| /* | 
 |  * at24.c - handle most I2C EEPROMs | 
 |  * | 
 |  * Copyright (C) 2005-2007 David Brownell | 
 |  * Copyright (C) 2008 Wolfram Sang, Pengutronix | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/of.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/i2c/at24.h> | 
 |  | 
 | /* | 
 |  * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable. | 
 |  * Differences between different vendor product lines (like Atmel AT24C or | 
 |  * MicroChip 24LC, etc) won't much matter for typical read/write access. | 
 |  * There are also I2C RAM chips, likewise interchangeable. One example | 
 |  * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes). | 
 |  * | 
 |  * However, misconfiguration can lose data. "Set 16-bit memory address" | 
 |  * to a part with 8-bit addressing will overwrite data. Writing with too | 
 |  * big a page size also loses data. And it's not safe to assume that the | 
 |  * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC | 
 |  * uses 0x51, for just one example. | 
 |  * | 
 |  * Accordingly, explicit board-specific configuration data should be used | 
 |  * in almost all cases. (One partial exception is an SMBus used to access | 
 |  * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.) | 
 |  * | 
 |  * So this driver uses "new style" I2C driver binding, expecting to be | 
 |  * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or | 
 |  * similar kernel-resident tables; or, configuration data coming from | 
 |  * a bootloader. | 
 |  * | 
 |  * Other than binding model, current differences from "eeprom" driver are | 
 |  * that this one handles write access and isn't restricted to 24c02 devices. | 
 |  * It also handles larger devices (32 kbit and up) with two-byte addresses, | 
 |  * which won't work on pure SMBus systems. | 
 |  */ | 
 |  | 
 | struct at24_data { | 
 | 	struct at24_platform_data chip; | 
 | 	struct memory_accessor macc; | 
 | 	int use_smbus; | 
 |  | 
 | 	/* | 
 | 	 * Lock protects against activities from other Linux tasks, | 
 | 	 * but not from changes by other I2C masters. | 
 | 	 */ | 
 | 	struct mutex lock; | 
 | 	struct bin_attribute bin; | 
 |  | 
 | 	u8 *writebuf; | 
 | 	unsigned write_max; | 
 | 	unsigned num_addresses; | 
 |  | 
 | 	/* | 
 | 	 * Some chips tie up multiple I2C addresses; dummy devices reserve | 
 | 	 * them for us, and we'll use them with SMBus calls. | 
 | 	 */ | 
 | 	struct i2c_client *client[]; | 
 | }; | 
 |  | 
 | /* | 
 |  * This parameter is to help this driver avoid blocking other drivers out | 
 |  * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C | 
 |  * clock, one 256 byte read takes about 1/43 second which is excessive; | 
 |  * but the 1/170 second it takes at 400 kHz may be quite reasonable; and | 
 |  * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible. | 
 |  * | 
 |  * This value is forced to be a power of two so that writes align on pages. | 
 |  */ | 
 | static unsigned io_limit = 128; | 
 | module_param(io_limit, uint, 0); | 
 | MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)"); | 
 |  | 
 | /* | 
 |  * Specs often allow 5 msec for a page write, sometimes 20 msec; | 
 |  * it's important to recover from write timeouts. | 
 |  */ | 
 | static unsigned write_timeout = 25; | 
 | module_param(write_timeout, uint, 0); | 
 | MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)"); | 
 |  | 
 | #define AT24_SIZE_BYTELEN 5 | 
 | #define AT24_SIZE_FLAGS 8 | 
 |  | 
 | #define AT24_BITMASK(x) (BIT(x) - 1) | 
 |  | 
 | /* create non-zero magic value for given eeprom parameters */ | 
 | #define AT24_DEVICE_MAGIC(_len, _flags) 		\ | 
 | 	((1 << AT24_SIZE_FLAGS | (_flags)) 		\ | 
 | 	    << AT24_SIZE_BYTELEN | ilog2(_len)) | 
 |  | 
 | static const struct i2c_device_id at24_ids[] = { | 
 | 	/* needs 8 addresses as A0-A2 are ignored */ | 
 | 	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) }, | 
 | 	/* old variants can't be handled with this generic entry! */ | 
 | 	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) }, | 
 | 	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) }, | 
 | 	/* spd is a 24c02 in memory DIMMs */ | 
 | 	{ "spd", AT24_DEVICE_MAGIC(2048 / 8, | 
 | 		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) }, | 
 | 	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) }, | 
 | 	/* 24rf08 quirk is handled at i2c-core */ | 
 | 	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) }, | 
 | 	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) }, | 
 | 	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) }, | 
 | 	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) }, | 
 | 	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) }, | 
 | 	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) }, | 
 | 	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) }, | 
 | 	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) }, | 
 | 	{ "at24", 0 }, | 
 | 	{ /* END OF LIST */ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(i2c, at24_ids); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * This routine supports chips which consume multiple I2C addresses. It | 
 |  * computes the addressing information to be used for a given r/w request. | 
 |  * Assumes that sanity checks for offset happened at sysfs-layer. | 
 |  */ | 
 | static struct i2c_client *at24_translate_offset(struct at24_data *at24, | 
 | 		unsigned *offset) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	if (at24->chip.flags & AT24_FLAG_ADDR16) { | 
 | 		i = *offset >> 16; | 
 | 		*offset &= 0xffff; | 
 | 	} else { | 
 | 		i = *offset >> 8; | 
 | 		*offset &= 0xff; | 
 | 	} | 
 |  | 
 | 	return at24->client[i]; | 
 | } | 
 |  | 
 | static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf, | 
 | 		unsigned offset, size_t count) | 
 | { | 
 | 	struct i2c_msg msg[2]; | 
 | 	u8 msgbuf[2]; | 
 | 	struct i2c_client *client; | 
 | 	unsigned long timeout, read_time; | 
 | 	int status, i; | 
 |  | 
 | 	memset(msg, 0, sizeof(msg)); | 
 |  | 
 | 	/* | 
 | 	 * REVISIT some multi-address chips don't rollover page reads to | 
 | 	 * the next slave address, so we may need to truncate the count. | 
 | 	 * Those chips might need another quirk flag. | 
 | 	 * | 
 | 	 * If the real hardware used four adjacent 24c02 chips and that | 
 | 	 * were misconfigured as one 24c08, that would be a similar effect: | 
 | 	 * one "eeprom" file not four, but larger reads would fail when | 
 | 	 * they crossed certain pages. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Slave address and byte offset derive from the offset. Always | 
 | 	 * set the byte address; on a multi-master board, another master | 
 | 	 * may have changed the chip's "current" address pointer. | 
 | 	 */ | 
 | 	client = at24_translate_offset(at24, &offset); | 
 |  | 
 | 	if (count > io_limit) | 
 | 		count = io_limit; | 
 |  | 
 | 	switch (at24->use_smbus) { | 
 | 	case I2C_SMBUS_I2C_BLOCK_DATA: | 
 | 		/* Smaller eeproms can work given some SMBus extension calls */ | 
 | 		if (count > I2C_SMBUS_BLOCK_MAX) | 
 | 			count = I2C_SMBUS_BLOCK_MAX; | 
 | 		break; | 
 | 	case I2C_SMBUS_WORD_DATA: | 
 | 		count = 2; | 
 | 		break; | 
 | 	case I2C_SMBUS_BYTE_DATA: | 
 | 		count = 1; | 
 | 		break; | 
 | 	default: | 
 | 		/* | 
 | 		 * When we have a better choice than SMBus calls, use a | 
 | 		 * combined I2C message. Write address; then read up to | 
 | 		 * io_limit data bytes. Note that read page rollover helps us | 
 | 		 * here (unlike writes). msgbuf is u8 and will cast to our | 
 | 		 * needs. | 
 | 		 */ | 
 | 		i = 0; | 
 | 		if (at24->chip.flags & AT24_FLAG_ADDR16) | 
 | 			msgbuf[i++] = offset >> 8; | 
 | 		msgbuf[i++] = offset; | 
 |  | 
 | 		msg[0].addr = client->addr; | 
 | 		msg[0].buf = msgbuf; | 
 | 		msg[0].len = i; | 
 |  | 
 | 		msg[1].addr = client->addr; | 
 | 		msg[1].flags = I2C_M_RD; | 
 | 		msg[1].buf = buf; | 
 | 		msg[1].len = count; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Reads fail if the previous write didn't complete yet. We may | 
 | 	 * loop a few times until this one succeeds, waiting at least | 
 | 	 * long enough for one entire page write to work. | 
 | 	 */ | 
 | 	timeout = jiffies + msecs_to_jiffies(write_timeout); | 
 | 	do { | 
 | 		read_time = jiffies; | 
 | 		switch (at24->use_smbus) { | 
 | 		case I2C_SMBUS_I2C_BLOCK_DATA: | 
 | 			status = i2c_smbus_read_i2c_block_data(client, offset, | 
 | 					count, buf); | 
 | 			break; | 
 | 		case I2C_SMBUS_WORD_DATA: | 
 | 			status = i2c_smbus_read_word_data(client, offset); | 
 | 			if (status >= 0) { | 
 | 				buf[0] = status & 0xff; | 
 | 				buf[1] = status >> 8; | 
 | 				status = count; | 
 | 			} | 
 | 			break; | 
 | 		case I2C_SMBUS_BYTE_DATA: | 
 | 			status = i2c_smbus_read_byte_data(client, offset); | 
 | 			if (status >= 0) { | 
 | 				buf[0] = status; | 
 | 				status = count; | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			status = i2c_transfer(client->adapter, msg, 2); | 
 | 			if (status == 2) | 
 | 				status = count; | 
 | 		} | 
 | 		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n", | 
 | 				count, offset, status, jiffies); | 
 |  | 
 | 		if (status == count) | 
 | 			return count; | 
 |  | 
 | 		/* REVISIT: at HZ=100, this is sloooow */ | 
 | 		msleep(1); | 
 | 	} while (time_before(read_time, timeout)); | 
 |  | 
 | 	return -ETIMEDOUT; | 
 | } | 
 |  | 
 | static ssize_t at24_read(struct at24_data *at24, | 
 | 		char *buf, loff_t off, size_t count) | 
 | { | 
 | 	ssize_t retval = 0; | 
 |  | 
 | 	if (unlikely(!count)) | 
 | 		return count; | 
 |  | 
 | 	/* | 
 | 	 * Read data from chip, protecting against concurrent updates | 
 | 	 * from this host, but not from other I2C masters. | 
 | 	 */ | 
 | 	mutex_lock(&at24->lock); | 
 |  | 
 | 	while (count) { | 
 | 		ssize_t	status; | 
 |  | 
 | 		status = at24_eeprom_read(at24, buf, off, count); | 
 | 		if (status <= 0) { | 
 | 			if (retval == 0) | 
 | 				retval = status; | 
 | 			break; | 
 | 		} | 
 | 		buf += status; | 
 | 		off += status; | 
 | 		count -= status; | 
 | 		retval += status; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&at24->lock); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj, | 
 | 		struct bin_attribute *attr, | 
 | 		char *buf, loff_t off, size_t count) | 
 | { | 
 | 	struct at24_data *at24; | 
 |  | 
 | 	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); | 
 | 	return at24_read(at24, buf, off, count); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Note that if the hardware write-protect pin is pulled high, the whole | 
 |  * chip is normally write protected. But there are plenty of product | 
 |  * variants here, including OTP fuses and partial chip protect. | 
 |  * | 
 |  * We only use page mode writes; the alternative is sloooow. This routine | 
 |  * writes at most one page. | 
 |  */ | 
 | static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf, | 
 | 		unsigned offset, size_t count) | 
 | { | 
 | 	struct i2c_client *client; | 
 | 	struct i2c_msg msg; | 
 | 	ssize_t status; | 
 | 	unsigned long timeout, write_time; | 
 | 	unsigned next_page; | 
 |  | 
 | 	/* Get corresponding I2C address and adjust offset */ | 
 | 	client = at24_translate_offset(at24, &offset); | 
 |  | 
 | 	/* write_max is at most a page */ | 
 | 	if (count > at24->write_max) | 
 | 		count = at24->write_max; | 
 |  | 
 | 	/* Never roll over backwards, to the start of this page */ | 
 | 	next_page = roundup(offset + 1, at24->chip.page_size); | 
 | 	if (offset + count > next_page) | 
 | 		count = next_page - offset; | 
 |  | 
 | 	/* If we'll use I2C calls for I/O, set up the message */ | 
 | 	if (!at24->use_smbus) { | 
 | 		int i = 0; | 
 |  | 
 | 		msg.addr = client->addr; | 
 | 		msg.flags = 0; | 
 |  | 
 | 		/* msg.buf is u8 and casts will mask the values */ | 
 | 		msg.buf = at24->writebuf; | 
 | 		if (at24->chip.flags & AT24_FLAG_ADDR16) | 
 | 			msg.buf[i++] = offset >> 8; | 
 |  | 
 | 		msg.buf[i++] = offset; | 
 | 		memcpy(&msg.buf[i], buf, count); | 
 | 		msg.len = i + count; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Writes fail if the previous one didn't complete yet. We may | 
 | 	 * loop a few times until this one succeeds, waiting at least | 
 | 	 * long enough for one entire page write to work. | 
 | 	 */ | 
 | 	timeout = jiffies + msecs_to_jiffies(write_timeout); | 
 | 	do { | 
 | 		write_time = jiffies; | 
 | 		if (at24->use_smbus) { | 
 | 			status = i2c_smbus_write_i2c_block_data(client, | 
 | 					offset, count, buf); | 
 | 			if (status == 0) | 
 | 				status = count; | 
 | 		} else { | 
 | 			status = i2c_transfer(client->adapter, &msg, 1); | 
 | 			if (status == 1) | 
 | 				status = count; | 
 | 		} | 
 | 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n", | 
 | 				count, offset, status, jiffies); | 
 |  | 
 | 		if (status == count) | 
 | 			return count; | 
 |  | 
 | 		/* REVISIT: at HZ=100, this is sloooow */ | 
 | 		msleep(1); | 
 | 	} while (time_before(write_time, timeout)); | 
 |  | 
 | 	return -ETIMEDOUT; | 
 | } | 
 |  | 
 | static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off, | 
 | 			  size_t count) | 
 | { | 
 | 	ssize_t retval = 0; | 
 |  | 
 | 	if (unlikely(!count)) | 
 | 		return count; | 
 |  | 
 | 	/* | 
 | 	 * Write data to chip, protecting against concurrent updates | 
 | 	 * from this host, but not from other I2C masters. | 
 | 	 */ | 
 | 	mutex_lock(&at24->lock); | 
 |  | 
 | 	while (count) { | 
 | 		ssize_t	status; | 
 |  | 
 | 		status = at24_eeprom_write(at24, buf, off, count); | 
 | 		if (status <= 0) { | 
 | 			if (retval == 0) | 
 | 				retval = status; | 
 | 			break; | 
 | 		} | 
 | 		buf += status; | 
 | 		off += status; | 
 | 		count -= status; | 
 | 		retval += status; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&at24->lock); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj, | 
 | 		struct bin_attribute *attr, | 
 | 		char *buf, loff_t off, size_t count) | 
 | { | 
 | 	struct at24_data *at24; | 
 |  | 
 | 	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); | 
 | 	return at24_write(at24, buf, off, count); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * This lets other kernel code access the eeprom data. For example, it | 
 |  * might hold a board's Ethernet address, or board-specific calibration | 
 |  * data generated on the manufacturing floor. | 
 |  */ | 
 |  | 
 | static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf, | 
 | 			 off_t offset, size_t count) | 
 | { | 
 | 	struct at24_data *at24 = container_of(macc, struct at24_data, macc); | 
 |  | 
 | 	return at24_read(at24, buf, offset, count); | 
 | } | 
 |  | 
 | static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf, | 
 | 			  off_t offset, size_t count) | 
 | { | 
 | 	struct at24_data *at24 = container_of(macc, struct at24_data, macc); | 
 |  | 
 | 	return at24_write(at24, buf, offset, count); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | #ifdef CONFIG_OF | 
 | static void at24_get_ofdata(struct i2c_client *client, | 
 | 		struct at24_platform_data *chip) | 
 | { | 
 | 	const __be32 *val; | 
 | 	struct device_node *node = client->dev.of_node; | 
 |  | 
 | 	if (node) { | 
 | 		if (of_get_property(node, "read-only", NULL)) | 
 | 			chip->flags |= AT24_FLAG_READONLY; | 
 | 		val = of_get_property(node, "pagesize", NULL); | 
 | 		if (val) | 
 | 			chip->page_size = be32_to_cpup(val); | 
 | 	} | 
 | } | 
 | #else | 
 | static void at24_get_ofdata(struct i2c_client *client, | 
 | 		struct at24_platform_data *chip) | 
 | { } | 
 | #endif /* CONFIG_OF */ | 
 |  | 
 | static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id) | 
 | { | 
 | 	struct at24_platform_data chip; | 
 | 	bool writable; | 
 | 	int use_smbus = 0; | 
 | 	struct at24_data *at24; | 
 | 	int err; | 
 | 	unsigned i, num_addresses; | 
 | 	kernel_ulong_t magic; | 
 |  | 
 | 	if (client->dev.platform_data) { | 
 | 		chip = *(struct at24_platform_data *)client->dev.platform_data; | 
 | 	} else { | 
 | 		if (!id->driver_data) { | 
 | 			err = -ENODEV; | 
 | 			goto err_out; | 
 | 		} | 
 | 		magic = id->driver_data; | 
 | 		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN)); | 
 | 		magic >>= AT24_SIZE_BYTELEN; | 
 | 		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS); | 
 | 		/* | 
 | 		 * This is slow, but we can't know all eeproms, so we better | 
 | 		 * play safe. Specifying custom eeprom-types via platform_data | 
 | 		 * is recommended anyhow. | 
 | 		 */ | 
 | 		chip.page_size = 1; | 
 |  | 
 | 		/* update chipdata if OF is present */ | 
 | 		at24_get_ofdata(client, &chip); | 
 |  | 
 | 		chip.setup = NULL; | 
 | 		chip.context = NULL; | 
 | 	} | 
 |  | 
 | 	if (!is_power_of_2(chip.byte_len)) | 
 | 		dev_warn(&client->dev, | 
 | 			"byte_len looks suspicious (no power of 2)!\n"); | 
 | 	if (!chip.page_size) { | 
 | 		dev_err(&client->dev, "page_size must not be 0!\n"); | 
 | 		err = -EINVAL; | 
 | 		goto err_out; | 
 | 	} | 
 | 	if (!is_power_of_2(chip.page_size)) | 
 | 		dev_warn(&client->dev, | 
 | 			"page_size looks suspicious (no power of 2)!\n"); | 
 |  | 
 | 	/* Use I2C operations unless we're stuck with SMBus extensions. */ | 
 | 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { | 
 | 		if (chip.flags & AT24_FLAG_ADDR16) { | 
 | 			err = -EPFNOSUPPORT; | 
 | 			goto err_out; | 
 | 		} | 
 | 		if (i2c_check_functionality(client->adapter, | 
 | 				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) { | 
 | 			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA; | 
 | 		} else if (i2c_check_functionality(client->adapter, | 
 | 				I2C_FUNC_SMBUS_READ_WORD_DATA)) { | 
 | 			use_smbus = I2C_SMBUS_WORD_DATA; | 
 | 		} else if (i2c_check_functionality(client->adapter, | 
 | 				I2C_FUNC_SMBUS_READ_BYTE_DATA)) { | 
 | 			use_smbus = I2C_SMBUS_BYTE_DATA; | 
 | 		} else { | 
 | 			err = -EPFNOSUPPORT; | 
 | 			goto err_out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (chip.flags & AT24_FLAG_TAKE8ADDR) | 
 | 		num_addresses = 8; | 
 | 	else | 
 | 		num_addresses =	DIV_ROUND_UP(chip.byte_len, | 
 | 			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256); | 
 |  | 
 | 	at24 = kzalloc(sizeof(struct at24_data) + | 
 | 		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL); | 
 | 	if (!at24) { | 
 | 		err = -ENOMEM; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	mutex_init(&at24->lock); | 
 | 	at24->use_smbus = use_smbus; | 
 | 	at24->chip = chip; | 
 | 	at24->num_addresses = num_addresses; | 
 |  | 
 | 	/* | 
 | 	 * Export the EEPROM bytes through sysfs, since that's convenient. | 
 | 	 * By default, only root should see the data (maybe passwords etc) | 
 | 	 */ | 
 | 	sysfs_bin_attr_init(&at24->bin); | 
 | 	at24->bin.attr.name = "eeprom"; | 
 | 	at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR; | 
 | 	at24->bin.read = at24_bin_read; | 
 | 	at24->bin.size = chip.byte_len; | 
 |  | 
 | 	at24->macc.read = at24_macc_read; | 
 |  | 
 | 	writable = !(chip.flags & AT24_FLAG_READONLY); | 
 | 	if (writable) { | 
 | 		if (!use_smbus || i2c_check_functionality(client->adapter, | 
 | 				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) { | 
 |  | 
 | 			unsigned write_max = chip.page_size; | 
 |  | 
 | 			at24->macc.write = at24_macc_write; | 
 |  | 
 | 			at24->bin.write = at24_bin_write; | 
 | 			at24->bin.attr.mode |= S_IWUSR; | 
 |  | 
 | 			if (write_max > io_limit) | 
 | 				write_max = io_limit; | 
 | 			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX) | 
 | 				write_max = I2C_SMBUS_BLOCK_MAX; | 
 | 			at24->write_max = write_max; | 
 |  | 
 | 			/* buffer (data + address at the beginning) */ | 
 | 			at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL); | 
 | 			if (!at24->writebuf) { | 
 | 				err = -ENOMEM; | 
 | 				goto err_struct; | 
 | 			} | 
 | 		} else { | 
 | 			dev_warn(&client->dev, | 
 | 				"cannot write due to controller restrictions."); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	at24->client[0] = client; | 
 |  | 
 | 	/* use dummy devices for multiple-address chips */ | 
 | 	for (i = 1; i < num_addresses; i++) { | 
 | 		at24->client[i] = i2c_new_dummy(client->adapter, | 
 | 					client->addr + i); | 
 | 		if (!at24->client[i]) { | 
 | 			dev_err(&client->dev, "address 0x%02x unavailable\n", | 
 | 					client->addr + i); | 
 | 			err = -EADDRINUSE; | 
 | 			goto err_clients; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin); | 
 | 	if (err) | 
 | 		goto err_clients; | 
 |  | 
 | 	i2c_set_clientdata(client, at24); | 
 |  | 
 | 	dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n", | 
 | 		at24->bin.size, client->name, | 
 | 		writable ? "writable" : "read-only", at24->write_max); | 
 | 	if (use_smbus == I2C_SMBUS_WORD_DATA || | 
 | 	    use_smbus == I2C_SMBUS_BYTE_DATA) { | 
 | 		dev_notice(&client->dev, "Falling back to %s reads, " | 
 | 			   "performance will suffer\n", use_smbus == | 
 | 			   I2C_SMBUS_WORD_DATA ? "word" : "byte"); | 
 | 	} | 
 |  | 
 | 	/* export data to kernel code */ | 
 | 	if (chip.setup) | 
 | 		chip.setup(&at24->macc, chip.context); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_clients: | 
 | 	for (i = 1; i < num_addresses; i++) | 
 | 		if (at24->client[i]) | 
 | 			i2c_unregister_device(at24->client[i]); | 
 |  | 
 | 	kfree(at24->writebuf); | 
 | err_struct: | 
 | 	kfree(at24); | 
 | err_out: | 
 | 	dev_dbg(&client->dev, "probe error %d\n", err); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int at24_remove(struct i2c_client *client) | 
 | { | 
 | 	struct at24_data *at24; | 
 | 	int i; | 
 |  | 
 | 	at24 = i2c_get_clientdata(client); | 
 | 	sysfs_remove_bin_file(&client->dev.kobj, &at24->bin); | 
 |  | 
 | 	for (i = 1; i < at24->num_addresses; i++) | 
 | 		i2c_unregister_device(at24->client[i]); | 
 |  | 
 | 	kfree(at24->writebuf); | 
 | 	kfree(at24); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static struct i2c_driver at24_driver = { | 
 | 	.driver = { | 
 | 		.name = "at24", | 
 | 		.owner = THIS_MODULE, | 
 | 	}, | 
 | 	.probe = at24_probe, | 
 | 	.remove = at24_remove, | 
 | 	.id_table = at24_ids, | 
 | }; | 
 |  | 
 | static int __init at24_init(void) | 
 | { | 
 | 	if (!io_limit) { | 
 | 		pr_err("at24: io_limit must not be 0!\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	io_limit = rounddown_pow_of_two(io_limit); | 
 | 	return i2c_add_driver(&at24_driver); | 
 | } | 
 | module_init(at24_init); | 
 |  | 
 | static void __exit at24_exit(void) | 
 | { | 
 | 	i2c_del_driver(&at24_driver); | 
 | } | 
 | module_exit(at24_exit); | 
 |  | 
 | MODULE_DESCRIPTION("Driver for most I2C EEPROMs"); | 
 | MODULE_AUTHOR("David Brownell and Wolfram Sang"); | 
 | MODULE_LICENSE("GPL"); |