|  | /* | 
|  | * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer | 
|  | * | 
|  | * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1, | 
|  | * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve | 
|  | * basis. Clients can directly request any frequency that the chip can | 
|  | * deliver using the standard clk framework. In addition, the device can | 
|  | * be configured and activated via the devicetree. | 
|  | * | 
|  | * Copyright (C) 2014, Topic Embedded Products | 
|  | * Licenced under GPL | 
|  | */ | 
|  | #include <linux/clk.h> | 
|  | #include <linux/clk-provider.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/gcd.h> | 
|  |  | 
|  | /* Each chip has different number of PLLs and outputs, for example: | 
|  | * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs. | 
|  | * Model this as 2 PLL clocks which are parents to the outputs. | 
|  | */ | 
|  |  | 
|  | enum { | 
|  | CDCE913, | 
|  | CDCE925, | 
|  | CDCE937, | 
|  | CDCE949, | 
|  | }; | 
|  |  | 
|  | struct clk_cdce925_chip_info { | 
|  | int num_plls; | 
|  | int num_outputs; | 
|  | }; | 
|  |  | 
|  | static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = { | 
|  | [CDCE913] = { .num_plls = 1, .num_outputs = 3 }, | 
|  | [CDCE925] = { .num_plls = 2, .num_outputs = 5 }, | 
|  | [CDCE937] = { .num_plls = 3, .num_outputs = 7 }, | 
|  | [CDCE949] = { .num_plls = 4, .num_outputs = 9 }, | 
|  | }; | 
|  |  | 
|  | #define MAX_NUMBER_OF_PLLS	4 | 
|  | #define MAX_NUMBER_OF_OUTPUTS	9 | 
|  |  | 
|  | #define CDCE925_REG_GLOBAL1	0x01 | 
|  | #define CDCE925_REG_Y1SPIPDIVH	0x02 | 
|  | #define CDCE925_REG_PDIVL	0x03 | 
|  | #define CDCE925_REG_XCSEL	0x05 | 
|  | /* PLL parameters start at 0x10, steps of 0x10 */ | 
|  | #define CDCE925_OFFSET_PLL	0x10 | 
|  | /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */ | 
|  | #define CDCE925_PLL_MUX_OUTPUTS	0x14 | 
|  | #define CDCE925_PLL_MULDIV	0x18 | 
|  |  | 
|  | #define CDCE925_PLL_FREQUENCY_MIN	 80000000ul | 
|  | #define CDCE925_PLL_FREQUENCY_MAX	230000000ul | 
|  | struct clk_cdce925_chip; | 
|  |  | 
|  | struct clk_cdce925_output { | 
|  | struct clk_hw hw; | 
|  | struct clk_cdce925_chip *chip; | 
|  | u8 index; | 
|  | u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */ | 
|  | }; | 
|  | #define to_clk_cdce925_output(_hw) \ | 
|  | container_of(_hw, struct clk_cdce925_output, hw) | 
|  |  | 
|  | struct clk_cdce925_pll { | 
|  | struct clk_hw hw; | 
|  | struct clk_cdce925_chip *chip; | 
|  | u8 index; | 
|  | u16 m;   /* 1..511 */ | 
|  | u16 n;   /* 1..4095 */ | 
|  | }; | 
|  | #define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw) | 
|  |  | 
|  | struct clk_cdce925_chip { | 
|  | struct regmap *regmap; | 
|  | struct i2c_client *i2c_client; | 
|  | const struct clk_cdce925_chip_info *chip_info; | 
|  | struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS]; | 
|  | struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS]; | 
|  | }; | 
|  |  | 
|  | /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */ | 
|  |  | 
|  | static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate, | 
|  | u16 n, u16 m) | 
|  | { | 
|  | if ((!m || !n) || (m == n)) | 
|  | return parent_rate; /* In bypass mode runs at same frequency */ | 
|  | return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m); | 
|  | } | 
|  |  | 
|  | static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */ | 
|  | struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); | 
|  |  | 
|  | return cdce925_pll_calculate_rate(parent_rate, data->n, data->m); | 
|  | } | 
|  |  | 
|  | static void cdce925_pll_find_rate(unsigned long rate, | 
|  | unsigned long parent_rate, u16 *n, u16 *m) | 
|  | { | 
|  | unsigned long un; | 
|  | unsigned long um; | 
|  | unsigned long g; | 
|  |  | 
|  | if (rate <= parent_rate) { | 
|  | /* Can always deliver parent_rate in bypass mode */ | 
|  | rate = parent_rate; | 
|  | *n = 0; | 
|  | *m = 0; | 
|  | } else { | 
|  | /* In PLL mode, need to apply min/max range */ | 
|  | if (rate < CDCE925_PLL_FREQUENCY_MIN) | 
|  | rate = CDCE925_PLL_FREQUENCY_MIN; | 
|  | else if (rate > CDCE925_PLL_FREQUENCY_MAX) | 
|  | rate = CDCE925_PLL_FREQUENCY_MAX; | 
|  |  | 
|  | g = gcd(rate, parent_rate); | 
|  | um = parent_rate / g; | 
|  | un = rate / g; | 
|  | /* When outside hw range, reduce to fit (rounding errors) */ | 
|  | while ((un > 4095) || (um > 511)) { | 
|  | un >>= 1; | 
|  | um >>= 1; | 
|  | } | 
|  | if (un == 0) | 
|  | un = 1; | 
|  | if (um == 0) | 
|  | um = 1; | 
|  |  | 
|  | *n = un; | 
|  | *m = um; | 
|  | } | 
|  | } | 
|  |  | 
|  | static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long *parent_rate) | 
|  | { | 
|  | u16 n, m; | 
|  |  | 
|  | cdce925_pll_find_rate(rate, *parent_rate, &n, &m); | 
|  | return (long)cdce925_pll_calculate_rate(*parent_rate, n, m); | 
|  | } | 
|  |  | 
|  | static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); | 
|  |  | 
|  | if (!rate || (rate == parent_rate)) { | 
|  | data->m = 0; /* Bypass mode */ | 
|  | data->n = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((rate < CDCE925_PLL_FREQUENCY_MIN) || | 
|  | (rate > CDCE925_PLL_FREQUENCY_MAX)) { | 
|  | pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (rate < parent_rate) { | 
|  | pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__, | 
|  | rate, parent_rate); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* calculate p = max(0, 4 - int(log2 (n/m))) */ | 
|  | static u8 cdce925_pll_calc_p(u16 n, u16 m) | 
|  | { | 
|  | u8 p; | 
|  | u16 r = n / m; | 
|  |  | 
|  | if (r >= 16) | 
|  | return 0; | 
|  | p = 4; | 
|  | while (r > 1) { | 
|  | r >>= 1; | 
|  | --p; | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* Returns VCO range bits for VCO1_0_RANGE */ | 
|  | static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m) | 
|  | { | 
|  | struct clk *parent = clk_get_parent(hw->clk); | 
|  | unsigned long rate = clk_get_rate(parent); | 
|  |  | 
|  | rate = mult_frac(rate, (unsigned long)n, (unsigned long)m); | 
|  | if (rate >= 175000000) | 
|  | return 0x3; | 
|  | if (rate >= 150000000) | 
|  | return 0x02; | 
|  | if (rate >= 125000000) | 
|  | return 0x01; | 
|  | return 0x00; | 
|  | } | 
|  |  | 
|  | /* I2C clock, hence everything must happen in (un)prepare because this | 
|  | * may sleep */ | 
|  | static int cdce925_pll_prepare(struct clk_hw *hw) | 
|  | { | 
|  | struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); | 
|  | u16 n = data->n; | 
|  | u16 m = data->m; | 
|  | u16 r; | 
|  | u8 q; | 
|  | u8 p; | 
|  | u16 nn; | 
|  | u8 pll[4]; /* Bits are spread out over 4 byte registers */ | 
|  | u8 reg_ofs = data->index * CDCE925_OFFSET_PLL; | 
|  | unsigned i; | 
|  |  | 
|  | if ((!m || !n) || (m == n)) { | 
|  | /* Set PLL mux to bypass mode, leave the rest as is */ | 
|  | regmap_update_bits(data->chip->regmap, | 
|  | reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80); | 
|  | } else { | 
|  | /* According to data sheet: */ | 
|  | /* p = max(0, 4 - int(log2 (n/m))) */ | 
|  | p = cdce925_pll_calc_p(n, m); | 
|  | /* nn = n * 2^p */ | 
|  | nn = n * BIT(p); | 
|  | /* q = int(nn/m) */ | 
|  | q = nn / m; | 
|  | if ((q < 16) || (q > 63)) { | 
|  | pr_debug("%s invalid q=%d\n", __func__, q); | 
|  | return -EINVAL; | 
|  | } | 
|  | r = nn - (m*q); | 
|  | if (r > 511) { | 
|  | pr_debug("%s invalid r=%d\n", __func__, r); | 
|  | return -EINVAL; | 
|  | } | 
|  | pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__, | 
|  | n, m, p, q, r); | 
|  | /* encode into register bits */ | 
|  | pll[0] = n >> 4; | 
|  | pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F); | 
|  | pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07); | 
|  | pll[3] = ((q & 0x07) << 5) | (p << 2) | | 
|  | cdce925_pll_calc_range_bits(hw, n, m); | 
|  | /* Write to registers */ | 
|  | for (i = 0; i < ARRAY_SIZE(pll); ++i) | 
|  | regmap_write(data->chip->regmap, | 
|  | reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]); | 
|  | /* Enable PLL */ | 
|  | regmap_update_bits(data->chip->regmap, | 
|  | reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cdce925_pll_unprepare(struct clk_hw *hw) | 
|  | { | 
|  | struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); | 
|  | u8 reg_ofs = data->index * CDCE925_OFFSET_PLL; | 
|  |  | 
|  | regmap_update_bits(data->chip->regmap, | 
|  | reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80); | 
|  | } | 
|  |  | 
|  | static const struct clk_ops cdce925_pll_ops = { | 
|  | .prepare = cdce925_pll_prepare, | 
|  | .unprepare = cdce925_pll_unprepare, | 
|  | .recalc_rate = cdce925_pll_recalc_rate, | 
|  | .round_rate = cdce925_pll_round_rate, | 
|  | .set_rate = cdce925_pll_set_rate, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv) | 
|  | { | 
|  | switch (data->index) { | 
|  | case 0: | 
|  | regmap_update_bits(data->chip->regmap, | 
|  | CDCE925_REG_Y1SPIPDIVH, | 
|  | 0x03, (pdiv >> 8) & 0x03); | 
|  | regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF); | 
|  | break; | 
|  | case 1: | 
|  | regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv); | 
|  | break; | 
|  | case 2: | 
|  | regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv); | 
|  | break; | 
|  | case 3: | 
|  | regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv); | 
|  | break; | 
|  | case 4: | 
|  | regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv); | 
|  | break; | 
|  | case 5: | 
|  | regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv); | 
|  | break; | 
|  | case 6: | 
|  | regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv); | 
|  | break; | 
|  | case 7: | 
|  | regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv); | 
|  | break; | 
|  | case 8: | 
|  | regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cdce925_clk_activate(struct clk_cdce925_output *data) | 
|  | { | 
|  | switch (data->index) { | 
|  | case 0: | 
|  | regmap_update_bits(data->chip->regmap, | 
|  | CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c); | 
|  | break; | 
|  | case 1: | 
|  | case 2: | 
|  | regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03); | 
|  | break; | 
|  | case 3: | 
|  | case 4: | 
|  | regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03); | 
|  | break; | 
|  | case 5: | 
|  | case 6: | 
|  | regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03); | 
|  | break; | 
|  | case 7: | 
|  | case 8: | 
|  | regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cdce925_clk_prepare(struct clk_hw *hw) | 
|  | { | 
|  | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); | 
|  |  | 
|  | cdce925_clk_set_pdiv(data, data->pdiv); | 
|  | cdce925_clk_activate(data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cdce925_clk_unprepare(struct clk_hw *hw) | 
|  | { | 
|  | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); | 
|  |  | 
|  | /* Disable clock by setting divider to "0" */ | 
|  | cdce925_clk_set_pdiv(data, 0); | 
|  | } | 
|  |  | 
|  | static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); | 
|  |  | 
|  | if (data->pdiv) | 
|  | return parent_rate / data->pdiv; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u16 cdce925_calc_divider(unsigned long rate, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | unsigned long divider; | 
|  |  | 
|  | if (!rate) | 
|  | return 0; | 
|  | if (rate >= parent_rate) | 
|  | return 1; | 
|  |  | 
|  | divider = DIV_ROUND_CLOSEST(parent_rate, rate); | 
|  | if (divider > 0x7F) | 
|  | divider = 0x7F; | 
|  |  | 
|  | return (u16)divider; | 
|  | } | 
|  |  | 
|  | static unsigned long cdce925_clk_best_parent_rate( | 
|  | struct clk_hw *hw, unsigned long rate) | 
|  | { | 
|  | struct clk *pll = clk_get_parent(hw->clk); | 
|  | struct clk *root = clk_get_parent(pll); | 
|  | unsigned long root_rate = clk_get_rate(root); | 
|  | unsigned long best_rate_error = rate; | 
|  | u16 pdiv_min; | 
|  | u16 pdiv_max; | 
|  | u16 pdiv_best; | 
|  | u16 pdiv_now; | 
|  |  | 
|  | if (root_rate % rate == 0) | 
|  | return root_rate; /* Don't need the PLL, use bypass */ | 
|  |  | 
|  | pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate)); | 
|  | pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate); | 
|  |  | 
|  | if (pdiv_min > pdiv_max) | 
|  | return 0; /* No can do? */ | 
|  |  | 
|  | pdiv_best = pdiv_min; | 
|  | for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) { | 
|  | unsigned long target_rate = rate * pdiv_now; | 
|  | long pll_rate = clk_round_rate(pll, target_rate); | 
|  | unsigned long actual_rate; | 
|  | unsigned long rate_error; | 
|  |  | 
|  | if (pll_rate <= 0) | 
|  | continue; | 
|  | actual_rate = pll_rate / pdiv_now; | 
|  | rate_error = abs((long)actual_rate - (long)rate); | 
|  | if (rate_error < best_rate_error) { | 
|  | pdiv_best = pdiv_now; | 
|  | best_rate_error = rate_error; | 
|  | } | 
|  | /* TODO: Consider PLL frequency based on smaller n/m values | 
|  | * and pick the better one if the error is equal */ | 
|  | } | 
|  |  | 
|  | return rate * pdiv_best; | 
|  | } | 
|  |  | 
|  | static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long *parent_rate) | 
|  | { | 
|  | unsigned long l_parent_rate = *parent_rate; | 
|  | u16 divider = cdce925_calc_divider(rate, l_parent_rate); | 
|  |  | 
|  | if (l_parent_rate / divider != rate) { | 
|  | l_parent_rate = cdce925_clk_best_parent_rate(hw, rate); | 
|  | divider = cdce925_calc_divider(rate, l_parent_rate); | 
|  | *parent_rate = l_parent_rate; | 
|  | } | 
|  |  | 
|  | if (divider) | 
|  | return (long)(l_parent_rate / divider); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); | 
|  |  | 
|  | data->pdiv = cdce925_calc_divider(rate, parent_rate); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct clk_ops cdce925_clk_ops = { | 
|  | .prepare = cdce925_clk_prepare, | 
|  | .unprepare = cdce925_clk_unprepare, | 
|  | .recalc_rate = cdce925_clk_recalc_rate, | 
|  | .round_rate = cdce925_clk_round_rate, | 
|  | .set_rate = cdce925_clk_set_rate, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static u16 cdce925_y1_calc_divider(unsigned long rate, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | unsigned long divider; | 
|  |  | 
|  | if (!rate) | 
|  | return 0; | 
|  | if (rate >= parent_rate) | 
|  | return 1; | 
|  |  | 
|  | divider = DIV_ROUND_CLOSEST(parent_rate, rate); | 
|  | if (divider > 0x3FF) /* Y1 has 10-bit divider */ | 
|  | divider = 0x3FF; | 
|  |  | 
|  | return (u16)divider; | 
|  | } | 
|  |  | 
|  | static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long *parent_rate) | 
|  | { | 
|  | unsigned long l_parent_rate = *parent_rate; | 
|  | u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate); | 
|  |  | 
|  | if (divider) | 
|  | return (long)(l_parent_rate / divider); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); | 
|  |  | 
|  | data->pdiv = cdce925_y1_calc_divider(rate, parent_rate); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct clk_ops cdce925_clk_y1_ops = { | 
|  | .prepare = cdce925_clk_prepare, | 
|  | .unprepare = cdce925_clk_unprepare, | 
|  | .recalc_rate = cdce925_clk_recalc_rate, | 
|  | .round_rate = cdce925_clk_y1_round_rate, | 
|  | .set_rate = cdce925_clk_y1_set_rate, | 
|  | }; | 
|  |  | 
|  | #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00 | 
|  | #define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80 | 
|  |  | 
|  | static int cdce925_regmap_i2c_write( | 
|  | void *context, const void *data, size_t count) | 
|  | { | 
|  | struct device *dev = context; | 
|  | struct i2c_client *i2c = to_i2c_client(dev); | 
|  | int ret; | 
|  | u8 reg_data[2]; | 
|  |  | 
|  | if (count != 2) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | /* First byte is command code */ | 
|  | reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0]; | 
|  | reg_data[1] = ((u8 *)data)[1]; | 
|  |  | 
|  | dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count, | 
|  | reg_data[0], reg_data[1]); | 
|  |  | 
|  | ret = i2c_master_send(i2c, reg_data, count); | 
|  | if (likely(ret == count)) | 
|  | return 0; | 
|  | else if (ret < 0) | 
|  | return ret; | 
|  | else | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static int cdce925_regmap_i2c_read(void *context, | 
|  | const void *reg, size_t reg_size, void *val, size_t val_size) | 
|  | { | 
|  | struct device *dev = context; | 
|  | struct i2c_client *i2c = to_i2c_client(dev); | 
|  | struct i2c_msg xfer[2]; | 
|  | int ret; | 
|  | u8 reg_data[2]; | 
|  |  | 
|  | if (reg_size != 1) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | xfer[0].addr = i2c->addr; | 
|  | xfer[0].flags = 0; | 
|  | xfer[0].buf = reg_data; | 
|  | if (val_size == 1) { | 
|  | reg_data[0] = | 
|  | CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0]; | 
|  | xfer[0].len = 1; | 
|  | } else { | 
|  | reg_data[0] = | 
|  | CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0]; | 
|  | reg_data[1] = val_size; | 
|  | xfer[0].len = 2; | 
|  | } | 
|  |  | 
|  | xfer[1].addr = i2c->addr; | 
|  | xfer[1].flags = I2C_M_RD; | 
|  | xfer[1].len = val_size; | 
|  | xfer[1].buf = val; | 
|  |  | 
|  | ret = i2c_transfer(i2c->adapter, xfer, 2); | 
|  | if (likely(ret == 2)) { | 
|  | dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__, | 
|  | reg_size, val_size, reg_data[0], *((u8 *)val)); | 
|  | return 0; | 
|  | } else if (ret < 0) | 
|  | return ret; | 
|  | else | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static struct clk_hw * | 
|  | of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data) | 
|  | { | 
|  | struct clk_cdce925_chip *data = _data; | 
|  | unsigned int idx = clkspec->args[0]; | 
|  |  | 
|  | if (idx >= ARRAY_SIZE(data->clk)) { | 
|  | pr_err("%s: invalid index %u\n", __func__, idx); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | return &data->clk[idx].hw; | 
|  | } | 
|  |  | 
|  | /* The CDCE925 uses a funky way to read/write registers. Bulk mode is | 
|  | * just weird, so just use the single byte mode exclusively. */ | 
|  | static struct regmap_bus regmap_cdce925_bus = { | 
|  | .write = cdce925_regmap_i2c_write, | 
|  | .read = cdce925_regmap_i2c_read, | 
|  | }; | 
|  |  | 
|  | static int cdce925_probe(struct i2c_client *client, | 
|  | const struct i2c_device_id *id) | 
|  | { | 
|  | struct clk_cdce925_chip *data; | 
|  | struct device_node *node = client->dev.of_node; | 
|  | const char *parent_name; | 
|  | const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,}; | 
|  | struct clk_init_data init; | 
|  | u32 value; | 
|  | int i; | 
|  | int err; | 
|  | struct device_node *np_output; | 
|  | char child_name[6]; | 
|  | struct regmap_config config = { | 
|  | .name = "configuration0", | 
|  | .reg_bits = 8, | 
|  | .val_bits = 8, | 
|  | .cache_type = REGCACHE_RBTREE, | 
|  | }; | 
|  |  | 
|  | dev_dbg(&client->dev, "%s\n", __func__); | 
|  | data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data->i2c_client = client; | 
|  | data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data]; | 
|  | config.max_register = CDCE925_OFFSET_PLL + | 
|  | data->chip_info->num_plls * 0x10 - 1; | 
|  | data->regmap = devm_regmap_init(&client->dev, ®map_cdce925_bus, | 
|  | &client->dev, &config); | 
|  | if (IS_ERR(data->regmap)) { | 
|  | dev_err(&client->dev, "failed to allocate register map\n"); | 
|  | return PTR_ERR(data->regmap); | 
|  | } | 
|  | i2c_set_clientdata(client, data); | 
|  |  | 
|  | parent_name = of_clk_get_parent_name(node, 0); | 
|  | if (!parent_name) { | 
|  | dev_err(&client->dev, "missing parent clock\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | dev_dbg(&client->dev, "parent is: %s\n", parent_name); | 
|  |  | 
|  | if (of_property_read_u32(node, "xtal-load-pf", &value) == 0) | 
|  | regmap_write(data->regmap, | 
|  | CDCE925_REG_XCSEL, (value << 3) & 0xF8); | 
|  | /* PWDN bit */ | 
|  | regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0); | 
|  |  | 
|  | /* Set input source for Y1 to be the XTAL */ | 
|  | regmap_update_bits(data->regmap, 0x02, BIT(7), 0); | 
|  |  | 
|  | init.ops = &cdce925_pll_ops; | 
|  | init.flags = 0; | 
|  | init.parent_names = &parent_name; | 
|  | init.num_parents = 1; | 
|  |  | 
|  | /* Register PLL clocks */ | 
|  | for (i = 0; i < data->chip_info->num_plls; ++i) { | 
|  | pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d", | 
|  | client->dev.of_node, i); | 
|  | init.name = pll_clk_name[i]; | 
|  | data->pll[i].chip = data; | 
|  | data->pll[i].hw.init = &init; | 
|  | data->pll[i].index = i; | 
|  | err = devm_clk_hw_register(&client->dev, &data->pll[i].hw); | 
|  | if (err) { | 
|  | dev_err(&client->dev, "Failed register PLL %d\n", i); | 
|  | goto error; | 
|  | } | 
|  | sprintf(child_name, "PLL%d", i+1); | 
|  | np_output = of_get_child_by_name(node, child_name); | 
|  | if (!np_output) | 
|  | continue; | 
|  | if (!of_property_read_u32(np_output, | 
|  | "clock-frequency", &value)) { | 
|  | err = clk_set_rate(data->pll[i].hw.clk, value); | 
|  | if (err) | 
|  | dev_err(&client->dev, | 
|  | "unable to set PLL frequency %ud\n", | 
|  | value); | 
|  | } | 
|  | if (!of_property_read_u32(np_output, | 
|  | "spread-spectrum", &value)) { | 
|  | u8 flag = of_property_read_bool(np_output, | 
|  | "spread-spectrum-center") ? 0x80 : 0x00; | 
|  | regmap_update_bits(data->regmap, | 
|  | 0x16 + (i*CDCE925_OFFSET_PLL), | 
|  | 0x80, flag); | 
|  | regmap_update_bits(data->regmap, | 
|  | 0x12 + (i*CDCE925_OFFSET_PLL), | 
|  | 0x07, value & 0x07); | 
|  | } | 
|  | of_node_put(np_output); | 
|  | } | 
|  |  | 
|  | /* Register output clock Y1 */ | 
|  | init.ops = &cdce925_clk_y1_ops; | 
|  | init.flags = 0; | 
|  | init.num_parents = 1; | 
|  | init.parent_names = &parent_name; /* Mux Y1 to input */ | 
|  | init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node); | 
|  | data->clk[0].chip = data; | 
|  | data->clk[0].hw.init = &init; | 
|  | data->clk[0].index = 0; | 
|  | data->clk[0].pdiv = 1; | 
|  | err = devm_clk_hw_register(&client->dev, &data->clk[0].hw); | 
|  | kfree(init.name); /* clock framework made a copy of the name */ | 
|  | if (err) { | 
|  | dev_err(&client->dev, "clock registration Y1 failed\n"); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* Register output clocks Y2 .. Y5*/ | 
|  | init.ops = &cdce925_clk_ops; | 
|  | init.flags = CLK_SET_RATE_PARENT; | 
|  | init.num_parents = 1; | 
|  | for (i = 1; i < data->chip_info->num_outputs; ++i) { | 
|  | init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d", | 
|  | client->dev.of_node, i+1); | 
|  | data->clk[i].chip = data; | 
|  | data->clk[i].hw.init = &init; | 
|  | data->clk[i].index = i; | 
|  | data->clk[i].pdiv = 1; | 
|  | switch (i) { | 
|  | case 1: | 
|  | case 2: | 
|  | /* Mux Y2/3 to PLL1 */ | 
|  | init.parent_names = &pll_clk_name[0]; | 
|  | break; | 
|  | case 3: | 
|  | case 4: | 
|  | /* Mux Y4/5 to PLL2 */ | 
|  | init.parent_names = &pll_clk_name[1]; | 
|  | break; | 
|  | case 5: | 
|  | case 6: | 
|  | /* Mux Y6/7 to PLL3 */ | 
|  | init.parent_names = &pll_clk_name[2]; | 
|  | break; | 
|  | case 7: | 
|  | case 8: | 
|  | /* Mux Y8/9 to PLL4 */ | 
|  | init.parent_names = &pll_clk_name[3]; | 
|  | break; | 
|  | } | 
|  | err = devm_clk_hw_register(&client->dev, &data->clk[i].hw); | 
|  | kfree(init.name); /* clock framework made a copy of the name */ | 
|  | if (err) { | 
|  | dev_err(&client->dev, "clock registration failed\n"); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Register the output clocks */ | 
|  | err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get, | 
|  | data); | 
|  | if (err) | 
|  | dev_err(&client->dev, "unable to add OF clock provider\n"); | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | error: | 
|  | for (i = 0; i < data->chip_info->num_plls; ++i) | 
|  | /* clock framework made a copy of the name */ | 
|  | kfree(pll_clk_name[i]); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static const struct i2c_device_id cdce925_id[] = { | 
|  | { "cdce913", CDCE913 }, | 
|  | { "cdce925", CDCE925 }, | 
|  | { "cdce937", CDCE937 }, | 
|  | { "cdce949", CDCE949 }, | 
|  | { } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(i2c, cdce925_id); | 
|  |  | 
|  | static const struct of_device_id clk_cdce925_of_match[] = { | 
|  | { .compatible = "ti,cdce913" }, | 
|  | { .compatible = "ti,cdce925" }, | 
|  | { .compatible = "ti,cdce937" }, | 
|  | { .compatible = "ti,cdce949" }, | 
|  | { }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, clk_cdce925_of_match); | 
|  |  | 
|  | static struct i2c_driver cdce925_driver = { | 
|  | .driver = { | 
|  | .name = "cdce925", | 
|  | .of_match_table = of_match_ptr(clk_cdce925_of_match), | 
|  | }, | 
|  | .probe		= cdce925_probe, | 
|  | .id_table	= cdce925_id, | 
|  | }; | 
|  | module_i2c_driver(cdce925_driver); | 
|  |  | 
|  | MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); | 
|  | MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver"); | 
|  | MODULE_LICENSE("GPL"); |