| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * VFIO PCI config space virtualization | 
 |  * | 
 |  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved. | 
 |  *     Author: Alex Williamson <alex.williamson@redhat.com> | 
 |  * | 
 |  * Derived from original vfio: | 
 |  * Copyright 2010 Cisco Systems, Inc.  All rights reserved. | 
 |  * Author: Tom Lyon, pugs@cisco.com | 
 |  */ | 
 |  | 
 | /* | 
 |  * This code handles reading and writing of PCI configuration registers. | 
 |  * This is hairy because we want to allow a lot of flexibility to the | 
 |  * user driver, but cannot trust it with all of the config fields. | 
 |  * Tables determine which fields can be read and written, as well as | 
 |  * which fields are 'virtualized' - special actions and translations to | 
 |  * make it appear to the user that he has control, when in fact things | 
 |  * must be negotiated with the underlying OS. | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/vfio.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include "vfio_pci_private.h" | 
 |  | 
 | /* Fake capability ID for standard config space */ | 
 | #define PCI_CAP_ID_BASIC	0 | 
 |  | 
 | #define is_bar(offset)	\ | 
 | 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \ | 
 | 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4)) | 
 |  | 
 | /* | 
 |  * Lengths of PCI Config Capabilities | 
 |  *   0: Removed from the user visible capability list | 
 |  *   FF: Variable length | 
 |  */ | 
 | static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = { | 
 | 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */ | 
 | 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF, | 
 | 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF, | 
 | 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF, | 
 | 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */ | 
 | 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */ | 
 | 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */ | 
 | 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */ | 
 | 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */ | 
 | 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */ | 
 | 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */ | 
 | 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */ | 
 | 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */ | 
 | 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */ | 
 | 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */ | 
 | 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */ | 
 | 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */ | 
 | 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF, | 
 | 	[PCI_CAP_ID_SATA]	= 0xFF, | 
 | 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF, | 
 | }; | 
 |  | 
 | /* | 
 |  * Lengths of PCIe/PCI-X Extended Config Capabilities | 
 |  *   0: Removed or masked from the user visible capability list | 
 |  *   FF: Variable length | 
 |  */ | 
 | static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = { | 
 | 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND, | 
 | 	[PCI_EXT_CAP_ID_VC]	=	0xFF, | 
 | 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF, | 
 | 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF, | 
 | 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */ | 
 | 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */ | 
 | 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */ | 
 | 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF, | 
 | 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */ | 
 | 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */ | 
 | 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF, | 
 | 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */ | 
 | 	[PCI_EXT_CAP_ID_ACS]	=	0xFF, | 
 | 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF, | 
 | 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF, | 
 | 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF, | 
 | 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */ | 
 | 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF, | 
 | 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF, | 
 | 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */ | 
 | 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF, | 
 | 	[PCI_EXT_CAP_ID_DPA]	=	0xFF, | 
 | 	[PCI_EXT_CAP_ID_TPH]	=	0xFF, | 
 | 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF, | 
 | 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */ | 
 | 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */ | 
 | 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Read/Write Permission Bits - one bit for each bit in capability | 
 |  * Any field can be read if it exists, but what is read depends on | 
 |  * whether the field is 'virtualized', or just pass through to the | 
 |  * hardware.  Any virtualized field is also virtualized for writes. | 
 |  * Writes are only permitted if they have a 1 bit here. | 
 |  */ | 
 | struct perm_bits { | 
 | 	u8	*virt;		/* read/write virtual data, not hw */ | 
 | 	u8	*write;		/* writeable bits */ | 
 | 	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count, | 
 | 			  struct perm_bits *perm, int offset, __le32 *val); | 
 | 	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count, | 
 | 			   struct perm_bits *perm, int offset, __le32 val); | 
 | }; | 
 |  | 
 | #define	NO_VIRT		0 | 
 | #define	ALL_VIRT	0xFFFFFFFFU | 
 | #define	NO_WRITE	0 | 
 | #define	ALL_WRITE	0xFFFFFFFFU | 
 |  | 
 | static int vfio_user_config_read(struct pci_dev *pdev, int offset, | 
 | 				 __le32 *val, int count) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	u32 tmp_val = 0; | 
 |  | 
 | 	switch (count) { | 
 | 	case 1: | 
 | 	{ | 
 | 		u8 tmp; | 
 | 		ret = pci_user_read_config_byte(pdev, offset, &tmp); | 
 | 		tmp_val = tmp; | 
 | 		break; | 
 | 	} | 
 | 	case 2: | 
 | 	{ | 
 | 		u16 tmp; | 
 | 		ret = pci_user_read_config_word(pdev, offset, &tmp); | 
 | 		tmp_val = tmp; | 
 | 		break; | 
 | 	} | 
 | 	case 4: | 
 | 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	*val = cpu_to_le32(tmp_val); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int vfio_user_config_write(struct pci_dev *pdev, int offset, | 
 | 				  __le32 val, int count) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	u32 tmp_val = le32_to_cpu(val); | 
 |  | 
 | 	switch (count) { | 
 | 	case 1: | 
 | 		ret = pci_user_write_config_byte(pdev, offset, tmp_val); | 
 | 		break; | 
 | 	case 2: | 
 | 		ret = pci_user_write_config_word(pdev, offset, tmp_val); | 
 | 		break; | 
 | 	case 4: | 
 | 		ret = pci_user_write_config_dword(pdev, offset, tmp_val); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos, | 
 | 				    int count, struct perm_bits *perm, | 
 | 				    int offset, __le32 *val) | 
 | { | 
 | 	__le32 virt = 0; | 
 |  | 
 | 	memcpy(val, vdev->vconfig + pos, count); | 
 |  | 
 | 	memcpy(&virt, perm->virt + offset, count); | 
 |  | 
 | 	/* Any non-virtualized bits? */ | 
 | 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) { | 
 | 		struct pci_dev *pdev = vdev->pdev; | 
 | 		__le32 phys_val = 0; | 
 | 		int ret; | 
 |  | 
 | 		ret = vfio_user_config_read(pdev, pos, &phys_val, count); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		*val = (phys_val & ~virt) | (*val & virt); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				     int count, struct perm_bits *perm, | 
 | 				     int offset, __le32 val) | 
 | { | 
 | 	__le32 virt = 0, write = 0; | 
 |  | 
 | 	memcpy(&write, perm->write + offset, count); | 
 |  | 
 | 	if (!write) | 
 | 		return count; /* drop, no writable bits */ | 
 |  | 
 | 	memcpy(&virt, perm->virt + offset, count); | 
 |  | 
 | 	/* Virtualized and writable bits go to vconfig */ | 
 | 	if (write & virt) { | 
 | 		__le32 virt_val = 0; | 
 |  | 
 | 		memcpy(&virt_val, vdev->vconfig + pos, count); | 
 |  | 
 | 		virt_val &= ~(write & virt); | 
 | 		virt_val |= (val & (write & virt)); | 
 |  | 
 | 		memcpy(vdev->vconfig + pos, &virt_val, count); | 
 | 	} | 
 |  | 
 | 	/* Non-virtualzed and writable bits go to hardware */ | 
 | 	if (write & ~virt) { | 
 | 		struct pci_dev *pdev = vdev->pdev; | 
 | 		__le32 phys_val = 0; | 
 | 		int ret; | 
 |  | 
 | 		ret = vfio_user_config_read(pdev, pos, &phys_val, count); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		phys_val &= ~(write & ~virt); | 
 | 		phys_val |= (val & (write & ~virt)); | 
 |  | 
 | 		ret = vfio_user_config_write(pdev, pos, phys_val, count); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Allow direct read from hardware, except for capability next pointer */ | 
 | static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos, | 
 | 				   int count, struct perm_bits *perm, | 
 | 				   int offset, __le32 *val) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = vfio_user_config_read(vdev->pdev, pos, val, count); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */ | 
 | 		if (offset < 4) | 
 | 			memcpy(val, vdev->vconfig + pos, count); | 
 | 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */ | 
 | 		if (offset == PCI_CAP_LIST_ID && count > 1) | 
 | 			memcpy(val, vdev->vconfig + pos, | 
 | 			       min(PCI_CAP_FLAGS, count)); | 
 | 		else if (offset == PCI_CAP_LIST_NEXT) | 
 | 			memcpy(val, vdev->vconfig + pos, 1); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Raw access skips any kind of virtualization */ | 
 | static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				 int count, struct perm_bits *perm, | 
 | 				 int offset, __le32 val) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = vfio_user_config_write(vdev->pdev, pos, val, count); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos, | 
 | 				int count, struct perm_bits *perm, | 
 | 				int offset, __le32 *val) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = vfio_user_config_read(vdev->pdev, pos, val, count); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Virt access uses only virtualization */ | 
 | static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				  int count, struct perm_bits *perm, | 
 | 				  int offset, __le32 val) | 
 | { | 
 | 	memcpy(vdev->vconfig + pos, &val, count); | 
 | 	return count; | 
 | } | 
 |  | 
 | static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos, | 
 | 				 int count, struct perm_bits *perm, | 
 | 				 int offset, __le32 *val) | 
 | { | 
 | 	memcpy(val, vdev->vconfig + pos, count); | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Default capability regions to read-only, no-virtualization */ | 
 | static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = { | 
 | 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } | 
 | }; | 
 | static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = { | 
 | 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } | 
 | }; | 
 | /* | 
 |  * Default unassigned regions to raw read-write access.  Some devices | 
 |  * require this to function as they hide registers between the gaps in | 
 |  * config space (be2net).  Like MMIO and I/O port registers, we have | 
 |  * to trust the hardware isolation. | 
 |  */ | 
 | static struct perm_bits unassigned_perms = { | 
 | 	.readfn = vfio_raw_config_read, | 
 | 	.writefn = vfio_raw_config_write | 
 | }; | 
 |  | 
 | static struct perm_bits virt_perms = { | 
 | 	.readfn = vfio_virt_config_read, | 
 | 	.writefn = vfio_virt_config_write | 
 | }; | 
 |  | 
 | static void free_perm_bits(struct perm_bits *perm) | 
 | { | 
 | 	kfree(perm->virt); | 
 | 	kfree(perm->write); | 
 | 	perm->virt = NULL; | 
 | 	perm->write = NULL; | 
 | } | 
 |  | 
 | static int alloc_perm_bits(struct perm_bits *perm, int size) | 
 | { | 
 | 	/* | 
 | 	 * Round up all permission bits to the next dword, this lets us | 
 | 	 * ignore whether a read/write exceeds the defined capability | 
 | 	 * structure.  We can do this because: | 
 | 	 *  - Standard config space is already dword aligned | 
 | 	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved) | 
 | 	 *  - Express capabilities defined as dword aligned | 
 | 	 */ | 
 | 	size = round_up(size, 4); | 
 |  | 
 | 	/* | 
 | 	 * Zero state is | 
 | 	 * - All Readable, None Writeable, None Virtualized | 
 | 	 */ | 
 | 	perm->virt = kzalloc(size, GFP_KERNEL); | 
 | 	perm->write = kzalloc(size, GFP_KERNEL); | 
 | 	if (!perm->virt || !perm->write) { | 
 | 		free_perm_bits(perm); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	perm->readfn = vfio_default_config_read; | 
 | 	perm->writefn = vfio_default_config_write; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper functions for filling in permission tables | 
 |  */ | 
 | static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write) | 
 | { | 
 | 	p->virt[off] = virt; | 
 | 	p->write[off] = write; | 
 | } | 
 |  | 
 | /* Handle endian-ness - pci and tables are little-endian */ | 
 | static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write) | 
 | { | 
 | 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt); | 
 | 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write); | 
 | } | 
 |  | 
 | /* Handle endian-ness - pci and tables are little-endian */ | 
 | static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write) | 
 | { | 
 | 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt); | 
 | 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write); | 
 | } | 
 |  | 
 | /* Caller should hold memory_lock semaphore */ | 
 | bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); | 
 |  | 
 | 	/* | 
 | 	 * SR-IOV VF memory enable is handled by the MSE bit in the | 
 | 	 * PF SR-IOV capability, there's therefore no need to trigger | 
 | 	 * faults based on the virtual value. | 
 | 	 */ | 
 | 	return pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY); | 
 | } | 
 |  | 
 | /* | 
 |  * Restore the *real* BARs after we detect a FLR or backdoor reset. | 
 |  * (backdoor = some device specific technique that we didn't catch) | 
 |  */ | 
 | static void vfio_bar_restore(struct vfio_pci_device *vdev) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	u32 *rbar = vdev->rbar; | 
 | 	u16 cmd; | 
 | 	int i; | 
 |  | 
 | 	if (pdev->is_virtfn) | 
 | 		return; | 
 |  | 
 | 	pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__); | 
 |  | 
 | 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++) | 
 | 		pci_user_write_config_dword(pdev, i, *rbar); | 
 |  | 
 | 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar); | 
 |  | 
 | 	if (vdev->nointx) { | 
 | 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd); | 
 | 		cmd |= PCI_COMMAND_INTX_DISABLE; | 
 | 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd); | 
 | 	} | 
 | } | 
 |  | 
 | static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar) | 
 | { | 
 | 	unsigned long flags = pci_resource_flags(pdev, bar); | 
 | 	u32 val; | 
 |  | 
 | 	if (flags & IORESOURCE_IO) | 
 | 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO); | 
 |  | 
 | 	val = PCI_BASE_ADDRESS_SPACE_MEMORY; | 
 |  | 
 | 	if (flags & IORESOURCE_PREFETCH) | 
 | 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH; | 
 |  | 
 | 	if (flags & IORESOURCE_MEM_64) | 
 | 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64; | 
 |  | 
 | 	return cpu_to_le32(val); | 
 | } | 
 |  | 
 | /* | 
 |  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs | 
 |  * to reflect the hardware capabilities.  This implements BAR sizing. | 
 |  */ | 
 | static void vfio_bar_fixup(struct vfio_pci_device *vdev) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	int i; | 
 | 	__le32 *vbar; | 
 | 	u64 mask; | 
 |  | 
 | 	if (!vdev->bardirty) | 
 | 		return; | 
 |  | 
 | 	vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0]; | 
 |  | 
 | 	for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) { | 
 | 		int bar = i + PCI_STD_RESOURCES; | 
 |  | 
 | 		if (!pci_resource_start(pdev, bar)) { | 
 | 			*vbar = 0; /* Unmapped by host = unimplemented to user */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		mask = ~(pci_resource_len(pdev, bar) - 1); | 
 |  | 
 | 		*vbar &= cpu_to_le32((u32)mask); | 
 | 		*vbar |= vfio_generate_bar_flags(pdev, bar); | 
 |  | 
 | 		if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) { | 
 | 			vbar++; | 
 | 			*vbar &= cpu_to_le32((u32)(mask >> 32)); | 
 | 			i++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS]; | 
 |  | 
 | 	/* | 
 | 	 * NB. REGION_INFO will have reported zero size if we weren't able | 
 | 	 * to read the ROM, but we still return the actual BAR size here if | 
 | 	 * it exists (or the shadow ROM space). | 
 | 	 */ | 
 | 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) { | 
 | 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1); | 
 | 		mask |= PCI_ROM_ADDRESS_ENABLE; | 
 | 		*vbar &= cpu_to_le32((u32)mask); | 
 | 	} else if (pdev->resource[PCI_ROM_RESOURCE].flags & | 
 | 					IORESOURCE_ROM_SHADOW) { | 
 | 		mask = ~(0x20000 - 1); | 
 | 		mask |= PCI_ROM_ADDRESS_ENABLE; | 
 | 		*vbar &= cpu_to_le32((u32)mask); | 
 | 	} else | 
 | 		*vbar = 0; | 
 |  | 
 | 	vdev->bardirty = false; | 
 | } | 
 |  | 
 | static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos, | 
 | 				  int count, struct perm_bits *perm, | 
 | 				  int offset, __le32 *val) | 
 | { | 
 | 	if (is_bar(offset)) /* pos == offset for basic config */ | 
 | 		vfio_bar_fixup(vdev); | 
 |  | 
 | 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val); | 
 |  | 
 | 	/* Mask in virtual memory enable */ | 
 | 	if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) { | 
 | 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); | 
 | 		u32 tmp_val = le32_to_cpu(*val); | 
 |  | 
 | 		tmp_val |= cmd & PCI_COMMAND_MEMORY; | 
 | 		*val = cpu_to_le32(tmp_val); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Test whether BARs match the value we think they should contain */ | 
 | static bool vfio_need_bar_restore(struct vfio_pci_device *vdev) | 
 | { | 
 | 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret; | 
 | 	u32 bar; | 
 |  | 
 | 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) { | 
 | 		if (vdev->rbar[i]) { | 
 | 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar); | 
 | 			if (ret || vdev->rbar[i] != bar) | 
 | 				return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				   int count, struct perm_bits *perm, | 
 | 				   int offset, __le32 val) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	__le16 *virt_cmd; | 
 | 	u16 new_cmd = 0; | 
 | 	int ret; | 
 |  | 
 | 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND]; | 
 |  | 
 | 	if (offset == PCI_COMMAND) { | 
 | 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io; | 
 | 		u16 phys_cmd; | 
 |  | 
 | 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		new_cmd = le32_to_cpu(val); | 
 |  | 
 | 		phys_io = !!(phys_cmd & PCI_COMMAND_IO); | 
 | 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO); | 
 | 		new_io = !!(new_cmd & PCI_COMMAND_IO); | 
 |  | 
 | 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY); | 
 | 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY); | 
 | 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY); | 
 |  | 
 | 		if (!new_mem) | 
 | 			vfio_pci_zap_and_down_write_memory_lock(vdev); | 
 | 		else | 
 | 			down_write(&vdev->memory_lock); | 
 |  | 
 | 		/* | 
 | 		 * If the user is writing mem/io enable (new_mem/io) and we | 
 | 		 * think it's already enabled (virt_mem/io), but the hardware | 
 | 		 * shows it disabled (phys_mem/io, then the device has | 
 | 		 * undergone some kind of backdoor reset and needs to be | 
 | 		 * restored before we allow it to enable the bars. | 
 | 		 * SR-IOV devices will trigger this - for mem enable let's | 
 | 		 * catch this now and for io enable it will be caught later | 
 | 		 */ | 
 | 		if ((new_mem && virt_mem && !phys_mem && | 
 | 		     !pdev->no_command_memory) || | 
 | 		    (new_io && virt_io && !phys_io) || | 
 | 		    vfio_need_bar_restore(vdev)) | 
 | 			vfio_bar_restore(vdev); | 
 | 	} | 
 |  | 
 | 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val); | 
 | 	if (count < 0) { | 
 | 		if (offset == PCI_COMMAND) | 
 | 			up_write(&vdev->memory_lock); | 
 | 		return count; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save current memory/io enable bits in vconfig to allow for | 
 | 	 * the test above next time. | 
 | 	 */ | 
 | 	if (offset == PCI_COMMAND) { | 
 | 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO; | 
 |  | 
 | 		*virt_cmd &= cpu_to_le16(~mask); | 
 | 		*virt_cmd |= cpu_to_le16(new_cmd & mask); | 
 |  | 
 | 		up_write(&vdev->memory_lock); | 
 | 	} | 
 |  | 
 | 	/* Emulate INTx disable */ | 
 | 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) { | 
 | 		bool virt_intx_disable; | 
 |  | 
 | 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) & | 
 | 				       PCI_COMMAND_INTX_DISABLE); | 
 |  | 
 | 		if (virt_intx_disable && !vdev->virq_disabled) { | 
 | 			vdev->virq_disabled = true; | 
 | 			vfio_pci_intx_mask(vdev); | 
 | 		} else if (!virt_intx_disable && vdev->virq_disabled) { | 
 | 			vdev->virq_disabled = false; | 
 | 			vfio_pci_intx_unmask(vdev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (is_bar(offset)) | 
 | 		vdev->bardirty = true; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Permissions for the Basic PCI Header */ | 
 | static int __init init_pci_cap_basic_perm(struct perm_bits *perm) | 
 | { | 
 | 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	perm->readfn = vfio_basic_config_read; | 
 | 	perm->writefn = vfio_basic_config_write; | 
 |  | 
 | 	/* Virtualized for SR-IOV functions, which just have FFFF */ | 
 | 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE); | 
 | 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	/* | 
 | 	 * Virtualize INTx disable, we use it internally for interrupt | 
 | 	 * control and can emulate it for non-PCI 2.3 devices. | 
 | 	 */ | 
 | 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE); | 
 |  | 
 | 	/* Virtualize capability list, we might want to skip/disable */ | 
 | 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE); | 
 |  | 
 | 	/* No harm to write */ | 
 | 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE); | 
 | 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE); | 
 | 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE); | 
 |  | 
 | 	/* Virtualize all bars, can't touch the real ones */ | 
 | 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE); | 
 | 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE); | 
 | 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE); | 
 | 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE); | 
 | 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE); | 
 | 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE); | 
 | 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE); | 
 |  | 
 | 	/* Allow us to adjust capability chain */ | 
 | 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	/* Sometimes used by sw, just virtualize */ | 
 | 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE); | 
 |  | 
 | 	/* Virtualize interrupt pin to allow hiding INTx */ | 
 | 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				int count, struct perm_bits *perm, | 
 | 				int offset, __le32 val) | 
 | { | 
 | 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val); | 
 | 	if (count < 0) | 
 | 		return count; | 
 |  | 
 | 	if (offset == PCI_PM_CTRL) { | 
 | 		pci_power_t state; | 
 |  | 
 | 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) { | 
 | 		case 0: | 
 | 			state = PCI_D0; | 
 | 			break; | 
 | 		case 1: | 
 | 			state = PCI_D1; | 
 | 			break; | 
 | 		case 2: | 
 | 			state = PCI_D2; | 
 | 			break; | 
 | 		case 3: | 
 | 			state = PCI_D3hot; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		vfio_pci_set_power_state(vdev, state); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Permissions for the Power Management capability */ | 
 | static int __init init_pci_cap_pm_perm(struct perm_bits *perm) | 
 | { | 
 | 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM])) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	perm->writefn = vfio_pm_config_write; | 
 |  | 
 | 	/* | 
 | 	 * We always virtualize the next field so we can remove | 
 | 	 * capabilities from the chain if we want to. | 
 | 	 */ | 
 | 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	/* | 
 | 	 * Power management is defined *per function*, so we can let | 
 | 	 * the user change power state, but we trap and initiate the | 
 | 	 * change ourselves, so the state bits are read-only. | 
 | 	 */ | 
 | 	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				 int count, struct perm_bits *perm, | 
 | 				 int offset, __le32 val) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR); | 
 | 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA); | 
 | 	u16 addr; | 
 | 	u32 data; | 
 |  | 
 | 	/* | 
 | 	 * Write through to emulation.  If the write includes the upper byte | 
 | 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we | 
 | 	 * have work to do. | 
 | 	 */ | 
 | 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val); | 
 | 	if (count < 0 || offset > PCI_VPD_ADDR + 1 || | 
 | 	    offset + count <= PCI_VPD_ADDR + 1) | 
 | 		return count; | 
 |  | 
 | 	addr = le16_to_cpu(*paddr); | 
 |  | 
 | 	if (addr & PCI_VPD_ADDR_F) { | 
 | 		data = le32_to_cpu(*pdata); | 
 | 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4) | 
 | 			return count; | 
 | 	} else { | 
 | 		data = 0; | 
 | 		if (pci_read_vpd(pdev, addr, 4, &data) < 0) | 
 | 			return count; | 
 | 		*pdata = cpu_to_le32(data); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to | 
 | 	 * signal completion.  If an error occurs above, we assume that not | 
 | 	 * toggling this bit will induce a driver timeout. | 
 | 	 */ | 
 | 	addr ^= PCI_VPD_ADDR_F; | 
 | 	*paddr = cpu_to_le16(addr); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Permissions for Vital Product Data capability */ | 
 | static int __init init_pci_cap_vpd_perm(struct perm_bits *perm) | 
 | { | 
 | 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD])) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	perm->writefn = vfio_vpd_config_write; | 
 |  | 
 | 	/* | 
 | 	 * We always virtualize the next field so we can remove | 
 | 	 * capabilities from the chain if we want to. | 
 | 	 */ | 
 | 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	/* | 
 | 	 * Both the address and data registers are virtualized to | 
 | 	 * enable access through the pci_vpd_read/write functions | 
 | 	 */ | 
 | 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE); | 
 | 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Permissions for PCI-X capability */ | 
 | static int __init init_pci_cap_pcix_perm(struct perm_bits *perm) | 
 | { | 
 | 	/* Alloc 24, but only 8 are used in v0 */ | 
 | 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE); | 
 | 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				 int count, struct perm_bits *perm, | 
 | 				 int offset, __le32 val) | 
 | { | 
 | 	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos - | 
 | 				  offset + PCI_EXP_DEVCTL); | 
 | 	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ; | 
 |  | 
 | 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val); | 
 | 	if (count < 0) | 
 | 		return count; | 
 |  | 
 | 	/* | 
 | 	 * The FLR bit is virtualized, if set and the device supports PCIe | 
 | 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec | 
 | 	 * requires it to be always read as zero.  NB, reset_function might | 
 | 	 * not use a PCIe FLR, we don't have that level of granularity. | 
 | 	 */ | 
 | 	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) { | 
 | 		u32 cap; | 
 | 		int ret; | 
 |  | 
 | 		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR); | 
 |  | 
 | 		ret = pci_user_read_config_dword(vdev->pdev, | 
 | 						 pos - offset + PCI_EXP_DEVCAP, | 
 | 						 &cap); | 
 |  | 
 | 		if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) { | 
 | 			vfio_pci_zap_and_down_write_memory_lock(vdev); | 
 | 			pci_try_reset_function(vdev->pdev); | 
 | 			up_write(&vdev->memory_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * MPS is virtualized to the user, writes do not change the physical | 
 | 	 * register since determining a proper MPS value requires a system wide | 
 | 	 * device view.  The MRRS is largely independent of MPS, but since the | 
 | 	 * user does not have that system-wide view, they might set a safe, but | 
 | 	 * inefficiently low value.  Here we allow writes through to hardware, | 
 | 	 * but we set the floor to the physical device MPS setting, so that | 
 | 	 * we can at least use full TLPs, as defined by the MPS value. | 
 | 	 * | 
 | 	 * NB, if any devices actually depend on an artificially low MRRS | 
 | 	 * setting, this will need to be revisited, perhaps with a quirk | 
 | 	 * though pcie_set_readrq(). | 
 | 	 */ | 
 | 	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) { | 
 | 		readrq = 128 << | 
 | 			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12); | 
 | 		readrq = max(readrq, pcie_get_mps(vdev->pdev)); | 
 |  | 
 | 		pcie_set_readrq(vdev->pdev, readrq); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Permissions for PCI Express capability */ | 
 | static int __init init_pci_cap_exp_perm(struct perm_bits *perm) | 
 | { | 
 | 	/* Alloc largest of possible sizes */ | 
 | 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	perm->writefn = vfio_exp_config_write; | 
 |  | 
 | 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	/* | 
 | 	 * Allow writes to device control fields, except devctl_phantom, | 
 | 	 * which could confuse IOMMU, MPS, which can break communication | 
 | 	 * with other physical devices, and the ARI bit in devctl2, which | 
 | 	 * is set at probe time.  FLR and MRRS get virtualized via our | 
 | 	 * writefn. | 
 | 	 */ | 
 | 	p_setw(perm, PCI_EXP_DEVCTL, | 
 | 	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD | | 
 | 	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM); | 
 | 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				int count, struct perm_bits *perm, | 
 | 				int offset, __le32 val) | 
 | { | 
 | 	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL; | 
 |  | 
 | 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val); | 
 | 	if (count < 0) | 
 | 		return count; | 
 |  | 
 | 	/* | 
 | 	 * The FLR bit is virtualized, if set and the device supports AF | 
 | 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec | 
 | 	 * requires it to be always read as zero.  NB, reset_function might | 
 | 	 * not use an AF FLR, we don't have that level of granularity. | 
 | 	 */ | 
 | 	if (*ctrl & PCI_AF_CTRL_FLR) { | 
 | 		u8 cap; | 
 | 		int ret; | 
 |  | 
 | 		*ctrl &= ~PCI_AF_CTRL_FLR; | 
 |  | 
 | 		ret = pci_user_read_config_byte(vdev->pdev, | 
 | 						pos - offset + PCI_AF_CAP, | 
 | 						&cap); | 
 |  | 
 | 		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) { | 
 | 			vfio_pci_zap_and_down_write_memory_lock(vdev); | 
 | 			pci_try_reset_function(vdev->pdev); | 
 | 			up_write(&vdev->memory_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Permissions for Advanced Function capability */ | 
 | static int __init init_pci_cap_af_perm(struct perm_bits *perm) | 
 | { | 
 | 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF])) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	perm->writefn = vfio_af_config_write; | 
 |  | 
 | 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); | 
 | 	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Permissions for Advanced Error Reporting extended capability */ | 
 | static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm) | 
 | { | 
 | 	u32 mask; | 
 |  | 
 | 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR])) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Virtualize the first dword of all express capabilities | 
 | 	 * because it includes the next pointer.  This lets us later | 
 | 	 * remove capabilities from the chain if we need to. | 
 | 	 */ | 
 | 	p_setd(perm, 0, ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	/* Writable bits mask */ | 
 | 	mask =	PCI_ERR_UNC_UND |		/* Undefined */ | 
 | 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */ | 
 | 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */ | 
 | 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */ | 
 | 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */ | 
 | 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */ | 
 | 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */ | 
 | 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */ | 
 | 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */ | 
 | 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */ | 
 | 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */ | 
 | 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */ | 
 | 		PCI_ERR_UNC_ACSV |		/* ACS Violation */ | 
 | 		PCI_ERR_UNC_INTN |		/* internal error */ | 
 | 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */ | 
 | 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */ | 
 | 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */ | 
 | 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask); | 
 | 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask); | 
 | 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask); | 
 |  | 
 | 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */ | 
 | 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */ | 
 | 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */ | 
 | 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */ | 
 | 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */ | 
 | 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */ | 
 | 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */ | 
 | 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */ | 
 | 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask); | 
 | 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask); | 
 |  | 
 | 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */ | 
 | 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */ | 
 | 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Permissions for Power Budgeting extended capability */ | 
 | static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm) | 
 | { | 
 | 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR])) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	p_setd(perm, 0, ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	/* Writing the data selector is OK, the info is still read-only */ | 
 | 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the shared permission tables | 
 |  */ | 
 | void vfio_pci_uninit_perm_bits(void) | 
 | { | 
 | 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]); | 
 |  | 
 | 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]); | 
 | 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]); | 
 | 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]); | 
 | 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]); | 
 | 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]); | 
 |  | 
 | 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]); | 
 | 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]); | 
 | } | 
 |  | 
 | int __init vfio_pci_init_perm_bits(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* Basic config space */ | 
 | 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]); | 
 |  | 
 | 	/* Capabilities */ | 
 | 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]); | 
 | 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]); | 
 | 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]); | 
 | 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write; | 
 | 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]); | 
 | 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]); | 
 |  | 
 | 	/* Extended capabilities */ | 
 | 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]); | 
 | 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]); | 
 | 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write; | 
 |  | 
 | 	if (ret) | 
 | 		vfio_pci_uninit_perm_bits(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos) | 
 | { | 
 | 	u8 cap; | 
 | 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE : | 
 | 						 PCI_STD_HEADER_SIZEOF; | 
 | 	cap = vdev->pci_config_map[pos]; | 
 |  | 
 | 	if (cap == PCI_CAP_ID_BASIC) | 
 | 		return 0; | 
 |  | 
 | 	/* XXX Can we have to abutting capabilities of the same type? */ | 
 | 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap) | 
 | 		pos--; | 
 |  | 
 | 	return pos; | 
 | } | 
 |  | 
 | static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos, | 
 | 				int count, struct perm_bits *perm, | 
 | 				int offset, __le32 *val) | 
 | { | 
 | 	/* Update max available queue size from msi_qmax */ | 
 | 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { | 
 | 		__le16 *flags; | 
 | 		int start; | 
 |  | 
 | 		start = vfio_find_cap_start(vdev, pos); | 
 |  | 
 | 		flags = (__le16 *)&vdev->vconfig[start]; | 
 |  | 
 | 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK); | 
 | 		*flags |= cpu_to_le16(vdev->msi_qmax << 1); | 
 | 	} | 
 |  | 
 | 	return vfio_default_config_read(vdev, pos, count, perm, offset, val); | 
 | } | 
 |  | 
 | static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos, | 
 | 				 int count, struct perm_bits *perm, | 
 | 				 int offset, __le32 val) | 
 | { | 
 | 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val); | 
 | 	if (count < 0) | 
 | 		return count; | 
 |  | 
 | 	/* Fixup and write configured queue size and enable to hardware */ | 
 | 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { | 
 | 		__le16 *pflags; | 
 | 		u16 flags; | 
 | 		int start, ret; | 
 |  | 
 | 		start = vfio_find_cap_start(vdev, pos); | 
 |  | 
 | 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS]; | 
 |  | 
 | 		flags = le16_to_cpu(*pflags); | 
 |  | 
 | 		/* MSI is enabled via ioctl */ | 
 | 		if  (!is_msi(vdev)) | 
 | 			flags &= ~PCI_MSI_FLAGS_ENABLE; | 
 |  | 
 | 		/* Check queue size */ | 
 | 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) { | 
 | 			flags &= ~PCI_MSI_FLAGS_QSIZE; | 
 | 			flags |= vdev->msi_qmax << 4; | 
 | 		} | 
 |  | 
 | 		/* Write back to virt and to hardware */ | 
 | 		*pflags = cpu_to_le16(flags); | 
 | 		ret = pci_user_write_config_word(vdev->pdev, | 
 | 						 start + PCI_MSI_FLAGS, | 
 | 						 flags); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * MSI determination is per-device, so this routine gets used beyond | 
 |  * initialization time. Don't add __init | 
 |  */ | 
 | static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags) | 
 | { | 
 | 	if (alloc_perm_bits(perm, len)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	perm->readfn = vfio_msi_config_read; | 
 | 	perm->writefn = vfio_msi_config_write; | 
 |  | 
 | 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); | 
 |  | 
 | 	/* | 
 | 	 * The upper byte of the control register is reserved, | 
 | 	 * just setup the lower byte. | 
 | 	 */ | 
 | 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE); | 
 | 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE); | 
 | 	if (flags & PCI_MSI_FLAGS_64BIT) { | 
 | 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE); | 
 | 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE); | 
 | 		if (flags & PCI_MSI_FLAGS_MASKBIT) { | 
 | 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE); | 
 | 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE); | 
 | 		} | 
 | 	} else { | 
 | 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE); | 
 | 		if (flags & PCI_MSI_FLAGS_MASKBIT) { | 
 | 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE); | 
 | 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */ | 
 | static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	int len, ret; | 
 | 	u16 flags; | 
 |  | 
 | 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags); | 
 | 	if (ret) | 
 | 		return pcibios_err_to_errno(ret); | 
 |  | 
 | 	len = 10; /* Minimum size */ | 
 | 	if (flags & PCI_MSI_FLAGS_64BIT) | 
 | 		len += 4; | 
 | 	if (flags & PCI_MSI_FLAGS_MASKBIT) | 
 | 		len += 10; | 
 |  | 
 | 	if (vdev->msi_perm) | 
 | 		return len; | 
 |  | 
 | 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL); | 
 | 	if (!vdev->msi_perm) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags); | 
 | 	if (ret) { | 
 | 		kfree(vdev->msi_perm); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /* Determine extended capability length for VC (2 & 9) and MFVC */ | 
 | static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	u32 tmp; | 
 | 	int ret, evcc, phases, vc_arb; | 
 | 	int len = PCI_CAP_VC_BASE_SIZEOF; | 
 |  | 
 | 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp); | 
 | 	if (ret) | 
 | 		return pcibios_err_to_errno(ret); | 
 |  | 
 | 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */ | 
 | 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp); | 
 | 	if (ret) | 
 | 		return pcibios_err_to_errno(ret); | 
 |  | 
 | 	if (tmp & PCI_VC_CAP2_128_PHASE) | 
 | 		phases = 128; | 
 | 	else if (tmp & PCI_VC_CAP2_64_PHASE) | 
 | 		phases = 64; | 
 | 	else if (tmp & PCI_VC_CAP2_32_PHASE) | 
 | 		phases = 32; | 
 | 	else | 
 | 		phases = 0; | 
 |  | 
 | 	vc_arb = phases * 4; | 
 |  | 
 | 	/* | 
 | 	 * Port arbitration tables are root & switch only; | 
 | 	 * function arbitration tables are function 0 only. | 
 | 	 * In either case, we'll never let user write them so | 
 | 	 * we don't care how big they are | 
 | 	 */ | 
 | 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF; | 
 | 	if (vc_arb) { | 
 | 		len = round_up(len, 16); | 
 | 		len += vc_arb / 8; | 
 | 	} | 
 | 	return len; | 
 | } | 
 |  | 
 | static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	u32 dword; | 
 | 	u16 word; | 
 | 	u8 byte; | 
 | 	int ret; | 
 |  | 
 | 	switch (cap) { | 
 | 	case PCI_CAP_ID_MSI: | 
 | 		return vfio_msi_cap_len(vdev, pos); | 
 | 	case PCI_CAP_ID_PCIX: | 
 | 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		if (PCI_X_CMD_VERSION(word)) { | 
 | 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { | 
 | 				/* Test for extended capabilities */ | 
 | 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, | 
 | 						      &dword); | 
 | 				vdev->extended_caps = (dword != 0); | 
 | 			} | 
 | 			return PCI_CAP_PCIX_SIZEOF_V2; | 
 | 		} else | 
 | 			return PCI_CAP_PCIX_SIZEOF_V0; | 
 | 	case PCI_CAP_ID_VNDR: | 
 | 		/* length follows next field */ | 
 | 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		return byte; | 
 | 	case PCI_CAP_ID_EXP: | 
 | 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { | 
 | 			/* Test for extended capabilities */ | 
 | 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword); | 
 | 			vdev->extended_caps = (dword != 0); | 
 | 		} | 
 |  | 
 | 		/* length based on version and type */ | 
 | 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) { | 
 | 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) | 
 | 				return 0xc; /* "All Devices" only, no link */ | 
 | 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1; | 
 | 		} else { | 
 | 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) | 
 | 				return 0x2c; /* No link */ | 
 | 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2; | 
 | 		} | 
 | 	case PCI_CAP_ID_HT: | 
 | 		ret = pci_read_config_byte(pdev, pos + 3, &byte); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		return (byte & HT_3BIT_CAP_MASK) ? | 
 | 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG; | 
 | 	case PCI_CAP_ID_SATA: | 
 | 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		byte &= PCI_SATA_REGS_MASK; | 
 | 		if (byte == PCI_SATA_REGS_INLINE) | 
 | 			return PCI_SATA_SIZEOF_LONG; | 
 | 		else | 
 | 			return PCI_SATA_SIZEOF_SHORT; | 
 | 	default: | 
 | 		pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n", | 
 | 			 __func__, cap, pos); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	u8 byte; | 
 | 	u32 dword; | 
 | 	int ret; | 
 |  | 
 | 	switch (ecap) { | 
 | 	case PCI_EXT_CAP_ID_VNDR: | 
 | 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		return dword >> PCI_VSEC_HDR_LEN_SHIFT; | 
 | 	case PCI_EXT_CAP_ID_VC: | 
 | 	case PCI_EXT_CAP_ID_VC9: | 
 | 	case PCI_EXT_CAP_ID_MFVC: | 
 | 		return vfio_vc_cap_len(vdev, epos); | 
 | 	case PCI_EXT_CAP_ID_ACS: | 
 | 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		if (byte & PCI_ACS_EC) { | 
 | 			int bits; | 
 |  | 
 | 			ret = pci_read_config_byte(pdev, | 
 | 						   epos + PCI_ACS_EGRESS_BITS, | 
 | 						   &byte); | 
 | 			if (ret) | 
 | 				return pcibios_err_to_errno(ret); | 
 |  | 
 | 			bits = byte ? round_up(byte, 32) : 256; | 
 | 			return 8 + (bits / 8); | 
 | 		} | 
 | 		return 8; | 
 |  | 
 | 	case PCI_EXT_CAP_ID_REBAR: | 
 | 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		byte &= PCI_REBAR_CTRL_NBAR_MASK; | 
 | 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT; | 
 |  | 
 | 		return 4 + (byte * 8); | 
 | 	case PCI_EXT_CAP_ID_DPA: | 
 | 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		byte &= PCI_DPA_CAP_SUBSTATE_MASK; | 
 | 		return PCI_DPA_BASE_SIZEOF + byte + 1; | 
 | 	case PCI_EXT_CAP_ID_TPH: | 
 | 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword); | 
 | 		if (ret) | 
 | 			return pcibios_err_to_errno(ret); | 
 |  | 
 | 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) { | 
 | 			int sts; | 
 |  | 
 | 			sts = dword & PCI_TPH_CAP_ST_MASK; | 
 | 			sts >>= PCI_TPH_CAP_ST_SHIFT; | 
 | 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2; | 
 | 		} | 
 | 		return PCI_TPH_BASE_SIZEOF; | 
 | 	default: | 
 | 		pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n", | 
 | 			 __func__, ecap, epos); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev, | 
 | 				   int offset, int size) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * We try to read physical config space in the largest chunks | 
 | 	 * we can, assuming that all of the fields support dword access. | 
 | 	 * pci_save_state() makes this same assumption and seems to do ok. | 
 | 	 */ | 
 | 	while (size) { | 
 | 		int filled; | 
 |  | 
 | 		if (size >= 4 && !(offset % 4)) { | 
 | 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset]; | 
 | 			u32 dword; | 
 |  | 
 | 			ret = pci_read_config_dword(pdev, offset, &dword); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			*dwordp = cpu_to_le32(dword); | 
 | 			filled = 4; | 
 | 		} else if (size >= 2 && !(offset % 2)) { | 
 | 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset]; | 
 | 			u16 word; | 
 |  | 
 | 			ret = pci_read_config_word(pdev, offset, &word); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			*wordp = cpu_to_le16(word); | 
 | 			filled = 2; | 
 | 		} else { | 
 | 			u8 *byte = &vdev->vconfig[offset]; | 
 | 			ret = pci_read_config_byte(pdev, offset, byte); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			filled = 1; | 
 | 		} | 
 |  | 
 | 		offset += filled; | 
 | 		size -= filled; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int vfio_cap_init(struct vfio_pci_device *vdev) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	u8 *map = vdev->pci_config_map; | 
 | 	u16 status; | 
 | 	u8 pos, *prev, cap; | 
 | 	int loops, ret, caps = 0; | 
 |  | 
 | 	/* Any capabilities? */ | 
 | 	ret = pci_read_config_word(pdev, PCI_STATUS, &status); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (!(status & PCI_STATUS_CAP_LIST)) | 
 | 		return 0; /* Done */ | 
 |  | 
 | 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Mark the previous position in case we want to skip a capability */ | 
 | 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST]; | 
 |  | 
 | 	/* We can bound our loop, capabilities are dword aligned */ | 
 | 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF; | 
 | 	while (pos && loops--) { | 
 | 		u8 next; | 
 | 		int i, len = 0; | 
 |  | 
 | 		ret = pci_read_config_byte(pdev, pos, &cap); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		ret = pci_read_config_byte(pdev, | 
 | 					   pos + PCI_CAP_LIST_NEXT, &next); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		/* | 
 | 		 * ID 0 is a NULL capability, conflicting with our fake | 
 | 		 * PCI_CAP_ID_BASIC.  As it has no content, consider it | 
 | 		 * hidden for now. | 
 | 		 */ | 
 | 		if (cap && cap <= PCI_CAP_ID_MAX) { | 
 | 			len = pci_cap_length[cap]; | 
 | 			if (len == 0xFF) { /* Variable length */ | 
 | 				len = vfio_cap_len(vdev, cap, pos); | 
 | 				if (len < 0) | 
 | 					return len; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!len) { | 
 | 			pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__, | 
 | 				 cap, pos); | 
 | 			*prev = next; | 
 | 			pos = next; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Sanity check, do we overlap other capabilities? */ | 
 | 		for (i = 0; i < len; i++) { | 
 | 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID)) | 
 | 				continue; | 
 |  | 
 | 			pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n", | 
 | 				 __func__, pos + i, map[pos + i], cap); | 
 | 		} | 
 |  | 
 | 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); | 
 |  | 
 | 		memset(map + pos, cap, len); | 
 | 		ret = vfio_fill_vconfig_bytes(vdev, pos, len); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT]; | 
 | 		pos = next; | 
 | 		caps++; | 
 | 	} | 
 |  | 
 | 	/* If we didn't fill any capabilities, clear the status flag */ | 
 | 	if (!caps) { | 
 | 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS]; | 
 | 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vfio_ecap_init(struct vfio_pci_device *vdev) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	u8 *map = vdev->pci_config_map; | 
 | 	u16 epos; | 
 | 	__le32 *prev = NULL; | 
 | 	int loops, ret, ecaps = 0; | 
 |  | 
 | 	if (!vdev->extended_caps) | 
 | 		return 0; | 
 |  | 
 | 	epos = PCI_CFG_SPACE_SIZE; | 
 |  | 
 | 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF; | 
 |  | 
 | 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) { | 
 | 		u32 header; | 
 | 		u16 ecap; | 
 | 		int i, len = 0; | 
 | 		bool hidden = false; | 
 |  | 
 | 		ret = pci_read_config_dword(pdev, epos, &header); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		ecap = PCI_EXT_CAP_ID(header); | 
 |  | 
 | 		if (ecap <= PCI_EXT_CAP_ID_MAX) { | 
 | 			len = pci_ext_cap_length[ecap]; | 
 | 			if (len == 0xFF) { | 
 | 				len = vfio_ext_cap_len(vdev, ecap, epos); | 
 | 				if (len < 0) | 
 | 					return ret; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!len) { | 
 | 			pci_info(pdev, "%s: hiding ecap %#x@%#x\n", | 
 | 				 __func__, ecap, epos); | 
 |  | 
 | 			/* If not the first in the chain, we can skip over it */ | 
 | 			if (prev) { | 
 | 				u32 val = epos = PCI_EXT_CAP_NEXT(header); | 
 | 				*prev &= cpu_to_le32(~(0xffcU << 20)); | 
 | 				*prev |= cpu_to_le32(val << 20); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Otherwise, fill in a placeholder, the direct | 
 | 			 * readfn will virtualize this automatically | 
 | 			 */ | 
 | 			len = PCI_CAP_SIZEOF; | 
 | 			hidden = true; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < len; i++) { | 
 | 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID)) | 
 | 				continue; | 
 |  | 
 | 			pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n", | 
 | 				 __func__, epos + i, map[epos + i], ecap); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Even though ecap is 2 bytes, we're currently a long way | 
 | 		 * from exceeding 1 byte capabilities.  If we ever make it | 
 | 		 * up to 0xFE we'll need to up this to a two-byte, byte map. | 
 | 		 */ | 
 | 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); | 
 |  | 
 | 		memset(map + epos, ecap, len); | 
 | 		ret = vfio_fill_vconfig_bytes(vdev, epos, len); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		/* | 
 | 		 * If we're just using this capability to anchor the list, | 
 | 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec | 
 | 		 * indicates to use cap id = 0, version = 0, next = 0 if | 
 | 		 * ecaps are absent, hope users check all the way to next. | 
 | 		 */ | 
 | 		if (hidden) | 
 | 			*(__le32 *)&vdev->vconfig[epos] &= | 
 | 				cpu_to_le32((0xffcU << 20)); | 
 | 		else | 
 | 			ecaps++; | 
 |  | 
 | 		prev = (__le32 *)&vdev->vconfig[epos]; | 
 | 		epos = PCI_EXT_CAP_NEXT(header); | 
 | 	} | 
 |  | 
 | 	if (!ecaps) | 
 | 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Nag about hardware bugs, hopefully to have vendors fix them, but at least | 
 |  * to collect a list of dependencies for the VF INTx pin quirk below. | 
 |  */ | 
 | static const struct pci_device_id known_bogus_vf_intx_pin[] = { | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) }, | 
 | 	{} | 
 | }; | 
 |  | 
 | /* | 
 |  * For each device we allocate a pci_config_map that indicates the | 
 |  * capability occupying each dword and thus the struct perm_bits we | 
 |  * use for read and write.  We also allocate a virtualized config | 
 |  * space which tracks reads and writes to bits that we emulate for | 
 |  * the user.  Initial values filled from device. | 
 |  * | 
 |  * Using shared struct perm_bits between all vfio-pci devices saves | 
 |  * us from allocating cfg_size buffers for virt and write for every | 
 |  * device.  We could remove vconfig and allocate individual buffers | 
 |  * for each area requiring emulated bits, but the array of pointers | 
 |  * would be comparable in size (at least for standard config space). | 
 |  */ | 
 | int vfio_config_init(struct vfio_pci_device *vdev) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	u8 *map, *vconfig; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Config space, caps and ecaps are all dword aligned, so we could | 
 | 	 * use one byte per dword to record the type.  However, there are | 
 | 	 * no requiremenst on the length of a capability, so the gap between | 
 | 	 * capabilities needs byte granularity. | 
 | 	 */ | 
 | 	map = kmalloc(pdev->cfg_size, GFP_KERNEL); | 
 | 	if (!map) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL); | 
 | 	if (!vconfig) { | 
 | 		kfree(map); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	vdev->pci_config_map = map; | 
 | 	vdev->vconfig = vconfig; | 
 |  | 
 | 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF); | 
 | 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID, | 
 | 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF); | 
 |  | 
 | 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	vdev->bardirty = true; | 
 |  | 
 | 	/* | 
 | 	 * XXX can we just pci_load_saved_state/pci_restore_state? | 
 | 	 * may need to rebuild vconfig after that | 
 | 	 */ | 
 |  | 
 | 	/* For restore after reset */ | 
 | 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]); | 
 | 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]); | 
 | 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]); | 
 | 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]); | 
 | 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]); | 
 | 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]); | 
 | 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]); | 
 |  | 
 | 	if (pdev->is_virtfn) { | 
 | 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor); | 
 | 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device); | 
 |  | 
 | 		/* | 
 | 		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register | 
 | 		 * does not apply to VFs and VFs must implement this register | 
 | 		 * as read-only with value zero.  Userspace is not readily able | 
 | 		 * to identify whether a device is a VF and thus that the pin | 
 | 		 * definition on the device is bogus should it violate this | 
 | 		 * requirement.  We already virtualize the pin register for | 
 | 		 * other purposes, so we simply need to replace the bogus value | 
 | 		 * and consider VFs when we determine INTx IRQ count. | 
 | 		 */ | 
 | 		if (vconfig[PCI_INTERRUPT_PIN] && | 
 | 		    !pci_match_id(known_bogus_vf_intx_pin, pdev)) | 
 | 			pci_warn(pdev, | 
 | 				 "Hardware bug: VF reports bogus INTx pin %d\n", | 
 | 				 vconfig[PCI_INTERRUPT_PIN]); | 
 |  | 
 | 		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */ | 
 | 	} | 
 | 	if (pdev->no_command_memory) { | 
 | 		/* | 
 | 		 * VFs and devices that set pdev->no_command_memory do not | 
 | 		 * implement the memory enable bit of the COMMAND register | 
 | 		 * therefore we'll not have it set in our initial copy of | 
 | 		 * config space after pci_enable_device().  For consistency | 
 | 		 * with PFs, set the virtual enable bit here. | 
 | 		 */ | 
 | 		*(__le16 *)&vconfig[PCI_COMMAND] |= | 
 | 					cpu_to_le16(PCI_COMMAND_MEMORY); | 
 | 	} | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx) | 
 | 		vconfig[PCI_INTERRUPT_PIN] = 0; | 
 |  | 
 | 	ret = vfio_cap_init(vdev); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = vfio_ecap_init(vdev); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	kfree(map); | 
 | 	vdev->pci_config_map = NULL; | 
 | 	kfree(vconfig); | 
 | 	vdev->vconfig = NULL; | 
 | 	return pcibios_err_to_errno(ret); | 
 | } | 
 |  | 
 | void vfio_config_free(struct vfio_pci_device *vdev) | 
 | { | 
 | 	kfree(vdev->vconfig); | 
 | 	vdev->vconfig = NULL; | 
 | 	kfree(vdev->pci_config_map); | 
 | 	vdev->pci_config_map = NULL; | 
 | 	if (vdev->msi_perm) { | 
 | 		free_perm_bits(vdev->msi_perm); | 
 | 		kfree(vdev->msi_perm); | 
 | 		vdev->msi_perm = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Find the remaining number of bytes in a dword that match the given | 
 |  * position.  Stop at either the end of the capability or the dword boundary. | 
 |  */ | 
 | static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev, | 
 | 					   loff_t pos) | 
 | { | 
 | 	u8 cap = vdev->pci_config_map[pos]; | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++) | 
 | 		/* nop */; | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf, | 
 | 				 size_t count, loff_t *ppos, bool iswrite) | 
 | { | 
 | 	struct pci_dev *pdev = vdev->pdev; | 
 | 	struct perm_bits *perm; | 
 | 	__le32 val = 0; | 
 | 	int cap_start = 0, offset; | 
 | 	u8 cap_id; | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (*ppos < 0 || *ppos >= pdev->cfg_size || | 
 | 	    *ppos + count > pdev->cfg_size) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * Chop accesses into aligned chunks containing no more than a | 
 | 	 * single capability.  Caller increments to the next chunk. | 
 | 	 */ | 
 | 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos)); | 
 | 	if (count >= 4 && !(*ppos % 4)) | 
 | 		count = 4; | 
 | 	else if (count >= 2 && !(*ppos % 2)) | 
 | 		count = 2; | 
 | 	else | 
 | 		count = 1; | 
 |  | 
 | 	ret = count; | 
 |  | 
 | 	cap_id = vdev->pci_config_map[*ppos]; | 
 |  | 
 | 	if (cap_id == PCI_CAP_ID_INVALID) { | 
 | 		perm = &unassigned_perms; | 
 | 		cap_start = *ppos; | 
 | 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) { | 
 | 		perm = &virt_perms; | 
 | 		cap_start = *ppos; | 
 | 	} else { | 
 | 		if (*ppos >= PCI_CFG_SPACE_SIZE) { | 
 | 			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX); | 
 |  | 
 | 			perm = &ecap_perms[cap_id]; | 
 | 			cap_start = vfio_find_cap_start(vdev, *ppos); | 
 | 		} else { | 
 | 			WARN_ON(cap_id > PCI_CAP_ID_MAX); | 
 |  | 
 | 			perm = &cap_perms[cap_id]; | 
 |  | 
 | 			if (cap_id == PCI_CAP_ID_MSI) | 
 | 				perm = vdev->msi_perm; | 
 |  | 
 | 			if (cap_id > PCI_CAP_ID_BASIC) | 
 | 				cap_start = vfio_find_cap_start(vdev, *ppos); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC); | 
 | 	WARN_ON(cap_start > *ppos); | 
 |  | 
 | 	offset = *ppos - cap_start; | 
 |  | 
 | 	if (iswrite) { | 
 | 		if (!perm->writefn) | 
 | 			return ret; | 
 |  | 
 | 		if (copy_from_user(&val, buf, count)) | 
 | 			return -EFAULT; | 
 |  | 
 | 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val); | 
 | 	} else { | 
 | 		if (perm->readfn) { | 
 | 			ret = perm->readfn(vdev, *ppos, count, | 
 | 					   perm, offset, &val); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 		} | 
 |  | 
 | 		if (copy_to_user(buf, &val, count)) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf, | 
 | 			   size_t count, loff_t *ppos, bool iswrite) | 
 | { | 
 | 	size_t done = 0; | 
 | 	int ret = 0; | 
 | 	loff_t pos = *ppos; | 
 |  | 
 | 	pos &= VFIO_PCI_OFFSET_MASK; | 
 |  | 
 | 	while (count) { | 
 | 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 |  | 
 | 		count -= ret; | 
 | 		done += ret; | 
 | 		buf += ret; | 
 | 		pos += ret; | 
 | 	} | 
 |  | 
 | 	*ppos += done; | 
 |  | 
 | 	return done; | 
 | } |