|  | /* | 
|  | * A power allocator to manage temperature | 
|  | * | 
|  | * Copyright (C) 2014 ARM Ltd. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed "as is" WITHOUT ANY WARRANTY of any | 
|  | * kind, whether express or implied; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "Power allocator: " fmt | 
|  |  | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/thermal.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/thermal_power_allocator.h> | 
|  |  | 
|  | #include "thermal_core.h" | 
|  |  | 
|  | #define INVALID_TRIP -1 | 
|  |  | 
|  | #define FRAC_BITS 10 | 
|  | #define int_to_frac(x) ((x) << FRAC_BITS) | 
|  | #define frac_to_int(x) ((x) >> FRAC_BITS) | 
|  |  | 
|  | /** | 
|  | * mul_frac() - multiply two fixed-point numbers | 
|  | * @x:	first multiplicand | 
|  | * @y:	second multiplicand | 
|  | * | 
|  | * Return: the result of multiplying two fixed-point numbers.  The | 
|  | * result is also a fixed-point number. | 
|  | */ | 
|  | static inline s64 mul_frac(s64 x, s64 y) | 
|  | { | 
|  | return (x * y) >> FRAC_BITS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * div_frac() - divide two fixed-point numbers | 
|  | * @x:	the dividend | 
|  | * @y:	the divisor | 
|  | * | 
|  | * Return: the result of dividing two fixed-point numbers.  The | 
|  | * result is also a fixed-point number. | 
|  | */ | 
|  | static inline s64 div_frac(s64 x, s64 y) | 
|  | { | 
|  | return div_s64(x << FRAC_BITS, y); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * struct power_allocator_params - parameters for the power allocator governor | 
|  | * @allocated_tzp:	whether we have allocated tzp for this thermal zone and | 
|  | *			it needs to be freed on unbind | 
|  | * @err_integral:	accumulated error in the PID controller. | 
|  | * @prev_err:	error in the previous iteration of the PID controller. | 
|  | *		Used to calculate the derivative term. | 
|  | * @trip_switch_on:	first passive trip point of the thermal zone.  The | 
|  | *			governor switches on when this trip point is crossed. | 
|  | *			If the thermal zone only has one passive trip point, | 
|  | *			@trip_switch_on should be INVALID_TRIP. | 
|  | * @trip_max_desired_temperature:	last passive trip point of the thermal | 
|  | *					zone.  The temperature we are | 
|  | *					controlling for. | 
|  | */ | 
|  | struct power_allocator_params { | 
|  | bool allocated_tzp; | 
|  | s64 err_integral; | 
|  | s32 prev_err; | 
|  | int trip_switch_on; | 
|  | int trip_max_desired_temperature; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone | 
|  | * @tz: thermal zone we are operating in | 
|  | * | 
|  | * For thermal zones that don't provide a sustainable_power in their | 
|  | * thermal_zone_params, estimate one.  Calculate it using the minimum | 
|  | * power of all the cooling devices as that gives a valid value that | 
|  | * can give some degree of functionality.  For optimal performance of | 
|  | * this governor, provide a sustainable_power in the thermal zone's | 
|  | * thermal_zone_params. | 
|  | */ | 
|  | static u32 estimate_sustainable_power(struct thermal_zone_device *tz) | 
|  | { | 
|  | u32 sustainable_power = 0; | 
|  | struct thermal_instance *instance; | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  |  | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | struct thermal_cooling_device *cdev = instance->cdev; | 
|  | u32 min_power; | 
|  |  | 
|  | if (instance->trip != params->trip_max_desired_temperature) | 
|  | continue; | 
|  |  | 
|  | if (power_actor_get_min_power(cdev, tz, &min_power)) | 
|  | continue; | 
|  |  | 
|  | sustainable_power += min_power; | 
|  | } | 
|  |  | 
|  | return sustainable_power; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * estimate_pid_constants() - Estimate the constants for the PID controller | 
|  | * @tz:		thermal zone for which to estimate the constants | 
|  | * @sustainable_power:	sustainable power for the thermal zone | 
|  | * @trip_switch_on:	trip point number for the switch on temperature | 
|  | * @control_temp:	target temperature for the power allocator governor | 
|  | * @force:	whether to force the update of the constants | 
|  | * | 
|  | * This function is used to update the estimation of the PID | 
|  | * controller constants in struct thermal_zone_parameters. | 
|  | * Sustainable power is provided in case it was estimated.  The | 
|  | * estimated sustainable_power should not be stored in the | 
|  | * thermal_zone_parameters so it has to be passed explicitly to this | 
|  | * function. | 
|  | * | 
|  | * If @force is not set, the values in the thermal zone's parameters | 
|  | * are preserved if they are not zero.  If @force is set, the values | 
|  | * in thermal zone's parameters are overwritten. | 
|  | */ | 
|  | static void estimate_pid_constants(struct thermal_zone_device *tz, | 
|  | u32 sustainable_power, int trip_switch_on, | 
|  | int control_temp, bool force) | 
|  | { | 
|  | int ret; | 
|  | int switch_on_temp; | 
|  | u32 temperature_threshold; | 
|  |  | 
|  | ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp); | 
|  | if (ret) | 
|  | switch_on_temp = 0; | 
|  |  | 
|  | temperature_threshold = control_temp - switch_on_temp; | 
|  | /* | 
|  | * estimate_pid_constants() tries to find appropriate default | 
|  | * values for thermal zones that don't provide them. If a | 
|  | * system integrator has configured a thermal zone with two | 
|  | * passive trip points at the same temperature, that person | 
|  | * hasn't put any effort to set up the thermal zone properly | 
|  | * so just give up. | 
|  | */ | 
|  | if (!temperature_threshold) | 
|  | return; | 
|  |  | 
|  | if (!tz->tzp->k_po || force) | 
|  | tz->tzp->k_po = int_to_frac(sustainable_power) / | 
|  | temperature_threshold; | 
|  |  | 
|  | if (!tz->tzp->k_pu || force) | 
|  | tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / | 
|  | temperature_threshold; | 
|  |  | 
|  | if (!tz->tzp->k_i || force) | 
|  | tz->tzp->k_i = int_to_frac(10) / 1000; | 
|  | /* | 
|  | * The default for k_d and integral_cutoff is 0, so we can | 
|  | * leave them as they are. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pid_controller() - PID controller | 
|  | * @tz:	thermal zone we are operating in | 
|  | * @current_temp:	the current temperature in millicelsius | 
|  | * @control_temp:	the target temperature in millicelsius | 
|  | * @max_allocatable_power:	maximum allocatable power for this thermal zone | 
|  | * | 
|  | * This PID controller increases the available power budget so that the | 
|  | * temperature of the thermal zone gets as close as possible to | 
|  | * @control_temp and limits the power if it exceeds it.  k_po is the | 
|  | * proportional term when we are overshooting, k_pu is the | 
|  | * proportional term when we are undershooting.  integral_cutoff is a | 
|  | * threshold below which we stop accumulating the error.  The | 
|  | * accumulated error is only valid if the requested power will make | 
|  | * the system warmer.  If the system is mostly idle, there's no point | 
|  | * in accumulating positive error. | 
|  | * | 
|  | * Return: The power budget for the next period. | 
|  | */ | 
|  | static u32 pid_controller(struct thermal_zone_device *tz, | 
|  | int current_temp, | 
|  | int control_temp, | 
|  | u32 max_allocatable_power) | 
|  | { | 
|  | s64 p, i, d, power_range; | 
|  | s32 err, max_power_frac; | 
|  | u32 sustainable_power; | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  |  | 
|  | max_power_frac = int_to_frac(max_allocatable_power); | 
|  |  | 
|  | if (tz->tzp->sustainable_power) { | 
|  | sustainable_power = tz->tzp->sustainable_power; | 
|  | } else { | 
|  | sustainable_power = estimate_sustainable_power(tz); | 
|  | estimate_pid_constants(tz, sustainable_power, | 
|  | params->trip_switch_on, control_temp, | 
|  | true); | 
|  | } | 
|  |  | 
|  | err = control_temp - current_temp; | 
|  | err = int_to_frac(err); | 
|  |  | 
|  | /* Calculate the proportional term */ | 
|  | p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); | 
|  |  | 
|  | /* | 
|  | * Calculate the integral term | 
|  | * | 
|  | * if the error is less than cut off allow integration (but | 
|  | * the integral is limited to max power) | 
|  | */ | 
|  | i = mul_frac(tz->tzp->k_i, params->err_integral); | 
|  |  | 
|  | if (err < int_to_frac(tz->tzp->integral_cutoff)) { | 
|  | s64 i_next = i + mul_frac(tz->tzp->k_i, err); | 
|  |  | 
|  | if (abs64(i_next) < max_power_frac) { | 
|  | i = i_next; | 
|  | params->err_integral += err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the derivative term | 
|  | * | 
|  | * We do err - prev_err, so with a positive k_d, a decreasing | 
|  | * error (i.e. driving closer to the line) results in less | 
|  | * power being applied, slowing down the controller) | 
|  | */ | 
|  | d = mul_frac(tz->tzp->k_d, err - params->prev_err); | 
|  | d = div_frac(d, tz->passive_delay); | 
|  | params->prev_err = err; | 
|  |  | 
|  | power_range = p + i + d; | 
|  |  | 
|  | /* feed-forward the known sustainable dissipatable power */ | 
|  | power_range = sustainable_power + frac_to_int(power_range); | 
|  |  | 
|  | power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); | 
|  |  | 
|  | trace_thermal_power_allocator_pid(tz, frac_to_int(err), | 
|  | frac_to_int(params->err_integral), | 
|  | frac_to_int(p), frac_to_int(i), | 
|  | frac_to_int(d), power_range); | 
|  |  | 
|  | return power_range; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * divvy_up_power() - divvy the allocated power between the actors | 
|  | * @req_power:	each actor's requested power | 
|  | * @max_power:	each actor's maximum available power | 
|  | * @num_actors:	size of the @req_power, @max_power and @granted_power's array | 
|  | * @total_req_power: sum of @req_power | 
|  | * @power_range:	total allocated power | 
|  | * @granted_power:	output array: each actor's granted power | 
|  | * @extra_actor_power:	an appropriately sized array to be used in the | 
|  | *			function as temporary storage of the extra power given | 
|  | *			to the actors | 
|  | * | 
|  | * This function divides the total allocated power (@power_range) | 
|  | * fairly between the actors.  It first tries to give each actor a | 
|  | * share of the @power_range according to how much power it requested | 
|  | * compared to the rest of the actors.  For example, if only one actor | 
|  | * requests power, then it receives all the @power_range.  If | 
|  | * three actors each requests 1mW, each receives a third of the | 
|  | * @power_range. | 
|  | * | 
|  | * If any actor received more than their maximum power, then that | 
|  | * surplus is re-divvied among the actors based on how far they are | 
|  | * from their respective maximums. | 
|  | * | 
|  | * Granted power for each actor is written to @granted_power, which | 
|  | * should've been allocated by the calling function. | 
|  | */ | 
|  | static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, | 
|  | u32 total_req_power, u32 power_range, | 
|  | u32 *granted_power, u32 *extra_actor_power) | 
|  | { | 
|  | u32 extra_power, capped_extra_power; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Prevent division by 0 if none of the actors request power. | 
|  | */ | 
|  | if (!total_req_power) | 
|  | total_req_power = 1; | 
|  |  | 
|  | capped_extra_power = 0; | 
|  | extra_power = 0; | 
|  | for (i = 0; i < num_actors; i++) { | 
|  | u64 req_range = req_power[i] * power_range; | 
|  |  | 
|  | granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range, | 
|  | total_req_power); | 
|  |  | 
|  | if (granted_power[i] > max_power[i]) { | 
|  | extra_power += granted_power[i] - max_power[i]; | 
|  | granted_power[i] = max_power[i]; | 
|  | } | 
|  |  | 
|  | extra_actor_power[i] = max_power[i] - granted_power[i]; | 
|  | capped_extra_power += extra_actor_power[i]; | 
|  | } | 
|  |  | 
|  | if (!extra_power) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Re-divvy the reclaimed extra among actors based on | 
|  | * how far they are from the max | 
|  | */ | 
|  | extra_power = min(extra_power, capped_extra_power); | 
|  | if (capped_extra_power > 0) | 
|  | for (i = 0; i < num_actors; i++) | 
|  | granted_power[i] += (extra_actor_power[i] * | 
|  | extra_power) / capped_extra_power; | 
|  | } | 
|  |  | 
|  | static int allocate_power(struct thermal_zone_device *tz, | 
|  | int current_temp, | 
|  | int control_temp) | 
|  | { | 
|  | struct thermal_instance *instance; | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  | u32 *req_power, *max_power, *granted_power, *extra_actor_power; | 
|  | u32 *weighted_req_power; | 
|  | u32 total_req_power, max_allocatable_power, total_weighted_req_power; | 
|  | u32 total_granted_power, power_range; | 
|  | int i, num_actors, total_weight, ret = 0; | 
|  | int trip_max_desired_temperature = params->trip_max_desired_temperature; | 
|  |  | 
|  | mutex_lock(&tz->lock); | 
|  |  | 
|  | num_actors = 0; | 
|  | total_weight = 0; | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | if ((instance->trip == trip_max_desired_temperature) && | 
|  | cdev_is_power_actor(instance->cdev)) { | 
|  | num_actors++; | 
|  | total_weight += instance->weight; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!num_actors) { | 
|  | ret = -ENODEV; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to allocate five arrays of the same size: | 
|  | * req_power, max_power, granted_power, extra_actor_power and | 
|  | * weighted_req_power.  They are going to be needed until this | 
|  | * function returns.  Allocate them all in one go to simplify | 
|  | * the allocation and deallocation logic. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); | 
|  | BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); | 
|  | BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); | 
|  | BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power)); | 
|  | req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL); | 
|  | if (!req_power) { | 
|  | ret = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | max_power = &req_power[num_actors]; | 
|  | granted_power = &req_power[2 * num_actors]; | 
|  | extra_actor_power = &req_power[3 * num_actors]; | 
|  | weighted_req_power = &req_power[4 * num_actors]; | 
|  |  | 
|  | i = 0; | 
|  | total_weighted_req_power = 0; | 
|  | total_req_power = 0; | 
|  | max_allocatable_power = 0; | 
|  |  | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | int weight; | 
|  | struct thermal_cooling_device *cdev = instance->cdev; | 
|  |  | 
|  | if (instance->trip != trip_max_desired_temperature) | 
|  | continue; | 
|  |  | 
|  | if (!cdev_is_power_actor(cdev)) | 
|  | continue; | 
|  |  | 
|  | if (cdev->ops->get_requested_power(cdev, tz, &req_power[i])) | 
|  | continue; | 
|  |  | 
|  | if (!total_weight) | 
|  | weight = 1 << FRAC_BITS; | 
|  | else | 
|  | weight = instance->weight; | 
|  |  | 
|  | weighted_req_power[i] = frac_to_int(weight * req_power[i]); | 
|  |  | 
|  | if (power_actor_get_max_power(cdev, tz, &max_power[i])) | 
|  | continue; | 
|  |  | 
|  | total_req_power += req_power[i]; | 
|  | max_allocatable_power += max_power[i]; | 
|  | total_weighted_req_power += weighted_req_power[i]; | 
|  |  | 
|  | i++; | 
|  | } | 
|  |  | 
|  | power_range = pid_controller(tz, current_temp, control_temp, | 
|  | max_allocatable_power); | 
|  |  | 
|  | divvy_up_power(weighted_req_power, max_power, num_actors, | 
|  | total_weighted_req_power, power_range, granted_power, | 
|  | extra_actor_power); | 
|  |  | 
|  | total_granted_power = 0; | 
|  | i = 0; | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | if (instance->trip != trip_max_desired_temperature) | 
|  | continue; | 
|  |  | 
|  | if (!cdev_is_power_actor(instance->cdev)) | 
|  | continue; | 
|  |  | 
|  | power_actor_set_power(instance->cdev, instance, | 
|  | granted_power[i]); | 
|  | total_granted_power += granted_power[i]; | 
|  |  | 
|  | i++; | 
|  | } | 
|  |  | 
|  | trace_thermal_power_allocator(tz, req_power, total_req_power, | 
|  | granted_power, total_granted_power, | 
|  | num_actors, power_range, | 
|  | max_allocatable_power, current_temp, | 
|  | control_temp - current_temp); | 
|  |  | 
|  | kfree(req_power); | 
|  | unlock: | 
|  | mutex_unlock(&tz->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_governor_trips() - get the number of the two trip points that are key for this governor | 
|  | * @tz:	thermal zone to operate on | 
|  | * @params:	pointer to private data for this governor | 
|  | * | 
|  | * The power allocator governor works optimally with two trips points: | 
|  | * a "switch on" trip point and a "maximum desired temperature".  These | 
|  | * are defined as the first and last passive trip points. | 
|  | * | 
|  | * If there is only one trip point, then that's considered to be the | 
|  | * "maximum desired temperature" trip point and the governor is always | 
|  | * on.  If there are no passive or active trip points, then the | 
|  | * governor won't do anything.  In fact, its throttle function | 
|  | * won't be called at all. | 
|  | */ | 
|  | static void get_governor_trips(struct thermal_zone_device *tz, | 
|  | struct power_allocator_params *params) | 
|  | { | 
|  | int i, last_active, last_passive; | 
|  | bool found_first_passive; | 
|  |  | 
|  | found_first_passive = false; | 
|  | last_active = INVALID_TRIP; | 
|  | last_passive = INVALID_TRIP; | 
|  |  | 
|  | for (i = 0; i < tz->trips; i++) { | 
|  | enum thermal_trip_type type; | 
|  | int ret; | 
|  |  | 
|  | ret = tz->ops->get_trip_type(tz, i, &type); | 
|  | if (ret) { | 
|  | dev_warn(&tz->device, | 
|  | "Failed to get trip point %d type: %d\n", i, | 
|  | ret); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (type == THERMAL_TRIP_PASSIVE) { | 
|  | if (!found_first_passive) { | 
|  | params->trip_switch_on = i; | 
|  | found_first_passive = true; | 
|  | } else  { | 
|  | last_passive = i; | 
|  | } | 
|  | } else if (type == THERMAL_TRIP_ACTIVE) { | 
|  | last_active = i; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (last_passive != INVALID_TRIP) { | 
|  | params->trip_max_desired_temperature = last_passive; | 
|  | } else if (found_first_passive) { | 
|  | params->trip_max_desired_temperature = params->trip_switch_on; | 
|  | params->trip_switch_on = INVALID_TRIP; | 
|  | } else { | 
|  | params->trip_switch_on = INVALID_TRIP; | 
|  | params->trip_max_desired_temperature = last_active; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void reset_pid_controller(struct power_allocator_params *params) | 
|  | { | 
|  | params->err_integral = 0; | 
|  | params->prev_err = 0; | 
|  | } | 
|  |  | 
|  | static void allow_maximum_power(struct thermal_zone_device *tz) | 
|  | { | 
|  | struct thermal_instance *instance; | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  |  | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | if ((instance->trip != params->trip_max_desired_temperature) || | 
|  | (!cdev_is_power_actor(instance->cdev))) | 
|  | continue; | 
|  |  | 
|  | instance->target = 0; | 
|  | instance->cdev->updated = false; | 
|  | thermal_cdev_update(instance->cdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * power_allocator_bind() - bind the power_allocator governor to a thermal zone | 
|  | * @tz:	thermal zone to bind it to | 
|  | * | 
|  | * Initialize the PID controller parameters and bind it to the thermal | 
|  | * zone. | 
|  | * | 
|  | * Return: 0 on success, or -ENOMEM if we ran out of memory. | 
|  | */ | 
|  | static int power_allocator_bind(struct thermal_zone_device *tz) | 
|  | { | 
|  | int ret; | 
|  | struct power_allocator_params *params; | 
|  | int control_temp; | 
|  |  | 
|  | params = kzalloc(sizeof(*params), GFP_KERNEL); | 
|  | if (!params) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!tz->tzp) { | 
|  | tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); | 
|  | if (!tz->tzp) { | 
|  | ret = -ENOMEM; | 
|  | goto free_params; | 
|  | } | 
|  |  | 
|  | params->allocated_tzp = true; | 
|  | } | 
|  |  | 
|  | if (!tz->tzp->sustainable_power) | 
|  | dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); | 
|  |  | 
|  | get_governor_trips(tz, params); | 
|  |  | 
|  | if (tz->trips > 0) { | 
|  | ret = tz->ops->get_trip_temp(tz, | 
|  | params->trip_max_desired_temperature, | 
|  | &control_temp); | 
|  | if (!ret) | 
|  | estimate_pid_constants(tz, tz->tzp->sustainable_power, | 
|  | params->trip_switch_on, | 
|  | control_temp, false); | 
|  | } | 
|  |  | 
|  | reset_pid_controller(params); | 
|  |  | 
|  | tz->governor_data = params; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_params: | 
|  | kfree(params); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void power_allocator_unbind(struct thermal_zone_device *tz) | 
|  | { | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  |  | 
|  | dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); | 
|  |  | 
|  | if (params->allocated_tzp) { | 
|  | kfree(tz->tzp); | 
|  | tz->tzp = NULL; | 
|  | } | 
|  |  | 
|  | kfree(tz->governor_data); | 
|  | tz->governor_data = NULL; | 
|  | } | 
|  |  | 
|  | static int power_allocator_throttle(struct thermal_zone_device *tz, int trip) | 
|  | { | 
|  | int ret; | 
|  | int switch_on_temp, control_temp, current_temp; | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  |  | 
|  | /* | 
|  | * We get called for every trip point but we only need to do | 
|  | * our calculations once | 
|  | */ | 
|  | if (trip != params->trip_max_desired_temperature) | 
|  | return 0; | 
|  |  | 
|  | ret = thermal_zone_get_temp(tz, ¤t_temp); | 
|  | if (ret) { | 
|  | dev_warn(&tz->device, "Failed to get temperature: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = tz->ops->get_trip_temp(tz, params->trip_switch_on, | 
|  | &switch_on_temp); | 
|  | if (!ret && (current_temp < switch_on_temp)) { | 
|  | tz->passive = 0; | 
|  | reset_pid_controller(params); | 
|  | allow_maximum_power(tz); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | tz->passive = 1; | 
|  |  | 
|  | ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, | 
|  | &control_temp); | 
|  | if (ret) { | 
|  | dev_warn(&tz->device, | 
|  | "Failed to get the maximum desired temperature: %d\n", | 
|  | ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return allocate_power(tz, current_temp, control_temp); | 
|  | } | 
|  |  | 
|  | static struct thermal_governor thermal_gov_power_allocator = { | 
|  | .name		= "power_allocator", | 
|  | .bind_to_tz	= power_allocator_bind, | 
|  | .unbind_from_tz	= power_allocator_unbind, | 
|  | .throttle	= power_allocator_throttle, | 
|  | }; | 
|  |  | 
|  | int thermal_gov_power_allocator_register(void) | 
|  | { | 
|  | return thermal_register_governor(&thermal_gov_power_allocator); | 
|  | } | 
|  |  | 
|  | void thermal_gov_power_allocator_unregister(void) | 
|  | { | 
|  | thermal_unregister_governor(&thermal_gov_power_allocator); | 
|  | } |