|  | /* | 
|  | * PowerPC64 SLB support. | 
|  | * | 
|  | * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM | 
|  | * Based on earlier code written by: | 
|  | * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com | 
|  | *    Copyright (c) 2001 Dave Engebretsen | 
|  | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | * | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or | 
|  | *      modify it under the terms of the GNU General Public License | 
|  | *      as published by the Free Software Foundation; either version | 
|  | *      2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <asm/asm-prototypes.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/paca.h> | 
|  | #include <asm/ppc-opcode.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/smp.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/context_tracking.h> | 
|  | #include <linux/mm_types.h> | 
|  |  | 
|  | #include <asm/udbg.h> | 
|  | #include <asm/code-patching.h> | 
|  |  | 
|  | enum slb_index { | 
|  | LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */ | 
|  | KSTACK_INDEX	= 1, /* Kernel stack map */ | 
|  | }; | 
|  |  | 
|  | static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); | 
|  |  | 
|  | #define slb_esid_mask(ssize)	\ | 
|  | (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) | 
|  |  | 
|  | static inline unsigned long mk_esid_data(unsigned long ea, int ssize, | 
|  | enum slb_index index) | 
|  | { | 
|  | return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; | 
|  | } | 
|  |  | 
|  | static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize, | 
|  | unsigned long flags) | 
|  | { | 
|  | return (vsid << slb_vsid_shift(ssize)) | flags | | 
|  | ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); | 
|  | } | 
|  |  | 
|  | static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, | 
|  | unsigned long flags) | 
|  | { | 
|  | return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags); | 
|  | } | 
|  |  | 
|  | static void assert_slb_presence(bool present, unsigned long ea) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | unsigned long tmp; | 
|  |  | 
|  | WARN_ON_ONCE(mfmsr() & MSR_EE); | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_ARCH_206)) | 
|  | return; | 
|  |  | 
|  | asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0"); | 
|  |  | 
|  | WARN_ON(present == (tmp == 0)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void slb_shadow_update(unsigned long ea, int ssize, | 
|  | unsigned long flags, | 
|  | enum slb_index index) | 
|  | { | 
|  | struct slb_shadow *p = get_slb_shadow(); | 
|  |  | 
|  | /* | 
|  | * Clear the ESID first so the entry is not valid while we are | 
|  | * updating it.  No write barriers are needed here, provided | 
|  | * we only update the current CPU's SLB shadow buffer. | 
|  | */ | 
|  | WRITE_ONCE(p->save_area[index].esid, 0); | 
|  | WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); | 
|  | WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); | 
|  | } | 
|  |  | 
|  | static inline void slb_shadow_clear(enum slb_index index) | 
|  | { | 
|  | WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); | 
|  | } | 
|  |  | 
|  | static inline void create_shadowed_slbe(unsigned long ea, int ssize, | 
|  | unsigned long flags, | 
|  | enum slb_index index) | 
|  | { | 
|  | /* | 
|  | * Updating the shadow buffer before writing the SLB ensures | 
|  | * we don't get a stale entry here if we get preempted by PHYP | 
|  | * between these two statements. | 
|  | */ | 
|  | slb_shadow_update(ea, ssize, flags, index); | 
|  |  | 
|  | assert_slb_presence(false, ea); | 
|  | asm volatile("slbmte  %0,%1" : | 
|  | : "r" (mk_vsid_data(ea, ssize, flags)), | 
|  | "r" (mk_esid_data(ea, ssize, index)) | 
|  | : "memory" ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert bolted entries into SLB (which may not be empty, so don't clear | 
|  | * slb_cache_ptr). | 
|  | */ | 
|  | void __slb_restore_bolted_realmode(void) | 
|  | { | 
|  | struct slb_shadow *p = get_slb_shadow(); | 
|  | enum slb_index index; | 
|  |  | 
|  | /* No isync needed because realmode. */ | 
|  | for (index = 0; index < SLB_NUM_BOLTED; index++) { | 
|  | asm volatile("slbmte  %0,%1" : | 
|  | : "r" (be64_to_cpu(p->save_area[index].vsid)), | 
|  | "r" (be64_to_cpu(p->save_area[index].esid))); | 
|  | } | 
|  |  | 
|  | assert_slb_presence(true, local_paca->kstack); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert the bolted entries into an empty SLB. | 
|  | */ | 
|  | void slb_restore_bolted_realmode(void) | 
|  | { | 
|  | __slb_restore_bolted_realmode(); | 
|  | get_paca()->slb_cache_ptr = 0; | 
|  |  | 
|  | get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
|  | get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This flushes all SLB entries including 0, so it must be realmode. | 
|  | */ | 
|  | void slb_flush_all_realmode(void) | 
|  | { | 
|  | asm volatile("slbmte %0,%0; slbia" : : "r" (0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This flushes non-bolted entries, it can be run in virtual mode. Must | 
|  | * be called with interrupts disabled. | 
|  | */ | 
|  | void slb_flush_and_restore_bolted(void) | 
|  | { | 
|  | struct slb_shadow *p = get_slb_shadow(); | 
|  |  | 
|  | BUILD_BUG_ON(SLB_NUM_BOLTED != 2); | 
|  |  | 
|  | WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | /* | 
|  | * We can't take a PMU exception in the following code, so hard | 
|  | * disable interrupts. | 
|  | */ | 
|  | hard_irq_disable(); | 
|  |  | 
|  | asm volatile("isync\n" | 
|  | "slbia\n" | 
|  | "slbmte  %0, %1\n" | 
|  | "isync\n" | 
|  | :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)), | 
|  | "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid)) | 
|  | : "memory"); | 
|  | assert_slb_presence(true, get_paca()->kstack); | 
|  |  | 
|  | get_paca()->slb_cache_ptr = 0; | 
|  |  | 
|  | get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
|  | get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | 
|  | } | 
|  |  | 
|  | void slb_save_contents(struct slb_entry *slb_ptr) | 
|  | { | 
|  | int i; | 
|  | unsigned long e, v; | 
|  |  | 
|  | /* Save slb_cache_ptr value. */ | 
|  | get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; | 
|  |  | 
|  | if (!slb_ptr) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < mmu_slb_size; i++) { | 
|  | asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i)); | 
|  | asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i)); | 
|  | slb_ptr->esid = e; | 
|  | slb_ptr->vsid = v; | 
|  | slb_ptr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void slb_dump_contents(struct slb_entry *slb_ptr) | 
|  | { | 
|  | int i, n; | 
|  | unsigned long e, v; | 
|  | unsigned long llp; | 
|  |  | 
|  | if (!slb_ptr) | 
|  | return; | 
|  |  | 
|  | pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); | 
|  | pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr); | 
|  |  | 
|  | for (i = 0; i < mmu_slb_size; i++) { | 
|  | e = slb_ptr->esid; | 
|  | v = slb_ptr->vsid; | 
|  | slb_ptr++; | 
|  |  | 
|  | if (!e && !v) | 
|  | continue; | 
|  |  | 
|  | pr_err("%02d %016lx %016lx\n", i, e, v); | 
|  |  | 
|  | if (!(e & SLB_ESID_V)) { | 
|  | pr_err("\n"); | 
|  | continue; | 
|  | } | 
|  | llp = v & SLB_VSID_LLP; | 
|  | if (v & SLB_VSID_B_1T) { | 
|  | pr_err("  1T  ESID=%9lx  VSID=%13lx LLP:%3lx\n", | 
|  | GET_ESID_1T(e), | 
|  | (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); | 
|  | } else { | 
|  | pr_err(" 256M ESID=%9lx  VSID=%13lx LLP:%3lx\n", | 
|  | GET_ESID(e), | 
|  | (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); | 
|  | } | 
|  | } | 
|  | pr_err("----------------------------------\n"); | 
|  |  | 
|  | /* Dump slb cache entires as well. */ | 
|  | pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); | 
|  | pr_err("Valid SLB cache entries:\n"); | 
|  | n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); | 
|  | for (i = 0; i < n; i++) | 
|  | pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); | 
|  | pr_err("Rest of SLB cache entries:\n"); | 
|  | for (i = n; i < SLB_CACHE_ENTRIES; i++) | 
|  | pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); | 
|  | } | 
|  |  | 
|  | void slb_vmalloc_update(void) | 
|  | { | 
|  | /* | 
|  | * vmalloc is not bolted, so just have to flush non-bolted. | 
|  | */ | 
|  | slb_flush_and_restore_bolted(); | 
|  | } | 
|  |  | 
|  | static bool preload_hit(struct thread_info *ti, unsigned long esid) | 
|  | { | 
|  | unsigned char i; | 
|  |  | 
|  | for (i = 0; i < ti->slb_preload_nr; i++) { | 
|  | unsigned char idx; | 
|  |  | 
|  | idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; | 
|  | if (esid == ti->slb_preload_esid[idx]) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool preload_add(struct thread_info *ti, unsigned long ea) | 
|  | { | 
|  | unsigned char idx; | 
|  | unsigned long esid; | 
|  |  | 
|  | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { | 
|  | /* EAs are stored >> 28 so 256MB segments don't need clearing */ | 
|  | if (ea & ESID_MASK_1T) | 
|  | ea &= ESID_MASK_1T; | 
|  | } | 
|  |  | 
|  | esid = ea >> SID_SHIFT; | 
|  |  | 
|  | if (preload_hit(ti, esid)) | 
|  | return false; | 
|  |  | 
|  | idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR; | 
|  | ti->slb_preload_esid[idx] = esid; | 
|  | if (ti->slb_preload_nr == SLB_PRELOAD_NR) | 
|  | ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; | 
|  | else | 
|  | ti->slb_preload_nr++; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void preload_age(struct thread_info *ti) | 
|  | { | 
|  | if (!ti->slb_preload_nr) | 
|  | return; | 
|  | ti->slb_preload_nr--; | 
|  | ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; | 
|  | } | 
|  |  | 
|  | void slb_setup_new_exec(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long exec = 0x10000000; | 
|  |  | 
|  | WARN_ON(irqs_disabled()); | 
|  |  | 
|  | /* | 
|  | * preload cache can only be used to determine whether a SLB | 
|  | * entry exists if it does not start to overflow. | 
|  | */ | 
|  | if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR) | 
|  | return; | 
|  |  | 
|  | hard_irq_disable(); | 
|  |  | 
|  | /* | 
|  | * We have no good place to clear the slb preload cache on exec, | 
|  | * flush_thread is about the earliest arch hook but that happens | 
|  | * after we switch to the mm and have aleady preloaded the SLBEs. | 
|  | * | 
|  | * For the most part that's probably okay to use entries from the | 
|  | * previous exec, they will age out if unused. It may turn out to | 
|  | * be an advantage to clear the cache before switching to it, | 
|  | * however. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * preload some userspace segments into the SLB. | 
|  | * Almost all 32 and 64bit PowerPC executables are linked at | 
|  | * 0x10000000 so it makes sense to preload this segment. | 
|  | */ | 
|  | if (!is_kernel_addr(exec)) { | 
|  | if (preload_add(ti, exec)) | 
|  | slb_allocate_user(mm, exec); | 
|  | } | 
|  |  | 
|  | /* Libraries and mmaps. */ | 
|  | if (!is_kernel_addr(mm->mmap_base)) { | 
|  | if (preload_add(ti, mm->mmap_base)) | 
|  | slb_allocate_user(mm, mm->mmap_base); | 
|  | } | 
|  |  | 
|  | /* see switch_slb */ | 
|  | asm volatile("isync" : : : "memory"); | 
|  |  | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | void preload_new_slb_context(unsigned long start, unsigned long sp) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long heap = mm->start_brk; | 
|  |  | 
|  | WARN_ON(irqs_disabled()); | 
|  |  | 
|  | /* see above */ | 
|  | if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR) | 
|  | return; | 
|  |  | 
|  | hard_irq_disable(); | 
|  |  | 
|  | /* Userspace entry address. */ | 
|  | if (!is_kernel_addr(start)) { | 
|  | if (preload_add(ti, start)) | 
|  | slb_allocate_user(mm, start); | 
|  | } | 
|  |  | 
|  | /* Top of stack, grows down. */ | 
|  | if (!is_kernel_addr(sp)) { | 
|  | if (preload_add(ti, sp)) | 
|  | slb_allocate_user(mm, sp); | 
|  | } | 
|  |  | 
|  | /* Bottom of heap, grows up. */ | 
|  | if (heap && !is_kernel_addr(heap)) { | 
|  | if (preload_add(ti, heap)) | 
|  | slb_allocate_user(mm, heap); | 
|  | } | 
|  |  | 
|  | /* see switch_slb */ | 
|  | asm volatile("isync" : : : "memory"); | 
|  |  | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Flush all user entries from the segment table of the current processor. */ | 
|  | void switch_slb(struct task_struct *tsk, struct mm_struct *mm) | 
|  | { | 
|  | struct thread_info *ti = task_thread_info(tsk); | 
|  | unsigned char i; | 
|  |  | 
|  | /* | 
|  | * We need interrupts hard-disabled here, not just soft-disabled, | 
|  | * so that a PMU interrupt can't occur, which might try to access | 
|  | * user memory (to get a stack trace) and possible cause an SLB miss | 
|  | * which would update the slb_cache/slb_cache_ptr fields in the PACA. | 
|  | */ | 
|  | hard_irq_disable(); | 
|  | asm volatile("isync" : : : "memory"); | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | /* | 
|  | * SLBIA IH=3 invalidates all Class=1 SLBEs and their | 
|  | * associated lookaside structures, which matches what | 
|  | * switch_slb wants. So ARCH_300 does not use the slb | 
|  | * cache. | 
|  | */ | 
|  | asm volatile(PPC_SLBIA(3)); | 
|  | } else { | 
|  | unsigned long offset = get_paca()->slb_cache_ptr; | 
|  |  | 
|  | if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && | 
|  | offset <= SLB_CACHE_ENTRIES) { | 
|  | unsigned long slbie_data = 0; | 
|  |  | 
|  | for (i = 0; i < offset; i++) { | 
|  | unsigned long ea; | 
|  |  | 
|  | ea = (unsigned long) | 
|  | get_paca()->slb_cache[i] << SID_SHIFT; | 
|  | /* | 
|  | * Could assert_slb_presence(true) here, but | 
|  | * hypervisor or machine check could have come | 
|  | * in and removed the entry at this point. | 
|  | */ | 
|  |  | 
|  | slbie_data = ea; | 
|  | slbie_data |= user_segment_size(slbie_data) | 
|  | << SLBIE_SSIZE_SHIFT; | 
|  | slbie_data |= SLBIE_C; /* user slbs have C=1 */ | 
|  | asm volatile("slbie %0" : : "r" (slbie_data)); | 
|  | } | 
|  |  | 
|  | /* Workaround POWER5 < DD2.1 issue */ | 
|  | if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) | 
|  | asm volatile("slbie %0" : : "r" (slbie_data)); | 
|  |  | 
|  | } else { | 
|  | struct slb_shadow *p = get_slb_shadow(); | 
|  | unsigned long ksp_esid_data = | 
|  | be64_to_cpu(p->save_area[KSTACK_INDEX].esid); | 
|  | unsigned long ksp_vsid_data = | 
|  | be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); | 
|  |  | 
|  | asm volatile(PPC_SLBIA(1) "\n" | 
|  | "slbmte	%0,%1\n" | 
|  | "isync" | 
|  | :: "r"(ksp_vsid_data), | 
|  | "r"(ksp_esid_data)); | 
|  |  | 
|  | get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
|  | } | 
|  |  | 
|  | get_paca()->slb_cache_ptr = 0; | 
|  | } | 
|  | get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | 
|  |  | 
|  | copy_mm_to_paca(mm); | 
|  |  | 
|  | /* | 
|  | * We gradually age out SLBs after a number of context switches to | 
|  | * reduce reload overhead of unused entries (like we do with FP/VEC | 
|  | * reload). Each time we wrap 256 switches, take an entry out of the | 
|  | * SLB preload cache. | 
|  | */ | 
|  | tsk->thread.load_slb++; | 
|  | if (!tsk->thread.load_slb) { | 
|  | unsigned long pc = KSTK_EIP(tsk); | 
|  |  | 
|  | preload_age(ti); | 
|  | preload_add(ti, pc); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ti->slb_preload_nr; i++) { | 
|  | unsigned char idx; | 
|  | unsigned long ea; | 
|  |  | 
|  | idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; | 
|  | ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT; | 
|  |  | 
|  | slb_allocate_user(mm, ea); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronize slbmte preloads with possible subsequent user memory | 
|  | * address accesses by the kernel (user mode won't happen until | 
|  | * rfid, which is safe). | 
|  | */ | 
|  | asm volatile("isync" : : : "memory"); | 
|  | } | 
|  |  | 
|  | void slb_set_size(u16 size) | 
|  | { | 
|  | mmu_slb_size = size; | 
|  | } | 
|  |  | 
|  | void slb_initialize(void) | 
|  | { | 
|  | unsigned long linear_llp, vmalloc_llp, io_llp; | 
|  | unsigned long lflags; | 
|  | static int slb_encoding_inited; | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | unsigned long vmemmap_llp; | 
|  | #endif | 
|  |  | 
|  | /* Prepare our SLB miss handler based on our page size */ | 
|  | linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; | 
|  | io_llp = mmu_psize_defs[mmu_io_psize].sllp; | 
|  | vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; | 
|  | get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; | 
|  | #endif | 
|  | if (!slb_encoding_inited) { | 
|  | slb_encoding_inited = 1; | 
|  | pr_devel("SLB: linear  LLP = %04lx\n", linear_llp); | 
|  | pr_devel("SLB: io      LLP = %04lx\n", io_llp); | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | get_paca()->stab_rr = SLB_NUM_BOLTED - 1; | 
|  | get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
|  | get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | 
|  |  | 
|  | lflags = SLB_VSID_KERNEL | linear_llp; | 
|  |  | 
|  | /* Invalidate the entire SLB (even entry 0) & all the ERATS */ | 
|  | asm volatile("isync":::"memory"); | 
|  | asm volatile("slbmte  %0,%0"::"r" (0) : "memory"); | 
|  | asm volatile("isync; slbia; isync":::"memory"); | 
|  | create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); | 
|  |  | 
|  | /* For the boot cpu, we're running on the stack in init_thread_union, | 
|  | * which is in the first segment of the linear mapping, and also | 
|  | * get_paca()->kstack hasn't been initialized yet. | 
|  | * For secondary cpus, we need to bolt the kernel stack entry now. | 
|  | */ | 
|  | slb_shadow_clear(KSTACK_INDEX); | 
|  | if (raw_smp_processor_id() != boot_cpuid && | 
|  | (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) | 
|  | create_shadowed_slbe(get_paca()->kstack, | 
|  | mmu_kernel_ssize, lflags, KSTACK_INDEX); | 
|  |  | 
|  | asm volatile("isync":::"memory"); | 
|  | } | 
|  |  | 
|  | static void slb_cache_update(unsigned long esid_data) | 
|  | { | 
|  | int slb_cache_index; | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) | 
|  | return; /* ISAv3.0B and later does not use slb_cache */ | 
|  |  | 
|  | /* | 
|  | * Now update slb cache entries | 
|  | */ | 
|  | slb_cache_index = local_paca->slb_cache_ptr; | 
|  | if (slb_cache_index < SLB_CACHE_ENTRIES) { | 
|  | /* | 
|  | * We have space in slb cache for optimized switch_slb(). | 
|  | * Top 36 bits from esid_data as per ISA | 
|  | */ | 
|  | local_paca->slb_cache[slb_cache_index++] = esid_data >> 28; | 
|  | local_paca->slb_cache_ptr++; | 
|  | } else { | 
|  | /* | 
|  | * Our cache is full and the current cache content strictly | 
|  | * doesn't indicate the active SLB conents. Bump the ptr | 
|  | * so that switch_slb() will ignore the cache. | 
|  | */ | 
|  | local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum slb_index alloc_slb_index(bool kernel) | 
|  | { | 
|  | enum slb_index index; | 
|  |  | 
|  | /* | 
|  | * The allocation bitmaps can become out of synch with the SLB | 
|  | * when the _switch code does slbie when bolting a new stack | 
|  | * segment and it must not be anywhere else in the SLB. This leaves | 
|  | * a kernel allocated entry that is unused in the SLB. With very | 
|  | * large systems or small segment sizes, the bitmaps could slowly | 
|  | * fill with these entries. They will eventually be cleared out | 
|  | * by the round robin allocator in that case, so it's probably not | 
|  | * worth accounting for. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * SLBs beyond 32 entries are allocated with stab_rr only | 
|  | * POWER7/8/9 have 32 SLB entries, this could be expanded if a | 
|  | * future CPU has more. | 
|  | */ | 
|  | if (local_paca->slb_used_bitmap != U32_MAX) { | 
|  | index = ffz(local_paca->slb_used_bitmap); | 
|  | local_paca->slb_used_bitmap |= 1U << index; | 
|  | if (kernel) | 
|  | local_paca->slb_kern_bitmap |= 1U << index; | 
|  | } else { | 
|  | /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ | 
|  | index = local_paca->stab_rr; | 
|  | if (index < (mmu_slb_size - 1)) | 
|  | index++; | 
|  | else | 
|  | index = SLB_NUM_BOLTED; | 
|  | local_paca->stab_rr = index; | 
|  | if (index < 32) { | 
|  | if (kernel) | 
|  | local_paca->slb_kern_bitmap |= 1U << index; | 
|  | else | 
|  | local_paca->slb_kern_bitmap &= ~(1U << index); | 
|  | } | 
|  | } | 
|  | BUG_ON(index < SLB_NUM_BOLTED); | 
|  |  | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static long slb_insert_entry(unsigned long ea, unsigned long context, | 
|  | unsigned long flags, int ssize, bool kernel) | 
|  | { | 
|  | unsigned long vsid; | 
|  | unsigned long vsid_data, esid_data; | 
|  | enum slb_index index; | 
|  |  | 
|  | vsid = get_vsid(context, ea, ssize); | 
|  | if (!vsid) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * There must not be a kernel SLB fault in alloc_slb_index or before | 
|  | * slbmte here or the allocation bitmaps could get out of whack with | 
|  | * the SLB. | 
|  | * | 
|  | * User SLB faults or preloads take this path which might get inlined | 
|  | * into the caller, so add compiler barriers here to ensure unsafe | 
|  | * memory accesses do not come between. | 
|  | */ | 
|  | barrier(); | 
|  |  | 
|  | index = alloc_slb_index(kernel); | 
|  |  | 
|  | vsid_data = __mk_vsid_data(vsid, ssize, flags); | 
|  | esid_data = mk_esid_data(ea, ssize, index); | 
|  |  | 
|  | /* | 
|  | * No need for an isync before or after this slbmte. The exception | 
|  | * we enter with and the rfid we exit with are context synchronizing. | 
|  | * User preloads should add isync afterwards in case the kernel | 
|  | * accesses user memory before it returns to userspace with rfid. | 
|  | */ | 
|  | assert_slb_presence(false, ea); | 
|  | asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); | 
|  |  | 
|  | barrier(); | 
|  |  | 
|  | if (!kernel) | 
|  | slb_cache_update(esid_data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long slb_allocate_kernel(unsigned long ea, unsigned long id) | 
|  | { | 
|  | unsigned long context; | 
|  | unsigned long flags; | 
|  | int ssize; | 
|  |  | 
|  | if (id == KERNEL_REGION_ID) { | 
|  |  | 
|  | /* We only support upto MAX_PHYSMEM_BITS */ | 
|  | if ((ea & ~REGION_MASK) > (1UL << MAX_PHYSMEM_BITS)) | 
|  | return -EFAULT; | 
|  |  | 
|  | flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | } else if (id == VMEMMAP_REGION_ID) { | 
|  |  | 
|  | if ((ea & ~REGION_MASK) >= (1ULL << MAX_EA_BITS_PER_CONTEXT)) | 
|  | return -EFAULT; | 
|  |  | 
|  | flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; | 
|  | #endif | 
|  | } else if (id == VMALLOC_REGION_ID) { | 
|  |  | 
|  | if ((ea & ~REGION_MASK) >= (1ULL << MAX_EA_BITS_PER_CONTEXT)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (ea < H_VMALLOC_END) | 
|  | flags = local_paca->vmalloc_sllp; | 
|  | else | 
|  | flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; | 
|  | } else { | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ssize = MMU_SEGSIZE_1T; | 
|  | if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) | 
|  | ssize = MMU_SEGSIZE_256M; | 
|  |  | 
|  | context = get_kernel_context(ea); | 
|  | return slb_insert_entry(ea, context, flags, ssize, true); | 
|  | } | 
|  |  | 
|  | static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) | 
|  | { | 
|  | unsigned long context; | 
|  | unsigned long flags; | 
|  | int bpsize; | 
|  | int ssize; | 
|  |  | 
|  | /* | 
|  | * consider this as bad access if we take a SLB miss | 
|  | * on an address above addr limit. | 
|  | */ | 
|  | if (ea >= mm->context.slb_addr_limit) | 
|  | return -EFAULT; | 
|  |  | 
|  | context = get_user_context(&mm->context, ea); | 
|  | if (!context) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (unlikely(ea >= H_PGTABLE_RANGE)) { | 
|  | WARN_ON(1); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ssize = user_segment_size(ea); | 
|  |  | 
|  | bpsize = get_slice_psize(mm, ea); | 
|  | flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; | 
|  |  | 
|  | return slb_insert_entry(ea, context, flags, ssize, false); | 
|  | } | 
|  |  | 
|  | long do_slb_fault(struct pt_regs *regs, unsigned long ea) | 
|  | { | 
|  | unsigned long id = REGION_ID(ea); | 
|  |  | 
|  | /* IRQs are not reconciled here, so can't check irqs_disabled */ | 
|  | VM_WARN_ON(mfmsr() & MSR_EE); | 
|  |  | 
|  | if (unlikely(!(regs->msr & MSR_RI))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * SLB kernel faults must be very careful not to touch anything | 
|  | * that is not bolted. E.g., PACA and global variables are okay, | 
|  | * mm->context stuff is not. | 
|  | * | 
|  | * SLB user faults can access all of kernel memory, but must be | 
|  | * careful not to touch things like IRQ state because it is not | 
|  | * "reconciled" here. The difficulty is that we must use | 
|  | * fast_exception_return to return from kernel SLB faults without | 
|  | * looking at possible non-bolted memory. We could test user vs | 
|  | * kernel faults in the interrupt handler asm and do a full fault, | 
|  | * reconcile, ret_from_except for user faults which would make them | 
|  | * first class kernel code. But for performance it's probably nicer | 
|  | * if they go via fast_exception_return too. | 
|  | */ | 
|  | if (id >= KERNEL_REGION_ID) { | 
|  | long err; | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | /* Catch recursive kernel SLB faults. */ | 
|  | BUG_ON(local_paca->in_kernel_slb_handler); | 
|  | local_paca->in_kernel_slb_handler = 1; | 
|  | #endif | 
|  | err = slb_allocate_kernel(ea, id); | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | local_paca->in_kernel_slb_handler = 0; | 
|  | #endif | 
|  | return err; | 
|  | } else { | 
|  | struct mm_struct *mm = current->mm; | 
|  | long err; | 
|  |  | 
|  | if (unlikely(!mm)) | 
|  | return -EFAULT; | 
|  |  | 
|  | err = slb_allocate_user(mm, ea); | 
|  | if (!err) | 
|  | preload_add(current_thread_info(), ea); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err) | 
|  | { | 
|  | if (err == -EFAULT) { | 
|  | if (user_mode(regs)) | 
|  | _exception(SIGSEGV, regs, SEGV_BNDERR, ea); | 
|  | else | 
|  | bad_page_fault(regs, ea, SIGSEGV); | 
|  | } else if (err == -EINVAL) { | 
|  | unrecoverable_exception(regs); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | } |