|  | /* | 
|  | * AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support | 
|  | * | 
|  | * Copyright (C) 2013,2017 Advanced Micro Devices, Inc. | 
|  | * | 
|  | * Author: Gary R Hook <gary.hook@amd.com> | 
|  | * Author: Tom Lendacky <thomas.lendacky@amd.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/xts.h> | 
|  | #include <crypto/internal/skcipher.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  |  | 
|  | #include "ccp-crypto.h" | 
|  |  | 
|  | struct ccp_aes_xts_def { | 
|  | const char *name; | 
|  | const char *drv_name; | 
|  | }; | 
|  |  | 
|  | static struct ccp_aes_xts_def aes_xts_algs[] = { | 
|  | { | 
|  | .name		= "xts(aes)", | 
|  | .drv_name	= "xts-aes-ccp", | 
|  | }, | 
|  | }; | 
|  |  | 
|  | struct ccp_unit_size_map { | 
|  | unsigned int size; | 
|  | u32 value; | 
|  | }; | 
|  |  | 
|  | static struct ccp_unit_size_map xts_unit_sizes[] = { | 
|  | { | 
|  | .size   = 16, | 
|  | .value	= CCP_XTS_AES_UNIT_SIZE_16, | 
|  | }, | 
|  | { | 
|  | .size   = 512, | 
|  | .value	= CCP_XTS_AES_UNIT_SIZE_512, | 
|  | }, | 
|  | { | 
|  | .size   = 1024, | 
|  | .value	= CCP_XTS_AES_UNIT_SIZE_1024, | 
|  | }, | 
|  | { | 
|  | .size   = 2048, | 
|  | .value	= CCP_XTS_AES_UNIT_SIZE_2048, | 
|  | }, | 
|  | { | 
|  | .size   = 4096, | 
|  | .value	= CCP_XTS_AES_UNIT_SIZE_4096, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret) | 
|  | { | 
|  | struct ablkcipher_request *req = ablkcipher_request_cast(async_req); | 
|  | struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | memcpy(req->info, rctx->iv, AES_BLOCK_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ccp_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct crypto_tfm *xfm = crypto_ablkcipher_tfm(tfm); | 
|  | struct ccp_ctx *ctx = crypto_tfm_ctx(xfm); | 
|  | unsigned int ccpversion = ccp_version(); | 
|  | int ret; | 
|  |  | 
|  | ret = xts_check_key(xfm, key, key_len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Version 3 devices support 128-bit keys; version 5 devices can | 
|  | * accommodate 128- and 256-bit keys. | 
|  | */ | 
|  | switch (key_len) { | 
|  | case AES_KEYSIZE_128 * 2: | 
|  | memcpy(ctx->u.aes.key, key, key_len); | 
|  | break; | 
|  | case AES_KEYSIZE_256 * 2: | 
|  | if (ccpversion > CCP_VERSION(3, 0)) | 
|  | memcpy(ctx->u.aes.key, key, key_len); | 
|  | break; | 
|  | } | 
|  | ctx->u.aes.key_len = key_len / 2; | 
|  | sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len); | 
|  |  | 
|  | return crypto_skcipher_setkey(ctx->u.aes.tfm_skcipher, key, key_len); | 
|  | } | 
|  |  | 
|  | static int ccp_aes_xts_crypt(struct ablkcipher_request *req, | 
|  | unsigned int encrypt) | 
|  | { | 
|  | struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm); | 
|  | struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req); | 
|  | unsigned int ccpversion = ccp_version(); | 
|  | unsigned int fallback = 0; | 
|  | unsigned int unit; | 
|  | u32 unit_size; | 
|  | int ret; | 
|  |  | 
|  | if (!ctx->u.aes.key_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (req->nbytes & (AES_BLOCK_SIZE - 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!req->info) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Check conditions under which the CCP can fulfill a request. The | 
|  | * device can handle input plaintext of a length that is a multiple | 
|  | * of the unit_size, bug the crypto implementation only supports | 
|  | * the unit_size being equal to the input length. This limits the | 
|  | * number of scenarios we can handle. | 
|  | */ | 
|  | unit_size = CCP_XTS_AES_UNIT_SIZE__LAST; | 
|  | for (unit = 0; unit < ARRAY_SIZE(xts_unit_sizes); unit++) { | 
|  | if (req->nbytes == xts_unit_sizes[unit].size) { | 
|  | unit_size = unit; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* The CCP has restrictions on block sizes. Also, a version 3 device | 
|  | * only supports AES-128 operations; version 5 CCPs support both | 
|  | * AES-128 and -256 operations. | 
|  | */ | 
|  | if (unit_size == CCP_XTS_AES_UNIT_SIZE__LAST) | 
|  | fallback = 1; | 
|  | if ((ccpversion < CCP_VERSION(5, 0)) && | 
|  | (ctx->u.aes.key_len != AES_KEYSIZE_128)) | 
|  | fallback = 1; | 
|  | if ((ctx->u.aes.key_len != AES_KEYSIZE_128) && | 
|  | (ctx->u.aes.key_len != AES_KEYSIZE_256)) | 
|  | fallback = 1; | 
|  | if (fallback) { | 
|  | SKCIPHER_REQUEST_ON_STACK(subreq, ctx->u.aes.tfm_skcipher); | 
|  |  | 
|  | /* Use the fallback to process the request for any | 
|  | * unsupported unit sizes or key sizes | 
|  | */ | 
|  | skcipher_request_set_tfm(subreq, ctx->u.aes.tfm_skcipher); | 
|  | skcipher_request_set_callback(subreq, req->base.flags, | 
|  | NULL, NULL); | 
|  | skcipher_request_set_crypt(subreq, req->src, req->dst, | 
|  | req->nbytes, req->info); | 
|  | ret = encrypt ? crypto_skcipher_encrypt(subreq) : | 
|  | crypto_skcipher_decrypt(subreq); | 
|  | skcipher_request_zero(subreq); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | memcpy(rctx->iv, req->info, AES_BLOCK_SIZE); | 
|  | sg_init_one(&rctx->iv_sg, rctx->iv, AES_BLOCK_SIZE); | 
|  |  | 
|  | memset(&rctx->cmd, 0, sizeof(rctx->cmd)); | 
|  | INIT_LIST_HEAD(&rctx->cmd.entry); | 
|  | rctx->cmd.engine = CCP_ENGINE_XTS_AES_128; | 
|  | rctx->cmd.u.xts.type = CCP_AES_TYPE_128; | 
|  | rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT | 
|  | : CCP_AES_ACTION_DECRYPT; | 
|  | rctx->cmd.u.xts.unit_size = unit_size; | 
|  | rctx->cmd.u.xts.key = &ctx->u.aes.key_sg; | 
|  | rctx->cmd.u.xts.key_len = ctx->u.aes.key_len; | 
|  | rctx->cmd.u.xts.iv = &rctx->iv_sg; | 
|  | rctx->cmd.u.xts.iv_len = AES_BLOCK_SIZE; | 
|  | rctx->cmd.u.xts.src = req->src; | 
|  | rctx->cmd.u.xts.src_len = req->nbytes; | 
|  | rctx->cmd.u.xts.dst = req->dst; | 
|  |  | 
|  | ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_aes_xts_encrypt(struct ablkcipher_request *req) | 
|  | { | 
|  | return ccp_aes_xts_crypt(req, 1); | 
|  | } | 
|  |  | 
|  | static int ccp_aes_xts_decrypt(struct ablkcipher_request *req) | 
|  | { | 
|  | return ccp_aes_xts_crypt(req, 0); | 
|  | } | 
|  |  | 
|  | static int ccp_aes_xts_cra_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | struct crypto_skcipher *fallback_tfm; | 
|  |  | 
|  | ctx->complete = ccp_aes_xts_complete; | 
|  | ctx->u.aes.key_len = 0; | 
|  |  | 
|  | fallback_tfm = crypto_alloc_skcipher("xts(aes)", 0, | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK); | 
|  | if (IS_ERR(fallback_tfm)) { | 
|  | pr_warn("could not load fallback driver xts(aes)\n"); | 
|  | return PTR_ERR(fallback_tfm); | 
|  | } | 
|  | ctx->u.aes.tfm_skcipher = fallback_tfm; | 
|  |  | 
|  | tfm->crt_ablkcipher.reqsize = sizeof(struct ccp_aes_req_ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ccp_aes_xts_cra_exit(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | crypto_free_skcipher(ctx->u.aes.tfm_skcipher); | 
|  | } | 
|  |  | 
|  | static int ccp_register_aes_xts_alg(struct list_head *head, | 
|  | const struct ccp_aes_xts_def *def) | 
|  | { | 
|  | struct ccp_crypto_ablkcipher_alg *ccp_alg; | 
|  | struct crypto_alg *alg; | 
|  | int ret; | 
|  |  | 
|  | ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); | 
|  | if (!ccp_alg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_LIST_HEAD(&ccp_alg->entry); | 
|  |  | 
|  | alg = &ccp_alg->alg; | 
|  |  | 
|  | snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); | 
|  | snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", | 
|  | def->drv_name); | 
|  | alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_NEED_FALLBACK; | 
|  | alg->cra_blocksize = AES_BLOCK_SIZE; | 
|  | alg->cra_ctxsize = sizeof(struct ccp_ctx); | 
|  | alg->cra_priority = CCP_CRA_PRIORITY; | 
|  | alg->cra_type = &crypto_ablkcipher_type; | 
|  | alg->cra_ablkcipher.setkey = ccp_aes_xts_setkey; | 
|  | alg->cra_ablkcipher.encrypt = ccp_aes_xts_encrypt; | 
|  | alg->cra_ablkcipher.decrypt = ccp_aes_xts_decrypt; | 
|  | alg->cra_ablkcipher.min_keysize = AES_MIN_KEY_SIZE * 2; | 
|  | alg->cra_ablkcipher.max_keysize = AES_MAX_KEY_SIZE * 2; | 
|  | alg->cra_ablkcipher.ivsize = AES_BLOCK_SIZE; | 
|  | alg->cra_init = ccp_aes_xts_cra_init; | 
|  | alg->cra_exit = ccp_aes_xts_cra_exit; | 
|  | alg->cra_module = THIS_MODULE; | 
|  |  | 
|  | ret = crypto_register_alg(alg); | 
|  | if (ret) { | 
|  | pr_err("%s ablkcipher algorithm registration error (%d)\n", | 
|  | alg->cra_name, ret); | 
|  | kfree(ccp_alg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | list_add(&ccp_alg->entry, head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ccp_register_aes_xts_algs(struct list_head *head) | 
|  | { | 
|  | int i, ret; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(aes_xts_algs); i++) { | 
|  | ret = ccp_register_aes_xts_alg(head, &aes_xts_algs[i]); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |