|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include "ctree.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "extent_io.h" | 
|  | #include "disk-io.h" | 
|  |  | 
|  | static struct kmem_cache *btrfs_ordered_extent_cache; | 
|  |  | 
|  | static u64 entry_end(struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | if (entry->file_offset + entry->len < entry->file_offset) | 
|  | return (u64)-1; | 
|  | return entry->file_offset + entry->len; | 
|  | } | 
|  |  | 
|  | /* returns NULL if the insertion worked, or it returns the node it did find | 
|  | * in the tree | 
|  | */ | 
|  | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, | 
|  | struct rb_node *node) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_ordered_extent *entry; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); | 
|  |  | 
|  | if (file_offset < entry->file_offset) | 
|  | p = &(*p)->rb_left; | 
|  | else if (file_offset >= entry_end(entry)) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return parent; | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent, p); | 
|  | rb_insert_color(node, root); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void ordered_data_tree_panic(struct inode *inode, int errno, | 
|  | u64 offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " | 
|  | "%llu", offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look for a given offset in the tree, and if it can't be found return the | 
|  | * first lesser offset | 
|  | */ | 
|  | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, | 
|  | struct rb_node **prev_ret) | 
|  | { | 
|  | struct rb_node *n = root->rb_node; | 
|  | struct rb_node *prev = NULL; | 
|  | struct rb_node *test; | 
|  | struct btrfs_ordered_extent *entry; | 
|  | struct btrfs_ordered_extent *prev_entry = NULL; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); | 
|  | prev = n; | 
|  | prev_entry = entry; | 
|  |  | 
|  | if (file_offset < entry->file_offset) | 
|  | n = n->rb_left; | 
|  | else if (file_offset >= entry_end(entry)) | 
|  | n = n->rb_right; | 
|  | else | 
|  | return n; | 
|  | } | 
|  | if (!prev_ret) | 
|  | return NULL; | 
|  |  | 
|  | while (prev && file_offset >= entry_end(prev_entry)) { | 
|  | test = rb_next(prev); | 
|  | if (!test) | 
|  | break; | 
|  | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | if (file_offset < entry_end(prev_entry)) | 
|  | break; | 
|  |  | 
|  | prev = test; | 
|  | } | 
|  | if (prev) | 
|  | prev_entry = rb_entry(prev, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | while (prev && file_offset < entry_end(prev_entry)) { | 
|  | test = rb_prev(prev); | 
|  | if (!test) | 
|  | break; | 
|  | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | prev = test; | 
|  | } | 
|  | *prev_ret = prev; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to check if a given offset is inside a given entry | 
|  | */ | 
|  | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) | 
|  | { | 
|  | if (file_offset < entry->file_offset || | 
|  | entry->file_offset + entry->len <= file_offset) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, | 
|  | u64 len) | 
|  | { | 
|  | if (file_offset + len <= entry->file_offset || | 
|  | entry->file_offset + entry->len <= file_offset) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look find the first ordered struct that has this offset, otherwise | 
|  | * the first one less than this offset | 
|  | */ | 
|  | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, | 
|  | u64 file_offset) | 
|  | { | 
|  | struct rb_root *root = &tree->tree; | 
|  | struct rb_node *prev = NULL; | 
|  | struct rb_node *ret; | 
|  | struct btrfs_ordered_extent *entry; | 
|  |  | 
|  | if (tree->last) { | 
|  | entry = rb_entry(tree->last, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | if (offset_in_entry(entry, file_offset)) | 
|  | return tree->last; | 
|  | } | 
|  | ret = __tree_search(root, file_offset, &prev); | 
|  | if (!ret) | 
|  | ret = prev; | 
|  | if (ret) | 
|  | tree->last = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* allocate and add a new ordered_extent into the per-inode tree. | 
|  | * file_offset is the logical offset in the file | 
|  | * | 
|  | * start is the disk block number of an extent already reserved in the | 
|  | * extent allocation tree | 
|  | * | 
|  | * len is the length of the extent | 
|  | * | 
|  | * The tree is given a single reference on the ordered extent that was | 
|  | * inserted. | 
|  | */ | 
|  | static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | 
|  | u64 start, u64 len, u64 disk_len, | 
|  | int type, int dio, int compress_type) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); | 
|  | if (!entry) | 
|  | return -ENOMEM; | 
|  |  | 
|  | entry->file_offset = file_offset; | 
|  | entry->start = start; | 
|  | entry->len = len; | 
|  | entry->disk_len = disk_len; | 
|  | entry->bytes_left = len; | 
|  | entry->inode = igrab(inode); | 
|  | entry->compress_type = compress_type; | 
|  | entry->truncated_len = (u64)-1; | 
|  | if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) | 
|  | set_bit(type, &entry->flags); | 
|  |  | 
|  | if (dio) | 
|  | set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); | 
|  |  | 
|  | /* one ref for the tree */ | 
|  | atomic_set(&entry->refs, 1); | 
|  | init_waitqueue_head(&entry->wait); | 
|  | INIT_LIST_HEAD(&entry->list); | 
|  | INIT_LIST_HEAD(&entry->root_extent_list); | 
|  | INIT_LIST_HEAD(&entry->work_list); | 
|  | init_completion(&entry->completion); | 
|  | INIT_LIST_HEAD(&entry->log_list); | 
|  | INIT_LIST_HEAD(&entry->trans_list); | 
|  |  | 
|  | trace_btrfs_ordered_extent_add(inode, entry); | 
|  |  | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = tree_insert(&tree->tree, file_offset, | 
|  | &entry->rb_node); | 
|  | if (node) | 
|  | ordered_data_tree_panic(inode, -EEXIST, file_offset); | 
|  | spin_unlock_irq(&tree->lock); | 
|  |  | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | list_add_tail(&entry->root_extent_list, | 
|  | &root->ordered_extents); | 
|  | root->nr_ordered_extents++; | 
|  | if (root->nr_ordered_extents == 1) { | 
|  | spin_lock(&root->fs_info->ordered_root_lock); | 
|  | BUG_ON(!list_empty(&root->ordered_root)); | 
|  | list_add_tail(&root->ordered_root, | 
|  | &root->fs_info->ordered_roots); | 
|  | spin_unlock(&root->fs_info->ordered_root_lock); | 
|  | } | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | 
|  | u64 start, u64 len, u64 disk_len, int type) | 
|  | { | 
|  | return __btrfs_add_ordered_extent(inode, file_offset, start, len, | 
|  | disk_len, type, 0, | 
|  | BTRFS_COMPRESS_NONE); | 
|  | } | 
|  |  | 
|  | int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, | 
|  | u64 start, u64 len, u64 disk_len, int type) | 
|  | { | 
|  | return __btrfs_add_ordered_extent(inode, file_offset, start, len, | 
|  | disk_len, type, 1, | 
|  | BTRFS_COMPRESS_NONE); | 
|  | } | 
|  |  | 
|  | int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, | 
|  | u64 start, u64 len, u64 disk_len, | 
|  | int type, int compress_type) | 
|  | { | 
|  | return __btrfs_add_ordered_extent(inode, file_offset, start, len, | 
|  | disk_len, type, 0, | 
|  | compress_type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a struct btrfs_ordered_sum into the list of checksums to be inserted | 
|  | * when an ordered extent is finished.  If the list covers more than one | 
|  | * ordered extent, it is split across multiples. | 
|  | */ | 
|  | void btrfs_add_ordered_sum(struct inode *inode, | 
|  | struct btrfs_ordered_extent *entry, | 
|  | struct btrfs_ordered_sum *sum) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | list_add_tail(&sum->list, &entry->list); | 
|  | spin_unlock_irq(&tree->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used to account for finished IO across a given range | 
|  | * of the file.  The IO may span ordered extents.  If | 
|  | * a given ordered_extent is completely done, 1 is returned, otherwise | 
|  | * 0. | 
|  | * | 
|  | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used | 
|  | * to make sure this function only returns 1 once for a given ordered extent. | 
|  | * | 
|  | * file_offset is updated to one byte past the range that is recorded as | 
|  | * complete.  This allows you to walk forward in the file. | 
|  | */ | 
|  | int btrfs_dec_test_first_ordered_pending(struct inode *inode, | 
|  | struct btrfs_ordered_extent **cached, | 
|  | u64 *file_offset, u64 io_size, int uptodate) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  | int ret; | 
|  | unsigned long flags; | 
|  | u64 dec_end; | 
|  | u64 dec_start; | 
|  | u64 to_dec; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irqsave(&tree->lock, flags); | 
|  | node = tree_search(tree, *file_offset); | 
|  | if (!node) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (!offset_in_entry(entry, *file_offset)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dec_start = max(*file_offset, entry->file_offset); | 
|  | dec_end = min(*file_offset + io_size, entry->file_offset + | 
|  | entry->len); | 
|  | *file_offset = dec_end; | 
|  | if (dec_start > dec_end) { | 
|  | btrfs_crit(BTRFS_I(inode)->root->fs_info, | 
|  | "bad ordering dec_start %llu end %llu", dec_start, dec_end); | 
|  | } | 
|  | to_dec = dec_end - dec_start; | 
|  | if (to_dec > entry->bytes_left) { | 
|  | btrfs_crit(BTRFS_I(inode)->root->fs_info, | 
|  | "bad ordered accounting left %llu size %llu", | 
|  | entry->bytes_left, to_dec); | 
|  | } | 
|  | entry->bytes_left -= to_dec; | 
|  | if (!uptodate) | 
|  | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); | 
|  |  | 
|  | if (entry->bytes_left == 0) { | 
|  | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | 
|  | /* | 
|  | * Implicit memory barrier after test_and_set_bit | 
|  | */ | 
|  | if (waitqueue_active(&entry->wait)) | 
|  | wake_up(&entry->wait); | 
|  | } else { | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | if (!ret && cached && entry) { | 
|  | *cached = entry; | 
|  | atomic_inc(&entry->refs); | 
|  | } | 
|  | spin_unlock_irqrestore(&tree->lock, flags); | 
|  | return ret == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used to account for finished IO across a given range | 
|  | * of the file.  The IO should not span ordered extents.  If | 
|  | * a given ordered_extent is completely done, 1 is returned, otherwise | 
|  | * 0. | 
|  | * | 
|  | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used | 
|  | * to make sure this function only returns 1 once for a given ordered extent. | 
|  | */ | 
|  | int btrfs_dec_test_ordered_pending(struct inode *inode, | 
|  | struct btrfs_ordered_extent **cached, | 
|  | u64 file_offset, u64 io_size, int uptodate) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irqsave(&tree->lock, flags); | 
|  | if (cached && *cached) { | 
|  | entry = *cached; | 
|  | goto have_entry; | 
|  | } | 
|  |  | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | have_entry: | 
|  | if (!offset_in_entry(entry, file_offset)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (io_size > entry->bytes_left) { | 
|  | btrfs_crit(BTRFS_I(inode)->root->fs_info, | 
|  | "bad ordered accounting left %llu size %llu", | 
|  | entry->bytes_left, io_size); | 
|  | } | 
|  | entry->bytes_left -= io_size; | 
|  | if (!uptodate) | 
|  | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); | 
|  |  | 
|  | if (entry->bytes_left == 0) { | 
|  | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | 
|  | /* | 
|  | * Implicit memory barrier after test_and_set_bit | 
|  | */ | 
|  | if (waitqueue_active(&entry->wait)) | 
|  | wake_up(&entry->wait); | 
|  | } else { | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | if (!ret && cached && entry) { | 
|  | *cached = entry; | 
|  | atomic_inc(&entry->refs); | 
|  | } | 
|  | spin_unlock_irqrestore(&tree->lock, flags); | 
|  | return ret == 0; | 
|  | } | 
|  |  | 
|  | /* Needs to either be called under a log transaction or the log_mutex */ | 
|  | void btrfs_get_logged_extents(struct inode *inode, | 
|  | struct list_head *logged_list, | 
|  | const loff_t start, | 
|  | const loff_t end) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct rb_node *n; | 
|  | struct rb_node *prev; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | n = __tree_search(&tree->tree, end, &prev); | 
|  | if (!n) | 
|  | n = prev; | 
|  | for (; n; n = rb_prev(n)) { | 
|  | ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); | 
|  | if (ordered->file_offset > end) | 
|  | continue; | 
|  | if (entry_end(ordered) <= start) | 
|  | break; | 
|  | if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) | 
|  | continue; | 
|  | list_add(&ordered->log_list, logged_list); | 
|  | atomic_inc(&ordered->refs); | 
|  | } | 
|  | spin_unlock_irq(&tree->lock); | 
|  | } | 
|  |  | 
|  | void btrfs_put_logged_extents(struct list_head *logged_list) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | while (!list_empty(logged_list)) { | 
|  | ordered = list_first_entry(logged_list, | 
|  | struct btrfs_ordered_extent, | 
|  | log_list); | 
|  | list_del_init(&ordered->log_list); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_submit_logged_extents(struct list_head *logged_list, | 
|  | struct btrfs_root *log) | 
|  | { | 
|  | int index = log->log_transid % 2; | 
|  |  | 
|  | spin_lock_irq(&log->log_extents_lock[index]); | 
|  | list_splice_tail(logged_list, &log->logged_list[index]); | 
|  | spin_unlock_irq(&log->log_extents_lock[index]); | 
|  | } | 
|  |  | 
|  | void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, u64 transid) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | int index = transid % 2; | 
|  |  | 
|  | spin_lock_irq(&log->log_extents_lock[index]); | 
|  | while (!list_empty(&log->logged_list[index])) { | 
|  | struct inode *inode; | 
|  | ordered = list_first_entry(&log->logged_list[index], | 
|  | struct btrfs_ordered_extent, | 
|  | log_list); | 
|  | list_del_init(&ordered->log_list); | 
|  | inode = ordered->inode; | 
|  | spin_unlock_irq(&log->log_extents_lock[index]); | 
|  |  | 
|  | if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && | 
|  | !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { | 
|  | u64 start = ordered->file_offset; | 
|  | u64 end = ordered->file_offset + ordered->len - 1; | 
|  |  | 
|  | WARN_ON(!inode); | 
|  | filemap_fdatawrite_range(inode->i_mapping, start, end); | 
|  | } | 
|  | wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, | 
|  | &ordered->flags)); | 
|  |  | 
|  | /* | 
|  | * In order to keep us from losing our ordered extent | 
|  | * information when committing the transaction we have to make | 
|  | * sure that any logged extents are completed when we go to | 
|  | * commit the transaction.  To do this we simply increase the | 
|  | * current transactions pending_ordered counter and decrement it | 
|  | * when the ordered extent completes. | 
|  | */ | 
|  | if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { | 
|  | set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); | 
|  | atomic_inc(&trans->transaction->pending_ordered); | 
|  | } | 
|  | spin_unlock_irq(&tree->lock); | 
|  | } | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | spin_lock_irq(&log->log_extents_lock[index]); | 
|  | } | 
|  | spin_unlock_irq(&log->log_extents_lock[index]); | 
|  | } | 
|  |  | 
|  | void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | int index = transid % 2; | 
|  |  | 
|  | spin_lock_irq(&log->log_extents_lock[index]); | 
|  | while (!list_empty(&log->logged_list[index])) { | 
|  | ordered = list_first_entry(&log->logged_list[index], | 
|  | struct btrfs_ordered_extent, | 
|  | log_list); | 
|  | list_del_init(&ordered->log_list); | 
|  | spin_unlock_irq(&log->log_extents_lock[index]); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | spin_lock_irq(&log->log_extents_lock[index]); | 
|  | } | 
|  | spin_unlock_irq(&log->log_extents_lock[index]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used to drop a reference on an ordered extent.  This will free | 
|  | * the extent if the last reference is dropped | 
|  | */ | 
|  | void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | struct list_head *cur; | 
|  | struct btrfs_ordered_sum *sum; | 
|  |  | 
|  | trace_btrfs_ordered_extent_put(entry->inode, entry); | 
|  |  | 
|  | if (atomic_dec_and_test(&entry->refs)) { | 
|  | ASSERT(list_empty(&entry->log_list)); | 
|  | ASSERT(list_empty(&entry->trans_list)); | 
|  | ASSERT(list_empty(&entry->root_extent_list)); | 
|  | ASSERT(RB_EMPTY_NODE(&entry->rb_node)); | 
|  | if (entry->inode) | 
|  | btrfs_add_delayed_iput(entry->inode); | 
|  | while (!list_empty(&entry->list)) { | 
|  | cur = entry->list.next; | 
|  | sum = list_entry(cur, struct btrfs_ordered_sum, list); | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | } | 
|  | kmem_cache_free(btrfs_ordered_extent_cache, entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove an ordered extent from the tree.  No references are dropped | 
|  | * and waiters are woken up. | 
|  | */ | 
|  | void btrfs_remove_ordered_extent(struct inode *inode, | 
|  | struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct rb_node *node; | 
|  | bool dec_pending_ordered = false; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = &entry->rb_node; | 
|  | rb_erase(node, &tree->tree); | 
|  | RB_CLEAR_NODE(node); | 
|  | if (tree->last == node) | 
|  | tree->last = NULL; | 
|  | set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); | 
|  | if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags)) | 
|  | dec_pending_ordered = true; | 
|  | spin_unlock_irq(&tree->lock); | 
|  |  | 
|  | /* | 
|  | * The current running transaction is waiting on us, we need to let it | 
|  | * know that we're complete and wake it up. | 
|  | */ | 
|  | if (dec_pending_ordered) { | 
|  | struct btrfs_transaction *trans; | 
|  |  | 
|  | /* | 
|  | * The checks for trans are just a formality, it should be set, | 
|  | * but if it isn't we don't want to deref/assert under the spin | 
|  | * lock, so be nice and check if trans is set, but ASSERT() so | 
|  | * if it isn't set a developer will notice. | 
|  | */ | 
|  | spin_lock(&root->fs_info->trans_lock); | 
|  | trans = root->fs_info->running_transaction; | 
|  | if (trans) | 
|  | atomic_inc(&trans->use_count); | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  |  | 
|  | ASSERT(trans); | 
|  | if (trans) { | 
|  | if (atomic_dec_and_test(&trans->pending_ordered)) | 
|  | wake_up(&trans->pending_wait); | 
|  | btrfs_put_transaction(trans); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | list_del_init(&entry->root_extent_list); | 
|  | root->nr_ordered_extents--; | 
|  |  | 
|  | trace_btrfs_ordered_extent_remove(inode, entry); | 
|  |  | 
|  | if (!root->nr_ordered_extents) { | 
|  | spin_lock(&root->fs_info->ordered_root_lock); | 
|  | BUG_ON(list_empty(&root->ordered_root)); | 
|  | list_del_init(&root->ordered_root); | 
|  | spin_unlock(&root->fs_info->ordered_root_lock); | 
|  | } | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  | wake_up(&entry->wait); | 
|  | } | 
|  |  | 
|  | static void btrfs_run_ordered_extent_work(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | ordered = container_of(work, struct btrfs_ordered_extent, flush_work); | 
|  | btrfs_start_ordered_extent(ordered->inode, ordered, 1); | 
|  | complete(&ordered->completion); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait for all the ordered extents in a root.  This is done when balancing | 
|  | * space between drives. | 
|  | */ | 
|  | int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr) | 
|  | { | 
|  | struct list_head splice, works; | 
|  | struct btrfs_ordered_extent *ordered, *next; | 
|  | int count = 0; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  | INIT_LIST_HEAD(&works); | 
|  |  | 
|  | mutex_lock(&root->ordered_extent_mutex); | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | list_splice_init(&root->ordered_extents, &splice); | 
|  | while (!list_empty(&splice) && nr) { | 
|  | ordered = list_first_entry(&splice, struct btrfs_ordered_extent, | 
|  | root_extent_list); | 
|  | list_move_tail(&ordered->root_extent_list, | 
|  | &root->ordered_extents); | 
|  | atomic_inc(&ordered->refs); | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  |  | 
|  | btrfs_init_work(&ordered->flush_work, | 
|  | btrfs_flush_delalloc_helper, | 
|  | btrfs_run_ordered_extent_work, NULL, NULL); | 
|  | list_add_tail(&ordered->work_list, &works); | 
|  | btrfs_queue_work(root->fs_info->flush_workers, | 
|  | &ordered->flush_work); | 
|  |  | 
|  | cond_resched(); | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | if (nr != -1) | 
|  | nr--; | 
|  | count++; | 
|  | } | 
|  | list_splice_tail(&splice, &root->ordered_extents); | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  |  | 
|  | list_for_each_entry_safe(ordered, next, &works, work_list) { | 
|  | list_del_init(&ordered->work_list); | 
|  | wait_for_completion(&ordered->completion); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | cond_resched(); | 
|  | } | 
|  | mutex_unlock(&root->ordered_extent_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct list_head splice; | 
|  | int done; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | mutex_lock(&fs_info->ordered_operations_mutex); | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | list_splice_init(&fs_info->ordered_roots, &splice); | 
|  | while (!list_empty(&splice) && nr) { | 
|  | root = list_first_entry(&splice, struct btrfs_root, | 
|  | ordered_root); | 
|  | root = btrfs_grab_fs_root(root); | 
|  | BUG_ON(!root); | 
|  | list_move_tail(&root->ordered_root, | 
|  | &fs_info->ordered_roots); | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  |  | 
|  | done = btrfs_wait_ordered_extents(root, nr); | 
|  | btrfs_put_fs_root(root); | 
|  |  | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | if (nr != -1) { | 
|  | nr -= done; | 
|  | WARN_ON(nr < 0); | 
|  | } | 
|  | } | 
|  | list_splice_tail(&splice, &fs_info->ordered_roots); | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  | mutex_unlock(&fs_info->ordered_operations_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to start IO or wait for a given ordered extent to finish. | 
|  | * | 
|  | * If wait is one, this effectively waits on page writeback for all the pages | 
|  | * in the extent, and it waits on the io completion code to insert | 
|  | * metadata into the btree corresponding to the extent | 
|  | */ | 
|  | void btrfs_start_ordered_extent(struct inode *inode, | 
|  | struct btrfs_ordered_extent *entry, | 
|  | int wait) | 
|  | { | 
|  | u64 start = entry->file_offset; | 
|  | u64 end = start + entry->len - 1; | 
|  |  | 
|  | trace_btrfs_ordered_extent_start(inode, entry); | 
|  |  | 
|  | /* | 
|  | * pages in the range can be dirty, clean or writeback.  We | 
|  | * start IO on any dirty ones so the wait doesn't stall waiting | 
|  | * for the flusher thread to find them | 
|  | */ | 
|  | if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) | 
|  | filemap_fdatawrite_range(inode->i_mapping, start, end); | 
|  | if (wait) { | 
|  | wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, | 
|  | &entry->flags)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to wait on ordered extents across a large range of bytes. | 
|  | */ | 
|  | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) | 
|  | { | 
|  | int ret = 0; | 
|  | int ret_wb = 0; | 
|  | u64 end; | 
|  | u64 orig_end; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | if (start + len < start) { | 
|  | orig_end = INT_LIMIT(loff_t); | 
|  | } else { | 
|  | orig_end = start + len - 1; | 
|  | if (orig_end > INT_LIMIT(loff_t)) | 
|  | orig_end = INT_LIMIT(loff_t); | 
|  | } | 
|  |  | 
|  | /* start IO across the range first to instantiate any delalloc | 
|  | * extents | 
|  | */ | 
|  | ret = btrfs_fdatawrite_range(inode, start, orig_end); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If we have a writeback error don't return immediately. Wait first | 
|  | * for any ordered extents that haven't completed yet. This is to make | 
|  | * sure no one can dirty the same page ranges and call writepages() | 
|  | * before the ordered extents complete - to avoid failures (-EEXIST) | 
|  | * when adding the new ordered extents to the ordered tree. | 
|  | */ | 
|  | ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); | 
|  |  | 
|  | end = orig_end; | 
|  | while (1) { | 
|  | ordered = btrfs_lookup_first_ordered_extent(inode, end); | 
|  | if (!ordered) | 
|  | break; | 
|  | if (ordered->file_offset > orig_end) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | break; | 
|  | } | 
|  | if (ordered->file_offset + ordered->len <= start) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | break; | 
|  | } | 
|  | btrfs_start_ordered_extent(inode, ordered, 1); | 
|  | end = ordered->file_offset; | 
|  | if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) | 
|  | ret = -EIO; | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | if (ret || end == 0 || end == start) | 
|  | break; | 
|  | end--; | 
|  | } | 
|  | return ret_wb ? ret_wb : ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find an ordered extent corresponding to file_offset.  return NULL if | 
|  | * nothing is found, otherwise take a reference on the extent and return it | 
|  | */ | 
|  | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, | 
|  | u64 file_offset) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (!offset_in_entry(entry, file_offset)) | 
|  | entry = NULL; | 
|  | if (entry) | 
|  | atomic_inc(&entry->refs); | 
|  | out: | 
|  | spin_unlock_irq(&tree->lock); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Since the DIO code tries to lock a wide area we need to look for any ordered | 
|  | * extents that exist in the range, rather than just the start of the range. | 
|  | */ | 
|  | struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, | 
|  | u64 file_offset, | 
|  | u64 len) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) { | 
|  | node = tree_search(tree, file_offset + len); | 
|  | if (!node) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (range_overlaps(entry, file_offset, len)) | 
|  | break; | 
|  |  | 
|  | if (entry->file_offset >= file_offset + len) { | 
|  | entry = NULL; | 
|  | break; | 
|  | } | 
|  | entry = NULL; | 
|  | node = rb_next(node); | 
|  | if (!node) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | if (entry) | 
|  | atomic_inc(&entry->refs); | 
|  | spin_unlock_irq(&tree->lock); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | bool btrfs_have_ordered_extents_in_range(struct inode *inode, | 
|  | u64 file_offset, | 
|  | u64 len) | 
|  | { | 
|  | struct btrfs_ordered_extent *oe; | 
|  |  | 
|  | oe = btrfs_lookup_ordered_range(inode, file_offset, len); | 
|  | if (oe) { | 
|  | btrfs_put_ordered_extent(oe); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lookup and return any extent before 'file_offset'.  NULL is returned | 
|  | * if none is found | 
|  | */ | 
|  | struct btrfs_ordered_extent * | 
|  | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | spin_lock_irq(&tree->lock); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | atomic_inc(&entry->refs); | 
|  | out: | 
|  | spin_unlock_irq(&tree->lock); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After an extent is done, call this to conditionally update the on disk | 
|  | * i_size.  i_size is updated to cover any fully written part of the file. | 
|  | */ | 
|  | int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, | 
|  | struct btrfs_ordered_extent *ordered) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
|  | u64 disk_i_size; | 
|  | u64 new_i_size; | 
|  | u64 i_size = i_size_read(inode); | 
|  | struct rb_node *node; | 
|  | struct rb_node *prev = NULL; | 
|  | struct btrfs_ordered_extent *test; | 
|  | int ret = 1; | 
|  |  | 
|  | spin_lock_irq(&tree->lock); | 
|  | if (ordered) { | 
|  | offset = entry_end(ordered); | 
|  | if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) | 
|  | offset = min(offset, | 
|  | ordered->file_offset + | 
|  | ordered->truncated_len); | 
|  | } else { | 
|  | offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); | 
|  | } | 
|  | disk_i_size = BTRFS_I(inode)->disk_i_size; | 
|  |  | 
|  | /* truncate file */ | 
|  | if (disk_i_size > i_size) { | 
|  | BTRFS_I(inode)->disk_i_size = i_size; | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the disk i_size is already at the inode->i_size, or | 
|  | * this ordered extent is inside the disk i_size, we're done | 
|  | */ | 
|  | if (disk_i_size == i_size) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We still need to update disk_i_size if outstanding_isize is greater | 
|  | * than disk_i_size. | 
|  | */ | 
|  | if (offset <= disk_i_size && | 
|  | (!ordered || ordered->outstanding_isize <= disk_i_size)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * walk backward from this ordered extent to disk_i_size. | 
|  | * if we find an ordered extent then we can't update disk i_size | 
|  | * yet | 
|  | */ | 
|  | if (ordered) { | 
|  | node = rb_prev(&ordered->rb_node); | 
|  | } else { | 
|  | prev = tree_search(tree, offset); | 
|  | /* | 
|  | * we insert file extents without involving ordered struct, | 
|  | * so there should be no ordered struct cover this offset | 
|  | */ | 
|  | if (prev) { | 
|  | test = rb_entry(prev, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | BUG_ON(offset_in_entry(test, offset)); | 
|  | } | 
|  | node = prev; | 
|  | } | 
|  | for (; node; node = rb_prev(node)) { | 
|  | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  |  | 
|  | /* We treat this entry as if it doesnt exist */ | 
|  | if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) | 
|  | continue; | 
|  | if (test->file_offset + test->len <= disk_i_size) | 
|  | break; | 
|  | if (test->file_offset >= i_size) | 
|  | break; | 
|  | if (entry_end(test) > disk_i_size) { | 
|  | /* | 
|  | * we don't update disk_i_size now, so record this | 
|  | * undealt i_size. Or we will not know the real | 
|  | * i_size. | 
|  | */ | 
|  | if (test->outstanding_isize < offset) | 
|  | test->outstanding_isize = offset; | 
|  | if (ordered && | 
|  | ordered->outstanding_isize > | 
|  | test->outstanding_isize) | 
|  | test->outstanding_isize = | 
|  | ordered->outstanding_isize; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | new_i_size = min_t(u64, offset, i_size); | 
|  |  | 
|  | /* | 
|  | * Some ordered extents may completed before the current one, and | 
|  | * we hold the real i_size in ->outstanding_isize. | 
|  | */ | 
|  | if (ordered && ordered->outstanding_isize > new_i_size) | 
|  | new_i_size = min_t(u64, ordered->outstanding_isize, i_size); | 
|  | BTRFS_I(inode)->disk_i_size = new_i_size; | 
|  | ret = 0; | 
|  | out: | 
|  | /* | 
|  | * We need to do this because we can't remove ordered extents until | 
|  | * after the i_disk_size has been updated and then the inode has been | 
|  | * updated to reflect the change, so we need to tell anybody who finds | 
|  | * this ordered extent that we've already done all the real work, we | 
|  | * just haven't completed all the other work. | 
|  | */ | 
|  | if (ordered) | 
|  | set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); | 
|  | spin_unlock_irq(&tree->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search the ordered extents for one corresponding to 'offset' and | 
|  | * try to find a checksum.  This is used because we allow pages to | 
|  | * be reclaimed before their checksum is actually put into the btree | 
|  | */ | 
|  | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, | 
|  | u32 *sum, int len) | 
|  | { | 
|  | struct btrfs_ordered_sum *ordered_sum; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
|  | unsigned long num_sectors; | 
|  | unsigned long i; | 
|  | u32 sectorsize = BTRFS_I(inode)->root->sectorsize; | 
|  | int index = 0; | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_extent(inode, offset); | 
|  | if (!ordered) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irq(&tree->lock); | 
|  | list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { | 
|  | if (disk_bytenr >= ordered_sum->bytenr && | 
|  | disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { | 
|  | i = (disk_bytenr - ordered_sum->bytenr) >> | 
|  | inode->i_sb->s_blocksize_bits; | 
|  | num_sectors = ordered_sum->len >> | 
|  | inode->i_sb->s_blocksize_bits; | 
|  | num_sectors = min_t(int, len - index, num_sectors - i); | 
|  | memcpy(sum + index, ordered_sum->sums + i, | 
|  | num_sectors); | 
|  |  | 
|  | index += (int)num_sectors; | 
|  | if (index == len) | 
|  | goto out; | 
|  | disk_bytenr += num_sectors * sectorsize; | 
|  | } | 
|  | } | 
|  | out: | 
|  | spin_unlock_irq(&tree->lock); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | return index; | 
|  | } | 
|  |  | 
|  | int __init ordered_data_init(void) | 
|  | { | 
|  | btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", | 
|  | sizeof(struct btrfs_ordered_extent), 0, | 
|  | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, | 
|  | NULL); | 
|  | if (!btrfs_ordered_extent_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ordered_data_exit(void) | 
|  | { | 
|  | if (btrfs_ordered_extent_cache) | 
|  | kmem_cache_destroy(btrfs_ordered_extent_cache); | 
|  | } |