|  | /* | 
|  | * processor_idle - idle state submodule to the ACPI processor driver | 
|  | * | 
|  | *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> | 
|  | *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> | 
|  | *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> | 
|  | *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | 
|  | *  			- Added processor hotplug support | 
|  | *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | 
|  | *  			- Added support for C3 on SMP | 
|  | * | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or (at | 
|  | *  your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, but | 
|  | *  WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | *  General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License along | 
|  | *  with this program; if not, write to the Free Software Foundation, Inc., | 
|  | *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. | 
|  | * | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/sched.h>	/* need_resched() */ | 
|  | #include <linux/latency.h> | 
|  | #include <linux/clockchips.h> | 
|  |  | 
|  | /* | 
|  | * Include the apic definitions for x86 to have the APIC timer related defines | 
|  | * available also for UP (on SMP it gets magically included via linux/smp.h). | 
|  | * asm/acpi.h is not an option, as it would require more include magic. Also | 
|  | * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. | 
|  | */ | 
|  | #ifdef CONFIG_X86 | 
|  | #include <asm/apic.h> | 
|  | #endif | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include <acpi/acpi_bus.h> | 
|  | #include <acpi/processor.h> | 
|  |  | 
|  | #define ACPI_PROCESSOR_COMPONENT        0x01000000 | 
|  | #define ACPI_PROCESSOR_CLASS            "processor" | 
|  | #define _COMPONENT              ACPI_PROCESSOR_COMPONENT | 
|  | ACPI_MODULE_NAME("processor_idle"); | 
|  | #define ACPI_PROCESSOR_FILE_POWER	"power" | 
|  | #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000) | 
|  | #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY) | 
|  | #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */ | 
|  | #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */ | 
|  | static void (*pm_idle_save) (void) __read_mostly; | 
|  | module_param(max_cstate, uint, 0644); | 
|  |  | 
|  | static unsigned int nocst __read_mostly; | 
|  | module_param(nocst, uint, 0000); | 
|  |  | 
|  | /* | 
|  | * bm_history -- bit-mask with a bit per jiffy of bus-master activity | 
|  | * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms | 
|  | * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms | 
|  | * 100 HZ: 0x0000000F: 4 jiffies = 40ms | 
|  | * reduce history for more aggressive entry into C3 | 
|  | */ | 
|  | static unsigned int bm_history __read_mostly = | 
|  | (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1)); | 
|  | module_param(bm_history, uint, 0644); | 
|  | /* -------------------------------------------------------------------------- | 
|  | Power Management | 
|  | -------------------------------------------------------------------------- */ | 
|  |  | 
|  | /* | 
|  | * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. | 
|  | * For now disable this. Probably a bug somewhere else. | 
|  | * | 
|  | * To skip this limit, boot/load with a large max_cstate limit. | 
|  | */ | 
|  | static int set_max_cstate(struct dmi_system_id *id) | 
|  | { | 
|  | if (max_cstate > ACPI_PROCESSOR_MAX_POWER) | 
|  | return 0; | 
|  |  | 
|  | printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." | 
|  | " Override with \"processor.max_cstate=%d\"\n", id->ident, | 
|  | (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); | 
|  |  | 
|  | max_cstate = (long)id->driver_data; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Actually this shouldn't be __cpuinitdata, would be better to fix the | 
|  | callers to only run once -AK */ | 
|  | static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1}, | 
|  | { set_max_cstate, "IBM ThinkPad R40e", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1}, | 
|  | { set_max_cstate, "Medion 41700", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1}, | 
|  | { set_max_cstate, "Clevo 5600D", { | 
|  | DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, | 
|  | (void *)2}, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | static inline u32 ticks_elapsed(u32 t1, u32 t2) | 
|  | { | 
|  | if (t2 >= t1) | 
|  | return (t2 - t1); | 
|  | else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER)) | 
|  | return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF); | 
|  | else | 
|  | return ((0xFFFFFFFF - t1) + t2); | 
|  | } | 
|  |  | 
|  | static void | 
|  | acpi_processor_power_activate(struct acpi_processor *pr, | 
|  | struct acpi_processor_cx *new) | 
|  | { | 
|  | struct acpi_processor_cx *old; | 
|  |  | 
|  | if (!pr || !new) | 
|  | return; | 
|  |  | 
|  | old = pr->power.state; | 
|  |  | 
|  | if (old) | 
|  | old->promotion.count = 0; | 
|  | new->demotion.count = 0; | 
|  |  | 
|  | /* Cleanup from old state. */ | 
|  | if (old) { | 
|  | switch (old->type) { | 
|  | case ACPI_STATE_C3: | 
|  | /* Disable bus master reload */ | 
|  | if (new->type != ACPI_STATE_C3 && pr->flags.bm_check) | 
|  | acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Prepare to use new state. */ | 
|  | switch (new->type) { | 
|  | case ACPI_STATE_C3: | 
|  | /* Enable bus master reload */ | 
|  | if (old->type != ACPI_STATE_C3 && pr->flags.bm_check) | 
|  | acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pr->power.state = new; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void acpi_safe_halt(void) | 
|  | { | 
|  | current_thread_info()->status &= ~TS_POLLING; | 
|  | /* | 
|  | * TS_POLLING-cleared state must be visible before we | 
|  | * test NEED_RESCHED: | 
|  | */ | 
|  | smp_mb(); | 
|  | if (!need_resched()) | 
|  | safe_halt(); | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  | } | 
|  |  | 
|  | static atomic_t c3_cpu_count; | 
|  |  | 
|  | /* Common C-state entry for C2, C3, .. */ | 
|  | static void acpi_cstate_enter(struct acpi_processor_cx *cstate) | 
|  | { | 
|  | if (cstate->space_id == ACPI_CSTATE_FFH) { | 
|  | /* Call into architectural FFH based C-state */ | 
|  | acpi_processor_ffh_cstate_enter(cstate); | 
|  | } else { | 
|  | int unused; | 
|  | /* IO port based C-state */ | 
|  | inb(cstate->address); | 
|  | /* Dummy wait op - must do something useless after P_LVL2 read | 
|  | because chipsets cannot guarantee that STPCLK# signal | 
|  | gets asserted in time to freeze execution properly. */ | 
|  | unused = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef ARCH_APICTIMER_STOPS_ON_C3 | 
|  |  | 
|  | /* | 
|  | * Some BIOS implementations switch to C3 in the published C2 state. | 
|  | * This seems to be a common problem on AMD boxen, but other vendors | 
|  | * are affected too. We pick the most conservative approach: we assume | 
|  | * that the local APIC stops in both C2 and C3. | 
|  | */ | 
|  | static void acpi_timer_check_state(int state, struct acpi_processor *pr, | 
|  | struct acpi_processor_cx *cx) | 
|  | { | 
|  | struct acpi_processor_power *pwr = &pr->power; | 
|  | u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; | 
|  |  | 
|  | /* | 
|  | * Check, if one of the previous states already marked the lapic | 
|  | * unstable | 
|  | */ | 
|  | if (pwr->timer_broadcast_on_state < state) | 
|  | return; | 
|  |  | 
|  | if (cx->type >= type) | 
|  | pr->power.timer_broadcast_on_state = state; | 
|  | } | 
|  |  | 
|  | static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) | 
|  | { | 
|  | #ifdef CONFIG_GENERIC_CLOCKEVENTS | 
|  | unsigned long reason; | 
|  |  | 
|  | reason = pr->power.timer_broadcast_on_state < INT_MAX ? | 
|  | CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; | 
|  |  | 
|  | clockevents_notify(reason, &pr->id); | 
|  | #else | 
|  | cpumask_t mask = cpumask_of_cpu(pr->id); | 
|  |  | 
|  | if (pr->power.timer_broadcast_on_state < INT_MAX) | 
|  | on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1); | 
|  | else | 
|  | on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Power(C) State timer broadcast control */ | 
|  | static void acpi_state_timer_broadcast(struct acpi_processor *pr, | 
|  | struct acpi_processor_cx *cx, | 
|  | int broadcast) | 
|  | { | 
|  | #ifdef CONFIG_GENERIC_CLOCKEVENTS | 
|  |  | 
|  | int state = cx - pr->power.states; | 
|  |  | 
|  | if (state >= pr->power.timer_broadcast_on_state) { | 
|  | unsigned long reason; | 
|  |  | 
|  | reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER : | 
|  | CLOCK_EVT_NOTIFY_BROADCAST_EXIT; | 
|  | clockevents_notify(reason, &pr->id); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void acpi_timer_check_state(int state, struct acpi_processor *pr, | 
|  | struct acpi_processor_cx *cstate) { } | 
|  | static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { } | 
|  | static void acpi_state_timer_broadcast(struct acpi_processor *pr, | 
|  | struct acpi_processor_cx *cx, | 
|  | int broadcast) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void acpi_processor_idle(void) | 
|  | { | 
|  | struct acpi_processor *pr = NULL; | 
|  | struct acpi_processor_cx *cx = NULL; | 
|  | struct acpi_processor_cx *next_state = NULL; | 
|  | int sleep_ticks = 0; | 
|  | u32 t1, t2 = 0; | 
|  |  | 
|  | /* | 
|  | * Interrupts must be disabled during bus mastering calculations and | 
|  | * for C2/C3 transitions. | 
|  | */ | 
|  | local_irq_disable(); | 
|  |  | 
|  | pr = processors[smp_processor_id()]; | 
|  | if (!pr) { | 
|  | local_irq_enable(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether we truly need to go idle, or should | 
|  | * reschedule: | 
|  | */ | 
|  | if (unlikely(need_resched())) { | 
|  | local_irq_enable(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cx = pr->power.state; | 
|  | if (!cx) { | 
|  | if (pm_idle_save) | 
|  | pm_idle_save(); | 
|  | else | 
|  | acpi_safe_halt(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check BM Activity | 
|  | * ----------------- | 
|  | * Check for bus mastering activity (if required), record, and check | 
|  | * for demotion. | 
|  | */ | 
|  | if (pr->flags.bm_check) { | 
|  | u32 bm_status = 0; | 
|  | unsigned long diff = jiffies - pr->power.bm_check_timestamp; | 
|  |  | 
|  | if (diff > 31) | 
|  | diff = 31; | 
|  |  | 
|  | pr->power.bm_activity <<= diff; | 
|  |  | 
|  | acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); | 
|  | if (bm_status) { | 
|  | pr->power.bm_activity |= 0x1; | 
|  | acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); | 
|  | } | 
|  | /* | 
|  | * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect | 
|  | * the true state of bus mastering activity; forcing us to | 
|  | * manually check the BMIDEA bit of each IDE channel. | 
|  | */ | 
|  | else if (errata.piix4.bmisx) { | 
|  | if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) | 
|  | || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) | 
|  | pr->power.bm_activity |= 0x1; | 
|  | } | 
|  |  | 
|  | pr->power.bm_check_timestamp = jiffies; | 
|  |  | 
|  | /* | 
|  | * If bus mastering is or was active this jiffy, demote | 
|  | * to avoid a faulty transition.  Note that the processor | 
|  | * won't enter a low-power state during this call (to this | 
|  | * function) but should upon the next. | 
|  | * | 
|  | * TBD: A better policy might be to fallback to the demotion | 
|  | *      state (use it for this quantum only) istead of | 
|  | *      demoting -- and rely on duration as our sole demotion | 
|  | *      qualification.  This may, however, introduce DMA | 
|  | *      issues (e.g. floppy DMA transfer overrun/underrun). | 
|  | */ | 
|  | if ((pr->power.bm_activity & 0x1) && | 
|  | cx->demotion.threshold.bm) { | 
|  | local_irq_enable(); | 
|  | next_state = cx->demotion.state; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * Check for P_LVL2_UP flag before entering C2 and above on | 
|  | * an SMP system. We do it here instead of doing it at _CST/P_LVL | 
|  | * detection phase, to work cleanly with logical CPU hotplug. | 
|  | */ | 
|  | if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && | 
|  | !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) | 
|  | cx = &pr->power.states[ACPI_STATE_C1]; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Sleep: | 
|  | * ------ | 
|  | * Invoke the current Cx state to put the processor to sleep. | 
|  | */ | 
|  | if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) { | 
|  | current_thread_info()->status &= ~TS_POLLING; | 
|  | /* | 
|  | * TS_POLLING-cleared state must be visible before we | 
|  | * test NEED_RESCHED: | 
|  | */ | 
|  | smp_mb(); | 
|  | if (need_resched()) { | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  | local_irq_enable(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (cx->type) { | 
|  |  | 
|  | case ACPI_STATE_C1: | 
|  | /* | 
|  | * Invoke C1. | 
|  | * Use the appropriate idle routine, the one that would | 
|  | * be used without acpi C-states. | 
|  | */ | 
|  | if (pm_idle_save) | 
|  | pm_idle_save(); | 
|  | else | 
|  | acpi_safe_halt(); | 
|  |  | 
|  | /* | 
|  | * TBD: Can't get time duration while in C1, as resumes | 
|  | *      go to an ISR rather than here.  Need to instrument | 
|  | *      base interrupt handler. | 
|  | * | 
|  | * Note: the TSC better not stop in C1, sched_clock() will | 
|  | *       skew otherwise. | 
|  | */ | 
|  | sleep_ticks = 0xFFFFFFFF; | 
|  | break; | 
|  |  | 
|  | case ACPI_STATE_C2: | 
|  | /* Get start time (ticks) */ | 
|  | t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
|  | /* Tell the scheduler that we are going deep-idle: */ | 
|  | sched_clock_idle_sleep_event(); | 
|  | /* Invoke C2 */ | 
|  | acpi_state_timer_broadcast(pr, cx, 1); | 
|  | acpi_cstate_enter(cx); | 
|  | /* Get end time (ticks) */ | 
|  | t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
|  |  | 
|  | #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC) | 
|  | /* TSC halts in C2, so notify users */ | 
|  | mark_tsc_unstable("possible TSC halt in C2"); | 
|  | #endif | 
|  | /* Compute time (ticks) that we were actually asleep */ | 
|  | sleep_ticks = ticks_elapsed(t1, t2); | 
|  |  | 
|  | /* Tell the scheduler how much we idled: */ | 
|  | sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); | 
|  |  | 
|  | /* Re-enable interrupts */ | 
|  | local_irq_enable(); | 
|  | /* Do not account our idle-switching overhead: */ | 
|  | sleep_ticks -= cx->latency_ticks + C2_OVERHEAD; | 
|  |  | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  | acpi_state_timer_broadcast(pr, cx, 0); | 
|  | break; | 
|  |  | 
|  | case ACPI_STATE_C3: | 
|  | /* | 
|  | * disable bus master | 
|  | * bm_check implies we need ARB_DIS | 
|  | * !bm_check implies we need cache flush | 
|  | * bm_control implies whether we can do ARB_DIS | 
|  | * | 
|  | * That leaves a case where bm_check is set and bm_control is | 
|  | * not set. In that case we cannot do much, we enter C3 | 
|  | * without doing anything. | 
|  | */ | 
|  | if (pr->flags.bm_check && pr->flags.bm_control) { | 
|  | if (atomic_inc_return(&c3_cpu_count) == | 
|  | num_online_cpus()) { | 
|  | /* | 
|  | * All CPUs are trying to go to C3 | 
|  | * Disable bus master arbitration | 
|  | */ | 
|  | acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1); | 
|  | } | 
|  | } else if (!pr->flags.bm_check) { | 
|  | /* SMP with no shared cache... Invalidate cache  */ | 
|  | ACPI_FLUSH_CPU_CACHE(); | 
|  | } | 
|  |  | 
|  | /* Get start time (ticks) */ | 
|  | t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
|  | /* Invoke C3 */ | 
|  | acpi_state_timer_broadcast(pr, cx, 1); | 
|  | /* Tell the scheduler that we are going deep-idle: */ | 
|  | sched_clock_idle_sleep_event(); | 
|  | acpi_cstate_enter(cx); | 
|  | /* Get end time (ticks) */ | 
|  | t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
|  | if (pr->flags.bm_check && pr->flags.bm_control) { | 
|  | /* Enable bus master arbitration */ | 
|  | atomic_dec(&c3_cpu_count); | 
|  | acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0); | 
|  | } | 
|  |  | 
|  | #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC) | 
|  | /* TSC halts in C3, so notify users */ | 
|  | mark_tsc_unstable("TSC halts in C3"); | 
|  | #endif | 
|  | /* Compute time (ticks) that we were actually asleep */ | 
|  | sleep_ticks = ticks_elapsed(t1, t2); | 
|  | /* Tell the scheduler how much we idled: */ | 
|  | sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); | 
|  |  | 
|  | /* Re-enable interrupts */ | 
|  | local_irq_enable(); | 
|  | /* Do not account our idle-switching overhead: */ | 
|  | sleep_ticks -= cx->latency_ticks + C3_OVERHEAD; | 
|  |  | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  | acpi_state_timer_broadcast(pr, cx, 0); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | local_irq_enable(); | 
|  | return; | 
|  | } | 
|  | cx->usage++; | 
|  | if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0)) | 
|  | cx->time += sleep_ticks; | 
|  |  | 
|  | next_state = pr->power.state; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* Don't do promotion/demotion */ | 
|  | if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) && | 
|  | !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) { | 
|  | next_state = cx; | 
|  | goto end; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Promotion? | 
|  | * ---------- | 
|  | * Track the number of longs (time asleep is greater than threshold) | 
|  | * and promote when the count threshold is reached.  Note that bus | 
|  | * mastering activity may prevent promotions. | 
|  | * Do not promote above max_cstate. | 
|  | */ | 
|  | if (cx->promotion.state && | 
|  | ((cx->promotion.state - pr->power.states) <= max_cstate)) { | 
|  | if (sleep_ticks > cx->promotion.threshold.ticks && | 
|  | cx->promotion.state->latency <= system_latency_constraint()) { | 
|  | cx->promotion.count++; | 
|  | cx->demotion.count = 0; | 
|  | if (cx->promotion.count >= | 
|  | cx->promotion.threshold.count) { | 
|  | if (pr->flags.bm_check) { | 
|  | if (! | 
|  | (pr->power.bm_activity & cx-> | 
|  | promotion.threshold.bm)) { | 
|  | next_state = | 
|  | cx->promotion.state; | 
|  | goto end; | 
|  | } | 
|  | } else { | 
|  | next_state = cx->promotion.state; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Demotion? | 
|  | * --------- | 
|  | * Track the number of shorts (time asleep is less than time threshold) | 
|  | * and demote when the usage threshold is reached. | 
|  | */ | 
|  | if (cx->demotion.state) { | 
|  | if (sleep_ticks < cx->demotion.threshold.ticks) { | 
|  | cx->demotion.count++; | 
|  | cx->promotion.count = 0; | 
|  | if (cx->demotion.count >= cx->demotion.threshold.count) { | 
|  | next_state = cx->demotion.state; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | end: | 
|  | /* | 
|  | * Demote if current state exceeds max_cstate | 
|  | * or if the latency of the current state is unacceptable | 
|  | */ | 
|  | if ((pr->power.state - pr->power.states) > max_cstate || | 
|  | pr->power.state->latency > system_latency_constraint()) { | 
|  | if (cx->demotion.state) | 
|  | next_state = cx->demotion.state; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * New Cx State? | 
|  | * ------------- | 
|  | * If we're going to start using a new Cx state we must clean up | 
|  | * from the previous and prepare to use the new. | 
|  | */ | 
|  | if (next_state != pr->power.state) | 
|  | acpi_processor_power_activate(pr, next_state); | 
|  | } | 
|  |  | 
|  | static int acpi_processor_set_power_policy(struct acpi_processor *pr) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int state_is_set = 0; | 
|  | struct acpi_processor_cx *lower = NULL; | 
|  | struct acpi_processor_cx *higher = NULL; | 
|  | struct acpi_processor_cx *cx; | 
|  |  | 
|  |  | 
|  | if (!pr) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * This function sets the default Cx state policy (OS idle handler). | 
|  | * Our scheme is to promote quickly to C2 but more conservatively | 
|  | * to C3.  We're favoring C2  for its characteristics of low latency | 
|  | * (quick response), good power savings, and ability to allow bus | 
|  | * mastering activity.  Note that the Cx state policy is completely | 
|  | * customizable and can be altered dynamically. | 
|  | */ | 
|  |  | 
|  | /* startup state */ | 
|  | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
|  | cx = &pr->power.states[i]; | 
|  | if (!cx->valid) | 
|  | continue; | 
|  |  | 
|  | if (!state_is_set) | 
|  | pr->power.state = cx; | 
|  | state_is_set++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!state_is_set) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* demotion */ | 
|  | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
|  | cx = &pr->power.states[i]; | 
|  | if (!cx->valid) | 
|  | continue; | 
|  |  | 
|  | if (lower) { | 
|  | cx->demotion.state = lower; | 
|  | cx->demotion.threshold.ticks = cx->latency_ticks; | 
|  | cx->demotion.threshold.count = 1; | 
|  | if (cx->type == ACPI_STATE_C3) | 
|  | cx->demotion.threshold.bm = bm_history; | 
|  | } | 
|  |  | 
|  | lower = cx; | 
|  | } | 
|  |  | 
|  | /* promotion */ | 
|  | for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) { | 
|  | cx = &pr->power.states[i]; | 
|  | if (!cx->valid) | 
|  | continue; | 
|  |  | 
|  | if (higher) { | 
|  | cx->promotion.state = higher; | 
|  | cx->promotion.threshold.ticks = cx->latency_ticks; | 
|  | if (cx->type >= ACPI_STATE_C2) | 
|  | cx->promotion.threshold.count = 4; | 
|  | else | 
|  | cx->promotion.threshold.count = 10; | 
|  | if (higher->type == ACPI_STATE_C3) | 
|  | cx->promotion.threshold.bm = bm_history; | 
|  | } | 
|  |  | 
|  | higher = cx; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) | 
|  | { | 
|  |  | 
|  | if (!pr) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pr->pblk) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* if info is obtained from pblk/fadt, type equals state */ | 
|  | pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; | 
|  | pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; | 
|  |  | 
|  | #ifndef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * Check for P_LVL2_UP flag before entering C2 and above on | 
|  | * an SMP system. | 
|  | */ | 
|  | if ((num_online_cpus() > 1) && | 
|  | !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) | 
|  | return -ENODEV; | 
|  | #endif | 
|  |  | 
|  | /* determine C2 and C3 address from pblk */ | 
|  | pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; | 
|  | pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; | 
|  |  | 
|  | /* determine latencies from FADT */ | 
|  | pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; | 
|  | pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; | 
|  |  | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
|  | "lvl2[0x%08x] lvl3[0x%08x]\n", | 
|  | pr->power.states[ACPI_STATE_C2].address, | 
|  | pr->power.states[ACPI_STATE_C3].address)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int acpi_processor_get_power_info_default(struct acpi_processor *pr) | 
|  | { | 
|  | if (!pr->power.states[ACPI_STATE_C1].valid) { | 
|  | /* set the first C-State to C1 */ | 
|  | /* all processors need to support C1 */ | 
|  | pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; | 
|  | pr->power.states[ACPI_STATE_C1].valid = 1; | 
|  | } | 
|  | /* the C0 state only exists as a filler in our array */ | 
|  | pr->power.states[ACPI_STATE_C0].valid = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) | 
|  | { | 
|  | acpi_status status = 0; | 
|  | acpi_integer count; | 
|  | int current_count; | 
|  | int i; | 
|  | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | 
|  | union acpi_object *cst; | 
|  |  | 
|  |  | 
|  | if (nocst) | 
|  | return -ENODEV; | 
|  |  | 
|  | current_count = 0; | 
|  |  | 
|  | status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | cst = buffer.pointer; | 
|  |  | 
|  | /* There must be at least 2 elements */ | 
|  | if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { | 
|  | printk(KERN_ERR PREFIX "not enough elements in _CST\n"); | 
|  | status = -EFAULT; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | count = cst->package.elements[0].integer.value; | 
|  |  | 
|  | /* Validate number of power states. */ | 
|  | if (count < 1 || count != cst->package.count - 1) { | 
|  | printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); | 
|  | status = -EFAULT; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Tell driver that at least _CST is supported. */ | 
|  | pr->flags.has_cst = 1; | 
|  |  | 
|  | for (i = 1; i <= count; i++) { | 
|  | union acpi_object *element; | 
|  | union acpi_object *obj; | 
|  | struct acpi_power_register *reg; | 
|  | struct acpi_processor_cx cx; | 
|  |  | 
|  | memset(&cx, 0, sizeof(cx)); | 
|  |  | 
|  | element = &(cst->package.elements[i]); | 
|  | if (element->type != ACPI_TYPE_PACKAGE) | 
|  | continue; | 
|  |  | 
|  | if (element->package.count != 4) | 
|  | continue; | 
|  |  | 
|  | obj = &(element->package.elements[0]); | 
|  |  | 
|  | if (obj->type != ACPI_TYPE_BUFFER) | 
|  | continue; | 
|  |  | 
|  | reg = (struct acpi_power_register *)obj->buffer.pointer; | 
|  |  | 
|  | if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && | 
|  | (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) | 
|  | continue; | 
|  |  | 
|  | /* There should be an easy way to extract an integer... */ | 
|  | obj = &(element->package.elements[1]); | 
|  | if (obj->type != ACPI_TYPE_INTEGER) | 
|  | continue; | 
|  |  | 
|  | cx.type = obj->integer.value; | 
|  | /* | 
|  | * Some buggy BIOSes won't list C1 in _CST - | 
|  | * Let acpi_processor_get_power_info_default() handle them later | 
|  | */ | 
|  | if (i == 1 && cx.type != ACPI_STATE_C1) | 
|  | current_count++; | 
|  |  | 
|  | cx.address = reg->address; | 
|  | cx.index = current_count + 1; | 
|  |  | 
|  | cx.space_id = ACPI_CSTATE_SYSTEMIO; | 
|  | if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { | 
|  | if (acpi_processor_ffh_cstate_probe | 
|  | (pr->id, &cx, reg) == 0) { | 
|  | cx.space_id = ACPI_CSTATE_FFH; | 
|  | } else if (cx.type != ACPI_STATE_C1) { | 
|  | /* | 
|  | * C1 is a special case where FIXED_HARDWARE | 
|  | * can be handled in non-MWAIT way as well. | 
|  | * In that case, save this _CST entry info. | 
|  | * That is, we retain space_id of SYSTEM_IO for | 
|  | * halt based C1. | 
|  | * Otherwise, ignore this info and continue. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | obj = &(element->package.elements[2]); | 
|  | if (obj->type != ACPI_TYPE_INTEGER) | 
|  | continue; | 
|  |  | 
|  | cx.latency = obj->integer.value; | 
|  |  | 
|  | obj = &(element->package.elements[3]); | 
|  | if (obj->type != ACPI_TYPE_INTEGER) | 
|  | continue; | 
|  |  | 
|  | cx.power = obj->integer.value; | 
|  |  | 
|  | current_count++; | 
|  | memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); | 
|  |  | 
|  | /* | 
|  | * We support total ACPI_PROCESSOR_MAX_POWER - 1 | 
|  | * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) | 
|  | */ | 
|  | if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { | 
|  | printk(KERN_WARNING | 
|  | "Limiting number of power states to max (%d)\n", | 
|  | ACPI_PROCESSOR_MAX_POWER); | 
|  | printk(KERN_WARNING | 
|  | "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", | 
|  | current_count)); | 
|  |  | 
|  | /* Validate number of power states discovered */ | 
|  | if (current_count < 2) | 
|  | status = -EFAULT; | 
|  |  | 
|  | end: | 
|  | kfree(buffer.pointer); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx) | 
|  | { | 
|  |  | 
|  | if (!cx->address) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * C2 latency must be less than or equal to 100 | 
|  | * microseconds. | 
|  | */ | 
|  | else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
|  | "latency too large [%d]\n", cx->latency)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Otherwise we've met all of our C2 requirements. | 
|  | * Normalize the C2 latency to expidite policy | 
|  | */ | 
|  | cx->valid = 1; | 
|  | cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void acpi_processor_power_verify_c3(struct acpi_processor *pr, | 
|  | struct acpi_processor_cx *cx) | 
|  | { | 
|  | static int bm_check_flag; | 
|  |  | 
|  |  | 
|  | if (!cx->address) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * C3 latency must be less than or equal to 1000 | 
|  | * microseconds. | 
|  | */ | 
|  | else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
|  | "latency too large [%d]\n", cx->latency)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) | 
|  | * DMA transfers are used by any ISA device to avoid livelock. | 
|  | * Note that we could disable Type-F DMA (as recommended by | 
|  | * the erratum), but this is known to disrupt certain ISA | 
|  | * devices thus we take the conservative approach. | 
|  | */ | 
|  | else if (errata.piix4.fdma) { | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
|  | "C3 not supported on PIIX4 with Type-F DMA\n")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* All the logic here assumes flags.bm_check is same across all CPUs */ | 
|  | if (!bm_check_flag) { | 
|  | /* Determine whether bm_check is needed based on CPU  */ | 
|  | acpi_processor_power_init_bm_check(&(pr->flags), pr->id); | 
|  | bm_check_flag = pr->flags.bm_check; | 
|  | } else { | 
|  | pr->flags.bm_check = bm_check_flag; | 
|  | } | 
|  |  | 
|  | if (pr->flags.bm_check) { | 
|  | if (!pr->flags.bm_control) { | 
|  | if (pr->flags.has_cst != 1) { | 
|  | /* bus mastering control is necessary */ | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
|  | "C3 support requires BM control\n")); | 
|  | return; | 
|  | } else { | 
|  | /* Here we enter C3 without bus mastering */ | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
|  | "C3 support without BM control\n")); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * WBINVD should be set in fadt, for C3 state to be | 
|  | * supported on when bm_check is not required. | 
|  | */ | 
|  | if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { | 
|  | ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
|  | "Cache invalidation should work properly" | 
|  | " for C3 to be enabled on SMP systems\n")); | 
|  | return; | 
|  | } | 
|  | acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Otherwise we've met all of our C3 requirements. | 
|  | * Normalize the C3 latency to expidite policy.  Enable | 
|  | * checking of bus mastering status (bm_check) so we can | 
|  | * use this in our C3 policy | 
|  | */ | 
|  | cx->valid = 1; | 
|  | cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int acpi_processor_power_verify(struct acpi_processor *pr) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int working = 0; | 
|  |  | 
|  | pr->power.timer_broadcast_on_state = INT_MAX; | 
|  |  | 
|  | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
|  | struct acpi_processor_cx *cx = &pr->power.states[i]; | 
|  |  | 
|  | switch (cx->type) { | 
|  | case ACPI_STATE_C1: | 
|  | cx->valid = 1; | 
|  | break; | 
|  |  | 
|  | case ACPI_STATE_C2: | 
|  | acpi_processor_power_verify_c2(cx); | 
|  | if (cx->valid) | 
|  | acpi_timer_check_state(i, pr, cx); | 
|  | break; | 
|  |  | 
|  | case ACPI_STATE_C3: | 
|  | acpi_processor_power_verify_c3(pr, cx); | 
|  | if (cx->valid) | 
|  | acpi_timer_check_state(i, pr, cx); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (cx->valid) | 
|  | working++; | 
|  | } | 
|  |  | 
|  | acpi_propagate_timer_broadcast(pr); | 
|  |  | 
|  | return (working); | 
|  | } | 
|  |  | 
|  | static int acpi_processor_get_power_info(struct acpi_processor *pr) | 
|  | { | 
|  | unsigned int i; | 
|  | int result; | 
|  |  | 
|  |  | 
|  | /* NOTE: the idle thread may not be running while calling | 
|  | * this function */ | 
|  |  | 
|  | /* Zero initialize all the C-states info. */ | 
|  | memset(pr->power.states, 0, sizeof(pr->power.states)); | 
|  |  | 
|  | result = acpi_processor_get_power_info_cst(pr); | 
|  | if (result == -ENODEV) | 
|  | result = acpi_processor_get_power_info_fadt(pr); | 
|  |  | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | acpi_processor_get_power_info_default(pr); | 
|  |  | 
|  | pr->power.count = acpi_processor_power_verify(pr); | 
|  |  | 
|  | /* | 
|  | * Set Default Policy | 
|  | * ------------------ | 
|  | * Now that we know which states are supported, set the default | 
|  | * policy.  Note that this policy can be changed dynamically | 
|  | * (e.g. encourage deeper sleeps to conserve battery life when | 
|  | * not on AC). | 
|  | */ | 
|  | result = acpi_processor_set_power_policy(pr); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | /* | 
|  | * if one state of type C2 or C3 is available, mark this | 
|  | * CPU as being "idle manageable" | 
|  | */ | 
|  | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
|  | if (pr->power.states[i].valid) { | 
|  | pr->power.count = i; | 
|  | if (pr->power.states[i].type >= ACPI_STATE_C2) | 
|  | pr->flags.power = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int acpi_processor_cst_has_changed(struct acpi_processor *pr) | 
|  | { | 
|  | int result = 0; | 
|  |  | 
|  |  | 
|  | if (!pr) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (nocst) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (!pr->flags.power_setup_done) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Fall back to the default idle loop */ | 
|  | pm_idle = pm_idle_save; | 
|  | synchronize_sched();	/* Relies on interrupts forcing exit from idle. */ | 
|  |  | 
|  | pr->flags.power = 0; | 
|  | result = acpi_processor_get_power_info(pr); | 
|  | if ((pr->flags.power == 1) && (pr->flags.power_setup_done)) | 
|  | pm_idle = acpi_processor_idle; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* proc interface */ | 
|  |  | 
|  | static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) | 
|  | { | 
|  | struct acpi_processor *pr = seq->private; | 
|  | unsigned int i; | 
|  |  | 
|  |  | 
|  | if (!pr) | 
|  | goto end; | 
|  |  | 
|  | seq_printf(seq, "active state:            C%zd\n" | 
|  | "max_cstate:              C%d\n" | 
|  | "bus master activity:     %08x\n" | 
|  | "maximum allowed latency: %d usec\n", | 
|  | pr->power.state ? pr->power.state - pr->power.states : 0, | 
|  | max_cstate, (unsigned)pr->power.bm_activity, | 
|  | system_latency_constraint()); | 
|  |  | 
|  | seq_puts(seq, "states:\n"); | 
|  |  | 
|  | for (i = 1; i <= pr->power.count; i++) { | 
|  | seq_printf(seq, "   %cC%d:                  ", | 
|  | (&pr->power.states[i] == | 
|  | pr->power.state ? '*' : ' '), i); | 
|  |  | 
|  | if (!pr->power.states[i].valid) { | 
|  | seq_puts(seq, "<not supported>\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (pr->power.states[i].type) { | 
|  | case ACPI_STATE_C1: | 
|  | seq_printf(seq, "type[C1] "); | 
|  | break; | 
|  | case ACPI_STATE_C2: | 
|  | seq_printf(seq, "type[C2] "); | 
|  | break; | 
|  | case ACPI_STATE_C3: | 
|  | seq_printf(seq, "type[C3] "); | 
|  | break; | 
|  | default: | 
|  | seq_printf(seq, "type[--] "); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (pr->power.states[i].promotion.state) | 
|  | seq_printf(seq, "promotion[C%zd] ", | 
|  | (pr->power.states[i].promotion.state - | 
|  | pr->power.states)); | 
|  | else | 
|  | seq_puts(seq, "promotion[--] "); | 
|  |  | 
|  | if (pr->power.states[i].demotion.state) | 
|  | seq_printf(seq, "demotion[C%zd] ", | 
|  | (pr->power.states[i].demotion.state - | 
|  | pr->power.states)); | 
|  | else | 
|  | seq_puts(seq, "demotion[--] "); | 
|  |  | 
|  | seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", | 
|  | pr->power.states[i].latency, | 
|  | pr->power.states[i].usage, | 
|  | (unsigned long long)pr->power.states[i].time); | 
|  | } | 
|  |  | 
|  | end: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, acpi_processor_power_seq_show, | 
|  | PDE(inode)->data); | 
|  | } | 
|  |  | 
|  | static const struct file_operations acpi_processor_power_fops = { | 
|  | .open = acpi_processor_power_open_fs, | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static void smp_callback(void *v) | 
|  | { | 
|  | /* we already woke the CPU up, nothing more to do */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function gets called when a part of the kernel has a new latency | 
|  | * requirement.  This means we need to get all processors out of their C-state, | 
|  | * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that | 
|  | * wakes them all right up. | 
|  | */ | 
|  | static int acpi_processor_latency_notify(struct notifier_block *b, | 
|  | unsigned long l, void *v) | 
|  | { | 
|  | smp_call_function(smp_callback, NULL, 0, 1); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block acpi_processor_latency_notifier = { | 
|  | .notifier_call = acpi_processor_latency_notify, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, | 
|  | struct acpi_device *device) | 
|  | { | 
|  | acpi_status status = 0; | 
|  | static int first_run; | 
|  | struct proc_dir_entry *entry = NULL; | 
|  | unsigned int i; | 
|  |  | 
|  |  | 
|  | if (!first_run) { | 
|  | dmi_check_system(processor_power_dmi_table); | 
|  | if (max_cstate < ACPI_C_STATES_MAX) | 
|  | printk(KERN_NOTICE | 
|  | "ACPI: processor limited to max C-state %d\n", | 
|  | max_cstate); | 
|  | first_run++; | 
|  | #ifdef CONFIG_SMP | 
|  | register_latency_notifier(&acpi_processor_latency_notifier); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (!pr) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (acpi_gbl_FADT.cst_control && !nocst) { | 
|  | status = | 
|  | acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | ACPI_EXCEPTION((AE_INFO, status, | 
|  | "Notifying BIOS of _CST ability failed")); | 
|  | } | 
|  | } | 
|  |  | 
|  | acpi_processor_get_power_info(pr); | 
|  |  | 
|  | /* | 
|  | * Install the idle handler if processor power management is supported. | 
|  | * Note that we use previously set idle handler will be used on | 
|  | * platforms that only support C1. | 
|  | */ | 
|  | if ((pr->flags.power) && (!boot_option_idle_override)) { | 
|  | printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id); | 
|  | for (i = 1; i <= pr->power.count; i++) | 
|  | if (pr->power.states[i].valid) | 
|  | printk(" C%d[C%d]", i, | 
|  | pr->power.states[i].type); | 
|  | printk(")\n"); | 
|  |  | 
|  | if (pr->id == 0) { | 
|  | pm_idle_save = pm_idle; | 
|  | pm_idle = acpi_processor_idle; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 'power' [R] */ | 
|  | entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER, | 
|  | S_IRUGO, acpi_device_dir(device)); | 
|  | if (!entry) | 
|  | return -EIO; | 
|  | else { | 
|  | entry->proc_fops = &acpi_processor_power_fops; | 
|  | entry->data = acpi_driver_data(device); | 
|  | entry->owner = THIS_MODULE; | 
|  | } | 
|  |  | 
|  | pr->flags.power_setup_done = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int acpi_processor_power_exit(struct acpi_processor *pr, | 
|  | struct acpi_device *device) | 
|  | { | 
|  |  | 
|  | pr->flags.power_setup_done = 0; | 
|  |  | 
|  | if (acpi_device_dir(device)) | 
|  | remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, | 
|  | acpi_device_dir(device)); | 
|  |  | 
|  | /* Unregister the idle handler when processor #0 is removed. */ | 
|  | if (pr->id == 0) { | 
|  | pm_idle = pm_idle_save; | 
|  |  | 
|  | /* | 
|  | * We are about to unload the current idle thread pm callback | 
|  | * (pm_idle), Wait for all processors to update cached/local | 
|  | * copies of pm_idle before proceeding. | 
|  | */ | 
|  | cpu_idle_wait(); | 
|  | #ifdef CONFIG_SMP | 
|  | unregister_latency_notifier(&acpi_processor_latency_notifier); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |