blob: beb944fa6fd4692fddad8875ef16fb2469c8ab74 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* page_fault_test.c - Test stage 2 faults.
*
* This test tries different combinations of guest accesses (e.g., write,
* S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
* hugetlbfs with a hole). It checks that the expected handling method is
* called (e.g., uffd faults with the right address and write/read flag).
*/
#define _GNU_SOURCE
#include <linux/bitmap.h>
#include <fcntl.h>
#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#include <asm/sysreg.h>
#include <linux/bitfield.h>
#include "guest_modes.h"
#include "userfaultfd_util.h"
/* Guest virtual addresses that point to the test page and its PTE. */
#define TEST_GVA 0xc0000000
#define TEST_EXEC_GVA (TEST_GVA + 0x8)
#define TEST_PTE_GVA 0xb0000000
#define TEST_DATA 0x0123456789ABCDEF
static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
#define CMD_NONE (0)
#define CMD_SKIP_TEST (1ULL << 1)
#define CMD_HOLE_PT (1ULL << 2)
#define CMD_HOLE_DATA (1ULL << 3)
#define CMD_CHECK_WRITE_IN_DIRTY_LOG (1ULL << 4)
#define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG (1ULL << 5)
#define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG (1ULL << 6)
#define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG (1ULL << 7)
#define CMD_SET_PTE_AF (1ULL << 8)
#define PREPARE_FN_NR 10
#define CHECK_FN_NR 10
static struct event_cnt {
int mmio_exits;
int fail_vcpu_runs;
int uffd_faults;
/* uffd_faults is incremented from multiple threads. */
pthread_mutex_t uffd_faults_mutex;
} events;
struct test_desc {
const char *name;
uint64_t mem_mark_cmd;
/* Skip the test if any prepare function returns false */
bool (*guest_prepare[PREPARE_FN_NR])(void);
void (*guest_test)(void);
void (*guest_test_check[CHECK_FN_NR])(void);
uffd_handler_t uffd_pt_handler;
uffd_handler_t uffd_data_handler;
void (*dabt_handler)(struct ex_regs *regs);
void (*iabt_handler)(struct ex_regs *regs);
void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
void (*fail_vcpu_run_handler)(int ret);
uint32_t pt_memslot_flags;
uint32_t data_memslot_flags;
bool skip;
struct event_cnt expected_events;
};
struct test_params {
enum vm_mem_backing_src_type src_type;
struct test_desc *test_desc;
};
static inline void flush_tlb_page(uint64_t vaddr)
{
uint64_t page = vaddr >> 12;
dsb(ishst);
asm volatile("tlbi vaae1is, %0" :: "r" (page));
dsb(ish);
isb();
}
static void guest_write64(void)
{
uint64_t val;
WRITE_ONCE(*guest_test_memory, TEST_DATA);
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, TEST_DATA);
}
/* Check the system for atomic instructions. */
static bool guest_check_lse(void)
{
uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
uint64_t atomic;
atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_ATOMICS), isar0);
return atomic >= 2;
}
static bool guest_check_dc_zva(void)
{
uint64_t dczid = read_sysreg(dczid_el0);
uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_DZP), dczid);
return dzp == 0;
}
/* Compare and swap instruction. */
static void guest_cas(void)
{
uint64_t val;
GUEST_ASSERT(guest_check_lse());
asm volatile(".arch_extension lse\n"
"casal %0, %1, [%2]\n"
:: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, TEST_DATA);
}
static void guest_read64(void)
{
uint64_t val;
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, 0);
}
/* Address translation instruction */
static void guest_at(void)
{
uint64_t par;
asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
par = read_sysreg(par_el1);
isb();
/* Bit 1 indicates whether the AT was successful */
GUEST_ASSERT_EQ(par & 1, 0);
}
/*
* The size of the block written by "dc zva" is guaranteed to be between (2 <<
* 0) and (2 << 9), which is safe in our case as we need the write to happen
* for at least a word, and not more than a page.
*/
static void guest_dc_zva(void)
{
uint16_t val;
asm volatile("dc zva, %0" :: "r" (guest_test_memory));
dsb(ish);
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, 0);
}
/*
* Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
* And that's special because KVM must take special care with those: they
* should still count as accesses for dirty logging or user-faulting, but
* should be handled differently on mmio.
*/
static void guest_ld_preidx(void)
{
uint64_t val;
uint64_t addr = TEST_GVA - 8;
/*
* This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
* in a gap between memslots not backing by anything.
*/
asm volatile("ldr %0, [%1, #8]!"
: "=r" (val), "+r" (addr));
GUEST_ASSERT_EQ(val, 0);
GUEST_ASSERT_EQ(addr, TEST_GVA);
}
static void guest_st_preidx(void)
{
uint64_t val = TEST_DATA;
uint64_t addr = TEST_GVA - 8;
asm volatile("str %0, [%1, #8]!"
: "+r" (val), "+r" (addr));
GUEST_ASSERT_EQ(addr, TEST_GVA);
val = READ_ONCE(*guest_test_memory);
}
static bool guest_set_ha(void)
{
uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
uint64_t hadbs, tcr;
/* Skip if HA is not supported. */
hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_HADBS), mmfr1);
if (hadbs == 0)
return false;
tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
write_sysreg(tcr, tcr_el1);
isb();
return true;
}
static bool guest_clear_pte_af(void)
{
*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
flush_tlb_page(TEST_GVA);
return true;
}
static void guest_check_pte_af(void)
{
dsb(ish);
GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
}
static void guest_check_write_in_dirty_log(void)
{
GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
}
static void guest_check_no_write_in_dirty_log(void)
{
GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
}
static void guest_check_s1ptw_wr_in_dirty_log(void)
{
GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
}
static void guest_exec(void)
{
int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
int ret;
ret = code();
GUEST_ASSERT_EQ(ret, 0x77);
}
static bool guest_prepare(struct test_desc *test)
{
bool (*prepare_fn)(void);
int i;
for (i = 0; i < PREPARE_FN_NR; i++) {
prepare_fn = test->guest_prepare[i];
if (prepare_fn && !prepare_fn())
return false;
}
return true;
}
static void guest_test_check(struct test_desc *test)
{
void (*check_fn)(void);
int i;
for (i = 0; i < CHECK_FN_NR; i++) {
check_fn = test->guest_test_check[i];
if (check_fn)
check_fn();
}
}
static void guest_code(struct test_desc *test)
{
if (!guest_prepare(test))
GUEST_SYNC(CMD_SKIP_TEST);
GUEST_SYNC(test->mem_mark_cmd);
if (test->guest_test)
test->guest_test();
guest_test_check(test);
GUEST_DONE();
}
static void no_dabt_handler(struct ex_regs *regs)
{
GUEST_ASSERT_1(false, read_sysreg(far_el1));
}
static void no_iabt_handler(struct ex_regs *regs)
{
GUEST_ASSERT_1(false, regs->pc);
}
static struct uffd_args {
char *copy;
void *hva;
uint64_t paging_size;
} pt_args, data_args;
/* Returns true to continue the test, and false if it should be skipped. */
static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
struct uffd_args *args, bool expect_write)
{
uint64_t addr = msg->arg.pagefault.address;
uint64_t flags = msg->arg.pagefault.flags;
struct uffdio_copy copy;
int ret;
TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
"The only expected UFFD mode is MISSING");
ASSERT_EQ(!!(flags & UFFD_PAGEFAULT_FLAG_WRITE), expect_write);
ASSERT_EQ(addr, (uint64_t)args->hva);
pr_debug("uffd fault: addr=%p write=%d\n",
(void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
copy.src = (uint64_t)args->copy;
copy.dst = addr;
copy.len = args->paging_size;
copy.mode = 0;
ret = ioctl(uffd, UFFDIO_COPY, &copy);
if (ret == -1) {
pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
addr, errno);
return ret;
}
pthread_mutex_lock(&events.uffd_faults_mutex);
events.uffd_faults += 1;
pthread_mutex_unlock(&events.uffd_faults_mutex);
return 0;
}
static int uffd_pt_write_handler(int mode, int uffd, struct uffd_msg *msg)
{
return uffd_generic_handler(mode, uffd, msg, &pt_args, true);
}
static int uffd_data_write_handler(int mode, int uffd, struct uffd_msg *msg)
{
return uffd_generic_handler(mode, uffd, msg, &data_args, true);
}
static int uffd_data_read_handler(int mode, int uffd, struct uffd_msg *msg)
{
return uffd_generic_handler(mode, uffd, msg, &data_args, false);
}
static void setup_uffd_args(struct userspace_mem_region *region,
struct uffd_args *args)
{
args->hva = (void *)region->region.userspace_addr;
args->paging_size = region->region.memory_size;
args->copy = malloc(args->paging_size);
TEST_ASSERT(args->copy, "Failed to allocate data copy.");
memcpy(args->copy, args->hva, args->paging_size);
}
static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
{
struct test_desc *test = p->test_desc;
int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
*pt_uffd = NULL;
if (test->uffd_pt_handler)
*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
pt_args.hva,
pt_args.paging_size,
test->uffd_pt_handler);
*data_uffd = NULL;
if (test->uffd_data_handler)
*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
data_args.hva,
data_args.paging_size,
test->uffd_data_handler);
}
static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
struct uffd_desc *data_uffd)
{
if (test->uffd_pt_handler)
uffd_stop_demand_paging(pt_uffd);
if (test->uffd_data_handler)
uffd_stop_demand_paging(data_uffd);
free(pt_args.copy);
free(data_args.copy);
}
static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
{
TEST_FAIL("There was no UFFD fault expected.");
return -1;
}
/* Returns false if the test should be skipped. */
static bool punch_hole_in_backing_store(struct kvm_vm *vm,
struct userspace_mem_region *region)
{
void *hva = (void *)region->region.userspace_addr;
uint64_t paging_size = region->region.memory_size;
int ret, fd = region->fd;
if (fd != -1) {
ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
0, paging_size);
TEST_ASSERT(ret == 0, "fallocate failed\n");
} else {
ret = madvise(hva, paging_size, MADV_DONTNEED);
TEST_ASSERT(ret == 0, "madvise failed\n");
}
return true;
}
static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
{
struct userspace_mem_region *region;
void *hva;
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
hva = (void *)region->region.userspace_addr;
ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
memcpy(hva, run->mmio.data, run->mmio.len);
events.mmio_exits += 1;
}
static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
{
uint64_t data;
memcpy(&data, run->mmio.data, sizeof(data));
pr_debug("addr=%lld len=%d w=%d data=%lx\n",
run->mmio.phys_addr, run->mmio.len,
run->mmio.is_write, data);
TEST_FAIL("There was no MMIO exit expected.");
}
static bool check_write_in_dirty_log(struct kvm_vm *vm,
struct userspace_mem_region *region,
uint64_t host_pg_nr)
{
unsigned long *bmap;
bool first_page_dirty;
uint64_t size = region->region.memory_size;
/* getpage_size() is not always equal to vm->page_size */
bmap = bitmap_zalloc(size / getpagesize());
kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
first_page_dirty = test_bit(host_pg_nr, bmap);
free(bmap);
return first_page_dirty;
}
/* Returns true to continue the test, and false if it should be skipped. */
static bool handle_cmd(struct kvm_vm *vm, int cmd)
{
struct userspace_mem_region *data_region, *pt_region;
bool continue_test = true;
data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
if (cmd == CMD_SKIP_TEST)
continue_test = false;
if (cmd & CMD_HOLE_PT)
continue_test = punch_hole_in_backing_store(vm, pt_region);
if (cmd & CMD_HOLE_DATA)
continue_test = punch_hole_in_backing_store(vm, data_region);
if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
"Missing write in dirty log");
if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, 0),
"Missing s1ptw write in dirty log");
if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
"Unexpected write in dirty log");
if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, 0),
"Unexpected s1ptw write in dirty log");
return continue_test;
}
void fail_vcpu_run_no_handler(int ret)
{
TEST_FAIL("Unexpected vcpu run failure\n");
}
void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
{
TEST_ASSERT(errno == ENOSYS,
"The mmio handler should have returned not implemented.");
events.fail_vcpu_runs += 1;
}
typedef uint32_t aarch64_insn_t;
extern aarch64_insn_t __exec_test[2];
noinline void __return_0x77(void)
{
asm volatile("__exec_test: mov x0, #0x77\n"
"ret\n");
}
/*
* Note that this function runs on the host before the test VM starts: there's
* no need to sync the D$ and I$ caches.
*/
static void load_exec_code_for_test(struct kvm_vm *vm)
{
uint64_t *code;
struct userspace_mem_region *region;
void *hva;
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
hva = (void *)region->region.userspace_addr;
assert(TEST_EXEC_GVA > TEST_GVA);
code = hva + TEST_EXEC_GVA - TEST_GVA;
memcpy(code, __exec_test, sizeof(__exec_test));
}
static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
struct test_desc *test)
{
vm_init_descriptor_tables(vm);
vcpu_init_descriptor_tables(vcpu);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_DABT, no_dabt_handler);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_IABT, no_iabt_handler);
}
static void setup_gva_maps(struct kvm_vm *vm)
{
struct userspace_mem_region *region;
uint64_t pte_gpa;
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
/* Map TEST_GVA first. This will install a new PTE. */
virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
/* Then map TEST_PTE_GVA to the above PTE. */
pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
}
enum pf_test_memslots {
CODE_AND_DATA_MEMSLOT,
PAGE_TABLE_MEMSLOT,
TEST_DATA_MEMSLOT,
};
/*
* Create a memslot for code and data at pfn=0, and test-data and PT ones
* at max_gfn.
*/
static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
{
uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
uint64_t guest_page_size = vm->page_size;
uint64_t max_gfn = vm_compute_max_gfn(vm);
/* Enough for 2M of code when using 4K guest pages. */
uint64_t code_npages = 512;
uint64_t pt_size, data_size, data_gpa;
/*
* This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
* VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs. That's 13
* pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
* twice that just in case.
*/
pt_size = 26 * guest_page_size;
/* memslot sizes and gpa's must be aligned to the backing page size */
pt_size = align_up(pt_size, backing_src_pagesz);
data_size = align_up(guest_page_size, backing_src_pagesz);
data_gpa = (max_gfn * guest_page_size) - data_size;
data_gpa = align_down(data_gpa, backing_src_pagesz);
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
CODE_AND_DATA_MEMSLOT, code_npages, 0);
vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
p->test_desc->pt_memslot_flags);
vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
data_size / guest_page_size,
p->test_desc->data_memslot_flags);
vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
}
static void setup_ucall(struct kvm_vm *vm)
{
struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
}
static void setup_default_handlers(struct test_desc *test)
{
if (!test->mmio_handler)
test->mmio_handler = mmio_no_handler;
if (!test->fail_vcpu_run_handler)
test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
}
static void check_event_counts(struct test_desc *test)
{
ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
}
static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
{
struct test_desc *test = p->test_desc;
pr_debug("Test: %s\n", test->name);
pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
pr_debug("Testing memory backing src type: %s\n",
vm_mem_backing_src_alias(p->src_type)->name);
}
static void reset_event_counts(void)
{
memset(&events, 0, sizeof(events));
}
/*
* This function either succeeds, skips the test (after setting test->skip), or
* fails with a TEST_FAIL that aborts all tests.
*/
static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
struct test_desc *test)
{
struct kvm_run *run;
struct ucall uc;
int ret;
run = vcpu->run;
for (;;) {
ret = _vcpu_run(vcpu);
if (ret) {
test->fail_vcpu_run_handler(ret);
goto done;
}
switch (get_ucall(vcpu, &uc)) {
case UCALL_SYNC:
if (!handle_cmd(vm, uc.args[1])) {
test->skip = true;
goto done;
}
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT_2(uc, "values: %#lx, %#lx");
break;
case UCALL_DONE:
goto done;
case UCALL_NONE:
if (run->exit_reason == KVM_EXIT_MMIO)
test->mmio_handler(vm, run);
break;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
}
}
done:
pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
}
static void run_test(enum vm_guest_mode mode, void *arg)
{
struct test_params *p = (struct test_params *)arg;
struct test_desc *test = p->test_desc;
struct kvm_vm *vm;
struct kvm_vcpu *vcpu;
struct uffd_desc *pt_uffd, *data_uffd;
print_test_banner(mode, p);
vm = ____vm_create(mode);
setup_memslots(vm, p);
kvm_vm_elf_load(vm, program_invocation_name);
setup_ucall(vm);
vcpu = vm_vcpu_add(vm, 0, guest_code);
setup_gva_maps(vm);
reset_event_counts();
/*
* Set some code in the data memslot for the guest to execute (only
* applicable to the EXEC tests). This has to be done before
* setup_uffd() as that function copies the memslot data for the uffd
* handler.
*/
load_exec_code_for_test(vm);
setup_uffd(vm, p, &pt_uffd, &data_uffd);
setup_abort_handlers(vm, vcpu, test);
setup_default_handlers(test);
vcpu_args_set(vcpu, 1, test);
vcpu_run_loop(vm, vcpu, test);
kvm_vm_free(vm);
free_uffd(test, pt_uffd, data_uffd);
/*
* Make sure we check the events after the uffd threads have exited,
* which means they updated their respective event counters.
*/
if (!test->skip)
check_event_counts(test);
}
static void help(char *name)
{
puts("");
printf("usage: %s [-h] [-s mem-type]\n", name);
puts("");
guest_modes_help();
backing_src_help("-s");
puts("");
}
#define SNAME(s) #s
#define SCAT2(a, b) SNAME(a ## _ ## b)
#define SCAT3(a, b, c) SCAT2(a, SCAT2(b, c))
#define SCAT4(a, b, c, d) SCAT2(a, SCAT3(b, c, d))
#define _CHECK(_test) _CHECK_##_test
#define _PREPARE(_test) _PREPARE_##_test
#define _PREPARE_guest_read64 NULL
#define _PREPARE_guest_ld_preidx NULL
#define _PREPARE_guest_write64 NULL
#define _PREPARE_guest_st_preidx NULL
#define _PREPARE_guest_exec NULL
#define _PREPARE_guest_at NULL
#define _PREPARE_guest_dc_zva guest_check_dc_zva
#define _PREPARE_guest_cas guest_check_lse
/* With or without access flag checks */
#define _PREPARE_with_af guest_set_ha, guest_clear_pte_af
#define _PREPARE_no_af NULL
#define _CHECK_with_af guest_check_pte_af
#define _CHECK_no_af NULL
/* Performs an access and checks that no faults were triggered. */
#define TEST_ACCESS(_access, _with_af, _mark_cmd) \
{ \
.name = SCAT3(_access, _with_af, #_mark_cmd), \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.mem_mark_cmd = _mark_cmd, \
.guest_test = _access, \
.guest_test_check = { _CHECK(_with_af) }, \
.expected_events = { 0 }, \
}
#define TEST_UFFD(_access, _with_af, _mark_cmd, \
_uffd_data_handler, _uffd_pt_handler, _uffd_faults) \
{ \
.name = SCAT4(uffd, _access, _with_af, #_mark_cmd), \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.guest_test = _access, \
.mem_mark_cmd = _mark_cmd, \
.guest_test_check = { _CHECK(_with_af) }, \
.uffd_data_handler = _uffd_data_handler, \
.uffd_pt_handler = _uffd_pt_handler, \
.expected_events = { .uffd_faults = _uffd_faults, }, \
}
#define TEST_DIRTY_LOG(_access, _with_af, _test_check) \
{ \
.name = SCAT3(dirty_log, _access, _with_af), \
.data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.guest_test = _access, \
.guest_test_check = { _CHECK(_with_af), _test_check, \
guest_check_s1ptw_wr_in_dirty_log}, \
.expected_events = { 0 }, \
}
#define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler, \
_uffd_faults, _test_check) \
{ \
.name = SCAT3(uffd_and_dirty_log, _access, _with_af), \
.data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.guest_test = _access, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
.guest_test_check = { _CHECK(_with_af), _test_check }, \
.uffd_data_handler = _uffd_data_handler, \
.uffd_pt_handler = uffd_pt_write_handler, \
.expected_events = { .uffd_faults = _uffd_faults, }, \
}
#define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits) \
{ \
.name = SCAT3(ro_memslot, _access, _with_af), \
.data_memslot_flags = KVM_MEM_READONLY, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.mmio_handler = _mmio_handler, \
.expected_events = { .mmio_exits = _mmio_exits }, \
}
#define TEST_RO_MEMSLOT_NO_SYNDROME(_access) \
{ \
.name = SCAT2(ro_memslot_no_syndrome, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
.guest_test = _access, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
.expected_events = { .fail_vcpu_runs = 1 }, \
}
#define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits, \
_test_check) \
{ \
.name = SCAT3(ro_memslot, _access, _with_af), \
.data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
.pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.guest_test_check = { _test_check }, \
.mmio_handler = _mmio_handler, \
.expected_events = { .mmio_exits = _mmio_exits}, \
}
#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check) \
{ \
.name = SCAT2(ro_memslot_no_syn_and_dlog, _access), \
.data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
.pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.guest_test = _access, \
.guest_test_check = { _test_check }, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
.expected_events = { .fail_vcpu_runs = 1 }, \
}
#define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits, \
_uffd_data_handler, _uffd_faults) \
{ \
.name = SCAT2(ro_memslot_uffd, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.uffd_data_handler = _uffd_data_handler, \
.uffd_pt_handler = uffd_pt_write_handler, \
.mmio_handler = _mmio_handler, \
.expected_events = { .mmio_exits = _mmio_exits, \
.uffd_faults = _uffd_faults }, \
}
#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler, \
_uffd_faults) \
{ \
.name = SCAT2(ro_memslot_no_syndrome, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
.guest_test = _access, \
.uffd_data_handler = _uffd_data_handler, \
.uffd_pt_handler = uffd_pt_write_handler, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
.expected_events = { .fail_vcpu_runs = 1, \
.uffd_faults = _uffd_faults }, \
}
static struct test_desc tests[] = {
/* Check that HW is setting the Access Flag (AF) (sanity checks). */
TEST_ACCESS(guest_read64, with_af, CMD_NONE),
TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
TEST_ACCESS(guest_cas, with_af, CMD_NONE),
TEST_ACCESS(guest_write64, with_af, CMD_NONE),
TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
TEST_ACCESS(guest_exec, with_af, CMD_NONE),
/*
* Punch a hole in the data backing store, and then try multiple
* accesses: reads should rturn zeroes, and writes should
* re-populate the page. Moreover, the test also check that no
* exception was generated in the guest. Note that this
* reading/writing behavior is the same as reading/writing a
* punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
* userspace.
*/
TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
/*
* Punch holes in the data and PT backing stores and mark them for
* userfaultfd handling. This should result in 2 faults: the access
* on the data backing store, and its respective S1 page table walk
* (S1PTW).
*/
TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_read_handler, uffd_pt_write_handler, 2),
/* no_af should also lead to a PT write. */
TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_read_handler, uffd_pt_write_handler, 2),
/* Note how that cas invokes the read handler. */
TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_read_handler, uffd_pt_write_handler, 2),
/*
* Can't test guest_at with_af as it's IMPDEF whether the AF is set.
* The S1PTW fault should still be marked as a write.
*/
TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_read_handler, uffd_pt_write_handler, 1),
TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_read_handler, uffd_pt_write_handler, 2),
TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_write_handler, uffd_pt_write_handler, 2),
TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_write_handler, uffd_pt_write_handler, 2),
TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_write_handler, uffd_pt_write_handler, 2),
TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_read_handler, uffd_pt_write_handler, 2),
/*
* Try accesses when the data and PT memory regions are both
* tracked for dirty logging.
*/
TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log),
/* no_af should also lead to a PT write. */
TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log),
TEST_DIRTY_LOG(guest_ld_preidx, with_af, guest_check_no_write_in_dirty_log),
TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log),
TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log),
TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log),
TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log),
TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log),
TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log),
/*
* Access when the data and PT memory regions are both marked for
* dirty logging and UFFD at the same time. The expected result is
* that writes should mark the dirty log and trigger a userfaultfd
* write fault. Reads/execs should result in a read userfaultfd
* fault, and nothing in the dirty log. Any S1PTW should result in
* a write in the dirty log and a userfaultfd write.
*/
TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af, uffd_data_read_handler, 2,
guest_check_no_write_in_dirty_log),
/* no_af should also lead to a PT write. */
TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af, uffd_data_read_handler, 2,
guest_check_no_write_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af, uffd_data_read_handler,
2, guest_check_no_write_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, 0, 1,
guest_check_no_write_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af, uffd_data_read_handler, 2,
guest_check_no_write_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af, uffd_data_write_handler,
2, guest_check_write_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af, uffd_data_read_handler, 2,
guest_check_write_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af, uffd_data_write_handler,
2, guest_check_write_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
uffd_data_write_handler, 2,
guest_check_write_in_dirty_log),
/*
* Try accesses when the data memory region is marked read-only
* (with KVM_MEM_READONLY). Writes with a syndrome result in an
* MMIO exit, writes with no syndrome (e.g., CAS) result in a
* failed vcpu run, and reads/execs with and without syndroms do
* not fault.
*/
TEST_RO_MEMSLOT(guest_read64, 0, 0),
TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
TEST_RO_MEMSLOT(guest_at, 0, 0),
TEST_RO_MEMSLOT(guest_exec, 0, 0),
TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
/*
* Access when both the data region is both read-only and marked
* for dirty logging at the same time. The expected result is that
* for writes there should be no write in the dirty log. The
* readonly handling is the same as if the memslot was not marked
* for dirty logging: writes with a syndrome result in an MMIO
* exit, and writes with no syndrome result in a failed vcpu run.
*/
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1, guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
guest_check_no_write_in_dirty_log),
/*
* Access when the data region is both read-only and punched with
* holes tracked with userfaultfd. The expected result is the
* union of both userfaultfd and read-only behaviors. For example,
* write accesses result in a userfaultfd write fault and an MMIO
* exit. Writes with no syndrome result in a failed vcpu run and
* no userfaultfd write fault. Reads result in userfaultfd getting
* triggered.
*/
TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0,
uffd_data_read_handler, 2),
TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0,
uffd_data_read_handler, 2),
TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0,
uffd_no_handler, 1),
TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0,
uffd_data_read_handler, 2),
TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
uffd_data_write_handler, 2),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas,
uffd_data_read_handler, 2),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva,
uffd_no_handler, 1),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx,
uffd_no_handler, 1),
{ 0 }
};
static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
{
struct test_desc *t;
for (t = &tests[0]; t->name; t++) {
if (t->skip)
continue;
struct test_params p = {
.src_type = src_type,
.test_desc = t,
};
for_each_guest_mode(run_test, &p);
}
}
int main(int argc, char *argv[])
{
enum vm_mem_backing_src_type src_type;
int opt;
setbuf(stdout, NULL);
src_type = DEFAULT_VM_MEM_SRC;
while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
switch (opt) {
case 'm':
guest_modes_cmdline(optarg);
break;
case 's':
src_type = parse_backing_src_type(optarg);
break;
case 'h':
default:
help(argv[0]);
exit(0);
}
}
for_each_test_and_guest_mode(src_type);
return 0;
}