blob: 00d981f53c6a19095b3e4a841fc0d3aab4215823 [file] [log] [blame]
/******************************************************************************
*
* Module Name: evgpeblk - GPE block creation and initialization.
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2005, R. Byron Moore
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include <acpi/acpi.h>
#include <acpi/acevents.h>
#include <acpi/acnamesp.h>
#define _COMPONENT ACPI_EVENTS
ACPI_MODULE_NAME ("evgpeblk")
/*******************************************************************************
*
* FUNCTION: acpi_ev_valid_gpe_event
*
* PARAMETERS: gpe_event_info - Info for this GPE
*
* RETURN: TRUE if the gpe_event is valid
*
* DESCRIPTION: Validate a GPE event. DO NOT CALL FROM INTERRUPT LEVEL.
* Should be called only when the GPE lists are semaphore locked
* and not subject to change.
*
******************************************************************************/
u8
acpi_ev_valid_gpe_event (
struct acpi_gpe_event_info *gpe_event_info)
{
struct acpi_gpe_xrupt_info *gpe_xrupt_block;
struct acpi_gpe_block_info *gpe_block;
ACPI_FUNCTION_ENTRY ();
/* No need for spin lock since we are not changing any list elements */
/* Walk the GPE interrupt levels */
gpe_xrupt_block = acpi_gbl_gpe_xrupt_list_head;
while (gpe_xrupt_block) {
gpe_block = gpe_xrupt_block->gpe_block_list_head;
/* Walk the GPE blocks on this interrupt level */
while (gpe_block) {
if ((&gpe_block->event_info[0] <= gpe_event_info) &&
(&gpe_block->event_info[((acpi_size) gpe_block->register_count) * 8] > gpe_event_info)) {
return (TRUE);
}
gpe_block = gpe_block->next;
}
gpe_xrupt_block = gpe_xrupt_block->next;
}
return (FALSE);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_walk_gpe_list
*
* PARAMETERS: gpe_walk_callback - Routine called for each GPE block
* Flags - ACPI_NOT_ISR or ACPI_ISR
*
* RETURN: Status
*
* DESCRIPTION: Walk the GPE lists.
*
******************************************************************************/
acpi_status
acpi_ev_walk_gpe_list (
ACPI_GPE_CALLBACK gpe_walk_callback,
u32 flags)
{
struct acpi_gpe_block_info *gpe_block;
struct acpi_gpe_xrupt_info *gpe_xrupt_info;
acpi_status status = AE_OK;
ACPI_FUNCTION_TRACE ("ev_walk_gpe_list");
acpi_os_acquire_lock (acpi_gbl_gpe_lock, flags);
/* Walk the interrupt level descriptor list */
gpe_xrupt_info = acpi_gbl_gpe_xrupt_list_head;
while (gpe_xrupt_info) {
/* Walk all Gpe Blocks attached to this interrupt level */
gpe_block = gpe_xrupt_info->gpe_block_list_head;
while (gpe_block) {
/* One callback per GPE block */
status = gpe_walk_callback (gpe_xrupt_info, gpe_block);
if (ACPI_FAILURE (status)) {
goto unlock_and_exit;
}
gpe_block = gpe_block->next;
}
gpe_xrupt_info = gpe_xrupt_info->next;
}
unlock_and_exit:
acpi_os_release_lock (acpi_gbl_gpe_lock, flags);
return_ACPI_STATUS (status);
}
/******************************************************************************
*
* FUNCTION: acpi_ev_delete_gpe_handlers
*
* PARAMETERS: gpe_xrupt_info - GPE Interrupt info
* gpe_block - Gpe Block info
*
* RETURN: Status
*
* DESCRIPTION: Delete all Handler objects found in the GPE data structs.
* Used only prior to termination.
*
******************************************************************************/
acpi_status
acpi_ev_delete_gpe_handlers (
struct acpi_gpe_xrupt_info *gpe_xrupt_info,
struct acpi_gpe_block_info *gpe_block)
{
struct acpi_gpe_event_info *gpe_event_info;
acpi_native_uint i;
acpi_native_uint j;
ACPI_FUNCTION_TRACE ("ev_delete_gpe_handlers");
/* Examine each GPE Register within the block */
for (i = 0; i < gpe_block->register_count; i++) {
/* Now look at the individual GPEs in this byte register */
for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++) {
gpe_event_info = &gpe_block->event_info[(i * ACPI_GPE_REGISTER_WIDTH) + j];
if ((gpe_event_info->flags & ACPI_GPE_DISPATCH_MASK) == ACPI_GPE_DISPATCH_HANDLER) {
ACPI_MEM_FREE (gpe_event_info->dispatch.handler);
gpe_event_info->dispatch.handler = NULL;
gpe_event_info->flags &= ~ACPI_GPE_DISPATCH_MASK;
}
}
}
return_ACPI_STATUS (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_save_method_info
*
* PARAMETERS: Callback from walk_namespace
*
* RETURN: Status
*
* DESCRIPTION: Called from acpi_walk_namespace. Expects each object to be a
* control method under the _GPE portion of the namespace.
* Extract the name and GPE type from the object, saving this
* information for quick lookup during GPE dispatch
*
* The name of each GPE control method is of the form:
* "_Lxx" or "_Exx"
* Where:
* L - means that the GPE is level triggered
* E - means that the GPE is edge triggered
* xx - is the GPE number [in HEX]
*
******************************************************************************/
static acpi_status
acpi_ev_save_method_info (
acpi_handle obj_handle,
u32 level,
void *obj_desc,
void **return_value)
{
struct acpi_gpe_block_info *gpe_block = (void *) obj_desc;
struct acpi_gpe_event_info *gpe_event_info;
u32 gpe_number;
char name[ACPI_NAME_SIZE + 1];
u8 type;
acpi_status status;
ACPI_FUNCTION_TRACE ("ev_save_method_info");
/*
* _Lxx and _Exx GPE method support
*
* 1) Extract the name from the object and convert to a string
*/
ACPI_MOVE_32_TO_32 (name,
&((struct acpi_namespace_node *) obj_handle)->name.integer);
name[ACPI_NAME_SIZE] = 0;
/*
* 2) Edge/Level determination is based on the 2nd character
* of the method name
*
* NOTE: Default GPE type is RUNTIME. May be changed later to WAKE
* if a _PRW object is found that points to this GPE.
*/
switch (name[1]) {
case 'L':
type = ACPI_GPE_LEVEL_TRIGGERED;
break;
case 'E':
type = ACPI_GPE_EDGE_TRIGGERED;
break;
default:
/* Unknown method type, just ignore it! */
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Unknown GPE method type: %s (name not of form _Lxx or _Exx)\n",
name));
return_ACPI_STATUS (AE_OK);
}
/* Convert the last two characters of the name to the GPE Number */
gpe_number = ACPI_STRTOUL (&name[2], NULL, 16);
if (gpe_number == ACPI_UINT32_MAX) {
/* Conversion failed; invalid method, just ignore it */
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Could not extract GPE number from name: %s (name is not of form _Lxx or _Exx)\n",
name));
return_ACPI_STATUS (AE_OK);
}
/* Ensure that we have a valid GPE number for this GPE block */
if ((gpe_number < gpe_block->block_base_number) ||
(gpe_number >= (gpe_block->block_base_number + (gpe_block->register_count * 8)))) {
/*
* Not valid for this GPE block, just ignore it
* However, it may be valid for a different GPE block, since GPE0 and GPE1
* methods both appear under \_GPE.
*/
return_ACPI_STATUS (AE_OK);
}
/*
* Now we can add this information to the gpe_event_info block
* for use during dispatch of this GPE. Default type is RUNTIME, although
* this may change when the _PRW methods are executed later.
*/
gpe_event_info = &gpe_block->event_info[gpe_number - gpe_block->block_base_number];
gpe_event_info->flags = (u8) (type | ACPI_GPE_DISPATCH_METHOD |
ACPI_GPE_TYPE_RUNTIME);
gpe_event_info->dispatch.method_node = (struct acpi_namespace_node *) obj_handle;
/* Update enable mask, but don't enable the HW GPE as of yet */
status = acpi_ev_enable_gpe (gpe_event_info, FALSE);
ACPI_DEBUG_PRINT ((ACPI_DB_LOAD,
"Registered GPE method %s as GPE number 0x%.2X\n",
name, gpe_number));
return_ACPI_STATUS (status);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_match_prw_and_gpe
*
* PARAMETERS: Callback from walk_namespace
*
* RETURN: Status. NOTE: We ignore errors so that the _PRW walk is
* not aborted on a single _PRW failure.
*
* DESCRIPTION: Called from acpi_walk_namespace. Expects each object to be a
* Device. Run the _PRW method. If present, extract the GPE
* number and mark the GPE as a WAKE GPE.
*
******************************************************************************/
static acpi_status
acpi_ev_match_prw_and_gpe (
acpi_handle obj_handle,
u32 level,
void *info,
void **return_value)
{
struct acpi_gpe_walk_info *gpe_info = (void *) info;
struct acpi_namespace_node *gpe_device;
struct acpi_gpe_block_info *gpe_block;
struct acpi_namespace_node *target_gpe_device;
struct acpi_gpe_event_info *gpe_event_info;
union acpi_operand_object *pkg_desc;
union acpi_operand_object *obj_desc;
u32 gpe_number;
acpi_status status;
ACPI_FUNCTION_TRACE ("ev_match_prw_and_gpe");
/* Check for a _PRW method under this device */
status = acpi_ut_evaluate_object (obj_handle, METHOD_NAME__PRW,
ACPI_BTYPE_PACKAGE, &pkg_desc);
if (ACPI_FAILURE (status)) {
/* Ignore all errors from _PRW, we don't want to abort the subsystem */
return_ACPI_STATUS (AE_OK);
}
/* The returned _PRW package must have at least two elements */
if (pkg_desc->package.count < 2) {
goto cleanup;
}
/* Extract pointers from the input context */
gpe_device = gpe_info->gpe_device;
gpe_block = gpe_info->gpe_block;
/*
* The _PRW object must return a package, we are only interested
* in the first element
*/
obj_desc = pkg_desc->package.elements[0];
if (ACPI_GET_OBJECT_TYPE (obj_desc) == ACPI_TYPE_INTEGER) {
/* Use FADT-defined GPE device (from definition of _PRW) */
target_gpe_device = acpi_gbl_fadt_gpe_device;
/* Integer is the GPE number in the FADT described GPE blocks */
gpe_number = (u32) obj_desc->integer.value;
}
else if (ACPI_GET_OBJECT_TYPE (obj_desc) == ACPI_TYPE_PACKAGE) {
/* Package contains a GPE reference and GPE number within a GPE block */
if ((obj_desc->package.count < 2) ||
(ACPI_GET_OBJECT_TYPE (obj_desc->package.elements[0]) != ACPI_TYPE_LOCAL_REFERENCE) ||
(ACPI_GET_OBJECT_TYPE (obj_desc->package.elements[1]) != ACPI_TYPE_INTEGER)) {
goto cleanup;
}
/* Get GPE block reference and decode */
target_gpe_device = obj_desc->package.elements[0]->reference.node;
gpe_number = (u32) obj_desc->package.elements[1]->integer.value;
}
else {
/* Unknown type, just ignore it */
goto cleanup;
}
/*
* Is this GPE within this block?
*
* TRUE iff these conditions are true:
* 1) The GPE devices match.
* 2) The GPE index(number) is within the range of the Gpe Block
* associated with the GPE device.
*/
if ((gpe_device == target_gpe_device) &&
(gpe_number >= gpe_block->block_base_number) &&
(gpe_number < gpe_block->block_base_number + (gpe_block->register_count * 8))) {
gpe_event_info = &gpe_block->event_info[gpe_number - gpe_block->block_base_number];
/* Mark GPE for WAKE-ONLY but WAKE_DISABLED */
gpe_event_info->flags &= ~(ACPI_GPE_WAKE_ENABLED | ACPI_GPE_RUN_ENABLED);
status = acpi_ev_set_gpe_type (gpe_event_info, ACPI_GPE_TYPE_WAKE);
if (ACPI_FAILURE (status)) {
goto cleanup;
}
status = acpi_ev_update_gpe_enable_masks (gpe_event_info, ACPI_GPE_DISABLE);
}
cleanup:
acpi_ut_remove_reference (pkg_desc);
return_ACPI_STATUS (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_get_gpe_xrupt_block
*
* PARAMETERS: interrupt_level - Interrupt for a GPE block
*
* RETURN: A GPE interrupt block
*
* DESCRIPTION: Get or Create a GPE interrupt block. There is one interrupt
* block per unique interrupt level used for GPEs.
* Should be called only when the GPE lists are semaphore locked
* and not subject to change.
*
******************************************************************************/
static struct acpi_gpe_xrupt_info *
acpi_ev_get_gpe_xrupt_block (
u32 interrupt_level)
{
struct acpi_gpe_xrupt_info *next_gpe_xrupt;
struct acpi_gpe_xrupt_info *gpe_xrupt;
acpi_status status;
ACPI_FUNCTION_TRACE ("ev_get_gpe_xrupt_block");
/* No need for spin lock since we are not changing any list elements here */
next_gpe_xrupt = acpi_gbl_gpe_xrupt_list_head;
while (next_gpe_xrupt) {
if (next_gpe_xrupt->interrupt_level == interrupt_level) {
return_PTR (next_gpe_xrupt);
}
next_gpe_xrupt = next_gpe_xrupt->next;
}
/* Not found, must allocate a new xrupt descriptor */
gpe_xrupt = ACPI_MEM_CALLOCATE (sizeof (struct acpi_gpe_xrupt_info));
if (!gpe_xrupt) {
return_PTR (NULL);
}
gpe_xrupt->interrupt_level = interrupt_level;
/* Install new interrupt descriptor with spin lock */
acpi_os_acquire_lock (acpi_gbl_gpe_lock, ACPI_NOT_ISR);
if (acpi_gbl_gpe_xrupt_list_head) {
next_gpe_xrupt = acpi_gbl_gpe_xrupt_list_head;
while (next_gpe_xrupt->next) {
next_gpe_xrupt = next_gpe_xrupt->next;
}
next_gpe_xrupt->next = gpe_xrupt;
gpe_xrupt->previous = next_gpe_xrupt;
}
else {
acpi_gbl_gpe_xrupt_list_head = gpe_xrupt;
}
acpi_os_release_lock (acpi_gbl_gpe_lock, ACPI_NOT_ISR);
/* Install new interrupt handler if not SCI_INT */
if (interrupt_level != acpi_gbl_FADT->sci_int) {
status = acpi_os_install_interrupt_handler (interrupt_level,
acpi_ev_gpe_xrupt_handler, gpe_xrupt);
if (ACPI_FAILURE (status)) {
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Could not install GPE interrupt handler at level 0x%X\n",
interrupt_level));
return_PTR (NULL);
}
}
return_PTR (gpe_xrupt);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_delete_gpe_xrupt
*
* PARAMETERS: gpe_xrupt - A GPE interrupt info block
*
* RETURN: Status
*
* DESCRIPTION: Remove and free a gpe_xrupt block. Remove an associated
* interrupt handler if not the SCI interrupt.
*
******************************************************************************/
static acpi_status
acpi_ev_delete_gpe_xrupt (
struct acpi_gpe_xrupt_info *gpe_xrupt)
{
acpi_status status;
ACPI_FUNCTION_TRACE ("ev_delete_gpe_xrupt");
/* We never want to remove the SCI interrupt handler */
if (gpe_xrupt->interrupt_level == acpi_gbl_FADT->sci_int) {
gpe_xrupt->gpe_block_list_head = NULL;
return_ACPI_STATUS (AE_OK);
}
/* Disable this interrupt */
status = acpi_os_remove_interrupt_handler (gpe_xrupt->interrupt_level,
acpi_ev_gpe_xrupt_handler);
if (ACPI_FAILURE (status)) {
return_ACPI_STATUS (status);
}
/* Unlink the interrupt block with lock */
acpi_os_acquire_lock (acpi_gbl_gpe_lock, ACPI_NOT_ISR);
if (gpe_xrupt->previous) {
gpe_xrupt->previous->next = gpe_xrupt->next;
}
if (gpe_xrupt->next) {
gpe_xrupt->next->previous = gpe_xrupt->previous;
}
acpi_os_release_lock (acpi_gbl_gpe_lock, ACPI_NOT_ISR);
/* Free the block */
ACPI_MEM_FREE (gpe_xrupt);
return_ACPI_STATUS (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_install_gpe_block
*
* PARAMETERS: gpe_block - New GPE block
* interrupt_level - Level to be associated with this GPE block
*
* RETURN: Status
*
* DESCRIPTION: Install new GPE block with mutex support
*
******************************************************************************/
static acpi_status
acpi_ev_install_gpe_block (
struct acpi_gpe_block_info *gpe_block,
u32 interrupt_level)
{
struct acpi_gpe_block_info *next_gpe_block;
struct acpi_gpe_xrupt_info *gpe_xrupt_block;
acpi_status status;
ACPI_FUNCTION_TRACE ("ev_install_gpe_block");
status = acpi_ut_acquire_mutex (ACPI_MTX_EVENTS);
if (ACPI_FAILURE (status)) {
return_ACPI_STATUS (status);
}
gpe_xrupt_block = acpi_ev_get_gpe_xrupt_block (interrupt_level);
if (!gpe_xrupt_block) {
status = AE_NO_MEMORY;
goto unlock_and_exit;
}
/* Install the new block at the end of the list for this interrupt with lock */
acpi_os_acquire_lock (acpi_gbl_gpe_lock, ACPI_NOT_ISR);
if (gpe_xrupt_block->gpe_block_list_head) {
next_gpe_block = gpe_xrupt_block->gpe_block_list_head;
while (next_gpe_block->next) {
next_gpe_block = next_gpe_block->next;
}
next_gpe_block->next = gpe_block;
gpe_block->previous = next_gpe_block;
}
else {
gpe_xrupt_block->gpe_block_list_head = gpe_block;
}
gpe_block->xrupt_block = gpe_xrupt_block;
acpi_os_release_lock (acpi_gbl_gpe_lock, ACPI_NOT_ISR);
unlock_and_exit:
status = acpi_ut_release_mutex (ACPI_MTX_EVENTS);
return_ACPI_STATUS (status);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_delete_gpe_block
*
* PARAMETERS: gpe_block - Existing GPE block
*
* RETURN: Status
*
* DESCRIPTION: Remove a GPE block
*
******************************************************************************/
acpi_status
acpi_ev_delete_gpe_block (
struct acpi_gpe_block_info *gpe_block)
{
acpi_status status;
ACPI_FUNCTION_TRACE ("ev_install_gpe_block");
status = acpi_ut_acquire_mutex (ACPI_MTX_EVENTS);
if (ACPI_FAILURE (status)) {
return_ACPI_STATUS (status);
}
/* Disable all GPEs in this block */
status = acpi_hw_disable_gpe_block (gpe_block->xrupt_block, gpe_block);
if (!gpe_block->previous && !gpe_block->next) {
/* This is the last gpe_block on this interrupt */
status = acpi_ev_delete_gpe_xrupt (gpe_block->xrupt_block);
if (ACPI_FAILURE (status)) {
goto unlock_and_exit;
}
}
else {
/* Remove the block on this interrupt with lock */
acpi_os_acquire_lock (acpi_gbl_gpe_lock, ACPI_NOT_ISR);
if (gpe_block->previous) {
gpe_block->previous->next = gpe_block->next;
}
else {
gpe_block->xrupt_block->gpe_block_list_head = gpe_block->next;
}
if (gpe_block->next) {
gpe_block->next->previous = gpe_block->previous;
}
acpi_os_release_lock (acpi_gbl_gpe_lock, ACPI_NOT_ISR);
}
/* Free the gpe_block */
ACPI_MEM_FREE (gpe_block->register_info);
ACPI_MEM_FREE (gpe_block->event_info);
ACPI_MEM_FREE (gpe_block);
unlock_and_exit:
status = acpi_ut_release_mutex (ACPI_MTX_EVENTS);
return_ACPI_STATUS (status);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_create_gpe_info_blocks
*
* PARAMETERS: gpe_block - New GPE block
*
* RETURN: Status
*
* DESCRIPTION: Create the register_info and event_info blocks for this GPE block
*
******************************************************************************/
static acpi_status
acpi_ev_create_gpe_info_blocks (
struct acpi_gpe_block_info *gpe_block)
{
struct acpi_gpe_register_info *gpe_register_info = NULL;
struct acpi_gpe_event_info *gpe_event_info = NULL;
struct acpi_gpe_event_info *this_event;
struct acpi_gpe_register_info *this_register;
acpi_native_uint i;
acpi_native_uint j;
acpi_status status;
ACPI_FUNCTION_TRACE ("ev_create_gpe_info_blocks");
/* Allocate the GPE register information block */
gpe_register_info = ACPI_MEM_CALLOCATE (
(acpi_size) gpe_block->register_count *
sizeof (struct acpi_gpe_register_info));
if (!gpe_register_info) {
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Could not allocate the gpe_register_info table\n"));
return_ACPI_STATUS (AE_NO_MEMORY);
}
/*
* Allocate the GPE event_info block. There are eight distinct GPEs
* per register. Initialization to zeros is sufficient.
*/
gpe_event_info = ACPI_MEM_CALLOCATE (
((acpi_size) gpe_block->register_count * ACPI_GPE_REGISTER_WIDTH) *
sizeof (struct acpi_gpe_event_info));
if (!gpe_event_info) {
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Could not allocate the gpe_event_info table\n"));
status = AE_NO_MEMORY;
goto error_exit;
}
/* Save the new Info arrays in the GPE block */
gpe_block->register_info = gpe_register_info;
gpe_block->event_info = gpe_event_info;
/*
* Initialize the GPE Register and Event structures. A goal of these
* tables is to hide the fact that there are two separate GPE register sets
* in a given gpe hardware block, the status registers occupy the first half,
* and the enable registers occupy the second half.
*/
this_register = gpe_register_info;
this_event = gpe_event_info;
for (i = 0; i < gpe_block->register_count; i++) {
/* Init the register_info for this GPE register (8 GPEs) */
this_register->base_gpe_number = (u8) (gpe_block->block_base_number +
(i * ACPI_GPE_REGISTER_WIDTH));
ACPI_STORE_ADDRESS (this_register->status_address.address,
(gpe_block->block_address.address
+ i));
ACPI_STORE_ADDRESS (this_register->enable_address.address,
(gpe_block->block_address.address
+ i
+ gpe_block->register_count));
this_register->status_address.address_space_id = gpe_block->block_address.address_space_id;
this_register->enable_address.address_space_id = gpe_block->block_address.address_space_id;
this_register->status_address.register_bit_width = ACPI_GPE_REGISTER_WIDTH;
this_register->enable_address.register_bit_width = ACPI_GPE_REGISTER_WIDTH;
this_register->status_address.register_bit_offset = ACPI_GPE_REGISTER_WIDTH;
this_register->enable_address.register_bit_offset = ACPI_GPE_REGISTER_WIDTH;
/* Init the event_info for each GPE within this register */
for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++) {
this_event->register_bit = acpi_gbl_decode_to8bit[j];
this_event->register_info = this_register;
this_event++;
}
/*
* Clear the status/enable registers. Note that status registers
* are cleared by writing a '1', while enable registers are cleared
* by writing a '0'.
*/
status = acpi_hw_low_level_write (ACPI_GPE_REGISTER_WIDTH, 0x00,
&this_register->enable_address);
if (ACPI_FAILURE (status)) {
goto error_exit;
}
status = acpi_hw_low_level_write (ACPI_GPE_REGISTER_WIDTH, 0xFF,
&this_register->status_address);
if (ACPI_FAILURE (status)) {
goto error_exit;
}
this_register++;
}
return_ACPI_STATUS (AE_OK);
error_exit:
if (gpe_register_info) {
ACPI_MEM_FREE (gpe_register_info);
}
if (gpe_event_info) {
ACPI_MEM_FREE (gpe_event_info);
}
return_ACPI_STATUS (status);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_create_gpe_block
*
* PARAMETERS: gpe_device - Handle to the parent GPE block
* gpe_block_address - Address and space_iD
* register_count - Number of GPE register pairs in the block
* gpe_block_base_number - Starting GPE number for the block
* interrupt_level - H/W interrupt for the block
* return_gpe_block - Where the new block descriptor is returned
*
* RETURN: Status
*
* DESCRIPTION: Create and Install a block of GPE registers
*
******************************************************************************/
acpi_status
acpi_ev_create_gpe_block (
struct acpi_namespace_node *gpe_device,
struct acpi_generic_address *gpe_block_address,
u32 register_count,
u8 gpe_block_base_number,
u32 interrupt_level,
struct acpi_gpe_block_info **return_gpe_block)
{
struct acpi_gpe_block_info *gpe_block;
struct acpi_gpe_event_info *gpe_event_info;
acpi_native_uint i;
acpi_native_uint j;
u32 wake_gpe_count;
u32 gpe_enabled_count;
acpi_status status;
struct acpi_gpe_walk_info gpe_info;
ACPI_FUNCTION_TRACE ("ev_create_gpe_block");
if (!register_count) {
return_ACPI_STATUS (AE_OK);
}
/* Allocate a new GPE block */
gpe_block = ACPI_MEM_CALLOCATE (sizeof (struct acpi_gpe_block_info));
if (!gpe_block) {
return_ACPI_STATUS (AE_NO_MEMORY);
}
/* Initialize the new GPE block */
gpe_block->register_count = register_count;
gpe_block->block_base_number = gpe_block_base_number;
gpe_block->node = gpe_device;
ACPI_MEMCPY (&gpe_block->block_address, gpe_block_address, sizeof (struct acpi_generic_address));
/* Create the register_info and event_info sub-structures */
status = acpi_ev_create_gpe_info_blocks (gpe_block);
if (ACPI_FAILURE (status)) {
ACPI_MEM_FREE (gpe_block);
return_ACPI_STATUS (status);
}
/* Install the new block in the global list(s) */
status = acpi_ev_install_gpe_block (gpe_block, interrupt_level);
if (ACPI_FAILURE (status)) {
ACPI_MEM_FREE (gpe_block);
return_ACPI_STATUS (status);
}
/* Find all GPE methods (_Lxx, _Exx) for this block */
status = acpi_ns_walk_namespace (ACPI_TYPE_METHOD, gpe_device,
ACPI_UINT32_MAX, ACPI_NS_WALK_NO_UNLOCK, acpi_ev_save_method_info,
gpe_block, NULL);
/*
* Runtime option: Should Wake GPEs be enabled at runtime? The default
* is No, they should only be enabled just as the machine goes to sleep.
*/
if (acpi_gbl_leave_wake_gpes_disabled) {
/*
* Differentiate RUNTIME vs WAKE GPEs, via the _PRW control methods.
* (Each GPE that has one or more _PRWs that reference it is by
* definition a WAKE GPE and will not be enabled while the machine
* is running.)
*/
gpe_info.gpe_block = gpe_block;
gpe_info.gpe_device = gpe_device;
status = acpi_ns_walk_namespace (ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
ACPI_UINT32_MAX, ACPI_NS_WALK_UNLOCK, acpi_ev_match_prw_and_gpe,
&gpe_info, NULL);
}
/*
* Enable all GPEs in this block that are 1) "runtime" or "run/wake" GPEs,
* and 2) have a corresponding _Lxx or _Exx method. All other GPEs must
* be enabled via the acpi_enable_gpe() external interface.
*/
wake_gpe_count = 0;
gpe_enabled_count = 0;
for (i = 0; i < gpe_block->register_count; i++) {
for (j = 0; j < 8; j++) {
/* Get the info block for this particular GPE */
gpe_event_info = &gpe_block->event_info[(i * ACPI_GPE_REGISTER_WIDTH) + j];
if (((gpe_event_info->flags & ACPI_GPE_DISPATCH_MASK) == ACPI_GPE_DISPATCH_METHOD) &&
(gpe_event_info->flags & ACPI_GPE_TYPE_RUNTIME)) {
gpe_enabled_count++;
}
if (gpe_event_info->flags & ACPI_GPE_TYPE_WAKE) {
wake_gpe_count++;
}
}
}
/* Dump info about this GPE block */
ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
"GPE %02X to %02X [%4.4s] %u regs on int 0x%X\n",
(u32) gpe_block->block_base_number,
(u32) (gpe_block->block_base_number +
((gpe_block->register_count * ACPI_GPE_REGISTER_WIDTH) -1)),
gpe_device->name.ascii,
gpe_block->register_count,
interrupt_level));
/* Enable all valid GPEs found above */
status = acpi_hw_enable_runtime_gpe_block (NULL, gpe_block);
ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
"Found %u Wake, Enabled %u Runtime GPEs in this block\n",
wake_gpe_count, gpe_enabled_count));
/* Return the new block */
if (return_gpe_block) {
(*return_gpe_block) = gpe_block;
}
return_ACPI_STATUS (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_gpe_initialize
*
* PARAMETERS: None
*
* RETURN: Status
*
* DESCRIPTION: Initialize the GPE data structures
*
******************************************************************************/
acpi_status
acpi_ev_gpe_initialize (
void)
{
u32 register_count0 = 0;
u32 register_count1 = 0;
u32 gpe_number_max = 0;
acpi_status status;
ACPI_FUNCTION_TRACE ("ev_gpe_initialize");
status = acpi_ut_acquire_mutex (ACPI_MTX_NAMESPACE);
if (ACPI_FAILURE (status)) {
return_ACPI_STATUS (status);
}
/*
* Initialize the GPE Block(s) defined in the FADT
*
* Why the GPE register block lengths are divided by 2: From the ACPI Spec,
* section "General-Purpose Event Registers", we have:
*
* "Each register block contains two registers of equal length
* GPEx_STS and GPEx_EN (where x is 0 or 1). The length of the
* GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN
* The length of the GPE1_STS and GPE1_EN registers is equal to
* half the GPE1_LEN. If a generic register block is not supported
* then its respective block pointer and block length values in the
* FADT table contain zeros. The GPE0_LEN and GPE1_LEN do not need
* to be the same size."
*/
/*
* Determine the maximum GPE number for this machine.
*
* Note: both GPE0 and GPE1 are optional, and either can exist without
* the other.
*
* If EITHER the register length OR the block address are zero, then that
* particular block is not supported.
*/
if (acpi_gbl_FADT->gpe0_blk_len &&
acpi_gbl_FADT->xgpe0_blk.address) {
/* GPE block 0 exists (has both length and address > 0) */
register_count0 = (u16) (acpi_gbl_FADT->gpe0_blk_len / 2);
gpe_number_max = (register_count0 * ACPI_GPE_REGISTER_WIDTH) - 1;
/* Install GPE Block 0 */
status = acpi_ev_create_gpe_block (acpi_gbl_fadt_gpe_device, &acpi_gbl_FADT->xgpe0_blk,
register_count0, 0, acpi_gbl_FADT->sci_int, &acpi_gbl_gpe_fadt_blocks[0]);
if (ACPI_FAILURE (status)) {
ACPI_REPORT_ERROR ((
"Could not create GPE Block 0, %s\n",
acpi_format_exception (status)));
}
}
if (acpi_gbl_FADT->gpe1_blk_len &&
acpi_gbl_FADT->xgpe1_blk.address) {
/* GPE block 1 exists (has both length and address > 0) */
register_count1 = (u16) (acpi_gbl_FADT->gpe1_blk_len / 2);
/* Check for GPE0/GPE1 overlap (if both banks exist) */
if ((register_count0) &&
(gpe_number_max >= acpi_gbl_FADT->gpe1_base)) {
ACPI_REPORT_ERROR ((
"GPE0 block (GPE 0 to %d) overlaps the GPE1 block (GPE %d to %d) - Ignoring GPE1\n",
gpe_number_max, acpi_gbl_FADT->gpe1_base,
acpi_gbl_FADT->gpe1_base +
((register_count1 * ACPI_GPE_REGISTER_WIDTH) - 1)));
/* Ignore GPE1 block by setting the register count to zero */
register_count1 = 0;
}
else {
/* Install GPE Block 1 */
status = acpi_ev_create_gpe_block (acpi_gbl_fadt_gpe_device, &acpi_gbl_FADT->xgpe1_blk,
register_count1, acpi_gbl_FADT->gpe1_base,
acpi_gbl_FADT->sci_int, &acpi_gbl_gpe_fadt_blocks[1]);
if (ACPI_FAILURE (status)) {
ACPI_REPORT_ERROR ((
"Could not create GPE Block 1, %s\n",
acpi_format_exception (status)));
}
/*
* GPE0 and GPE1 do not have to be contiguous in the GPE number
* space. However, GPE0 always starts at GPE number zero.
*/
gpe_number_max = acpi_gbl_FADT->gpe1_base +
((register_count1 * ACPI_GPE_REGISTER_WIDTH) - 1);
}
}
/* Exit if there are no GPE registers */
if ((register_count0 + register_count1) == 0) {
/* GPEs are not required by ACPI, this is OK */
ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
"There are no GPE blocks defined in the FADT\n"));
status = AE_OK;
goto cleanup;
}
/* Check for Max GPE number out-of-range */
if (gpe_number_max > ACPI_GPE_MAX) {
ACPI_REPORT_ERROR (("Maximum GPE number from FADT is too large: 0x%X\n",
gpe_number_max));
status = AE_BAD_VALUE;
goto cleanup;
}
cleanup:
(void) acpi_ut_release_mutex (ACPI_MTX_NAMESPACE);
return_ACPI_STATUS (AE_OK);
}