO */
lh7a40x_fifo_write(ep0, (u8 *) & val, sizeof(val));
/* Issue "In packet ready" */
usb_set((EP0_IN_PKT_RDY | EP0_DATA_END), USB_EP0_CSR);
return 0;
}
/*
* WAIT_FOR_SETUP (OUT_PKT_RDY)
* - read data packet from EP0 FIFO
* - decode command
* - if error
* set EP0_CLR_OUT | EP0_DATA_END | EP0_SEND_STALL bits
* - else
* set EP0_CLR_OUT | EP0_DATA_END bits
*/
static void lh7a40x_ep0_setup(struct lh7a40x_udc *dev, u32 csr)
{
struct lh7a40x_ep *ep = &dev->ep[0];
struct usb_ctrlrequest ctrl;
int i, bytes, is_in;
DEBUG_SETUP("%s: %x\n", __FUNCTION__, csr);
/* Nuke all previous transfers */
nuke(ep, -EPROTO);
/* read control req from fifo (8 bytes) */
bytes = lh7a40x_fifo_read(ep, (unsigned char *)&ctrl, 8);
DEBUG_SETUP("Read CTRL REQ %d bytes\n", bytes);
DEBUG_SETUP("CTRL.bRequestType = %d (is_in %d)\n", ctrl.bRequestType,
ctrl.bRequestType == USB_DIR_IN);
DEBUG_SETUP("CTRL.bRequest = %d\n", ctrl.bRequest);
DEBUG_SETUP("CTRL.wLength = %d\n", ctrl.wLength);
DEBUG_SETUP("CTRL.wValue = %d (%d)\n", ctrl.wValue, ctrl.wValue >> 8);
DEBUG_SETUP("CTRL.wIndex = %d\n", ctrl.wIndex);
/* Set direction of EP0 */
if (likely(ctrl.bRequestType & USB_DIR_IN)) {
ep->bEndpointAddress |= USB_DIR_IN;
is_in = 1;
} else {
ep->bEndpointAddress &= ~USB_DIR_IN;
is_in = 0;
}
dev->req_pending = 1;
/* Handle some SETUP packets ourselves */
switch (ctrl.bRequest) {
case USB_REQ_SET_ADDRESS:
if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
break;
DEBUG_SETUP("USB_REQ_SET_ADDRESS (%d)\n", ctrl.wValue);
udc_set_address(dev, ctrl.wValue);
usb_set((EP0_CLR_OUT | EP0_DATA_END), USB_EP0_CSR);
return;
case USB_REQ_GET_STATUS:{
if (lh7a40x_handle_get_status(dev, &ctrl) == 0)
return;
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
if (ctrl.bRequestType == USB_RECIP_ENDPOINT) {
struct lh7a40x_ep *qep;
int ep_num = (ctrl.wIndex & 0x0f);
/* Support only HALT feature */
if (ctrl.wValue != 0 || ctrl.wLength != 0
|| ep_num > 3 || ep_num < 1)
break;
qep = &dev->ep[ep_num];
spin_unlock(&dev->lock);
if (ctrl.bRequest == USB_REQ_SET_FEATURE) {
DEBUG_SETUP("SET_FEATURE (%d)\n",
ep_num);
lh7a40x_set_halt(&qep->ep, 1);
} else {
DEBUG_SETUP("CLR_FEATURE (%d)\n",
ep_num);
lh7a40x_set_halt(&qep->ep, 0);
}
spin_lock(&dev->lock);
usb_set_index(0);
/* Reply with a ZLP on next IN token */
usb_set((EP0_CLR_OUT | EP0_DATA_END),
USB_EP0_CSR);
return;
}
break;
}
default:
break;
}
if (likely(dev->driver)) {
/* device-2-host (IN) or no data setup command, process immediately */
spin_unlock(&dev->lock);
i = dev->driver->setup(&dev->gadget, &ctrl);
spin_lock(&dev->lock);
if (i < 0) {
/* setup processing failed, force stall */
DEBUG_SETUP
(" --> ERROR: gadget setup FAILED (stalling), setup returned %d\n",
i);
usb_set_index(0);
usb_set((EP0_CLR_OUT | EP0_DATA_END | EP0_SEND_STALL),
USB_EP0_CSR);
/* ep->stopped = 1; */
dev->ep0state = WAIT_FOR_SETUP;
}
}
}
/*
* DATA_STATE_NEED_ZLP
*/
static void lh7a40x_ep0_in_zlp(struct lh7a40x_udc *dev, u32 csr)
{
DEBUG_EP0("%s: %x\n", __FUNCTION__, csr);
/* c.f. Table 15-14 */
usb_set((EP0_IN_PKT_RDY | EP0_DATA_END), USB_EP0_CSR);
dev->ep0state = WAIT_FOR_SETUP;
}
/*
* handle ep0 interrupt
*/
static void lh7a40x_handle_ep0(struct lh7a40x_udc *dev, u32 intr)
{
struct lh7a40x_ep *ep = &dev->ep[0];
u32 csr;
/* Set index 0 */
usb_set_index(0);
csr = usb_read(USB_EP0_CSR);
DEBUG_EP0("%s: csr = %x\n", __FUNCTION__, csr);
/*
* For overview of what we should be doing see c.f. Chapter 18.1.2.4
* We will follow that outline here modified by our own global state
* indication which provides hints as to what we think should be
* happening..
*/
/*
* if SENT_STALL is set
* - clear the SENT_STALL bit
*/
if (csr & EP0_SENT_STALL) {
DEBUG_EP0("%s: EP0_SENT_STALL is set: %x\n", __FUNCTION__, csr);
usb_clear((EP0_SENT_STALL | EP0_SEND_STALL), USB_EP0_CSR);
nuke(ep, -ECONNABORTED);
dev->ep0state = WAIT_FOR_SETUP;
return;
}
/*
* if a transfer is in progress && IN_PKT_RDY and OUT_PKT_RDY are clear
* - fill EP0 FIFO
* - if last packet
* - set IN_PKT_RDY | DATA_END
* - else
* set IN_PKT_RDY
*/
if (!(csr & (EP0_IN_PKT_RDY | EP0_OUT_PKT_RDY))) {
DEBUG_EP0("%s: IN_PKT_RDY and OUT_PKT_RDY are clear\n",
__FUNCTION__);
switch (dev->ep0state) {
case DATA_STATE_XMIT:
DEBUG_EP0("continue with DATA_STATE_XMIT\n");
lh7a40x_ep0_in(dev, csr);
return;
case DATA_STATE_NEED_ZLP:
DEBUG_EP0("continue with DATA_STATE_NEED_ZLP\n");
lh7a40x_ep0_in_zlp(dev, csr);
return;
default:
/* Stall? */
DEBUG_EP0("Odd state!! state = %s\n",
state_names[dev->ep0state]);
dev->ep0state = WAIT_FOR_SETUP;
/* nuke(ep, 0); */
/* usb_set(EP0_SEND_STALL, ep->csr1); */
break;
}
}
/*
* if SETUP_END is set
* - abort the last transfer
* - set SERVICED_SETUP_END_BIT
*/
if (csr & EP0_SETUP_END) {
DEBUG_EP0("%s: EP0_SETUP_END is set: %x\n", __FUNCTION__, csr);
usb_set(EP0_CLR_SETUP_END, USB_EP0_CSR);
nuke(ep, 0);
dev->ep0state = WAIT_FOR_SETUP;
}
/*
* if EP0_OUT_PKT_RDY is set
* - read data packet from EP0 FIFO
* - decode command
* - if error
* set SERVICED_OUT_PKT_RDY | DATA_END bits | SEND_STALL
* - else
* set SERVICED_OUT_PKT_RDY | DATA_END bits
*/
if (csr & EP0_OUT_PKT_RDY) {
DEBUG_EP0("%s: EP0_OUT_PKT_RDY is set: %x\n", __FUNCTION__,
csr);
switch (dev->ep0state) {
case WAIT_FOR_SETUP:
DEBUG_EP0("WAIT_FOR_SETUP\n");
lh7a40x_ep0_setup(dev, csr);
break;
case DATA_STATE_RECV:
DEBUG_EP0("DATA_STATE_RECV\n");
lh7a40x_ep0_out(dev, csr);
break;
default:
/* send stall? */
DEBUG_EP0("strange state!! 2. send stall? state = %d\n",
dev->ep0state);
break;
}
}
}
static void lh7a40x_ep0_kick(struct lh7a40x_udc *dev, struct lh7a40x_ep *ep)
{
u32 csr;
usb_set_index(0);
csr = usb_read(USB_EP0_CSR);
DEBUG_EP0("%s: %x\n", __FUNCTION__, csr);
/* Clear "out packet ready" */
usb_set(EP0_CLR_OUT, USB_EP0_CSR);
if (ep_is_in(ep)) {
dev->ep0state = DATA_STATE_XMIT;
lh7a40x_ep0_in(dev, csr);
} else {
dev->ep0state = DATA_STATE_RECV;
lh7a40x_ep0_out(dev, csr);
}
}
/* ---------------------------------------------------------------------------
* device-scoped parts of the api to the usb controller hardware
* ---------------------------------------------------------------------------
*/
static int lh7a40x_udc_get_frame(struct usb_gadget *_gadget)
{
u32 frame1 = usb_read(USB_FRM_NUM1); /* Least significant 8 bits */
u32 frame2 = usb_read(USB_FRM_NUM2); /* Most significant 3 bits */
DEBUG("%s, %p\n", __FUNCTION__, _gadget);
return ((frame2 & 0x07) << 8) | (frame1 & 0xff);
}
static int lh7a40x_udc_wakeup(struct usb_gadget *_gadget)
{
/* host may not have enabled remote wakeup */
/*if ((UDCCS0 & UDCCS0_DRWF) == 0)
return -EHOSTUNREACH;
udc_set_mask_UDCCR(UDCCR_RSM); */
return -ENOTSUPP;
}
static const struct usb_gadget_ops lh7a40x_udc_ops = {
.get_frame = lh7a40x_udc_get_frame,
.wakeup = lh7a40x_udc_wakeup,
/* current versions must always be self-powered */
};
static void nop_release(struct device *dev)
{
DEBUG("%s %s\n", __FUNCTION__, dev->bus_id);
}
static struct lh7a40x_udc memory = {
.usb_address = 0,
.gadget = {
.ops = &lh7a40x_udc_ops,
.ep0 = &memory.ep[0].ep,
.name = driver_name,
.dev = {
.bus_id = "gadget",
.release = nop_release,
},
},
/* control endpoint */
.ep[0] = {
.ep = {
.name = ep0name,
.ops = &lh7a40x_ep_ops,
.maxpacket = EP0_PACKETSIZE,
},
.dev = &memory,
.bEndpointAddress = 0,
.bmAttributes = 0,
.ep_type = ep_control,
.fifo = io_p2v(USB_EP0_FIFO),
.csr1 = USB_EP0_CSR,
.csr2 = USB_EP0_CSR,
},
/* first group of endpoints */
.ep[1] = {
.ep = {
.name = "ep1in-bulk",
.ops = &lh7a40x_ep_ops,
.maxpacket = 64,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 1,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.ep_type = ep_bulk_in,
.fifo = io_p2v(USB_EP1_FIFO),
.csr1 = USB_IN_CSR1,
.csr2 = USB_IN_CSR2,
},
.ep[2] = {
.ep = {
.name = "ep2out-bulk",
.ops = &lh7a40x_ep_ops,
.maxpacket = 64,
},
.dev = &memory,
.bEndpointAddress = 2,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.ep_type = ep_bulk_out,
.fifo = io_p2v(USB_EP2_FIFO),
.csr1 = USB_OUT_CSR1,
.csr2 = USB_OUT_CSR2,
},
.ep[3] = {
.ep = {
.name = "ep3in-int",
.ops = &lh7a40x_ep_ops,
.maxpacket = 64,
},
.dev = &memory,
.bEndpointAddress = USB_DIR_IN | 3,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.ep_type = ep_interrupt,
.fifo = io_p2v(USB_EP3_FIFO),
.csr1 = USB_IN_CSR1,
.csr2 = USB_IN_CSR2,
},
};
/*
* probe - binds to the platform device
*/
static int lh7a40x_udc_probe(struct platform_device *pdev)
{
struct lh7a40x_udc *dev = &memory;
int retval;
DEBUG("%s: %p\n", __FUNCTION__, pdev);
spin_lock_init(&dev->lock);
dev->dev = &pdev->dev;
device_initialize(&dev->gadget.dev);
dev->gadget.dev.parent = &pdev->dev;
the_controller = dev;
platform_set_drvdata(pdev, dev);
udc_disable(dev);
udc_reinit(dev);
/* irq setup after old hardware state is cleaned up */
retval =
request_irq(IRQ_USBINTR, lh7a40x_udc_irq, SA_INTERRUPT, driver_name,
dev);
if (retval != 0) {
DEBUG(KERN_ERR "%s: can't get irq %i, err %d\n", driver_name,
IRQ_USBINTR, retval);
return -EBUSY;
}
create_proc_files();
return retval;
}
static int lh7a40x_udc_remove(struct platform_device *pdev)
{
struct lh7a40x_udc *dev = platform_get_drvdata(pdev);
DEBUG("%s: %p\n", __FUNCTION__, pdev);
udc_disable(dev);
remove_proc_files();
usb_gadget_unregister_driver(dev->driver);
free_irq(IRQ_USBINTR, dev);
platform_set_drvdata(pdev, 0);
the_controller = 0;
return 0;
}
/*-------------------------------------------------------------------------*/
static struct platform_driver udc_driver = {
.probe = lh7a40x_udc_probe,
.remove = lh7a40x_udc_remove
/* FIXME power management support */
/* .suspend = ... disable UDC */
/* .resume = ... re-enable UDC */
.driver = {
.name = (char *)driver_name,
.owner = THIS_MODULE,
},
};
static int __init udc_init(void)
{
DEBUG("%s: %s version %s\n", __FUNCTION__, driver_name, DRIVER_VERSION);
return platform_driver_register(&udc_driver);
}
static void __exit udc_exit(void)
{
platform_driver_unregister(&udc_driver);
}
module_init(udc_init);
module_exit(udc_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Mikko Lahteenmaki, Bo Henriksen");
MODULE_LICENSE("GPL");