|  | /* Maintain an RxRPC server socket to do AFS communications through | 
|  | * | 
|  | * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. | 
|  | * Written by David Howells (dhowells@redhat.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched/signal.h> | 
|  |  | 
|  | #include <net/sock.h> | 
|  | #include <net/af_rxrpc.h> | 
|  | #include "internal.h" | 
|  | #include "afs_cm.h" | 
|  |  | 
|  | struct workqueue_struct *afs_async_calls; | 
|  |  | 
|  | static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); | 
|  | static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *); | 
|  | static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); | 
|  | static void afs_process_async_call(struct work_struct *); | 
|  | static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); | 
|  | static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); | 
|  | static int afs_deliver_cm_op_id(struct afs_call *); | 
|  |  | 
|  | /* asynchronous incoming call initial processing */ | 
|  | static const struct afs_call_type afs_RXCMxxxx = { | 
|  | .name		= "CB.xxxx", | 
|  | .deliver	= afs_deliver_cm_op_id, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * open an RxRPC socket and bind it to be a server for callback notifications | 
|  | * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT | 
|  | */ | 
|  | int afs_open_socket(struct afs_net *net) | 
|  | { | 
|  | struct sockaddr_rxrpc srx; | 
|  | struct socket *socket; | 
|  | unsigned int min_level; | 
|  | int ret; | 
|  |  | 
|  | _enter(""); | 
|  |  | 
|  | ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); | 
|  | if (ret < 0) | 
|  | goto error_1; | 
|  |  | 
|  | socket->sk->sk_allocation = GFP_NOFS; | 
|  |  | 
|  | /* bind the callback manager's address to make this a server socket */ | 
|  | memset(&srx, 0, sizeof(srx)); | 
|  | srx.srx_family			= AF_RXRPC; | 
|  | srx.srx_service			= CM_SERVICE; | 
|  | srx.transport_type		= SOCK_DGRAM; | 
|  | srx.transport_len		= sizeof(srx.transport.sin6); | 
|  | srx.transport.sin6.sin6_family	= AF_INET6; | 
|  | srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT); | 
|  |  | 
|  | min_level = RXRPC_SECURITY_ENCRYPT; | 
|  | ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, | 
|  | (void *)&min_level, sizeof(min_level)); | 
|  | if (ret < 0) | 
|  | goto error_2; | 
|  |  | 
|  | ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); | 
|  | if (ret == -EADDRINUSE) { | 
|  | srx.transport.sin6.sin6_port = 0; | 
|  | ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto error_2; | 
|  |  | 
|  | rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, | 
|  | afs_rx_discard_new_call); | 
|  |  | 
|  | ret = kernel_listen(socket, INT_MAX); | 
|  | if (ret < 0) | 
|  | goto error_2; | 
|  |  | 
|  | net->socket = socket; | 
|  | afs_charge_preallocation(&net->charge_preallocation_work); | 
|  | _leave(" = 0"); | 
|  | return 0; | 
|  |  | 
|  | error_2: | 
|  | sock_release(socket); | 
|  | error_1: | 
|  | _leave(" = %d", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * close the RxRPC socket AFS was using | 
|  | */ | 
|  | void afs_close_socket(struct afs_net *net) | 
|  | { | 
|  | _enter(""); | 
|  |  | 
|  | kernel_listen(net->socket, 0); | 
|  | flush_workqueue(afs_async_calls); | 
|  |  | 
|  | if (net->spare_incoming_call) { | 
|  | afs_put_call(net->spare_incoming_call); | 
|  | net->spare_incoming_call = NULL; | 
|  | } | 
|  |  | 
|  | _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); | 
|  | wait_var_event(&net->nr_outstanding_calls, | 
|  | !atomic_read(&net->nr_outstanding_calls)); | 
|  | _debug("no outstanding calls"); | 
|  |  | 
|  | kernel_sock_shutdown(net->socket, SHUT_RDWR); | 
|  | flush_workqueue(afs_async_calls); | 
|  | sock_release(net->socket); | 
|  |  | 
|  | _debug("dework"); | 
|  | _leave(""); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a call. | 
|  | */ | 
|  | static struct afs_call *afs_alloc_call(struct afs_net *net, | 
|  | const struct afs_call_type *type, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct afs_call *call; | 
|  | int o; | 
|  |  | 
|  | call = kzalloc(sizeof(*call), gfp); | 
|  | if (!call) | 
|  | return NULL; | 
|  |  | 
|  | call->type = type; | 
|  | call->net = net; | 
|  | call->debug_id = atomic_inc_return(&rxrpc_debug_id); | 
|  | atomic_set(&call->usage, 1); | 
|  | INIT_WORK(&call->async_work, afs_process_async_call); | 
|  | init_waitqueue_head(&call->waitq); | 
|  | spin_lock_init(&call->state_lock); | 
|  |  | 
|  | o = atomic_inc_return(&net->nr_outstanding_calls); | 
|  | trace_afs_call(call, afs_call_trace_alloc, 1, o, | 
|  | __builtin_return_address(0)); | 
|  | return call; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispose of a reference on a call. | 
|  | */ | 
|  | void afs_put_call(struct afs_call *call) | 
|  | { | 
|  | struct afs_net *net = call->net; | 
|  | int n = atomic_dec_return(&call->usage); | 
|  | int o = atomic_read(&net->nr_outstanding_calls); | 
|  |  | 
|  | trace_afs_call(call, afs_call_trace_put, n + 1, o, | 
|  | __builtin_return_address(0)); | 
|  |  | 
|  | ASSERTCMP(n, >=, 0); | 
|  | if (n == 0) { | 
|  | ASSERT(!work_pending(&call->async_work)); | 
|  | ASSERT(call->type->name != NULL); | 
|  |  | 
|  | if (call->rxcall) { | 
|  | rxrpc_kernel_end_call(net->socket, call->rxcall); | 
|  | call->rxcall = NULL; | 
|  | } | 
|  | if (call->type->destructor) | 
|  | call->type->destructor(call); | 
|  |  | 
|  | afs_put_server(call->net, call->cm_server); | 
|  | afs_put_cb_interest(call->net, call->cbi); | 
|  | kfree(call->request); | 
|  |  | 
|  | trace_afs_call(call, afs_call_trace_free, 0, o, | 
|  | __builtin_return_address(0)); | 
|  | kfree(call); | 
|  |  | 
|  | o = atomic_dec_return(&net->nr_outstanding_calls); | 
|  | if (o == 0) | 
|  | wake_up_var(&net->nr_outstanding_calls); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue the call for actual work.  Returns 0 unconditionally for convenience. | 
|  | */ | 
|  | int afs_queue_call_work(struct afs_call *call) | 
|  | { | 
|  | int u = atomic_inc_return(&call->usage); | 
|  |  | 
|  | trace_afs_call(call, afs_call_trace_work, u, | 
|  | atomic_read(&call->net->nr_outstanding_calls), | 
|  | __builtin_return_address(0)); | 
|  |  | 
|  | INIT_WORK(&call->work, call->type->work); | 
|  |  | 
|  | if (!queue_work(afs_wq, &call->work)) | 
|  | afs_put_call(call); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate a call with flat request and reply buffers | 
|  | */ | 
|  | struct afs_call *afs_alloc_flat_call(struct afs_net *net, | 
|  | const struct afs_call_type *type, | 
|  | size_t request_size, size_t reply_max) | 
|  | { | 
|  | struct afs_call *call; | 
|  |  | 
|  | call = afs_alloc_call(net, type, GFP_NOFS); | 
|  | if (!call) | 
|  | goto nomem_call; | 
|  |  | 
|  | if (request_size) { | 
|  | call->request_size = request_size; | 
|  | call->request = kmalloc(request_size, GFP_NOFS); | 
|  | if (!call->request) | 
|  | goto nomem_free; | 
|  | } | 
|  |  | 
|  | if (reply_max) { | 
|  | call->reply_max = reply_max; | 
|  | call->buffer = kmalloc(reply_max, GFP_NOFS); | 
|  | if (!call->buffer) | 
|  | goto nomem_free; | 
|  | } | 
|  |  | 
|  | call->operation_ID = type->op; | 
|  | init_waitqueue_head(&call->waitq); | 
|  | return call; | 
|  |  | 
|  | nomem_free: | 
|  | afs_put_call(call); | 
|  | nomem_call: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clean up a call with flat buffer | 
|  | */ | 
|  | void afs_flat_call_destructor(struct afs_call *call) | 
|  | { | 
|  | _enter(""); | 
|  |  | 
|  | kfree(call->request); | 
|  | call->request = NULL; | 
|  | kfree(call->buffer); | 
|  | call->buffer = NULL; | 
|  | } | 
|  |  | 
|  | #define AFS_BVEC_MAX 8 | 
|  |  | 
|  | /* | 
|  | * Load the given bvec with the next few pages. | 
|  | */ | 
|  | static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, | 
|  | struct bio_vec *bv, pgoff_t first, pgoff_t last, | 
|  | unsigned offset) | 
|  | { | 
|  | struct page *pages[AFS_BVEC_MAX]; | 
|  | unsigned int nr, n, i, to, bytes = 0; | 
|  |  | 
|  | nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); | 
|  | n = find_get_pages_contig(call->mapping, first, nr, pages); | 
|  | ASSERTCMP(n, ==, nr); | 
|  |  | 
|  | msg->msg_flags |= MSG_MORE; | 
|  | for (i = 0; i < nr; i++) { | 
|  | to = PAGE_SIZE; | 
|  | if (first + i >= last) { | 
|  | to = call->last_to; | 
|  | msg->msg_flags &= ~MSG_MORE; | 
|  | } | 
|  | bv[i].bv_page = pages[i]; | 
|  | bv[i].bv_len = to - offset; | 
|  | bv[i].bv_offset = offset; | 
|  | bytes += to - offset; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance the AFS call state when the RxRPC call ends the transmit phase. | 
|  | */ | 
|  | static void afs_notify_end_request_tx(struct sock *sock, | 
|  | struct rxrpc_call *rxcall, | 
|  | unsigned long call_user_ID) | 
|  | { | 
|  | struct afs_call *call = (struct afs_call *)call_user_ID; | 
|  |  | 
|  | afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * attach the data from a bunch of pages on an inode to a call | 
|  | */ | 
|  | static int afs_send_pages(struct afs_call *call, struct msghdr *msg) | 
|  | { | 
|  | struct bio_vec bv[AFS_BVEC_MAX]; | 
|  | unsigned int bytes, nr, loop, offset; | 
|  | pgoff_t first = call->first, last = call->last; | 
|  | int ret; | 
|  |  | 
|  | offset = call->first_offset; | 
|  | call->first_offset = 0; | 
|  |  | 
|  | do { | 
|  | afs_load_bvec(call, msg, bv, first, last, offset); | 
|  | trace_afs_send_pages(call, msg, first, last, offset); | 
|  |  | 
|  | offset = 0; | 
|  | bytes = msg->msg_iter.count; | 
|  | nr = msg->msg_iter.nr_segs; | 
|  |  | 
|  | ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, | 
|  | bytes, afs_notify_end_request_tx); | 
|  | for (loop = 0; loop < nr; loop++) | 
|  | put_page(bv[loop].bv_page); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | first += nr; | 
|  | } while (first <= last); | 
|  |  | 
|  | trace_afs_sent_pages(call, call->first, last, first, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initiate a call | 
|  | */ | 
|  | long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, | 
|  | gfp_t gfp, bool async) | 
|  | { | 
|  | struct sockaddr_rxrpc *srx = ac->addr; | 
|  | struct rxrpc_call *rxcall; | 
|  | struct msghdr msg; | 
|  | struct kvec iov[1]; | 
|  | s64 tx_total_len; | 
|  | int ret; | 
|  |  | 
|  | _enter(",{%pISp},", &srx->transport); | 
|  |  | 
|  | ASSERT(call->type != NULL); | 
|  | ASSERT(call->type->name != NULL); | 
|  |  | 
|  | _debug("____MAKE %p{%s,%x} [%d]____", | 
|  | call, call->type->name, key_serial(call->key), | 
|  | atomic_read(&call->net->nr_outstanding_calls)); | 
|  |  | 
|  | call->async = async; | 
|  |  | 
|  | /* Work out the length we're going to transmit.  This is awkward for | 
|  | * calls such as FS.StoreData where there's an extra injection of data | 
|  | * after the initial fixed part. | 
|  | */ | 
|  | tx_total_len = call->request_size; | 
|  | if (call->send_pages) { | 
|  | if (call->last == call->first) { | 
|  | tx_total_len += call->last_to - call->first_offset; | 
|  | } else { | 
|  | /* It looks mathematically like you should be able to | 
|  | * combine the following lines with the ones above, but | 
|  | * unsigned arithmetic is fun when it wraps... | 
|  | */ | 
|  | tx_total_len += PAGE_SIZE - call->first_offset; | 
|  | tx_total_len += call->last_to; | 
|  | tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* create a call */ | 
|  | rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, | 
|  | (unsigned long)call, | 
|  | tx_total_len, gfp, | 
|  | (async ? | 
|  | afs_wake_up_async_call : | 
|  | afs_wake_up_call_waiter), | 
|  | call->upgrade, | 
|  | call->debug_id); | 
|  | if (IS_ERR(rxcall)) { | 
|  | ret = PTR_ERR(rxcall); | 
|  | goto error_kill_call; | 
|  | } | 
|  |  | 
|  | call->rxcall = rxcall; | 
|  |  | 
|  | /* send the request */ | 
|  | iov[0].iov_base	= call->request; | 
|  | iov[0].iov_len	= call->request_size; | 
|  |  | 
|  | msg.msg_name		= NULL; | 
|  | msg.msg_namelen		= 0; | 
|  | iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); | 
|  | msg.msg_control		= NULL; | 
|  | msg.msg_controllen	= 0; | 
|  | msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); | 
|  |  | 
|  | ret = rxrpc_kernel_send_data(call->net->socket, rxcall, | 
|  | &msg, call->request_size, | 
|  | afs_notify_end_request_tx); | 
|  | if (ret < 0) | 
|  | goto error_do_abort; | 
|  |  | 
|  | if (call->send_pages) { | 
|  | ret = afs_send_pages(call, &msg); | 
|  | if (ret < 0) | 
|  | goto error_do_abort; | 
|  | } | 
|  |  | 
|  | /* at this point, an async call may no longer exist as it may have | 
|  | * already completed */ | 
|  | if (call->async) | 
|  | return -EINPROGRESS; | 
|  |  | 
|  | return afs_wait_for_call_to_complete(call, ac); | 
|  |  | 
|  | error_do_abort: | 
|  | call->state = AFS_CALL_COMPLETE; | 
|  | if (ret != -ECONNABORTED) { | 
|  | rxrpc_kernel_abort_call(call->net->socket, rxcall, | 
|  | RX_USER_ABORT, ret, "KSD"); | 
|  | } else { | 
|  | iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); | 
|  | rxrpc_kernel_recv_data(call->net->socket, rxcall, | 
|  | &msg.msg_iter, false, | 
|  | &call->abort_code, &call->service_id); | 
|  | ac->abort_code = call->abort_code; | 
|  | ac->responded = true; | 
|  | } | 
|  | call->error = ret; | 
|  | trace_afs_call_done(call); | 
|  | error_kill_call: | 
|  | afs_put_call(call); | 
|  | ac->error = ret; | 
|  | _leave(" = %d", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deliver messages to a call | 
|  | */ | 
|  | static void afs_deliver_to_call(struct afs_call *call) | 
|  | { | 
|  | enum afs_call_state state; | 
|  | u32 abort_code, remote_abort = 0; | 
|  | int ret; | 
|  |  | 
|  | _enter("%s", call->type->name); | 
|  |  | 
|  | while (state = READ_ONCE(call->state), | 
|  | state == AFS_CALL_CL_AWAIT_REPLY || | 
|  | state == AFS_CALL_SV_AWAIT_OP_ID || | 
|  | state == AFS_CALL_SV_AWAIT_REQUEST || | 
|  | state == AFS_CALL_SV_AWAIT_ACK | 
|  | ) { | 
|  | if (state == AFS_CALL_SV_AWAIT_ACK) { | 
|  | struct iov_iter iter; | 
|  |  | 
|  | iov_iter_kvec(&iter, READ, NULL, 0, 0); | 
|  | ret = rxrpc_kernel_recv_data(call->net->socket, | 
|  | call->rxcall, &iter, false, | 
|  | &remote_abort, | 
|  | &call->service_id); | 
|  | trace_afs_recv_data(call, 0, 0, false, ret); | 
|  |  | 
|  | if (ret == -EINPROGRESS || ret == -EAGAIN) | 
|  | return; | 
|  | if (ret < 0 || ret == 1) { | 
|  | if (ret == 1) | 
|  | ret = 0; | 
|  | goto call_complete; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = call->type->deliver(call); | 
|  | state = READ_ONCE(call->state); | 
|  | switch (ret) { | 
|  | case 0: | 
|  | if (state == AFS_CALL_CL_PROC_REPLY) { | 
|  | if (call->cbi) | 
|  | set_bit(AFS_SERVER_FL_MAY_HAVE_CB, | 
|  | &call->cbi->server->flags); | 
|  | goto call_complete; | 
|  | } | 
|  | ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); | 
|  | goto done; | 
|  | case -EINPROGRESS: | 
|  | case -EAGAIN: | 
|  | goto out; | 
|  | case -EIO: | 
|  | case -ECONNABORTED: | 
|  | ASSERTCMP(state, ==, AFS_CALL_COMPLETE); | 
|  | goto done; | 
|  | case -ENOTSUPP: | 
|  | abort_code = RXGEN_OPCODE; | 
|  | rxrpc_kernel_abort_call(call->net->socket, call->rxcall, | 
|  | abort_code, ret, "KIV"); | 
|  | goto local_abort; | 
|  | case -ENODATA: | 
|  | case -EBADMSG: | 
|  | case -EMSGSIZE: | 
|  | default: | 
|  | abort_code = RXGEN_CC_UNMARSHAL; | 
|  | if (state != AFS_CALL_CL_AWAIT_REPLY) | 
|  | abort_code = RXGEN_SS_UNMARSHAL; | 
|  | rxrpc_kernel_abort_call(call->net->socket, call->rxcall, | 
|  | abort_code, -EBADMSG, "KUM"); | 
|  | goto local_abort; | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (state == AFS_CALL_COMPLETE && call->incoming) | 
|  | afs_put_call(call); | 
|  | out: | 
|  | _leave(""); | 
|  | return; | 
|  |  | 
|  | local_abort: | 
|  | abort_code = 0; | 
|  | call_complete: | 
|  | afs_set_call_complete(call, ret, remote_abort); | 
|  | state = AFS_CALL_COMPLETE; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait synchronously for a call to complete | 
|  | */ | 
|  | static long afs_wait_for_call_to_complete(struct afs_call *call, | 
|  | struct afs_addr_cursor *ac) | 
|  | { | 
|  | signed long rtt2, timeout; | 
|  | long ret; | 
|  | u64 rtt; | 
|  | u32 life, last_life; | 
|  |  | 
|  | DECLARE_WAITQUEUE(myself, current); | 
|  |  | 
|  | _enter(""); | 
|  |  | 
|  | rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); | 
|  | rtt2 = nsecs_to_jiffies64(rtt) * 2; | 
|  | if (rtt2 < 2) | 
|  | rtt2 = 2; | 
|  |  | 
|  | timeout = rtt2; | 
|  | last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); | 
|  |  | 
|  | add_wait_queue(&call->waitq, &myself); | 
|  | for (;;) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  |  | 
|  | /* deliver any messages that are in the queue */ | 
|  | if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && | 
|  | call->need_attention) { | 
|  | call->need_attention = false; | 
|  | __set_current_state(TASK_RUNNING); | 
|  | afs_deliver_to_call(call); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (afs_check_call_state(call, AFS_CALL_COMPLETE)) | 
|  | break; | 
|  |  | 
|  | life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); | 
|  | if (timeout == 0 && | 
|  | life == last_life && signal_pending(current)) | 
|  | break; | 
|  |  | 
|  | if (life != last_life) { | 
|  | timeout = rtt2; | 
|  | last_life = life; | 
|  | } | 
|  |  | 
|  | timeout = schedule_timeout(timeout); | 
|  | } | 
|  |  | 
|  | remove_wait_queue(&call->waitq, &myself); | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | /* Kill off the call if it's still live. */ | 
|  | if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { | 
|  | _debug("call interrupted"); | 
|  | if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, | 
|  | RX_USER_ABORT, -EINTR, "KWI")) | 
|  | afs_set_call_complete(call, -EINTR, 0); | 
|  | } | 
|  |  | 
|  | spin_lock_bh(&call->state_lock); | 
|  | ac->abort_code = call->abort_code; | 
|  | ac->error = call->error; | 
|  | spin_unlock_bh(&call->state_lock); | 
|  |  | 
|  | ret = ac->error; | 
|  | switch (ret) { | 
|  | case 0: | 
|  | if (call->ret_reply0) { | 
|  | ret = (long)call->reply[0]; | 
|  | call->reply[0] = NULL; | 
|  | } | 
|  | /* Fall through */ | 
|  | case -ECONNABORTED: | 
|  | ac->responded = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | _debug("call complete"); | 
|  | afs_put_call(call); | 
|  | _leave(" = %p", (void *)ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wake up a waiting call | 
|  | */ | 
|  | static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, | 
|  | unsigned long call_user_ID) | 
|  | { | 
|  | struct afs_call *call = (struct afs_call *)call_user_ID; | 
|  |  | 
|  | call->need_attention = true; | 
|  | wake_up(&call->waitq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wake up an asynchronous call | 
|  | */ | 
|  | static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, | 
|  | unsigned long call_user_ID) | 
|  | { | 
|  | struct afs_call *call = (struct afs_call *)call_user_ID; | 
|  | int u; | 
|  |  | 
|  | trace_afs_notify_call(rxcall, call); | 
|  | call->need_attention = true; | 
|  |  | 
|  | u = __atomic_add_unless(&call->usage, 1, 0); | 
|  | if (u != 0) { | 
|  | trace_afs_call(call, afs_call_trace_wake, u, | 
|  | atomic_read(&call->net->nr_outstanding_calls), | 
|  | __builtin_return_address(0)); | 
|  |  | 
|  | if (!queue_work(afs_async_calls, &call->async_work)) | 
|  | afs_put_call(call); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete an asynchronous call.  The work item carries a ref to the call struct | 
|  | * that we need to release. | 
|  | */ | 
|  | static void afs_delete_async_call(struct work_struct *work) | 
|  | { | 
|  | struct afs_call *call = container_of(work, struct afs_call, async_work); | 
|  |  | 
|  | _enter(""); | 
|  |  | 
|  | afs_put_call(call); | 
|  |  | 
|  | _leave(""); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform I/O processing on an asynchronous call.  The work item carries a ref | 
|  | * to the call struct that we either need to release or to pass on. | 
|  | */ | 
|  | static void afs_process_async_call(struct work_struct *work) | 
|  | { | 
|  | struct afs_call *call = container_of(work, struct afs_call, async_work); | 
|  |  | 
|  | _enter(""); | 
|  |  | 
|  | if (call->state < AFS_CALL_COMPLETE && call->need_attention) { | 
|  | call->need_attention = false; | 
|  | afs_deliver_to_call(call); | 
|  | } | 
|  |  | 
|  | if (call->state == AFS_CALL_COMPLETE) { | 
|  | call->reply[0] = NULL; | 
|  |  | 
|  | /* We have two refs to release - one from the alloc and one | 
|  | * queued with the work item - and we can't just deallocate the | 
|  | * call because the work item may be queued again. | 
|  | */ | 
|  | call->async_work.func = afs_delete_async_call; | 
|  | if (!queue_work(afs_async_calls, &call->async_work)) | 
|  | afs_put_call(call); | 
|  | } | 
|  |  | 
|  | afs_put_call(call); | 
|  | _leave(""); | 
|  | } | 
|  |  | 
|  | static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) | 
|  | { | 
|  | struct afs_call *call = (struct afs_call *)user_call_ID; | 
|  |  | 
|  | call->rxcall = rxcall; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Charge the incoming call preallocation. | 
|  | */ | 
|  | void afs_charge_preallocation(struct work_struct *work) | 
|  | { | 
|  | struct afs_net *net = | 
|  | container_of(work, struct afs_net, charge_preallocation_work); | 
|  | struct afs_call *call = net->spare_incoming_call; | 
|  |  | 
|  | for (;;) { | 
|  | if (!call) { | 
|  | call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); | 
|  | if (!call) | 
|  | break; | 
|  |  | 
|  | call->async = true; | 
|  | call->state = AFS_CALL_SV_AWAIT_OP_ID; | 
|  | init_waitqueue_head(&call->waitq); | 
|  | } | 
|  |  | 
|  | if (rxrpc_kernel_charge_accept(net->socket, | 
|  | afs_wake_up_async_call, | 
|  | afs_rx_attach, | 
|  | (unsigned long)call, | 
|  | GFP_KERNEL, | 
|  | call->debug_id) < 0) | 
|  | break; | 
|  | call = NULL; | 
|  | } | 
|  | net->spare_incoming_call = call; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Discard a preallocated call when a socket is shut down. | 
|  | */ | 
|  | static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, | 
|  | unsigned long user_call_ID) | 
|  | { | 
|  | struct afs_call *call = (struct afs_call *)user_call_ID; | 
|  |  | 
|  | call->rxcall = NULL; | 
|  | afs_put_call(call); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notification of an incoming call. | 
|  | */ | 
|  | static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, | 
|  | unsigned long user_call_ID) | 
|  | { | 
|  | struct afs_net *net = afs_sock2net(sk); | 
|  |  | 
|  | queue_work(afs_wq, &net->charge_preallocation_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the operation ID from an incoming cache manager call.  The socket | 
|  | * buffer is discarded on error or if we don't yet have sufficient data. | 
|  | */ | 
|  | static int afs_deliver_cm_op_id(struct afs_call *call) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | _enter("{%zu}", call->offset); | 
|  |  | 
|  | ASSERTCMP(call->offset, <, 4); | 
|  |  | 
|  | /* the operation ID forms the first four bytes of the request data */ | 
|  | ret = afs_extract_data(call, &call->tmp, 4, true); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | call->operation_ID = ntohl(call->tmp); | 
|  | afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); | 
|  | call->offset = 0; | 
|  |  | 
|  | /* ask the cache manager to route the call (it'll change the call type | 
|  | * if successful) */ | 
|  | if (!afs_cm_incoming_call(call)) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | trace_afs_cb_call(call); | 
|  |  | 
|  | /* pass responsibility for the remainer of this message off to the | 
|  | * cache manager op */ | 
|  | return call->type->deliver(call); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance the AFS call state when an RxRPC service call ends the transmit | 
|  | * phase. | 
|  | */ | 
|  | static void afs_notify_end_reply_tx(struct sock *sock, | 
|  | struct rxrpc_call *rxcall, | 
|  | unsigned long call_user_ID) | 
|  | { | 
|  | struct afs_call *call = (struct afs_call *)call_user_ID; | 
|  |  | 
|  | afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * send an empty reply | 
|  | */ | 
|  | void afs_send_empty_reply(struct afs_call *call) | 
|  | { | 
|  | struct afs_net *net = call->net; | 
|  | struct msghdr msg; | 
|  |  | 
|  | _enter(""); | 
|  |  | 
|  | rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); | 
|  |  | 
|  | msg.msg_name		= NULL; | 
|  | msg.msg_namelen		= 0; | 
|  | iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); | 
|  | msg.msg_control		= NULL; | 
|  | msg.msg_controllen	= 0; | 
|  | msg.msg_flags		= 0; | 
|  |  | 
|  | switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, | 
|  | afs_notify_end_reply_tx)) { | 
|  | case 0: | 
|  | _leave(" [replied]"); | 
|  | return; | 
|  |  | 
|  | case -ENOMEM: | 
|  | _debug("oom"); | 
|  | rxrpc_kernel_abort_call(net->socket, call->rxcall, | 
|  | RX_USER_ABORT, -ENOMEM, "KOO"); | 
|  | default: | 
|  | _leave(" [error]"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * send a simple reply | 
|  | */ | 
|  | void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) | 
|  | { | 
|  | struct afs_net *net = call->net; | 
|  | struct msghdr msg; | 
|  | struct kvec iov[1]; | 
|  | int n; | 
|  |  | 
|  | _enter(""); | 
|  |  | 
|  | rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); | 
|  |  | 
|  | iov[0].iov_base		= (void *) buf; | 
|  | iov[0].iov_len		= len; | 
|  | msg.msg_name		= NULL; | 
|  | msg.msg_namelen		= 0; | 
|  | iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); | 
|  | msg.msg_control		= NULL; | 
|  | msg.msg_controllen	= 0; | 
|  | msg.msg_flags		= 0; | 
|  |  | 
|  | n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, | 
|  | afs_notify_end_reply_tx); | 
|  | if (n >= 0) { | 
|  | /* Success */ | 
|  | _leave(" [replied]"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (n == -ENOMEM) { | 
|  | _debug("oom"); | 
|  | rxrpc_kernel_abort_call(net->socket, call->rxcall, | 
|  | RX_USER_ABORT, -ENOMEM, "KOO"); | 
|  | } | 
|  | _leave(" [error]"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extract a piece of data from the received data socket buffers. | 
|  | */ | 
|  | int afs_extract_data(struct afs_call *call, void *buf, size_t count, | 
|  | bool want_more) | 
|  | { | 
|  | struct afs_net *net = call->net; | 
|  | struct iov_iter iter; | 
|  | struct kvec iov; | 
|  | enum afs_call_state state; | 
|  | u32 remote_abort = 0; | 
|  | int ret; | 
|  |  | 
|  | _enter("{%s,%zu},,%zu,%d", | 
|  | call->type->name, call->offset, count, want_more); | 
|  |  | 
|  | ASSERTCMP(call->offset, <=, count); | 
|  |  | 
|  | iov.iov_base = buf + call->offset; | 
|  | iov.iov_len = count - call->offset; | 
|  | iov_iter_kvec(&iter, READ, &iov, 1, count - call->offset); | 
|  |  | 
|  | ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, &iter, | 
|  | want_more, &remote_abort, | 
|  | &call->service_id); | 
|  | call->offset += (count - call->offset) - iov_iter_count(&iter); | 
|  | trace_afs_recv_data(call, count, call->offset, want_more, ret); | 
|  | if (ret == 0 || ret == -EAGAIN) | 
|  | return ret; | 
|  |  | 
|  | state = READ_ONCE(call->state); | 
|  | if (ret == 1) { | 
|  | switch (state) { | 
|  | case AFS_CALL_CL_AWAIT_REPLY: | 
|  | afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); | 
|  | break; | 
|  | case AFS_CALL_SV_AWAIT_REQUEST: | 
|  | afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); | 
|  | break; | 
|  | case AFS_CALL_COMPLETE: | 
|  | kdebug("prem complete %d", call->error); | 
|  | return -EIO; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | afs_set_call_complete(call, ret, remote_abort); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log protocol error production. | 
|  | */ | 
|  | noinline int afs_protocol_error(struct afs_call *call, int error) | 
|  | { | 
|  | trace_afs_protocol_error(call, error, __builtin_return_address(0)); | 
|  | return error; | 
|  | } |