|  | /* inflate.c -- zlib decompression | 
|  | * Copyright (C) 1995-2005 Mark Adler | 
|  | * For conditions of distribution and use, see copyright notice in zlib.h | 
|  | * | 
|  | * Based on zlib 1.2.3 but modified for the Linux Kernel by | 
|  | * Richard Purdie <richard@openedhand.com> | 
|  | * | 
|  | * Changes mainly for static instead of dynamic memory allocation | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/zutil.h> | 
|  | #include "inftrees.h" | 
|  | #include "inflate.h" | 
|  | #include "inffast.h" | 
|  | #include "infutil.h" | 
|  |  | 
|  | /* architecture-specific bits */ | 
|  | #ifdef CONFIG_ZLIB_DFLTCC | 
|  | #  include "../zlib_dfltcc/dfltcc_inflate.h" | 
|  | #else | 
|  | #define INFLATE_RESET_HOOK(strm) do {} while (0) | 
|  | #define INFLATE_TYPEDO_HOOK(strm, flush) do {} while (0) | 
|  | #define INFLATE_NEED_UPDATEWINDOW(strm) 1 | 
|  | #define INFLATE_NEED_CHECKSUM(strm) 1 | 
|  | #endif | 
|  |  | 
|  | int zlib_inflate_workspacesize(void) | 
|  | { | 
|  | return sizeof(struct inflate_workspace); | 
|  | } | 
|  |  | 
|  | int zlib_inflateReset(z_streamp strm) | 
|  | { | 
|  | struct inflate_state *state; | 
|  |  | 
|  | if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; | 
|  | state = (struct inflate_state *)strm->state; | 
|  | strm->total_in = strm->total_out = state->total = 0; | 
|  | strm->msg = NULL; | 
|  | strm->adler = 1;        /* to support ill-conceived Java test suite */ | 
|  | state->mode = HEAD; | 
|  | state->last = 0; | 
|  | state->havedict = 0; | 
|  | state->dmax = 32768U; | 
|  | state->hold = 0; | 
|  | state->bits = 0; | 
|  | state->lencode = state->distcode = state->next = state->codes; | 
|  |  | 
|  | /* Initialise Window */ | 
|  | state->wsize = 1U << state->wbits; | 
|  | state->write = 0; | 
|  | state->whave = 0; | 
|  |  | 
|  | INFLATE_RESET_HOOK(strm); | 
|  | return Z_OK; | 
|  | } | 
|  |  | 
|  | int zlib_inflateInit2(z_streamp strm, int windowBits) | 
|  | { | 
|  | struct inflate_state *state; | 
|  |  | 
|  | if (strm == NULL) return Z_STREAM_ERROR; | 
|  | strm->msg = NULL;                 /* in case we return an error */ | 
|  |  | 
|  | state = &WS(strm)->inflate_state; | 
|  | strm->state = (struct internal_state *)state; | 
|  |  | 
|  | if (windowBits < 0) { | 
|  | state->wrap = 0; | 
|  | windowBits = -windowBits; | 
|  | } | 
|  | else { | 
|  | state->wrap = (windowBits >> 4) + 1; | 
|  | } | 
|  | if (windowBits < 8 || windowBits > 15) { | 
|  | return Z_STREAM_ERROR; | 
|  | } | 
|  | state->wbits = (unsigned)windowBits; | 
|  | #ifdef CONFIG_ZLIB_DFLTCC | 
|  | /* | 
|  | * DFLTCC requires the window to be page aligned. | 
|  | * Thus, we overallocate and take the aligned portion of the buffer. | 
|  | */ | 
|  | state->window = PTR_ALIGN(&WS(strm)->working_window[0], PAGE_SIZE); | 
|  | #else | 
|  | state->window = &WS(strm)->working_window[0]; | 
|  | #endif | 
|  |  | 
|  | return zlib_inflateReset(strm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Return state with length and distance decoding tables and index sizes set to | 
|  | fixed code decoding.  This returns fixed tables from inffixed.h. | 
|  | */ | 
|  | static void zlib_fixedtables(struct inflate_state *state) | 
|  | { | 
|  | #   include "inffixed.h" | 
|  | state->lencode = lenfix; | 
|  | state->lenbits = 9; | 
|  | state->distcode = distfix; | 
|  | state->distbits = 5; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | Update the window with the last wsize (normally 32K) bytes written before | 
|  | returning. This is only called when a window is already in use, or when | 
|  | output has been written during this inflate call, but the end of the deflate | 
|  | stream has not been reached yet. It is also called to window dictionary data | 
|  | when a dictionary is loaded. | 
|  |  | 
|  | Providing output buffers larger than 32K to inflate() should provide a speed | 
|  | advantage, since only the last 32K of output is copied to the sliding window | 
|  | upon return from inflate(), and since all distances after the first 32K of | 
|  | output will fall in the output data, making match copies simpler and faster. | 
|  | The advantage may be dependent on the size of the processor's data caches. | 
|  | */ | 
|  | static void zlib_updatewindow(z_streamp strm, unsigned out) | 
|  | { | 
|  | struct inflate_state *state; | 
|  | unsigned copy, dist; | 
|  |  | 
|  | state = (struct inflate_state *)strm->state; | 
|  |  | 
|  | /* copy state->wsize or less output bytes into the circular window */ | 
|  | copy = out - strm->avail_out; | 
|  | if (copy >= state->wsize) { | 
|  | memcpy(state->window, strm->next_out - state->wsize, state->wsize); | 
|  | state->write = 0; | 
|  | state->whave = state->wsize; | 
|  | } | 
|  | else { | 
|  | dist = state->wsize - state->write; | 
|  | if (dist > copy) dist = copy; | 
|  | memcpy(state->window + state->write, strm->next_out - copy, dist); | 
|  | copy -= dist; | 
|  | if (copy) { | 
|  | memcpy(state->window, strm->next_out - copy, copy); | 
|  | state->write = copy; | 
|  | state->whave = state->wsize; | 
|  | } | 
|  | else { | 
|  | state->write += dist; | 
|  | if (state->write == state->wsize) state->write = 0; | 
|  | if (state->whave < state->wsize) state->whave += dist; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * At the end of a Deflate-compressed PPP packet, we expect to have seen | 
|  | * a `stored' block type value but not the (zero) length bytes. | 
|  | */ | 
|  | /* | 
|  | Returns true if inflate is currently at the end of a block generated by | 
|  | Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP | 
|  | implementation to provide an additional safety check. PPP uses | 
|  | Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored | 
|  | block. When decompressing, PPP checks that at the end of input packet, | 
|  | inflate is waiting for these length bytes. | 
|  | */ | 
|  | static int zlib_inflateSyncPacket(z_streamp strm) | 
|  | { | 
|  | struct inflate_state *state; | 
|  |  | 
|  | if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; | 
|  | state = (struct inflate_state *)strm->state; | 
|  |  | 
|  | if (state->mode == STORED && state->bits == 0) { | 
|  | state->mode = TYPE; | 
|  | return Z_OK; | 
|  | } | 
|  | return Z_DATA_ERROR; | 
|  | } | 
|  |  | 
|  | /* Macros for inflate(): */ | 
|  |  | 
|  | /* check function to use adler32() for zlib or crc32() for gzip */ | 
|  | #define UPDATE(check, buf, len) zlib_adler32(check, buf, len) | 
|  |  | 
|  | /* Load registers with state in inflate() for speed */ | 
|  | #define LOAD() \ | 
|  | do { \ | 
|  | put = strm->next_out; \ | 
|  | left = strm->avail_out; \ | 
|  | next = strm->next_in; \ | 
|  | have = strm->avail_in; \ | 
|  | hold = state->hold; \ | 
|  | bits = state->bits; \ | 
|  | } while (0) | 
|  |  | 
|  | /* Restore state from registers in inflate() */ | 
|  | #define RESTORE() \ | 
|  | do { \ | 
|  | strm->next_out = put; \ | 
|  | strm->avail_out = left; \ | 
|  | strm->next_in = next; \ | 
|  | strm->avail_in = have; \ | 
|  | state->hold = hold; \ | 
|  | state->bits = bits; \ | 
|  | } while (0) | 
|  |  | 
|  | /* Clear the input bit accumulator */ | 
|  | #define INITBITS() \ | 
|  | do { \ | 
|  | hold = 0; \ | 
|  | bits = 0; \ | 
|  | } while (0) | 
|  |  | 
|  | /* Get a byte of input into the bit accumulator, or return from inflate() | 
|  | if there is no input available. */ | 
|  | #define PULLBYTE() \ | 
|  | do { \ | 
|  | if (have == 0) goto inf_leave; \ | 
|  | have--; \ | 
|  | hold += (unsigned long)(*next++) << bits; \ | 
|  | bits += 8; \ | 
|  | } while (0) | 
|  |  | 
|  | /* Assure that there are at least n bits in the bit accumulator.  If there is | 
|  | not enough available input to do that, then return from inflate(). */ | 
|  | #define NEEDBITS(n) \ | 
|  | do { \ | 
|  | while (bits < (unsigned)(n)) \ | 
|  | PULLBYTE(); \ | 
|  | } while (0) | 
|  |  | 
|  | /* Return the low n bits of the bit accumulator (n < 16) */ | 
|  | #define BITS(n) \ | 
|  | ((unsigned)hold & ((1U << (n)) - 1)) | 
|  |  | 
|  | /* Remove n bits from the bit accumulator */ | 
|  | #define DROPBITS(n) \ | 
|  | do { \ | 
|  | hold >>= (n); \ | 
|  | bits -= (unsigned)(n); \ | 
|  | } while (0) | 
|  |  | 
|  | /* Remove zero to seven bits as needed to go to a byte boundary */ | 
|  | #define BYTEBITS() \ | 
|  | do { \ | 
|  | hold >>= bits & 7; \ | 
|  | bits -= bits & 7; \ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | inflate() uses a state machine to process as much input data and generate as | 
|  | much output data as possible before returning.  The state machine is | 
|  | structured roughly as follows: | 
|  |  | 
|  | for (;;) switch (state) { | 
|  | ... | 
|  | case STATEn: | 
|  | if (not enough input data or output space to make progress) | 
|  | return; | 
|  | ... make progress ... | 
|  | state = STATEm; | 
|  | break; | 
|  | ... | 
|  | } | 
|  |  | 
|  | so when inflate() is called again, the same case is attempted again, and | 
|  | if the appropriate resources are provided, the machine proceeds to the | 
|  | next state.  The NEEDBITS() macro is usually the way the state evaluates | 
|  | whether it can proceed or should return.  NEEDBITS() does the return if | 
|  | the requested bits are not available.  The typical use of the BITS macros | 
|  | is: | 
|  |  | 
|  | NEEDBITS(n); | 
|  | ... do something with BITS(n) ... | 
|  | DROPBITS(n); | 
|  |  | 
|  | where NEEDBITS(n) either returns from inflate() if there isn't enough | 
|  | input left to load n bits into the accumulator, or it continues.  BITS(n) | 
|  | gives the low n bits in the accumulator.  When done, DROPBITS(n) drops | 
|  | the low n bits off the accumulator.  INITBITS() clears the accumulator | 
|  | and sets the number of available bits to zero.  BYTEBITS() discards just | 
|  | enough bits to put the accumulator on a byte boundary.  After BYTEBITS() | 
|  | and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. | 
|  |  | 
|  | NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return | 
|  | if there is no input available.  The decoding of variable length codes uses | 
|  | PULLBYTE() directly in order to pull just enough bytes to decode the next | 
|  | code, and no more. | 
|  |  | 
|  | Some states loop until they get enough input, making sure that enough | 
|  | state information is maintained to continue the loop where it left off | 
|  | if NEEDBITS() returns in the loop.  For example, want, need, and keep | 
|  | would all have to actually be part of the saved state in case NEEDBITS() | 
|  | returns: | 
|  |  | 
|  | case STATEw: | 
|  | while (want < need) { | 
|  | NEEDBITS(n); | 
|  | keep[want++] = BITS(n); | 
|  | DROPBITS(n); | 
|  | } | 
|  | state = STATEx; | 
|  | case STATEx: | 
|  |  | 
|  | As shown above, if the next state is also the next case, then the break | 
|  | is omitted. | 
|  |  | 
|  | A state may also return if there is not enough output space available to | 
|  | complete that state.  Those states are copying stored data, writing a | 
|  | literal byte, and copying a matching string. | 
|  |  | 
|  | When returning, a "goto inf_leave" is used to update the total counters, | 
|  | update the check value, and determine whether any progress has been made | 
|  | during that inflate() call in order to return the proper return code. | 
|  | Progress is defined as a change in either strm->avail_in or strm->avail_out. | 
|  | When there is a window, goto inf_leave will update the window with the last | 
|  | output written.  If a goto inf_leave occurs in the middle of decompression | 
|  | and there is no window currently, goto inf_leave will create one and copy | 
|  | output to the window for the next call of inflate(). | 
|  |  | 
|  | In this implementation, the flush parameter of inflate() only affects the | 
|  | return code (per zlib.h).  inflate() always writes as much as possible to | 
|  | strm->next_out, given the space available and the provided input--the effect | 
|  | documented in zlib.h of Z_SYNC_FLUSH.  Furthermore, inflate() always defers | 
|  | the allocation of and copying into a sliding window until necessary, which | 
|  | provides the effect documented in zlib.h for Z_FINISH when the entire input | 
|  | stream available.  So the only thing the flush parameter actually does is: | 
|  | when flush is set to Z_FINISH, inflate() cannot return Z_OK.  Instead it | 
|  | will return Z_BUF_ERROR if it has not reached the end of the stream. | 
|  | */ | 
|  |  | 
|  | int zlib_inflate(z_streamp strm, int flush) | 
|  | { | 
|  | struct inflate_state *state; | 
|  | const unsigned char *next;  /* next input */ | 
|  | unsigned char *put;         /* next output */ | 
|  | unsigned have, left;        /* available input and output */ | 
|  | unsigned long hold;         /* bit buffer */ | 
|  | unsigned bits;              /* bits in bit buffer */ | 
|  | unsigned in, out;           /* save starting available input and output */ | 
|  | unsigned copy;              /* number of stored or match bytes to copy */ | 
|  | unsigned char *from;        /* where to copy match bytes from */ | 
|  | code this;                  /* current decoding table entry */ | 
|  | code last;                  /* parent table entry */ | 
|  | unsigned len;               /* length to copy for repeats, bits to drop */ | 
|  | int ret;                    /* return code */ | 
|  | static const unsigned short order[19] = /* permutation of code lengths */ | 
|  | {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; | 
|  |  | 
|  | /* Do not check for strm->next_out == NULL here as ppc zImage | 
|  | inflates to strm->next_out = 0 */ | 
|  |  | 
|  | if (strm == NULL || strm->state == NULL || | 
|  | (strm->next_in == NULL && strm->avail_in != 0)) | 
|  | return Z_STREAM_ERROR; | 
|  |  | 
|  | state = (struct inflate_state *)strm->state; | 
|  |  | 
|  | if (state->mode == TYPE) state->mode = TYPEDO;      /* skip check */ | 
|  | LOAD(); | 
|  | in = have; | 
|  | out = left; | 
|  | ret = Z_OK; | 
|  | for (;;) | 
|  | switch (state->mode) { | 
|  | case HEAD: | 
|  | if (state->wrap == 0) { | 
|  | state->mode = TYPEDO; | 
|  | break; | 
|  | } | 
|  | NEEDBITS(16); | 
|  | if ( | 
|  | ((BITS(8) << 8) + (hold >> 8)) % 31) { | 
|  | strm->msg = (char *)"incorrect header check"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | if (BITS(4) != Z_DEFLATED) { | 
|  | strm->msg = (char *)"unknown compression method"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | DROPBITS(4); | 
|  | len = BITS(4) + 8; | 
|  | if (len > state->wbits) { | 
|  | strm->msg = (char *)"invalid window size"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | state->dmax = 1U << len; | 
|  | strm->adler = state->check = zlib_adler32(0L, NULL, 0); | 
|  | state->mode = hold & 0x200 ? DICTID : TYPE; | 
|  | INITBITS(); | 
|  | break; | 
|  | case DICTID: | 
|  | NEEDBITS(32); | 
|  | strm->adler = state->check = REVERSE(hold); | 
|  | INITBITS(); | 
|  | state->mode = DICT; | 
|  | fallthrough; | 
|  | case DICT: | 
|  | if (state->havedict == 0) { | 
|  | RESTORE(); | 
|  | return Z_NEED_DICT; | 
|  | } | 
|  | strm->adler = state->check = zlib_adler32(0L, NULL, 0); | 
|  | state->mode = TYPE; | 
|  | fallthrough; | 
|  | case TYPE: | 
|  | if (flush == Z_BLOCK) goto inf_leave; | 
|  | fallthrough; | 
|  | case TYPEDO: | 
|  | INFLATE_TYPEDO_HOOK(strm, flush); | 
|  | if (state->last) { | 
|  | BYTEBITS(); | 
|  | state->mode = CHECK; | 
|  | break; | 
|  | } | 
|  | NEEDBITS(3); | 
|  | state->last = BITS(1); | 
|  | DROPBITS(1); | 
|  | switch (BITS(2)) { | 
|  | case 0:                             /* stored block */ | 
|  | state->mode = STORED; | 
|  | break; | 
|  | case 1:                             /* fixed block */ | 
|  | zlib_fixedtables(state); | 
|  | state->mode = LEN;              /* decode codes */ | 
|  | break; | 
|  | case 2:                             /* dynamic block */ | 
|  | state->mode = TABLE; | 
|  | break; | 
|  | case 3: | 
|  | strm->msg = (char *)"invalid block type"; | 
|  | state->mode = BAD; | 
|  | } | 
|  | DROPBITS(2); | 
|  | break; | 
|  | case STORED: | 
|  | BYTEBITS();                         /* go to byte boundary */ | 
|  | NEEDBITS(32); | 
|  | if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { | 
|  | strm->msg = (char *)"invalid stored block lengths"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | state->length = (unsigned)hold & 0xffff; | 
|  | INITBITS(); | 
|  | state->mode = COPY; | 
|  | fallthrough; | 
|  | case COPY: | 
|  | copy = state->length; | 
|  | if (copy) { | 
|  | if (copy > have) copy = have; | 
|  | if (copy > left) copy = left; | 
|  | if (copy == 0) goto inf_leave; | 
|  | memcpy(put, next, copy); | 
|  | have -= copy; | 
|  | next += copy; | 
|  | left -= copy; | 
|  | put += copy; | 
|  | state->length -= copy; | 
|  | break; | 
|  | } | 
|  | state->mode = TYPE; | 
|  | break; | 
|  | case TABLE: | 
|  | NEEDBITS(14); | 
|  | state->nlen = BITS(5) + 257; | 
|  | DROPBITS(5); | 
|  | state->ndist = BITS(5) + 1; | 
|  | DROPBITS(5); | 
|  | state->ncode = BITS(4) + 4; | 
|  | DROPBITS(4); | 
|  | #ifndef PKZIP_BUG_WORKAROUND | 
|  | if (state->nlen > 286 || state->ndist > 30) { | 
|  | strm->msg = (char *)"too many length or distance symbols"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | state->have = 0; | 
|  | state->mode = LENLENS; | 
|  | fallthrough; | 
|  | case LENLENS: | 
|  | while (state->have < state->ncode) { | 
|  | NEEDBITS(3); | 
|  | state->lens[order[state->have++]] = (unsigned short)BITS(3); | 
|  | DROPBITS(3); | 
|  | } | 
|  | while (state->have < 19) | 
|  | state->lens[order[state->have++]] = 0; | 
|  | state->next = state->codes; | 
|  | state->lencode = (code const *)(state->next); | 
|  | state->lenbits = 7; | 
|  | ret = zlib_inflate_table(CODES, state->lens, 19, &(state->next), | 
|  | &(state->lenbits), state->work); | 
|  | if (ret) { | 
|  | strm->msg = (char *)"invalid code lengths set"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | state->have = 0; | 
|  | state->mode = CODELENS; | 
|  | fallthrough; | 
|  | case CODELENS: | 
|  | while (state->have < state->nlen + state->ndist) { | 
|  | for (;;) { | 
|  | this = state->lencode[BITS(state->lenbits)]; | 
|  | if ((unsigned)(this.bits) <= bits) break; | 
|  | PULLBYTE(); | 
|  | } | 
|  | if (this.val < 16) { | 
|  | NEEDBITS(this.bits); | 
|  | DROPBITS(this.bits); | 
|  | state->lens[state->have++] = this.val; | 
|  | } | 
|  | else { | 
|  | if (this.val == 16) { | 
|  | NEEDBITS(this.bits + 2); | 
|  | DROPBITS(this.bits); | 
|  | if (state->have == 0) { | 
|  | strm->msg = (char *)"invalid bit length repeat"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | len = state->lens[state->have - 1]; | 
|  | copy = 3 + BITS(2); | 
|  | DROPBITS(2); | 
|  | } | 
|  | else if (this.val == 17) { | 
|  | NEEDBITS(this.bits + 3); | 
|  | DROPBITS(this.bits); | 
|  | len = 0; | 
|  | copy = 3 + BITS(3); | 
|  | DROPBITS(3); | 
|  | } | 
|  | else { | 
|  | NEEDBITS(this.bits + 7); | 
|  | DROPBITS(this.bits); | 
|  | len = 0; | 
|  | copy = 11 + BITS(7); | 
|  | DROPBITS(7); | 
|  | } | 
|  | if (state->have + copy > state->nlen + state->ndist) { | 
|  | strm->msg = (char *)"invalid bit length repeat"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | while (copy--) | 
|  | state->lens[state->have++] = (unsigned short)len; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* handle error breaks in while */ | 
|  | if (state->mode == BAD) break; | 
|  |  | 
|  | /* build code tables */ | 
|  | state->next = state->codes; | 
|  | state->lencode = (code const *)(state->next); | 
|  | state->lenbits = 9; | 
|  | ret = zlib_inflate_table(LENS, state->lens, state->nlen, &(state->next), | 
|  | &(state->lenbits), state->work); | 
|  | if (ret) { | 
|  | strm->msg = (char *)"invalid literal/lengths set"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | state->distcode = (code const *)(state->next); | 
|  | state->distbits = 6; | 
|  | ret = zlib_inflate_table(DISTS, state->lens + state->nlen, state->ndist, | 
|  | &(state->next), &(state->distbits), state->work); | 
|  | if (ret) { | 
|  | strm->msg = (char *)"invalid distances set"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | state->mode = LEN; | 
|  | fallthrough; | 
|  | case LEN: | 
|  | if (have >= 6 && left >= 258) { | 
|  | RESTORE(); | 
|  | inflate_fast(strm, out); | 
|  | LOAD(); | 
|  | break; | 
|  | } | 
|  | for (;;) { | 
|  | this = state->lencode[BITS(state->lenbits)]; | 
|  | if ((unsigned)(this.bits) <= bits) break; | 
|  | PULLBYTE(); | 
|  | } | 
|  | if (this.op && (this.op & 0xf0) == 0) { | 
|  | last = this; | 
|  | for (;;) { | 
|  | this = state->lencode[last.val + | 
|  | (BITS(last.bits + last.op) >> last.bits)]; | 
|  | if ((unsigned)(last.bits + this.bits) <= bits) break; | 
|  | PULLBYTE(); | 
|  | } | 
|  | DROPBITS(last.bits); | 
|  | } | 
|  | DROPBITS(this.bits); | 
|  | state->length = (unsigned)this.val; | 
|  | if ((int)(this.op) == 0) { | 
|  | state->mode = LIT; | 
|  | break; | 
|  | } | 
|  | if (this.op & 32) { | 
|  | state->mode = TYPE; | 
|  | break; | 
|  | } | 
|  | if (this.op & 64) { | 
|  | strm->msg = (char *)"invalid literal/length code"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | state->extra = (unsigned)(this.op) & 15; | 
|  | state->mode = LENEXT; | 
|  | fallthrough; | 
|  | case LENEXT: | 
|  | if (state->extra) { | 
|  | NEEDBITS(state->extra); | 
|  | state->length += BITS(state->extra); | 
|  | DROPBITS(state->extra); | 
|  | } | 
|  | state->mode = DIST; | 
|  | fallthrough; | 
|  | case DIST: | 
|  | for (;;) { | 
|  | this = state->distcode[BITS(state->distbits)]; | 
|  | if ((unsigned)(this.bits) <= bits) break; | 
|  | PULLBYTE(); | 
|  | } | 
|  | if ((this.op & 0xf0) == 0) { | 
|  | last = this; | 
|  | for (;;) { | 
|  | this = state->distcode[last.val + | 
|  | (BITS(last.bits + last.op) >> last.bits)]; | 
|  | if ((unsigned)(last.bits + this.bits) <= bits) break; | 
|  | PULLBYTE(); | 
|  | } | 
|  | DROPBITS(last.bits); | 
|  | } | 
|  | DROPBITS(this.bits); | 
|  | if (this.op & 64) { | 
|  | strm->msg = (char *)"invalid distance code"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | state->offset = (unsigned)this.val; | 
|  | state->extra = (unsigned)(this.op) & 15; | 
|  | state->mode = DISTEXT; | 
|  | fallthrough; | 
|  | case DISTEXT: | 
|  | if (state->extra) { | 
|  | NEEDBITS(state->extra); | 
|  | state->offset += BITS(state->extra); | 
|  | DROPBITS(state->extra); | 
|  | } | 
|  | #ifdef INFLATE_STRICT | 
|  | if (state->offset > state->dmax) { | 
|  | strm->msg = (char *)"invalid distance too far back"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | if (state->offset > state->whave + out - left) { | 
|  | strm->msg = (char *)"invalid distance too far back"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | state->mode = MATCH; | 
|  | fallthrough; | 
|  | case MATCH: | 
|  | if (left == 0) goto inf_leave; | 
|  | copy = out - left; | 
|  | if (state->offset > copy) {         /* copy from window */ | 
|  | copy = state->offset - copy; | 
|  | if (copy > state->write) { | 
|  | copy -= state->write; | 
|  | from = state->window + (state->wsize - copy); | 
|  | } | 
|  | else | 
|  | from = state->window + (state->write - copy); | 
|  | if (copy > state->length) copy = state->length; | 
|  | } | 
|  | else {                              /* copy from output */ | 
|  | from = put - state->offset; | 
|  | copy = state->length; | 
|  | } | 
|  | if (copy > left) copy = left; | 
|  | left -= copy; | 
|  | state->length -= copy; | 
|  | do { | 
|  | *put++ = *from++; | 
|  | } while (--copy); | 
|  | if (state->length == 0) state->mode = LEN; | 
|  | break; | 
|  | case LIT: | 
|  | if (left == 0) goto inf_leave; | 
|  | *put++ = (unsigned char)(state->length); | 
|  | left--; | 
|  | state->mode = LEN; | 
|  | break; | 
|  | case CHECK: | 
|  | if (state->wrap) { | 
|  | NEEDBITS(32); | 
|  | out -= left; | 
|  | strm->total_out += out; | 
|  | state->total += out; | 
|  | if (INFLATE_NEED_CHECKSUM(strm) && out) | 
|  | strm->adler = state->check = | 
|  | UPDATE(state->check, put - out, out); | 
|  | out = left; | 
|  | if (( | 
|  | REVERSE(hold)) != state->check) { | 
|  | strm->msg = (char *)"incorrect data check"; | 
|  | state->mode = BAD; | 
|  | break; | 
|  | } | 
|  | INITBITS(); | 
|  | } | 
|  | state->mode = DONE; | 
|  | fallthrough; | 
|  | case DONE: | 
|  | ret = Z_STREAM_END; | 
|  | goto inf_leave; | 
|  | case BAD: | 
|  | ret = Z_DATA_ERROR; | 
|  | goto inf_leave; | 
|  | case MEM: | 
|  | return Z_MEM_ERROR; | 
|  | case SYNC: | 
|  | default: | 
|  | return Z_STREAM_ERROR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | Return from inflate(), updating the total counts and the check value. | 
|  | If there was no progress during the inflate() call, return a buffer | 
|  | error.  Call zlib_updatewindow() to create and/or update the window state. | 
|  | */ | 
|  | inf_leave: | 
|  | RESTORE(); | 
|  | if (INFLATE_NEED_UPDATEWINDOW(strm) && | 
|  | (state->wsize || (state->mode < CHECK && out != strm->avail_out))) | 
|  | zlib_updatewindow(strm, out); | 
|  |  | 
|  | in -= strm->avail_in; | 
|  | out -= strm->avail_out; | 
|  | strm->total_in += in; | 
|  | strm->total_out += out; | 
|  | state->total += out; | 
|  | if (INFLATE_NEED_CHECKSUM(strm) && state->wrap && out) | 
|  | strm->adler = state->check = | 
|  | UPDATE(state->check, strm->next_out - out, out); | 
|  |  | 
|  | strm->data_type = state->bits + (state->last ? 64 : 0) + | 
|  | (state->mode == TYPE ? 128 : 0); | 
|  |  | 
|  | if (flush == Z_PACKET_FLUSH && ret == Z_OK && | 
|  | strm->avail_out != 0 && strm->avail_in == 0) | 
|  | return zlib_inflateSyncPacket(strm); | 
|  |  | 
|  | if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) | 
|  | ret = Z_BUF_ERROR; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int zlib_inflateEnd(z_streamp strm) | 
|  | { | 
|  | if (strm == NULL || strm->state == NULL) | 
|  | return Z_STREAM_ERROR; | 
|  | return Z_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This subroutine adds the data at next_in/avail_in to the output history | 
|  | * without performing any output.  The output buffer must be "caught up"; | 
|  | * i.e. no pending output but this should always be the case. The state must | 
|  | * be waiting on the start of a block (i.e. mode == TYPE or HEAD).  On exit, | 
|  | * the output will also be caught up, and the checksum will have been updated | 
|  | * if need be. | 
|  | */ | 
|  | int zlib_inflateIncomp(z_stream *z) | 
|  | { | 
|  | struct inflate_state *state = (struct inflate_state *)z->state; | 
|  | Byte *saved_no = z->next_out; | 
|  | uInt saved_ao = z->avail_out; | 
|  |  | 
|  | if (state->mode != TYPE && state->mode != HEAD) | 
|  | return Z_DATA_ERROR; | 
|  |  | 
|  | /* Setup some variables to allow misuse of updateWindow */ | 
|  | z->avail_out = 0; | 
|  | z->next_out = (unsigned char*)z->next_in + z->avail_in; | 
|  |  | 
|  | zlib_updatewindow(z, z->avail_in); | 
|  |  | 
|  | /* Restore saved variables */ | 
|  | z->avail_out = saved_ao; | 
|  | z->next_out = saved_no; | 
|  |  | 
|  | z->adler = state->check = | 
|  | UPDATE(state->check, z->next_in, z->avail_in); | 
|  |  | 
|  | z->total_out += z->avail_in; | 
|  | z->total_in += z->avail_in; | 
|  | z->next_in += z->avail_in; | 
|  | state->total += z->avail_in; | 
|  | z->avail_in = 0; | 
|  |  | 
|  | return Z_OK; | 
|  | } |