| #!/usr/bin/env python3 |
| # SPDX-License-Identifier: GPL-2.0-or-later |
| # |
| # Script that generates constants for computing the given CRC variant(s). |
| # |
| # Copyright 2025 Google LLC |
| # |
| # Author: Eric Biggers <ebiggers@google.com> |
| |
| import sys |
| |
| # XOR (add) an iterable of polynomials. |
| def xor(iterable): |
| res = 0 |
| for val in iterable: |
| res ^= val |
| return res |
| |
| # Multiply two polynomials. |
| def clmul(a, b): |
| return xor(a << i for i in range(b.bit_length()) if (b & (1 << i)) != 0) |
| |
| # Polynomial division floor(a / b). |
| def div(a, b): |
| q = 0 |
| while a.bit_length() >= b.bit_length(): |
| q ^= 1 << (a.bit_length() - b.bit_length()) |
| a ^= b << (a.bit_length() - b.bit_length()) |
| return q |
| |
| # Reduce the polynomial 'a' modulo the polynomial 'b'. |
| def reduce(a, b): |
| return a ^ clmul(div(a, b), b) |
| |
| # Reflect the bits of a polynomial. |
| def bitreflect(poly, num_bits): |
| assert poly.bit_length() <= num_bits |
| return xor(((poly >> i) & 1) << (num_bits - 1 - i) for i in range(num_bits)) |
| |
| # Format a polynomial as hex. Bit-reflect it if the CRC is lsb-first. |
| def fmt_poly(variant, poly, num_bits): |
| if variant.lsb: |
| poly = bitreflect(poly, num_bits) |
| return f'0x{poly:0{2*num_bits//8}x}' |
| |
| # Print a pair of 64-bit polynomial multipliers. They are always passed in the |
| # order [HI64_TERMS, LO64_TERMS] but will be printed in the appropriate order. |
| def print_mult_pair(variant, mults): |
| mults = list(mults if variant.lsb else reversed(mults)) |
| terms = ['HI64_TERMS', 'LO64_TERMS'] if variant.lsb else ['LO64_TERMS', 'HI64_TERMS'] |
| for i in range(2): |
| print(f'\t\t{fmt_poly(variant, mults[i]["val"], 64)},\t/* {terms[i]}: {mults[i]["desc"]} */') |
| |
| # Pretty-print a polynomial. |
| def pprint_poly(prefix, poly): |
| terms = [f'x^{i}' for i in reversed(range(poly.bit_length())) |
| if (poly & (1 << i)) != 0] |
| j = 0 |
| while j < len(terms): |
| s = prefix + terms[j] + (' +' if j < len(terms) - 1 else '') |
| j += 1 |
| while j < len(terms) and len(s) < 73: |
| s += ' ' + terms[j] + (' +' if j < len(terms) - 1 else '') |
| j += 1 |
| print(s) |
| prefix = ' * ' + (' ' * (len(prefix) - 3)) |
| |
| # Print a comment describing constants generated for the given CRC variant. |
| def print_header(variant, what): |
| print('/*') |
| s = f'{"least" if variant.lsb else "most"}-significant-bit-first CRC-{variant.bits}' |
| print(f' * {what} generated for {s} using') |
| pprint_poly(' * G(x) = ', variant.G) |
| print(' */') |
| |
| class CrcVariant: |
| def __init__(self, bits, generator_poly, bit_order): |
| self.bits = bits |
| if bit_order not in ['lsb', 'msb']: |
| raise ValueError('Invalid value for bit_order') |
| self.lsb = bit_order == 'lsb' |
| self.name = f'crc{bits}_{bit_order}_0x{generator_poly:0{(2*bits+7)//8}x}' |
| if self.lsb: |
| generator_poly = bitreflect(generator_poly, bits) |
| self.G = generator_poly ^ (1 << bits) |
| |
| # Generate tables for CRC computation using the "slice-by-N" method. |
| # N=1 corresponds to the traditional byte-at-a-time table. |
| def gen_slicebyN_tables(variants, n): |
| for v in variants: |
| print('') |
| print_header(v, f'Slice-by-{n} CRC table') |
| print(f'static const u{v.bits} __maybe_unused {v.name}_table[{256*n}] = {{') |
| s = '' |
| for i in range(256 * n): |
| # The i'th table entry is the CRC of the message consisting of byte |
| # i % 256 followed by i // 256 zero bytes. |
| poly = (bitreflect(i % 256, 8) if v.lsb else i % 256) << (v.bits + 8*(i//256)) |
| next_entry = fmt_poly(v, reduce(poly, v.G), v.bits) + ',' |
| if len(s + next_entry) > 71: |
| print(f'\t{s}') |
| s = '' |
| s += (' ' if s else '') + next_entry |
| if s: |
| print(f'\t{s}') |
| print('};') |
| |
| def print_riscv_const(v, bits_per_long, name, val, desc): |
| print(f'\t.{name} = {fmt_poly(v, val, bits_per_long)}, /* {desc} */') |
| |
| def do_gen_riscv_clmul_consts(v, bits_per_long): |
| (G, n, lsb) = (v.G, v.bits, v.lsb) |
| |
| pow_of_x = 3 * bits_per_long - (1 if lsb else 0) |
| print_riscv_const(v, bits_per_long, 'fold_across_2_longs_const_hi', |
| reduce(1 << pow_of_x, G), f'x^{pow_of_x} mod G') |
| pow_of_x = 2 * bits_per_long - (1 if lsb else 0) |
| print_riscv_const(v, bits_per_long, 'fold_across_2_longs_const_lo', |
| reduce(1 << pow_of_x, G), f'x^{pow_of_x} mod G') |
| |
| pow_of_x = bits_per_long - 1 + n |
| print_riscv_const(v, bits_per_long, 'barrett_reduction_const_1', |
| div(1 << pow_of_x, G), f'floor(x^{pow_of_x} / G)') |
| |
| val = G - (1 << n) |
| desc = f'G - x^{n}' |
| if lsb: |
| val <<= bits_per_long - n |
| desc = f'({desc}) * x^{bits_per_long - n}' |
| print_riscv_const(v, bits_per_long, 'barrett_reduction_const_2', val, desc) |
| |
| def gen_riscv_clmul_consts(variants): |
| print('') |
| print('struct crc_clmul_consts {'); |
| print('\tunsigned long fold_across_2_longs_const_hi;'); |
| print('\tunsigned long fold_across_2_longs_const_lo;'); |
| print('\tunsigned long barrett_reduction_const_1;'); |
| print('\tunsigned long barrett_reduction_const_2;'); |
| print('};'); |
| for v in variants: |
| print(''); |
| if v.bits > 32: |
| print_header(v, 'Constants') |
| print('#ifdef CONFIG_64BIT') |
| print(f'static const struct crc_clmul_consts {v.name}_consts __maybe_unused = {{') |
| do_gen_riscv_clmul_consts(v, 64) |
| print('};') |
| print('#endif') |
| else: |
| print_header(v, 'Constants') |
| print(f'static const struct crc_clmul_consts {v.name}_consts __maybe_unused = {{') |
| print('#ifdef CONFIG_64BIT') |
| do_gen_riscv_clmul_consts(v, 64) |
| print('#else') |
| do_gen_riscv_clmul_consts(v, 32) |
| print('#endif') |
| print('};') |
| |
| # Generate constants for carryless multiplication based CRC computation. |
| def gen_x86_pclmul_consts(variants): |
| # These are the distances, in bits, to generate folding constants for. |
| FOLD_DISTANCES = [2048, 1024, 512, 256, 128] |
| |
| for v in variants: |
| (G, n, lsb) = (v.G, v.bits, v.lsb) |
| print('') |
| print_header(v, 'CRC folding constants') |
| print('static const struct {') |
| if not lsb: |
| print('\tu8 bswap_mask[16];') |
| for i in FOLD_DISTANCES: |
| print(f'\tu64 fold_across_{i}_bits_consts[2];') |
| print('\tu8 shuf_table[48];') |
| print('\tu64 barrett_reduction_consts[2];') |
| print(f'}} {v.name}_consts ____cacheline_aligned __maybe_unused = {{') |
| |
| # Byte-reflection mask, needed for msb-first CRCs |
| if not lsb: |
| print('\t.bswap_mask = {' + ', '.join(str(i) for i in reversed(range(16))) + '},') |
| |
| # Fold constants for all distances down to 128 bits |
| for i in FOLD_DISTANCES: |
| print(f'\t.fold_across_{i}_bits_consts = {{') |
| # Given 64x64 => 128 bit carryless multiplication instructions, two |
| # 64-bit fold constants are needed per "fold distance" i: one for |
| # HI64_TERMS that is basically x^(i+64) mod G and one for LO64_TERMS |
| # that is basically x^i mod G. The exact values however undergo a |
| # couple adjustments, described below. |
| mults = [] |
| for j in [64, 0]: |
| pow_of_x = i + j |
| if lsb: |
| # Each 64x64 => 128 bit carryless multiplication instruction |
| # actually generates a 127-bit product in physical bits 0 |
| # through 126, which in the lsb-first case represent the |
| # coefficients of x^1 through x^127, not x^0 through x^126. |
| # Thus in the lsb-first case, each such instruction |
| # implicitly adds an extra factor of x. The below removes a |
| # factor of x from each constant to compensate for this. |
| # For n < 64 the x could be removed from either the reduced |
| # part or unreduced part, but for n == 64 the reduced part |
| # is the only option. Just always use the reduced part. |
| pow_of_x -= 1 |
| # Make a factor of x^(64-n) be applied unreduced rather than |
| # reduced, to cause the product to use only the x^(64-n) and |
| # higher terms and always be zero in the lower terms. Usually |
| # this makes no difference as it does not affect the product's |
| # congruence class mod G and the constant remains 64-bit, but |
| # part of the final reduction from 128 bits does rely on this |
| # property when it reuses one of the constants. |
| pow_of_x -= 64 - n |
| mults.append({ 'val': reduce(1 << pow_of_x, G) << (64 - n), |
| 'desc': f'(x^{pow_of_x} mod G) * x^{64-n}' }) |
| print_mult_pair(v, mults) |
| print('\t},') |
| |
| # Shuffle table for handling 1..15 bytes at end |
| print('\t.shuf_table = {') |
| print('\t\t' + (16*'-1, ').rstrip()) |
| print('\t\t' + ''.join(f'{i:2}, ' for i in range(16)).rstrip()) |
| print('\t\t' + (16*'-1, ').rstrip()) |
| print('\t},') |
| |
| # Barrett reduction constants for reducing 128 bits to the final CRC |
| print('\t.barrett_reduction_consts = {') |
| mults = [] |
| |
| val = div(1 << (63+n), G) |
| desc = f'floor(x^{63+n} / G)' |
| if not lsb: |
| val = (val << 1) - (1 << 64) |
| desc = f'({desc} * x) - x^64' |
| mults.append({ 'val': val, 'desc': desc }) |
| |
| val = G - (1 << n) |
| desc = f'G - x^{n}' |
| if lsb and n == 64: |
| assert (val & 1) != 0 # The x^0 term should always be nonzero. |
| val >>= 1 |
| desc = f'({desc} - x^0) / x' |
| else: |
| pow_of_x = 64 - n - (1 if lsb else 0) |
| val <<= pow_of_x |
| desc = f'({desc}) * x^{pow_of_x}' |
| mults.append({ 'val': val, 'desc': desc }) |
| |
| print_mult_pair(v, mults) |
| print('\t},') |
| |
| print('};') |
| |
| def parse_crc_variants(vars_string): |
| variants = [] |
| for var_string in vars_string.split(','): |
| bits, bit_order, generator_poly = var_string.split('_') |
| assert bits.startswith('crc') |
| bits = int(bits.removeprefix('crc')) |
| assert generator_poly.startswith('0x') |
| generator_poly = generator_poly.removeprefix('0x') |
| assert len(generator_poly) % 2 == 0 |
| generator_poly = int(generator_poly, 16) |
| variants.append(CrcVariant(bits, generator_poly, bit_order)) |
| return variants |
| |
| if len(sys.argv) != 3: |
| sys.stderr.write(f'Usage: {sys.argv[0]} CONSTS_TYPE[,CONSTS_TYPE]... CRC_VARIANT[,CRC_VARIANT]...\n') |
| sys.stderr.write(' CONSTS_TYPE can be sliceby[1-8], riscv_clmul, or x86_pclmul\n') |
| sys.stderr.write(' CRC_VARIANT is crc${num_bits}_${bit_order}_${generator_poly_as_hex}\n') |
| sys.stderr.write(' E.g. crc16_msb_0x8bb7 or crc32_lsb_0xedb88320\n') |
| sys.stderr.write(' Polynomial must use the given bit_order and exclude x^{num_bits}\n') |
| sys.exit(1) |
| |
| print('/* SPDX-License-Identifier: GPL-2.0-or-later */') |
| print('/*') |
| print(' * CRC constants generated by:') |
| print(' *') |
| print(f' *\t{sys.argv[0]} {" ".join(sys.argv[1:])}') |
| print(' *') |
| print(' * Do not edit manually.') |
| print(' */') |
| consts_types = sys.argv[1].split(',') |
| variants = parse_crc_variants(sys.argv[2]) |
| for consts_type in consts_types: |
| if consts_type.startswith('sliceby'): |
| gen_slicebyN_tables(variants, int(consts_type.removeprefix('sliceby'))) |
| elif consts_type == 'riscv_clmul': |
| gen_riscv_clmul_consts(variants) |
| elif consts_type == 'x86_pclmul': |
| gen_x86_pclmul_consts(variants) |
| else: |
| raise ValueError(f'Unknown consts_type: {consts_type}') |