|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2015 Shaohua Li <shli@fb.com> | 
|  | * Copyright (C) 2016 Song Liu <songliubraving@fb.com> | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/raid/md_p.h> | 
|  | #include <linux/crc32c.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/types.h> | 
|  | #include "md.h" | 
|  | #include "raid5.h" | 
|  | #include "md-bitmap.h" | 
|  | #include "raid5-log.h" | 
|  |  | 
|  | /* | 
|  | * metadata/data stored in disk with 4k size unit (a block) regardless | 
|  | * underneath hardware sector size. only works with PAGE_SIZE == 4096 | 
|  | */ | 
|  | #define BLOCK_SECTORS (8) | 
|  | #define BLOCK_SECTOR_SHIFT (3) | 
|  |  | 
|  | /* | 
|  | * log->max_free_space is min(1/4 disk size, 10G reclaimable space). | 
|  | * | 
|  | * In write through mode, the reclaim runs every log->max_free_space. | 
|  | * This can prevent the recovery scans for too long | 
|  | */ | 
|  | #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ | 
|  | #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) | 
|  |  | 
|  | /* wake up reclaim thread periodically */ | 
|  | #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) | 
|  | /* start flush with these full stripes */ | 
|  | #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) | 
|  | /* reclaim stripes in groups */ | 
|  | #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) | 
|  |  | 
|  | /* | 
|  | * We only need 2 bios per I/O unit to make progress, but ensure we | 
|  | * have a few more available to not get too tight. | 
|  | */ | 
|  | #define R5L_POOL_SIZE	4 | 
|  |  | 
|  | static char *r5c_journal_mode_str[] = {"write-through", | 
|  | "write-back"}; | 
|  | /* | 
|  | * raid5 cache state machine | 
|  | * | 
|  | * With the RAID cache, each stripe works in two phases: | 
|  | *	- caching phase | 
|  | *	- writing-out phase | 
|  | * | 
|  | * These two phases are controlled by bit STRIPE_R5C_CACHING: | 
|  | *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase | 
|  | *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase | 
|  | * | 
|  | * When there is no journal, or the journal is in write-through mode, | 
|  | * the stripe is always in writing-out phase. | 
|  | * | 
|  | * For write-back journal, the stripe is sent to caching phase on write | 
|  | * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off | 
|  | * the write-out phase by clearing STRIPE_R5C_CACHING. | 
|  | * | 
|  | * Stripes in caching phase do not write the raid disks. Instead, all | 
|  | * writes are committed from the log device. Therefore, a stripe in | 
|  | * caching phase handles writes as: | 
|  | *	- write to log device | 
|  | *	- return IO | 
|  | * | 
|  | * Stripes in writing-out phase handle writes as: | 
|  | *	- calculate parity | 
|  | *	- write pending data and parity to journal | 
|  | *	- write data and parity to raid disks | 
|  | *	- return IO for pending writes | 
|  | */ | 
|  |  | 
|  | struct r5l_log { | 
|  | struct md_rdev *rdev; | 
|  |  | 
|  | u32 uuid_checksum; | 
|  |  | 
|  | sector_t device_size;		/* log device size, round to | 
|  | * BLOCK_SECTORS */ | 
|  | sector_t max_free_space;	/* reclaim run if free space is at | 
|  | * this size */ | 
|  |  | 
|  | sector_t last_checkpoint;	/* log tail. where recovery scan | 
|  | * starts from */ | 
|  | u64 last_cp_seq;		/* log tail sequence */ | 
|  |  | 
|  | sector_t log_start;		/* log head. where new data appends */ | 
|  | u64 seq;			/* log head sequence */ | 
|  |  | 
|  | sector_t next_checkpoint; | 
|  |  | 
|  | struct mutex io_mutex; | 
|  | struct r5l_io_unit *current_io;	/* current io_unit accepting new data */ | 
|  |  | 
|  | spinlock_t io_list_lock; | 
|  | struct list_head running_ios;	/* io_units which are still running, | 
|  | * and have not yet been completely | 
|  | * written to the log */ | 
|  | struct list_head io_end_ios;	/* io_units which have been completely | 
|  | * written to the log but not yet written | 
|  | * to the RAID */ | 
|  | struct list_head flushing_ios;	/* io_units which are waiting for log | 
|  | * cache flush */ | 
|  | struct list_head finished_ios;	/* io_units which settle down in log disk */ | 
|  | struct bio flush_bio; | 
|  |  | 
|  | struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */ | 
|  |  | 
|  | struct kmem_cache *io_kc; | 
|  | mempool_t io_pool; | 
|  | struct bio_set bs; | 
|  | mempool_t meta_pool; | 
|  |  | 
|  | struct md_thread *reclaim_thread; | 
|  | unsigned long reclaim_target;	/* number of space that need to be | 
|  | * reclaimed.  if it's 0, reclaim spaces | 
|  | * used by io_units which are in | 
|  | * IO_UNIT_STRIPE_END state (eg, reclaim | 
|  | * dones't wait for specific io_unit | 
|  | * switching to IO_UNIT_STRIPE_END | 
|  | * state) */ | 
|  | wait_queue_head_t iounit_wait; | 
|  |  | 
|  | struct list_head no_space_stripes; /* pending stripes, log has no space */ | 
|  | spinlock_t no_space_stripes_lock; | 
|  |  | 
|  | bool need_cache_flush; | 
|  |  | 
|  | /* for r5c_cache */ | 
|  | enum r5c_journal_mode r5c_journal_mode; | 
|  |  | 
|  | /* all stripes in r5cache, in the order of seq at sh->log_start */ | 
|  | struct list_head stripe_in_journal_list; | 
|  |  | 
|  | spinlock_t stripe_in_journal_lock; | 
|  | atomic_t stripe_in_journal_count; | 
|  |  | 
|  | /* to submit async io_units, to fulfill ordering of flush */ | 
|  | struct work_struct deferred_io_work; | 
|  | /* to disable write back during in degraded mode */ | 
|  | struct work_struct disable_writeback_work; | 
|  |  | 
|  | /* to for chunk_aligned_read in writeback mode, details below */ | 
|  | spinlock_t tree_lock; | 
|  | struct radix_tree_root big_stripe_tree; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Enable chunk_aligned_read() with write back cache. | 
|  | * | 
|  | * Each chunk may contain more than one stripe (for example, a 256kB | 
|  | * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For | 
|  | * chunk_aligned_read, these stripes are grouped into one "big_stripe". | 
|  | * For each big_stripe, we count how many stripes of this big_stripe | 
|  | * are in the write back cache. These data are tracked in a radix tree | 
|  | * (big_stripe_tree). We use radix_tree item pointer as the counter. | 
|  | * r5c_tree_index() is used to calculate keys for the radix tree. | 
|  | * | 
|  | * chunk_aligned_read() calls r5c_big_stripe_cached() to look up | 
|  | * big_stripe of each chunk in the tree. If this big_stripe is in the | 
|  | * tree, chunk_aligned_read() aborts. This look up is protected by | 
|  | * rcu_read_lock(). | 
|  | * | 
|  | * It is necessary to remember whether a stripe is counted in | 
|  | * big_stripe_tree. Instead of adding new flag, we reuses existing flags: | 
|  | * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these | 
|  | * two flags are set, the stripe is counted in big_stripe_tree. This | 
|  | * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to | 
|  | * r5c_try_caching_write(); and moving clear_bit of | 
|  | * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to | 
|  | * r5c_finish_stripe_write_out(). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * radix tree requests lowest 2 bits of data pointer to be 2b'00. | 
|  | * So it is necessary to left shift the counter by 2 bits before using it | 
|  | * as data pointer of the tree. | 
|  | */ | 
|  | #define R5C_RADIX_COUNT_SHIFT 2 | 
|  |  | 
|  | /* | 
|  | * calculate key for big_stripe_tree | 
|  | * | 
|  | * sect: align_bi->bi_iter.bi_sector or sh->sector | 
|  | */ | 
|  | static inline sector_t r5c_tree_index(struct r5conf *conf, | 
|  | sector_t sect) | 
|  | { | 
|  | sector_div(sect, conf->chunk_sectors); | 
|  | return sect; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * an IO range starts from a meta data block and end at the next meta data | 
|  | * block. The io unit's the meta data block tracks data/parity followed it. io | 
|  | * unit is written to log disk with normal write, as we always flush log disk | 
|  | * first and then start move data to raid disks, there is no requirement to | 
|  | * write io unit with FLUSH/FUA | 
|  | */ | 
|  | struct r5l_io_unit { | 
|  | struct r5l_log *log; | 
|  |  | 
|  | struct page *meta_page;	/* store meta block */ | 
|  | int meta_offset;	/* current offset in meta_page */ | 
|  |  | 
|  | struct bio *current_bio;/* current_bio accepting new data */ | 
|  |  | 
|  | atomic_t pending_stripe;/* how many stripes not flushed to raid */ | 
|  | u64 seq;		/* seq number of the metablock */ | 
|  | sector_t log_start;	/* where the io_unit starts */ | 
|  | sector_t log_end;	/* where the io_unit ends */ | 
|  | struct list_head log_sibling; /* log->running_ios */ | 
|  | struct list_head stripe_list; /* stripes added to the io_unit */ | 
|  |  | 
|  | int state; | 
|  | bool need_split_bio; | 
|  | struct bio *split_bio; | 
|  |  | 
|  | unsigned int has_flush:1;		/* include flush request */ | 
|  | unsigned int has_fua:1;			/* include fua request */ | 
|  | unsigned int has_null_flush:1;		/* include null flush request */ | 
|  | unsigned int has_flush_payload:1;	/* include flush payload  */ | 
|  | /* | 
|  | * io isn't sent yet, flush/fua request can only be submitted till it's | 
|  | * the first IO in running_ios list | 
|  | */ | 
|  | unsigned int io_deferred:1; | 
|  |  | 
|  | struct bio_list flush_barriers;   /* size == 0 flush bios */ | 
|  | }; | 
|  |  | 
|  | /* r5l_io_unit state */ | 
|  | enum r5l_io_unit_state { | 
|  | IO_UNIT_RUNNING = 0,	/* accepting new IO */ | 
|  | IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log, | 
|  | * don't accepting new bio */ | 
|  | IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */ | 
|  | IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */ | 
|  | }; | 
|  |  | 
|  | bool r5c_is_writeback(struct r5l_log *log) | 
|  | { | 
|  | return (log != NULL && | 
|  | log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); | 
|  | } | 
|  |  | 
|  | static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) | 
|  | { | 
|  | start += inc; | 
|  | if (start >= log->device_size) | 
|  | start = start - log->device_size; | 
|  | return start; | 
|  | } | 
|  |  | 
|  | static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, | 
|  | sector_t end) | 
|  | { | 
|  | if (end >= start) | 
|  | return end - start; | 
|  | else | 
|  | return end + log->device_size - start; | 
|  | } | 
|  |  | 
|  | static bool r5l_has_free_space(struct r5l_log *log, sector_t size) | 
|  | { | 
|  | sector_t used_size; | 
|  |  | 
|  | used_size = r5l_ring_distance(log, log->last_checkpoint, | 
|  | log->log_start); | 
|  |  | 
|  | return log->device_size > used_size + size; | 
|  | } | 
|  |  | 
|  | static void __r5l_set_io_unit_state(struct r5l_io_unit *io, | 
|  | enum r5l_io_unit_state state) | 
|  | { | 
|  | if (WARN_ON(io->state >= state)) | 
|  | return; | 
|  | io->state = state; | 
|  | } | 
|  |  | 
|  | static void | 
|  | r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) | 
|  | { | 
|  | struct bio *wbi, *wbi2; | 
|  |  | 
|  | wbi = dev->written; | 
|  | dev->written = NULL; | 
|  | while (wbi && wbi->bi_iter.bi_sector < | 
|  | dev->sector + RAID5_STRIPE_SECTORS(conf)) { | 
|  | wbi2 = r5_next_bio(conf, wbi, dev->sector); | 
|  | md_write_end(conf->mddev); | 
|  | bio_endio(wbi); | 
|  | wbi = wbi2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void r5c_handle_cached_data_endio(struct r5conf *conf, | 
|  | struct stripe_head *sh, int disks) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = sh->disks; i--; ) { | 
|  | if (sh->dev[i].written) { | 
|  | set_bit(R5_UPTODATE, &sh->dev[i].flags); | 
|  | r5c_return_dev_pending_writes(conf, &sh->dev[i]); | 
|  | md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, | 
|  | RAID5_STRIPE_SECTORS(conf), | 
|  | !test_bit(STRIPE_DEGRADED, &sh->state), | 
|  | 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void r5l_wake_reclaim(struct r5l_log *log, sector_t space); | 
|  |  | 
|  | /* Check whether we should flush some stripes to free up stripe cache */ | 
|  | void r5c_check_stripe_cache_usage(struct r5conf *conf) | 
|  | { | 
|  | int total_cached; | 
|  |  | 
|  | if (!r5c_is_writeback(conf->log)) | 
|  | return; | 
|  |  | 
|  | total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + | 
|  | atomic_read(&conf->r5c_cached_full_stripes); | 
|  |  | 
|  | /* | 
|  | * The following condition is true for either of the following: | 
|  | *   - stripe cache pressure high: | 
|  | *          total_cached > 3/4 min_nr_stripes || | 
|  | *          empty_inactive_list_nr > 0 | 
|  | *   - stripe cache pressure moderate: | 
|  | *          total_cached > 1/2 min_nr_stripes | 
|  | */ | 
|  | if (total_cached > conf->min_nr_stripes * 1 / 2 || | 
|  | atomic_read(&conf->empty_inactive_list_nr) > 0) | 
|  | r5l_wake_reclaim(conf->log, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full | 
|  | * stripes in the cache | 
|  | */ | 
|  | void r5c_check_cached_full_stripe(struct r5conf *conf) | 
|  | { | 
|  | if (!r5c_is_writeback(conf->log)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes | 
|  | * or a full stripe (chunk size / 4k stripes). | 
|  | */ | 
|  | if (atomic_read(&conf->r5c_cached_full_stripes) >= | 
|  | min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), | 
|  | conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf))) | 
|  | r5l_wake_reclaim(conf->log, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Total log space (in sectors) needed to flush all data in cache | 
|  | * | 
|  | * To avoid deadlock due to log space, it is necessary to reserve log | 
|  | * space to flush critical stripes (stripes that occupying log space near | 
|  | * last_checkpoint). This function helps check how much log space is | 
|  | * required to flush all cached stripes. | 
|  | * | 
|  | * To reduce log space requirements, two mechanisms are used to give cache | 
|  | * flush higher priorities: | 
|  | *    1. In handle_stripe_dirtying() and schedule_reconstruction(), | 
|  | *       stripes ALREADY in journal can be flushed w/o pending writes; | 
|  | *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal | 
|  | *       can be delayed (r5l_add_no_space_stripe). | 
|  | * | 
|  | * In cache flush, the stripe goes through 1 and then 2. For a stripe that | 
|  | * already passed 1, flushing it requires at most (conf->max_degraded + 1) | 
|  | * pages of journal space. For stripes that has not passed 1, flushing it | 
|  | * requires (conf->raid_disks + 1) pages of journal space. There are at | 
|  | * most (conf->group_cnt + 1) stripe that passed 1. So total journal space | 
|  | * required to flush all cached stripes (in pages) is: | 
|  | * | 
|  | *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + | 
|  | *     (group_cnt + 1) * (raid_disks + 1) | 
|  | * or | 
|  | *     (stripe_in_journal_count) * (max_degraded + 1) + | 
|  | *     (group_cnt + 1) * (raid_disks - max_degraded) | 
|  | */ | 
|  | static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) | 
|  | { | 
|  | struct r5l_log *log = conf->log; | 
|  |  | 
|  | if (!r5c_is_writeback(log)) | 
|  | return 0; | 
|  |  | 
|  | return BLOCK_SECTORS * | 
|  | ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + | 
|  | (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL | 
|  | * | 
|  | * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of | 
|  | * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log | 
|  | * device is less than 2x of reclaim_required_space. | 
|  | */ | 
|  | static inline void r5c_update_log_state(struct r5l_log *log) | 
|  | { | 
|  | struct r5conf *conf = log->rdev->mddev->private; | 
|  | sector_t free_space; | 
|  | sector_t reclaim_space; | 
|  | bool wake_reclaim = false; | 
|  |  | 
|  | if (!r5c_is_writeback(log)) | 
|  | return; | 
|  |  | 
|  | free_space = r5l_ring_distance(log, log->log_start, | 
|  | log->last_checkpoint); | 
|  | reclaim_space = r5c_log_required_to_flush_cache(conf); | 
|  | if (free_space < 2 * reclaim_space) | 
|  | set_bit(R5C_LOG_CRITICAL, &conf->cache_state); | 
|  | else { | 
|  | if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) | 
|  | wake_reclaim = true; | 
|  | clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); | 
|  | } | 
|  | if (free_space < 3 * reclaim_space) | 
|  | set_bit(R5C_LOG_TIGHT, &conf->cache_state); | 
|  | else | 
|  | clear_bit(R5C_LOG_TIGHT, &conf->cache_state); | 
|  |  | 
|  | if (wake_reclaim) | 
|  | r5l_wake_reclaim(log, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. | 
|  | * This function should only be called in write-back mode. | 
|  | */ | 
|  | void r5c_make_stripe_write_out(struct stripe_head *sh) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | struct r5l_log *log = conf->log; | 
|  |  | 
|  | BUG_ON(!r5c_is_writeback(log)); | 
|  |  | 
|  | WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); | 
|  | clear_bit(STRIPE_R5C_CACHING, &sh->state); | 
|  |  | 
|  | if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | atomic_inc(&conf->preread_active_stripes); | 
|  | } | 
|  |  | 
|  | static void r5c_handle_data_cached(struct stripe_head *sh) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = sh->disks; i--; ) | 
|  | if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { | 
|  | set_bit(R5_InJournal, &sh->dev[i].flags); | 
|  | clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | } | 
|  | clear_bit(STRIPE_LOG_TRAPPED, &sh->state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this journal write must contain full parity, | 
|  | * it may also contain some data pages | 
|  | */ | 
|  | static void r5c_handle_parity_cached(struct stripe_head *sh) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = sh->disks; i--; ) | 
|  | if (test_bit(R5_InJournal, &sh->dev[i].flags)) | 
|  | set_bit(R5_Wantwrite, &sh->dev[i].flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setting proper flags after writing (or flushing) data and/or parity to the | 
|  | * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). | 
|  | */ | 
|  | static void r5c_finish_cache_stripe(struct stripe_head *sh) | 
|  | { | 
|  | struct r5l_log *log = sh->raid_conf->log; | 
|  |  | 
|  | if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { | 
|  | BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); | 
|  | /* | 
|  | * Set R5_InJournal for parity dev[pd_idx]. This means | 
|  | * all data AND parity in the journal. For RAID 6, it is | 
|  | * NOT necessary to set the flag for dev[qd_idx], as the | 
|  | * two parities are written out together. | 
|  | */ | 
|  | set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); | 
|  | } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { | 
|  | r5c_handle_data_cached(sh); | 
|  | } else { | 
|  | r5c_handle_parity_cached(sh); | 
|  | set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void r5l_io_run_stripes(struct r5l_io_unit *io) | 
|  | { | 
|  | struct stripe_head *sh, *next; | 
|  |  | 
|  | list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { | 
|  | list_del_init(&sh->log_list); | 
|  |  | 
|  | r5c_finish_cache_stripe(sh); | 
|  |  | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void r5l_log_run_stripes(struct r5l_log *log) | 
|  | { | 
|  | struct r5l_io_unit *io, *next; | 
|  |  | 
|  | lockdep_assert_held(&log->io_list_lock); | 
|  |  | 
|  | list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { | 
|  | /* don't change list order */ | 
|  | if (io->state < IO_UNIT_IO_END) | 
|  | break; | 
|  |  | 
|  | list_move_tail(&io->log_sibling, &log->finished_ios); | 
|  | r5l_io_run_stripes(io); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void r5l_move_to_end_ios(struct r5l_log *log) | 
|  | { | 
|  | struct r5l_io_unit *io, *next; | 
|  |  | 
|  | lockdep_assert_held(&log->io_list_lock); | 
|  |  | 
|  | list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { | 
|  | /* don't change list order */ | 
|  | if (io->state < IO_UNIT_IO_END) | 
|  | break; | 
|  | list_move_tail(&io->log_sibling, &log->io_end_ios); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __r5l_stripe_write_finished(struct r5l_io_unit *io); | 
|  | static void r5l_log_endio(struct bio *bio) | 
|  | { | 
|  | struct r5l_io_unit *io = bio->bi_private; | 
|  | struct r5l_io_unit *io_deferred; | 
|  | struct r5l_log *log = io->log; | 
|  | unsigned long flags; | 
|  | bool has_null_flush; | 
|  | bool has_flush_payload; | 
|  |  | 
|  | if (bio->bi_status) | 
|  | md_error(log->rdev->mddev, log->rdev); | 
|  |  | 
|  | bio_put(bio); | 
|  | mempool_free(io->meta_page, &log->meta_pool); | 
|  |  | 
|  | spin_lock_irqsave(&log->io_list_lock, flags); | 
|  | __r5l_set_io_unit_state(io, IO_UNIT_IO_END); | 
|  |  | 
|  | /* | 
|  | * if the io doesn't not have null_flush or flush payload, | 
|  | * it is not safe to access it after releasing io_list_lock. | 
|  | * Therefore, it is necessary to check the condition with | 
|  | * the lock held. | 
|  | */ | 
|  | has_null_flush = io->has_null_flush; | 
|  | has_flush_payload = io->has_flush_payload; | 
|  |  | 
|  | if (log->need_cache_flush && !list_empty(&io->stripe_list)) | 
|  | r5l_move_to_end_ios(log); | 
|  | else | 
|  | r5l_log_run_stripes(log); | 
|  | if (!list_empty(&log->running_ios)) { | 
|  | /* | 
|  | * FLUSH/FUA io_unit is deferred because of ordering, now we | 
|  | * can dispatch it | 
|  | */ | 
|  | io_deferred = list_first_entry(&log->running_ios, | 
|  | struct r5l_io_unit, log_sibling); | 
|  | if (io_deferred->io_deferred) | 
|  | schedule_work(&log->deferred_io_work); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&log->io_list_lock, flags); | 
|  |  | 
|  | if (log->need_cache_flush) | 
|  | md_wakeup_thread(log->rdev->mddev->thread); | 
|  |  | 
|  | /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ | 
|  | if (has_null_flush) { | 
|  | struct bio *bi; | 
|  |  | 
|  | WARN_ON(bio_list_empty(&io->flush_barriers)); | 
|  | while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { | 
|  | bio_endio(bi); | 
|  | if (atomic_dec_and_test(&io->pending_stripe)) { | 
|  | __r5l_stripe_write_finished(io); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* decrease pending_stripe for flush payload */ | 
|  | if (has_flush_payload) | 
|  | if (atomic_dec_and_test(&io->pending_stripe)) | 
|  | __r5l_stripe_write_finished(io); | 
|  | } | 
|  |  | 
|  | static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&log->io_list_lock, flags); | 
|  | __r5l_set_io_unit_state(io, IO_UNIT_IO_START); | 
|  | spin_unlock_irqrestore(&log->io_list_lock, flags); | 
|  |  | 
|  | /* | 
|  | * In case of journal device failures, submit_bio will get error | 
|  | * and calls endio, then active stripes will continue write | 
|  | * process. Therefore, it is not necessary to check Faulty bit | 
|  | * of journal device here. | 
|  | * | 
|  | * We can't check split_bio after current_bio is submitted. If | 
|  | * io->split_bio is null, after current_bio is submitted, current_bio | 
|  | * might already be completed and the io_unit is freed. We submit | 
|  | * split_bio first to avoid the issue. | 
|  | */ | 
|  | if (io->split_bio) { | 
|  | if (io->has_flush) | 
|  | io->split_bio->bi_opf |= REQ_PREFLUSH; | 
|  | if (io->has_fua) | 
|  | io->split_bio->bi_opf |= REQ_FUA; | 
|  | submit_bio(io->split_bio); | 
|  | } | 
|  |  | 
|  | if (io->has_flush) | 
|  | io->current_bio->bi_opf |= REQ_PREFLUSH; | 
|  | if (io->has_fua) | 
|  | io->current_bio->bi_opf |= REQ_FUA; | 
|  | submit_bio(io->current_bio); | 
|  | } | 
|  |  | 
|  | /* deferred io_unit will be dispatched here */ | 
|  | static void r5l_submit_io_async(struct work_struct *work) | 
|  | { | 
|  | struct r5l_log *log = container_of(work, struct r5l_log, | 
|  | deferred_io_work); | 
|  | struct r5l_io_unit *io = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&log->io_list_lock, flags); | 
|  | if (!list_empty(&log->running_ios)) { | 
|  | io = list_first_entry(&log->running_ios, struct r5l_io_unit, | 
|  | log_sibling); | 
|  | if (!io->io_deferred) | 
|  | io = NULL; | 
|  | else | 
|  | io->io_deferred = 0; | 
|  | } | 
|  | spin_unlock_irqrestore(&log->io_list_lock, flags); | 
|  | if (io) | 
|  | r5l_do_submit_io(log, io); | 
|  | } | 
|  |  | 
|  | static void r5c_disable_writeback_async(struct work_struct *work) | 
|  | { | 
|  | struct r5l_log *log = container_of(work, struct r5l_log, | 
|  | disable_writeback_work); | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  | int locked = 0; | 
|  |  | 
|  | if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) | 
|  | return; | 
|  | pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", | 
|  | mdname(mddev)); | 
|  |  | 
|  | /* wait superblock change before suspend */ | 
|  | wait_event(mddev->sb_wait, | 
|  | conf->log == NULL || | 
|  | (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && | 
|  | (locked = mddev_trylock(mddev)))); | 
|  | if (locked) { | 
|  | mddev_suspend(mddev); | 
|  | log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; | 
|  | mddev_resume(mddev); | 
|  | mddev_unlock(mddev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void r5l_submit_current_io(struct r5l_log *log) | 
|  | { | 
|  | struct r5l_io_unit *io = log->current_io; | 
|  | struct r5l_meta_block *block; | 
|  | unsigned long flags; | 
|  | u32 crc; | 
|  | bool do_submit = true; | 
|  |  | 
|  | if (!io) | 
|  | return; | 
|  |  | 
|  | block = page_address(io->meta_page); | 
|  | block->meta_size = cpu_to_le32(io->meta_offset); | 
|  | crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); | 
|  | block->checksum = cpu_to_le32(crc); | 
|  |  | 
|  | log->current_io = NULL; | 
|  | spin_lock_irqsave(&log->io_list_lock, flags); | 
|  | if (io->has_flush || io->has_fua) { | 
|  | if (io != list_first_entry(&log->running_ios, | 
|  | struct r5l_io_unit, log_sibling)) { | 
|  | io->io_deferred = 1; | 
|  | do_submit = false; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&log->io_list_lock, flags); | 
|  | if (do_submit) | 
|  | r5l_do_submit_io(log, io); | 
|  | } | 
|  |  | 
|  | static struct bio *r5l_bio_alloc(struct r5l_log *log) | 
|  | { | 
|  | struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_VECS, &log->bs); | 
|  |  | 
|  | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
|  | bio_set_dev(bio, log->rdev->bdev); | 
|  | bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; | 
|  |  | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) | 
|  | { | 
|  | log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); | 
|  |  | 
|  | r5c_update_log_state(log); | 
|  | /* | 
|  | * If we filled up the log device start from the beginning again, | 
|  | * which will require a new bio. | 
|  | * | 
|  | * Note: for this to work properly the log size needs to me a multiple | 
|  | * of BLOCK_SECTORS. | 
|  | */ | 
|  | if (log->log_start == 0) | 
|  | io->need_split_bio = true; | 
|  |  | 
|  | io->log_end = log->log_start; | 
|  | } | 
|  |  | 
|  | static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) | 
|  | { | 
|  | struct r5l_io_unit *io; | 
|  | struct r5l_meta_block *block; | 
|  |  | 
|  | io = mempool_alloc(&log->io_pool, GFP_ATOMIC); | 
|  | if (!io) | 
|  | return NULL; | 
|  | memset(io, 0, sizeof(*io)); | 
|  |  | 
|  | io->log = log; | 
|  | INIT_LIST_HEAD(&io->log_sibling); | 
|  | INIT_LIST_HEAD(&io->stripe_list); | 
|  | bio_list_init(&io->flush_barriers); | 
|  | io->state = IO_UNIT_RUNNING; | 
|  |  | 
|  | io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); | 
|  | block = page_address(io->meta_page); | 
|  | clear_page(block); | 
|  | block->magic = cpu_to_le32(R5LOG_MAGIC); | 
|  | block->version = R5LOG_VERSION; | 
|  | block->seq = cpu_to_le64(log->seq); | 
|  | block->position = cpu_to_le64(log->log_start); | 
|  |  | 
|  | io->log_start = log->log_start; | 
|  | io->meta_offset = sizeof(struct r5l_meta_block); | 
|  | io->seq = log->seq++; | 
|  |  | 
|  | io->current_bio = r5l_bio_alloc(log); | 
|  | io->current_bio->bi_end_io = r5l_log_endio; | 
|  | io->current_bio->bi_private = io; | 
|  | bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); | 
|  |  | 
|  | r5_reserve_log_entry(log, io); | 
|  |  | 
|  | spin_lock_irq(&log->io_list_lock); | 
|  | list_add_tail(&io->log_sibling, &log->running_ios); | 
|  | spin_unlock_irq(&log->io_list_lock); | 
|  |  | 
|  | return io; | 
|  | } | 
|  |  | 
|  | static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) | 
|  | { | 
|  | if (log->current_io && | 
|  | log->current_io->meta_offset + payload_size > PAGE_SIZE) | 
|  | r5l_submit_current_io(log); | 
|  |  | 
|  | if (!log->current_io) { | 
|  | log->current_io = r5l_new_meta(log); | 
|  | if (!log->current_io) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void r5l_append_payload_meta(struct r5l_log *log, u16 type, | 
|  | sector_t location, | 
|  | u32 checksum1, u32 checksum2, | 
|  | bool checksum2_valid) | 
|  | { | 
|  | struct r5l_io_unit *io = log->current_io; | 
|  | struct r5l_payload_data_parity *payload; | 
|  |  | 
|  | payload = page_address(io->meta_page) + io->meta_offset; | 
|  | payload->header.type = cpu_to_le16(type); | 
|  | payload->header.flags = cpu_to_le16(0); | 
|  | payload->size = cpu_to_le32((1 + !!checksum2_valid) << | 
|  | (PAGE_SHIFT - 9)); | 
|  | payload->location = cpu_to_le64(location); | 
|  | payload->checksum[0] = cpu_to_le32(checksum1); | 
|  | if (checksum2_valid) | 
|  | payload->checksum[1] = cpu_to_le32(checksum2); | 
|  |  | 
|  | io->meta_offset += sizeof(struct r5l_payload_data_parity) + | 
|  | sizeof(__le32) * (1 + !!checksum2_valid); | 
|  | } | 
|  |  | 
|  | static void r5l_append_payload_page(struct r5l_log *log, struct page *page) | 
|  | { | 
|  | struct r5l_io_unit *io = log->current_io; | 
|  |  | 
|  | if (io->need_split_bio) { | 
|  | BUG_ON(io->split_bio); | 
|  | io->split_bio = io->current_bio; | 
|  | io->current_bio = r5l_bio_alloc(log); | 
|  | bio_chain(io->current_bio, io->split_bio); | 
|  | io->need_split_bio = false; | 
|  | } | 
|  |  | 
|  | if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) | 
|  | BUG(); | 
|  |  | 
|  | r5_reserve_log_entry(log, io); | 
|  | } | 
|  |  | 
|  | static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) | 
|  | { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct r5l_io_unit *io; | 
|  | struct r5l_payload_flush *payload; | 
|  | int meta_size; | 
|  |  | 
|  | /* | 
|  | * payload_flush requires extra writes to the journal. | 
|  | * To avoid handling the extra IO in quiesce, just skip | 
|  | * flush_payload | 
|  | */ | 
|  | if (conf->quiesce) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&log->io_mutex); | 
|  | meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); | 
|  |  | 
|  | if (r5l_get_meta(log, meta_size)) { | 
|  | mutex_unlock(&log->io_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* current implementation is one stripe per flush payload */ | 
|  | io = log->current_io; | 
|  | payload = page_address(io->meta_page) + io->meta_offset; | 
|  | payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); | 
|  | payload->header.flags = cpu_to_le16(0); | 
|  | payload->size = cpu_to_le32(sizeof(__le64)); | 
|  | payload->flush_stripes[0] = cpu_to_le64(sect); | 
|  | io->meta_offset += meta_size; | 
|  | /* multiple flush payloads count as one pending_stripe */ | 
|  | if (!io->has_flush_payload) { | 
|  | io->has_flush_payload = 1; | 
|  | atomic_inc(&io->pending_stripe); | 
|  | } | 
|  | mutex_unlock(&log->io_mutex); | 
|  | } | 
|  |  | 
|  | static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, | 
|  | int data_pages, int parity_pages) | 
|  | { | 
|  | int i; | 
|  | int meta_size; | 
|  | int ret; | 
|  | struct r5l_io_unit *io; | 
|  |  | 
|  | meta_size = | 
|  | ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) | 
|  | * data_pages) + | 
|  | sizeof(struct r5l_payload_data_parity) + | 
|  | sizeof(__le32) * parity_pages; | 
|  |  | 
|  | ret = r5l_get_meta(log, meta_size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | io = log->current_io; | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) | 
|  | io->has_flush = 1; | 
|  |  | 
|  | for (i = 0; i < sh->disks; i++) { | 
|  | if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || | 
|  | test_bit(R5_InJournal, &sh->dev[i].flags)) | 
|  | continue; | 
|  | if (i == sh->pd_idx || i == sh->qd_idx) | 
|  | continue; | 
|  | if (test_bit(R5_WantFUA, &sh->dev[i].flags) && | 
|  | log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { | 
|  | io->has_fua = 1; | 
|  | /* | 
|  | * we need to flush journal to make sure recovery can | 
|  | * reach the data with fua flag | 
|  | */ | 
|  | io->has_flush = 1; | 
|  | } | 
|  | r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, | 
|  | raid5_compute_blocknr(sh, i, 0), | 
|  | sh->dev[i].log_checksum, 0, false); | 
|  | r5l_append_payload_page(log, sh->dev[i].page); | 
|  | } | 
|  |  | 
|  | if (parity_pages == 2) { | 
|  | r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, | 
|  | sh->sector, sh->dev[sh->pd_idx].log_checksum, | 
|  | sh->dev[sh->qd_idx].log_checksum, true); | 
|  | r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); | 
|  | r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); | 
|  | } else if (parity_pages == 1) { | 
|  | r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, | 
|  | sh->sector, sh->dev[sh->pd_idx].log_checksum, | 
|  | 0, false); | 
|  | r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); | 
|  | } else  /* Just writing data, not parity, in caching phase */ | 
|  | BUG_ON(parity_pages != 0); | 
|  |  | 
|  | list_add_tail(&sh->log_list, &io->stripe_list); | 
|  | atomic_inc(&io->pending_stripe); | 
|  | sh->log_io = io; | 
|  |  | 
|  | if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) | 
|  | return 0; | 
|  |  | 
|  | if (sh->log_start == MaxSector) { | 
|  | BUG_ON(!list_empty(&sh->r5c)); | 
|  | sh->log_start = io->log_start; | 
|  | spin_lock_irq(&log->stripe_in_journal_lock); | 
|  | list_add_tail(&sh->r5c, | 
|  | &log->stripe_in_journal_list); | 
|  | spin_unlock_irq(&log->stripe_in_journal_lock); | 
|  | atomic_inc(&log->stripe_in_journal_count); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* add stripe to no_space_stripes, and then wake up reclaim */ | 
|  | static inline void r5l_add_no_space_stripe(struct r5l_log *log, | 
|  | struct stripe_head *sh) | 
|  | { | 
|  | spin_lock(&log->no_space_stripes_lock); | 
|  | list_add_tail(&sh->log_list, &log->no_space_stripes); | 
|  | spin_unlock(&log->no_space_stripes_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * running in raid5d, where reclaim could wait for raid5d too (when it flushes | 
|  | * data from log to raid disks), so we shouldn't wait for reclaim here | 
|  | */ | 
|  | int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int write_disks = 0; | 
|  | int data_pages, parity_pages; | 
|  | int reserve; | 
|  | int i; | 
|  | int ret = 0; | 
|  | bool wake_reclaim = false; | 
|  |  | 
|  | if (!log) | 
|  | return -EAGAIN; | 
|  | /* Don't support stripe batch */ | 
|  | if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || | 
|  | test_bit(STRIPE_SYNCING, &sh->state)) { | 
|  | /* the stripe is written to log, we start writing it to raid */ | 
|  | clear_bit(STRIPE_LOG_TRAPPED, &sh->state); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); | 
|  |  | 
|  | for (i = 0; i < sh->disks; i++) { | 
|  | void *addr; | 
|  |  | 
|  | if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || | 
|  | test_bit(R5_InJournal, &sh->dev[i].flags)) | 
|  | continue; | 
|  |  | 
|  | write_disks++; | 
|  | /* checksum is already calculated in last run */ | 
|  | if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) | 
|  | continue; | 
|  | addr = kmap_atomic(sh->dev[i].page); | 
|  | sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, | 
|  | addr, PAGE_SIZE); | 
|  | kunmap_atomic(addr); | 
|  | } | 
|  | parity_pages = 1 + !!(sh->qd_idx >= 0); | 
|  | data_pages = write_disks - parity_pages; | 
|  |  | 
|  | set_bit(STRIPE_LOG_TRAPPED, &sh->state); | 
|  | /* | 
|  | * The stripe must enter state machine again to finish the write, so | 
|  | * don't delay. | 
|  | */ | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  | atomic_inc(&sh->count); | 
|  |  | 
|  | mutex_lock(&log->io_mutex); | 
|  | /* meta + data */ | 
|  | reserve = (1 + write_disks) << (PAGE_SHIFT - 9); | 
|  |  | 
|  | if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { | 
|  | if (!r5l_has_free_space(log, reserve)) { | 
|  | r5l_add_no_space_stripe(log, sh); | 
|  | wake_reclaim = true; | 
|  | } else { | 
|  | ret = r5l_log_stripe(log, sh, data_pages, parity_pages); | 
|  | if (ret) { | 
|  | spin_lock_irq(&log->io_list_lock); | 
|  | list_add_tail(&sh->log_list, | 
|  | &log->no_mem_stripes); | 
|  | spin_unlock_irq(&log->io_list_lock); | 
|  | } | 
|  | } | 
|  | } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */ | 
|  | /* | 
|  | * log space critical, do not process stripes that are | 
|  | * not in cache yet (sh->log_start == MaxSector). | 
|  | */ | 
|  | if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && | 
|  | sh->log_start == MaxSector) { | 
|  | r5l_add_no_space_stripe(log, sh); | 
|  | wake_reclaim = true; | 
|  | reserve = 0; | 
|  | } else if (!r5l_has_free_space(log, reserve)) { | 
|  | if (sh->log_start == log->last_checkpoint) | 
|  | BUG(); | 
|  | else | 
|  | r5l_add_no_space_stripe(log, sh); | 
|  | } else { | 
|  | ret = r5l_log_stripe(log, sh, data_pages, parity_pages); | 
|  | if (ret) { | 
|  | spin_lock_irq(&log->io_list_lock); | 
|  | list_add_tail(&sh->log_list, | 
|  | &log->no_mem_stripes); | 
|  | spin_unlock_irq(&log->io_list_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&log->io_mutex); | 
|  | if (wake_reclaim) | 
|  | r5l_wake_reclaim(log, reserve); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void r5l_write_stripe_run(struct r5l_log *log) | 
|  | { | 
|  | if (!log) | 
|  | return; | 
|  | mutex_lock(&log->io_mutex); | 
|  | r5l_submit_current_io(log); | 
|  | mutex_unlock(&log->io_mutex); | 
|  | } | 
|  |  | 
|  | int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) | 
|  | { | 
|  | if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { | 
|  | /* | 
|  | * in write through (journal only) | 
|  | * we flush log disk cache first, then write stripe data to | 
|  | * raid disks. So if bio is finished, the log disk cache is | 
|  | * flushed already. The recovery guarantees we can recovery | 
|  | * the bio from log disk, so we don't need to flush again | 
|  | */ | 
|  | if (bio->bi_iter.bi_size == 0) { | 
|  | bio_endio(bio); | 
|  | return 0; | 
|  | } | 
|  | bio->bi_opf &= ~REQ_PREFLUSH; | 
|  | } else { | 
|  | /* write back (with cache) */ | 
|  | if (bio->bi_iter.bi_size == 0) { | 
|  | mutex_lock(&log->io_mutex); | 
|  | r5l_get_meta(log, 0); | 
|  | bio_list_add(&log->current_io->flush_barriers, bio); | 
|  | log->current_io->has_flush = 1; | 
|  | log->current_io->has_null_flush = 1; | 
|  | atomic_inc(&log->current_io->pending_stripe); | 
|  | r5l_submit_current_io(log); | 
|  | mutex_unlock(&log->io_mutex); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* This will run after log space is reclaimed */ | 
|  | static void r5l_run_no_space_stripes(struct r5l_log *log) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | spin_lock(&log->no_space_stripes_lock); | 
|  | while (!list_empty(&log->no_space_stripes)) { | 
|  | sh = list_first_entry(&log->no_space_stripes, | 
|  | struct stripe_head, log_list); | 
|  | list_del_init(&sh->log_list); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  | spin_unlock(&log->no_space_stripes_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate new last_checkpoint | 
|  | * for write through mode, returns log->next_checkpoint | 
|  | * for write back, returns log_start of first sh in stripe_in_journal_list | 
|  | */ | 
|  | static sector_t r5c_calculate_new_cp(struct r5conf *conf) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | struct r5l_log *log = conf->log; | 
|  | sector_t new_cp; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) | 
|  | return log->next_checkpoint; | 
|  |  | 
|  | spin_lock_irqsave(&log->stripe_in_journal_lock, flags); | 
|  | if (list_empty(&conf->log->stripe_in_journal_list)) { | 
|  | /* all stripes flushed */ | 
|  | spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); | 
|  | return log->next_checkpoint; | 
|  | } | 
|  | sh = list_first_entry(&conf->log->stripe_in_journal_list, | 
|  | struct stripe_head, r5c); | 
|  | new_cp = sh->log_start; | 
|  | spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); | 
|  | return new_cp; | 
|  | } | 
|  |  | 
|  | static sector_t r5l_reclaimable_space(struct r5l_log *log) | 
|  | { | 
|  | struct r5conf *conf = log->rdev->mddev->private; | 
|  |  | 
|  | return r5l_ring_distance(log, log->last_checkpoint, | 
|  | r5c_calculate_new_cp(conf)); | 
|  | } | 
|  |  | 
|  | static void r5l_run_no_mem_stripe(struct r5l_log *log) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | lockdep_assert_held(&log->io_list_lock); | 
|  |  | 
|  | if (!list_empty(&log->no_mem_stripes)) { | 
|  | sh = list_first_entry(&log->no_mem_stripes, | 
|  | struct stripe_head, log_list); | 
|  | list_del_init(&sh->log_list); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool r5l_complete_finished_ios(struct r5l_log *log) | 
|  | { | 
|  | struct r5l_io_unit *io, *next; | 
|  | bool found = false; | 
|  |  | 
|  | lockdep_assert_held(&log->io_list_lock); | 
|  |  | 
|  | list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { | 
|  | /* don't change list order */ | 
|  | if (io->state < IO_UNIT_STRIPE_END) | 
|  | break; | 
|  |  | 
|  | log->next_checkpoint = io->log_start; | 
|  |  | 
|  | list_del(&io->log_sibling); | 
|  | mempool_free(io, &log->io_pool); | 
|  | r5l_run_no_mem_stripe(log); | 
|  |  | 
|  | found = true; | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static void __r5l_stripe_write_finished(struct r5l_io_unit *io) | 
|  | { | 
|  | struct r5l_log *log = io->log; | 
|  | struct r5conf *conf = log->rdev->mddev->private; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&log->io_list_lock, flags); | 
|  | __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); | 
|  |  | 
|  | if (!r5l_complete_finished_ios(log)) { | 
|  | spin_unlock_irqrestore(&log->io_list_lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (r5l_reclaimable_space(log) > log->max_free_space || | 
|  | test_bit(R5C_LOG_TIGHT, &conf->cache_state)) | 
|  | r5l_wake_reclaim(log, 0); | 
|  |  | 
|  | spin_unlock_irqrestore(&log->io_list_lock, flags); | 
|  | wake_up(&log->iounit_wait); | 
|  | } | 
|  |  | 
|  | void r5l_stripe_write_finished(struct stripe_head *sh) | 
|  | { | 
|  | struct r5l_io_unit *io; | 
|  |  | 
|  | io = sh->log_io; | 
|  | sh->log_io = NULL; | 
|  |  | 
|  | if (io && atomic_dec_and_test(&io->pending_stripe)) | 
|  | __r5l_stripe_write_finished(io); | 
|  | } | 
|  |  | 
|  | static void r5l_log_flush_endio(struct bio *bio) | 
|  | { | 
|  | struct r5l_log *log = container_of(bio, struct r5l_log, | 
|  | flush_bio); | 
|  | unsigned long flags; | 
|  | struct r5l_io_unit *io; | 
|  |  | 
|  | if (bio->bi_status) | 
|  | md_error(log->rdev->mddev, log->rdev); | 
|  |  | 
|  | spin_lock_irqsave(&log->io_list_lock, flags); | 
|  | list_for_each_entry(io, &log->flushing_ios, log_sibling) | 
|  | r5l_io_run_stripes(io); | 
|  | list_splice_tail_init(&log->flushing_ios, &log->finished_ios); | 
|  | spin_unlock_irqrestore(&log->io_list_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Starting dispatch IO to raid. | 
|  | * io_unit(meta) consists of a log. There is one situation we want to avoid. A | 
|  | * broken meta in the middle of a log causes recovery can't find meta at the | 
|  | * head of log. If operations require meta at the head persistent in log, we | 
|  | * must make sure meta before it persistent in log too. A case is: | 
|  | * | 
|  | * stripe data/parity is in log, we start write stripe to raid disks. stripe | 
|  | * data/parity must be persistent in log before we do the write to raid disks. | 
|  | * | 
|  | * The solution is we restrictly maintain io_unit list order. In this case, we | 
|  | * only write stripes of an io_unit to raid disks till the io_unit is the first | 
|  | * one whose data/parity is in log. | 
|  | */ | 
|  | void r5l_flush_stripe_to_raid(struct r5l_log *log) | 
|  | { | 
|  | bool do_flush; | 
|  |  | 
|  | if (!log || !log->need_cache_flush) | 
|  | return; | 
|  |  | 
|  | spin_lock_irq(&log->io_list_lock); | 
|  | /* flush bio is running */ | 
|  | if (!list_empty(&log->flushing_ios)) { | 
|  | spin_unlock_irq(&log->io_list_lock); | 
|  | return; | 
|  | } | 
|  | list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); | 
|  | do_flush = !list_empty(&log->flushing_ios); | 
|  | spin_unlock_irq(&log->io_list_lock); | 
|  |  | 
|  | if (!do_flush) | 
|  | return; | 
|  | bio_reset(&log->flush_bio); | 
|  | bio_set_dev(&log->flush_bio, log->rdev->bdev); | 
|  | log->flush_bio.bi_end_io = r5l_log_flush_endio; | 
|  | log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; | 
|  | submit_bio(&log->flush_bio); | 
|  | } | 
|  |  | 
|  | static void r5l_write_super(struct r5l_log *log, sector_t cp); | 
|  | static void r5l_write_super_and_discard_space(struct r5l_log *log, | 
|  | sector_t end) | 
|  | { | 
|  | struct block_device *bdev = log->rdev->bdev; | 
|  | struct mddev *mddev; | 
|  |  | 
|  | r5l_write_super(log, end); | 
|  |  | 
|  | if (!blk_queue_discard(bdev_get_queue(bdev))) | 
|  | return; | 
|  |  | 
|  | mddev = log->rdev->mddev; | 
|  | /* | 
|  | * Discard could zero data, so before discard we must make sure | 
|  | * superblock is updated to new log tail. Updating superblock (either | 
|  | * directly call md_update_sb() or depend on md thread) must hold | 
|  | * reconfig mutex. On the other hand, raid5_quiesce is called with | 
|  | * reconfig_mutex hold. The first step of raid5_quiesce() is waitting | 
|  | * for all IO finish, hence waitting for reclaim thread, while reclaim | 
|  | * thread is calling this function and waitting for reconfig mutex. So | 
|  | * there is a deadlock. We workaround this issue with a trylock. | 
|  | * FIXME: we could miss discard if we can't take reconfig mutex | 
|  | */ | 
|  | set_mask_bits(&mddev->sb_flags, 0, | 
|  | BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); | 
|  | if (!mddev_trylock(mddev)) | 
|  | return; | 
|  | md_update_sb(mddev, 1); | 
|  | mddev_unlock(mddev); | 
|  |  | 
|  | /* discard IO error really doesn't matter, ignore it */ | 
|  | if (log->last_checkpoint < end) { | 
|  | blkdev_issue_discard(bdev, | 
|  | log->last_checkpoint + log->rdev->data_offset, | 
|  | end - log->last_checkpoint, GFP_NOIO, 0); | 
|  | } else { | 
|  | blkdev_issue_discard(bdev, | 
|  | log->last_checkpoint + log->rdev->data_offset, | 
|  | log->device_size - log->last_checkpoint, | 
|  | GFP_NOIO, 0); | 
|  | blkdev_issue_discard(bdev, log->rdev->data_offset, end, | 
|  | GFP_NOIO, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * r5c_flush_stripe moves stripe from cached list to handle_list. When called, | 
|  | * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. | 
|  | * | 
|  | * must hold conf->device_lock | 
|  | */ | 
|  | static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) | 
|  | { | 
|  | BUG_ON(list_empty(&sh->lru)); | 
|  | BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); | 
|  | BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); | 
|  |  | 
|  | /* | 
|  | * The stripe is not ON_RELEASE_LIST, so it is safe to call | 
|  | * raid5_release_stripe() while holding conf->device_lock | 
|  | */ | 
|  | BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); | 
|  | lockdep_assert_held(&conf->device_lock); | 
|  |  | 
|  | list_del_init(&sh->lru); | 
|  | atomic_inc(&sh->count); | 
|  |  | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | atomic_inc(&conf->active_stripes); | 
|  | r5c_make_stripe_write_out(sh); | 
|  |  | 
|  | if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) | 
|  | atomic_inc(&conf->r5c_flushing_partial_stripes); | 
|  | else | 
|  | atomic_inc(&conf->r5c_flushing_full_stripes); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if num == 0, flush all full stripes | 
|  | * if num > 0, flush all full stripes. If less than num full stripes are | 
|  | *             flushed, flush some partial stripes until totally num stripes are | 
|  | *             flushed or there is no more cached stripes. | 
|  | */ | 
|  | void r5c_flush_cache(struct r5conf *conf, int num) | 
|  | { | 
|  | int count; | 
|  | struct stripe_head *sh, *next; | 
|  |  | 
|  | lockdep_assert_held(&conf->device_lock); | 
|  | if (!conf->log) | 
|  | return; | 
|  |  | 
|  | count = 0; | 
|  | list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { | 
|  | r5c_flush_stripe(conf, sh); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (count >= num) | 
|  | return; | 
|  | list_for_each_entry_safe(sh, next, | 
|  | &conf->r5c_partial_stripe_list, lru) { | 
|  | r5c_flush_stripe(conf, sh); | 
|  | if (++count >= num) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void r5c_do_reclaim(struct r5conf *conf) | 
|  | { | 
|  | struct r5l_log *log = conf->log; | 
|  | struct stripe_head *sh; | 
|  | int count = 0; | 
|  | unsigned long flags; | 
|  | int total_cached; | 
|  | int stripes_to_flush; | 
|  | int flushing_partial, flushing_full; | 
|  |  | 
|  | if (!r5c_is_writeback(log)) | 
|  | return; | 
|  |  | 
|  | flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); | 
|  | flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); | 
|  | total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + | 
|  | atomic_read(&conf->r5c_cached_full_stripes) - | 
|  | flushing_full - flushing_partial; | 
|  |  | 
|  | if (total_cached > conf->min_nr_stripes * 3 / 4 || | 
|  | atomic_read(&conf->empty_inactive_list_nr) > 0) | 
|  | /* | 
|  | * if stripe cache pressure high, flush all full stripes and | 
|  | * some partial stripes | 
|  | */ | 
|  | stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; | 
|  | else if (total_cached > conf->min_nr_stripes * 1 / 2 || | 
|  | atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > | 
|  | R5C_FULL_STRIPE_FLUSH_BATCH(conf)) | 
|  | /* | 
|  | * if stripe cache pressure moderate, or if there is many full | 
|  | * stripes,flush all full stripes | 
|  | */ | 
|  | stripes_to_flush = 0; | 
|  | else | 
|  | /* no need to flush */ | 
|  | stripes_to_flush = -1; | 
|  |  | 
|  | if (stripes_to_flush >= 0) { | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | r5c_flush_cache(conf, stripes_to_flush); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | } | 
|  |  | 
|  | /* if log space is tight, flush stripes on stripe_in_journal_list */ | 
|  | if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { | 
|  | spin_lock_irqsave(&log->stripe_in_journal_lock, flags); | 
|  | spin_lock(&conf->device_lock); | 
|  | list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { | 
|  | /* | 
|  | * stripes on stripe_in_journal_list could be in any | 
|  | * state of the stripe_cache state machine. In this | 
|  | * case, we only want to flush stripe on | 
|  | * r5c_cached_full/partial_stripes. The following | 
|  | * condition makes sure the stripe is on one of the | 
|  | * two lists. | 
|  | */ | 
|  | if (!list_empty(&sh->lru) && | 
|  | !test_bit(STRIPE_HANDLE, &sh->state) && | 
|  | atomic_read(&sh->count) == 0) { | 
|  | r5c_flush_stripe(conf, sh); | 
|  | if (count++ >= R5C_RECLAIM_STRIPE_GROUP) | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&conf->device_lock); | 
|  | spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); | 
|  | } | 
|  |  | 
|  | if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) | 
|  | r5l_run_no_space_stripes(log); | 
|  |  | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } | 
|  |  | 
|  | static void r5l_do_reclaim(struct r5l_log *log) | 
|  | { | 
|  | struct r5conf *conf = log->rdev->mddev->private; | 
|  | sector_t reclaim_target = xchg(&log->reclaim_target, 0); | 
|  | sector_t reclaimable; | 
|  | sector_t next_checkpoint; | 
|  | bool write_super; | 
|  |  | 
|  | spin_lock_irq(&log->io_list_lock); | 
|  | write_super = r5l_reclaimable_space(log) > log->max_free_space || | 
|  | reclaim_target != 0 || !list_empty(&log->no_space_stripes); | 
|  | /* | 
|  | * move proper io_unit to reclaim list. We should not change the order. | 
|  | * reclaimable/unreclaimable io_unit can be mixed in the list, we | 
|  | * shouldn't reuse space of an unreclaimable io_unit | 
|  | */ | 
|  | while (1) { | 
|  | reclaimable = r5l_reclaimable_space(log); | 
|  | if (reclaimable >= reclaim_target || | 
|  | (list_empty(&log->running_ios) && | 
|  | list_empty(&log->io_end_ios) && | 
|  | list_empty(&log->flushing_ios) && | 
|  | list_empty(&log->finished_ios))) | 
|  | break; | 
|  |  | 
|  | md_wakeup_thread(log->rdev->mddev->thread); | 
|  | wait_event_lock_irq(log->iounit_wait, | 
|  | r5l_reclaimable_space(log) > reclaimable, | 
|  | log->io_list_lock); | 
|  | } | 
|  |  | 
|  | next_checkpoint = r5c_calculate_new_cp(conf); | 
|  | spin_unlock_irq(&log->io_list_lock); | 
|  |  | 
|  | if (reclaimable == 0 || !write_super) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * write_super will flush cache of each raid disk. We must write super | 
|  | * here, because the log area might be reused soon and we don't want to | 
|  | * confuse recovery | 
|  | */ | 
|  | r5l_write_super_and_discard_space(log, next_checkpoint); | 
|  |  | 
|  | mutex_lock(&log->io_mutex); | 
|  | log->last_checkpoint = next_checkpoint; | 
|  | r5c_update_log_state(log); | 
|  | mutex_unlock(&log->io_mutex); | 
|  |  | 
|  | r5l_run_no_space_stripes(log); | 
|  | } | 
|  |  | 
|  | static void r5l_reclaim_thread(struct md_thread *thread) | 
|  | { | 
|  | struct mddev *mddev = thread->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct r5l_log *log = conf->log; | 
|  |  | 
|  | if (!log) | 
|  | return; | 
|  | r5c_do_reclaim(conf); | 
|  | r5l_do_reclaim(log); | 
|  | } | 
|  |  | 
|  | void r5l_wake_reclaim(struct r5l_log *log, sector_t space) | 
|  | { | 
|  | unsigned long target; | 
|  | unsigned long new = (unsigned long)space; /* overflow in theory */ | 
|  |  | 
|  | if (!log) | 
|  | return; | 
|  | do { | 
|  | target = log->reclaim_target; | 
|  | if (new < target) | 
|  | return; | 
|  | } while (cmpxchg(&log->reclaim_target, target, new) != target); | 
|  | md_wakeup_thread(log->reclaim_thread); | 
|  | } | 
|  |  | 
|  | void r5l_quiesce(struct r5l_log *log, int quiesce) | 
|  | { | 
|  | struct mddev *mddev; | 
|  |  | 
|  | if (quiesce) { | 
|  | /* make sure r5l_write_super_and_discard_space exits */ | 
|  | mddev = log->rdev->mddev; | 
|  | wake_up(&mddev->sb_wait); | 
|  | kthread_park(log->reclaim_thread->tsk); | 
|  | r5l_wake_reclaim(log, MaxSector); | 
|  | r5l_do_reclaim(log); | 
|  | } else | 
|  | kthread_unpark(log->reclaim_thread->tsk); | 
|  | } | 
|  |  | 
|  | bool r5l_log_disk_error(struct r5conf *conf) | 
|  | { | 
|  | struct r5l_log *log; | 
|  | bool ret; | 
|  | /* don't allow write if journal disk is missing */ | 
|  | rcu_read_lock(); | 
|  | log = rcu_dereference(conf->log); | 
|  |  | 
|  | if (!log) | 
|  | ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); | 
|  | else | 
|  | ret = test_bit(Faulty, &log->rdev->flags); | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define R5L_RECOVERY_PAGE_POOL_SIZE 256 | 
|  |  | 
|  | struct r5l_recovery_ctx { | 
|  | struct page *meta_page;		/* current meta */ | 
|  | sector_t meta_total_blocks;	/* total size of current meta and data */ | 
|  | sector_t pos;			/* recovery position */ | 
|  | u64 seq;			/* recovery position seq */ | 
|  | int data_parity_stripes;	/* number of data_parity stripes */ | 
|  | int data_only_stripes;		/* number of data_only stripes */ | 
|  | struct list_head cached_list; | 
|  |  | 
|  | /* | 
|  | * read ahead page pool (ra_pool) | 
|  | * in recovery, log is read sequentially. It is not efficient to | 
|  | * read every page with sync_page_io(). The read ahead page pool | 
|  | * reads multiple pages with one IO, so further log read can | 
|  | * just copy data from the pool. | 
|  | */ | 
|  | struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; | 
|  | sector_t pool_offset;	/* offset of first page in the pool */ | 
|  | int total_pages;	/* total allocated pages */ | 
|  | int valid_pages;	/* pages with valid data */ | 
|  | struct bio *ra_bio;	/* bio to do the read ahead */ | 
|  | }; | 
|  |  | 
|  | static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_VECS, &log->bs); | 
|  | if (!ctx->ra_bio) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctx->valid_pages = 0; | 
|  | ctx->total_pages = 0; | 
|  | while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { | 
|  | page = alloc_page(GFP_KERNEL); | 
|  |  | 
|  | if (!page) | 
|  | break; | 
|  | ctx->ra_pool[ctx->total_pages] = page; | 
|  | ctx->total_pages += 1; | 
|  | } | 
|  |  | 
|  | if (ctx->total_pages == 0) { | 
|  | bio_put(ctx->ra_bio); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ctx->pool_offset = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void r5l_recovery_free_ra_pool(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ctx->total_pages; ++i) | 
|  | put_page(ctx->ra_pool[i]); | 
|  | bio_put(ctx->ra_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fetch ctx->valid_pages pages from offset | 
|  | * In normal cases, ctx->valid_pages == ctx->total_pages after the call. | 
|  | * However, if the offset is close to the end of the journal device, | 
|  | * ctx->valid_pages could be smaller than ctx->total_pages | 
|  | */ | 
|  | static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx, | 
|  | sector_t offset) | 
|  | { | 
|  | bio_reset(ctx->ra_bio); | 
|  | bio_set_dev(ctx->ra_bio, log->rdev->bdev); | 
|  | bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); | 
|  | ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; | 
|  |  | 
|  | ctx->valid_pages = 0; | 
|  | ctx->pool_offset = offset; | 
|  |  | 
|  | while (ctx->valid_pages < ctx->total_pages) { | 
|  | bio_add_page(ctx->ra_bio, | 
|  | ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); | 
|  | ctx->valid_pages += 1; | 
|  |  | 
|  | offset = r5l_ring_add(log, offset, BLOCK_SECTORS); | 
|  |  | 
|  | if (offset == 0)  /* reached end of the device */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return submit_bio_wait(ctx->ra_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * try read a page from the read ahead page pool, if the page is not in the | 
|  | * pool, call r5l_recovery_fetch_ra_pool | 
|  | */ | 
|  | static int r5l_recovery_read_page(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx, | 
|  | struct page *page, | 
|  | sector_t offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (offset < ctx->pool_offset || | 
|  | offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { | 
|  | ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | BUG_ON(offset < ctx->pool_offset || | 
|  | offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); | 
|  |  | 
|  | memcpy(page_address(page), | 
|  | page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> | 
|  | BLOCK_SECTOR_SHIFT]), | 
|  | PAGE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int r5l_recovery_read_meta_block(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct page *page = ctx->meta_page; | 
|  | struct r5l_meta_block *mb; | 
|  | u32 crc, stored_crc; | 
|  | int ret; | 
|  |  | 
|  | ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | mb = page_address(page); | 
|  | stored_crc = le32_to_cpu(mb->checksum); | 
|  | mb->checksum = 0; | 
|  |  | 
|  | if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || | 
|  | le64_to_cpu(mb->seq) != ctx->seq || | 
|  | mb->version != R5LOG_VERSION || | 
|  | le64_to_cpu(mb->position) != ctx->pos) | 
|  | return -EINVAL; | 
|  |  | 
|  | crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); | 
|  | if (stored_crc != crc) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx->meta_total_blocks = BLOCK_SECTORS; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | r5l_recovery_create_empty_meta_block(struct r5l_log *log, | 
|  | struct page *page, | 
|  | sector_t pos, u64 seq) | 
|  | { | 
|  | struct r5l_meta_block *mb; | 
|  |  | 
|  | mb = page_address(page); | 
|  | clear_page(mb); | 
|  | mb->magic = cpu_to_le32(R5LOG_MAGIC); | 
|  | mb->version = R5LOG_VERSION; | 
|  | mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); | 
|  | mb->seq = cpu_to_le64(seq); | 
|  | mb->position = cpu_to_le64(pos); | 
|  | } | 
|  |  | 
|  | static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, | 
|  | u64 seq) | 
|  | { | 
|  | struct page *page; | 
|  | struct r5l_meta_block *mb; | 
|  |  | 
|  | page = alloc_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | r5l_recovery_create_empty_meta_block(log, page, pos, seq); | 
|  | mb = page_address(page); | 
|  | mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, | 
|  | mb, PAGE_SIZE)); | 
|  | if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, | 
|  | REQ_SYNC | REQ_FUA, false)) { | 
|  | __free_page(page); | 
|  | return -EIO; | 
|  | } | 
|  | __free_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite | 
|  | * to mark valid (potentially not flushed) data in the journal. | 
|  | * | 
|  | * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, | 
|  | * so there should not be any mismatch here. | 
|  | */ | 
|  | static void r5l_recovery_load_data(struct r5l_log *log, | 
|  | struct stripe_head *sh, | 
|  | struct r5l_recovery_ctx *ctx, | 
|  | struct r5l_payload_data_parity *payload, | 
|  | sector_t log_offset) | 
|  | { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  | int dd_idx; | 
|  |  | 
|  | raid5_compute_sector(conf, | 
|  | le64_to_cpu(payload->location), 0, | 
|  | &dd_idx, sh); | 
|  | r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); | 
|  | sh->dev[dd_idx].log_checksum = | 
|  | le32_to_cpu(payload->checksum[0]); | 
|  | ctx->meta_total_blocks += BLOCK_SECTORS; | 
|  |  | 
|  | set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); | 
|  | set_bit(STRIPE_R5C_CACHING, &sh->state); | 
|  | } | 
|  |  | 
|  | static void r5l_recovery_load_parity(struct r5l_log *log, | 
|  | struct stripe_head *sh, | 
|  | struct r5l_recovery_ctx *ctx, | 
|  | struct r5l_payload_data_parity *payload, | 
|  | sector_t log_offset) | 
|  | { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; | 
|  | r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); | 
|  | sh->dev[sh->pd_idx].log_checksum = | 
|  | le32_to_cpu(payload->checksum[0]); | 
|  | set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); | 
|  |  | 
|  | if (sh->qd_idx >= 0) { | 
|  | r5l_recovery_read_page( | 
|  | log, ctx, sh->dev[sh->qd_idx].page, | 
|  | r5l_ring_add(log, log_offset, BLOCK_SECTORS)); | 
|  | sh->dev[sh->qd_idx].log_checksum = | 
|  | le32_to_cpu(payload->checksum[1]); | 
|  | set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); | 
|  | } | 
|  | clear_bit(STRIPE_R5C_CACHING, &sh->state); | 
|  | } | 
|  |  | 
|  | static void r5l_recovery_reset_stripe(struct stripe_head *sh) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | sh->state = 0; | 
|  | sh->log_start = MaxSector; | 
|  | for (i = sh->disks; i--; ) | 
|  | sh->dev[i].flags = 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | r5l_recovery_replay_one_stripe(struct r5conf *conf, | 
|  | struct stripe_head *sh, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct md_rdev *rdev, *rrdev; | 
|  | int disk_index; | 
|  | int data_count = 0; | 
|  |  | 
|  | for (disk_index = 0; disk_index < sh->disks; disk_index++) { | 
|  | if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) | 
|  | continue; | 
|  | if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) | 
|  | continue; | 
|  | data_count++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * stripes that only have parity must have been flushed | 
|  | * before the crash that we are now recovering from, so | 
|  | * there is nothing more to recovery. | 
|  | */ | 
|  | if (data_count == 0) | 
|  | goto out; | 
|  |  | 
|  | for (disk_index = 0; disk_index < sh->disks; disk_index++) { | 
|  | if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) | 
|  | continue; | 
|  |  | 
|  | /* in case device is broken */ | 
|  | rcu_read_lock(); | 
|  | rdev = rcu_dereference(conf->disks[disk_index].rdev); | 
|  | if (rdev) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  | sync_page_io(rdev, sh->sector, PAGE_SIZE, | 
|  | sh->dev[disk_index].page, REQ_OP_WRITE, 0, | 
|  | false); | 
|  | rdev_dec_pending(rdev, rdev->mddev); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | rrdev = rcu_dereference(conf->disks[disk_index].replacement); | 
|  | if (rrdev) { | 
|  | atomic_inc(&rrdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  | sync_page_io(rrdev, sh->sector, PAGE_SIZE, | 
|  | sh->dev[disk_index].page, REQ_OP_WRITE, 0, | 
|  | false); | 
|  | rdev_dec_pending(rrdev, rrdev->mddev); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | ctx->data_parity_stripes++; | 
|  | out: | 
|  | r5l_recovery_reset_stripe(sh); | 
|  | } | 
|  |  | 
|  | static struct stripe_head * | 
|  | r5c_recovery_alloc_stripe( | 
|  | struct r5conf *conf, | 
|  | sector_t stripe_sect, | 
|  | int noblock) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0); | 
|  | if (!sh) | 
|  | return NULL;  /* no more stripe available */ | 
|  |  | 
|  | r5l_recovery_reset_stripe(sh); | 
|  |  | 
|  | return sh; | 
|  | } | 
|  |  | 
|  | static struct stripe_head * | 
|  | r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | list_for_each_entry(sh, list, lru) | 
|  | if (sh->sector == sect) | 
|  | return sh; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct stripe_head *sh, *next; | 
|  |  | 
|  | list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { | 
|  | r5l_recovery_reset_stripe(sh); | 
|  | list_del_init(&sh->lru); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct stripe_head *sh, *next; | 
|  |  | 
|  | list_for_each_entry_safe(sh, next, cached_stripe_list, lru) | 
|  | if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { | 
|  | r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); | 
|  | list_del_init(&sh->lru); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if matches return 0; otherwise return -EINVAL */ | 
|  | static int | 
|  | r5l_recovery_verify_data_checksum(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx, | 
|  | struct page *page, | 
|  | sector_t log_offset, __le32 log_checksum) | 
|  | { | 
|  | void *addr; | 
|  | u32 checksum; | 
|  |  | 
|  | r5l_recovery_read_page(log, ctx, page, log_offset); | 
|  | addr = kmap_atomic(page); | 
|  | checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); | 
|  | kunmap_atomic(addr); | 
|  | return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * before loading data to stripe cache, we need verify checksum for all data, | 
|  | * if there is mismatch for any data page, we drop all data in the mata block | 
|  | */ | 
|  | static int | 
|  | r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct r5l_meta_block *mb = page_address(ctx->meta_page); | 
|  | sector_t mb_offset = sizeof(struct r5l_meta_block); | 
|  | sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); | 
|  | struct page *page; | 
|  | struct r5l_payload_data_parity *payload; | 
|  | struct r5l_payload_flush *payload_flush; | 
|  |  | 
|  | page = alloc_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | while (mb_offset < le32_to_cpu(mb->meta_size)) { | 
|  | payload = (void *)mb + mb_offset; | 
|  | payload_flush = (void *)mb + mb_offset; | 
|  |  | 
|  | if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { | 
|  | if (r5l_recovery_verify_data_checksum( | 
|  | log, ctx, page, log_offset, | 
|  | payload->checksum[0]) < 0) | 
|  | goto mismatch; | 
|  | } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { | 
|  | if (r5l_recovery_verify_data_checksum( | 
|  | log, ctx, page, log_offset, | 
|  | payload->checksum[0]) < 0) | 
|  | goto mismatch; | 
|  | if (conf->max_degraded == 2 && /* q for RAID 6 */ | 
|  | r5l_recovery_verify_data_checksum( | 
|  | log, ctx, page, | 
|  | r5l_ring_add(log, log_offset, | 
|  | BLOCK_SECTORS), | 
|  | payload->checksum[1]) < 0) | 
|  | goto mismatch; | 
|  | } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { | 
|  | /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ | 
|  | } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ | 
|  | goto mismatch; | 
|  |  | 
|  | if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { | 
|  | mb_offset += sizeof(struct r5l_payload_flush) + | 
|  | le32_to_cpu(payload_flush->size); | 
|  | } else { | 
|  | /* DATA or PARITY payload */ | 
|  | log_offset = r5l_ring_add(log, log_offset, | 
|  | le32_to_cpu(payload->size)); | 
|  | mb_offset += sizeof(struct r5l_payload_data_parity) + | 
|  | sizeof(__le32) * | 
|  | (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | put_page(page); | 
|  | return 0; | 
|  |  | 
|  | mismatch: | 
|  | put_page(page); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Analyze all data/parity pages in one meta block | 
|  | * Returns: | 
|  | * 0 for success | 
|  | * -EINVAL for unknown playload type | 
|  | * -EAGAIN for checksum mismatch of data page | 
|  | * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) | 
|  | */ | 
|  | static int | 
|  | r5c_recovery_analyze_meta_block(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx, | 
|  | struct list_head *cached_stripe_list) | 
|  | { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct r5l_meta_block *mb; | 
|  | struct r5l_payload_data_parity *payload; | 
|  | struct r5l_payload_flush *payload_flush; | 
|  | int mb_offset; | 
|  | sector_t log_offset; | 
|  | sector_t stripe_sect; | 
|  | struct stripe_head *sh; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * for mismatch in data blocks, we will drop all data in this mb, but | 
|  | * we will still read next mb for other data with FLUSH flag, as | 
|  | * io_unit could finish out of order. | 
|  | */ | 
|  | ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); | 
|  | if (ret == -EINVAL) | 
|  | return -EAGAIN; | 
|  | else if (ret) | 
|  | return ret;   /* -ENOMEM duo to alloc_page() failed */ | 
|  |  | 
|  | mb = page_address(ctx->meta_page); | 
|  | mb_offset = sizeof(struct r5l_meta_block); | 
|  | log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); | 
|  |  | 
|  | while (mb_offset < le32_to_cpu(mb->meta_size)) { | 
|  | int dd; | 
|  |  | 
|  | payload = (void *)mb + mb_offset; | 
|  | payload_flush = (void *)mb + mb_offset; | 
|  |  | 
|  | if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { | 
|  | int i, count; | 
|  |  | 
|  | count = le32_to_cpu(payload_flush->size) / sizeof(__le64); | 
|  | for (i = 0; i < count; ++i) { | 
|  | stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); | 
|  | sh = r5c_recovery_lookup_stripe(cached_stripe_list, | 
|  | stripe_sect); | 
|  | if (sh) { | 
|  | WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); | 
|  | r5l_recovery_reset_stripe(sh); | 
|  | list_del_init(&sh->lru); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  | } | 
|  |  | 
|  | mb_offset += sizeof(struct r5l_payload_flush) + | 
|  | le32_to_cpu(payload_flush->size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* DATA or PARITY payload */ | 
|  | stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? | 
|  | raid5_compute_sector( | 
|  | conf, le64_to_cpu(payload->location), 0, &dd, | 
|  | NULL) | 
|  | : le64_to_cpu(payload->location); | 
|  |  | 
|  | sh = r5c_recovery_lookup_stripe(cached_stripe_list, | 
|  | stripe_sect); | 
|  |  | 
|  | if (!sh) { | 
|  | sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); | 
|  | /* | 
|  | * cannot get stripe from raid5_get_active_stripe | 
|  | * try replay some stripes | 
|  | */ | 
|  | if (!sh) { | 
|  | r5c_recovery_replay_stripes( | 
|  | cached_stripe_list, ctx); | 
|  | sh = r5c_recovery_alloc_stripe( | 
|  | conf, stripe_sect, 1); | 
|  | } | 
|  | if (!sh) { | 
|  | int new_size = conf->min_nr_stripes * 2; | 
|  | pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", | 
|  | mdname(mddev), | 
|  | new_size); | 
|  | ret = raid5_set_cache_size(mddev, new_size); | 
|  | if (conf->min_nr_stripes <= new_size / 2) { | 
|  | pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", | 
|  | mdname(mddev), | 
|  | ret, | 
|  | new_size, | 
|  | conf->min_nr_stripes, | 
|  | conf->max_nr_stripes); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sh = r5c_recovery_alloc_stripe( | 
|  | conf, stripe_sect, 0); | 
|  | } | 
|  | if (!sh) { | 
|  | pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", | 
|  | mdname(mddev)); | 
|  | return -ENOMEM; | 
|  | } | 
|  | list_add_tail(&sh->lru, cached_stripe_list); | 
|  | } | 
|  |  | 
|  | if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { | 
|  | if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && | 
|  | test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { | 
|  | r5l_recovery_replay_one_stripe(conf, sh, ctx); | 
|  | list_move_tail(&sh->lru, cached_stripe_list); | 
|  | } | 
|  | r5l_recovery_load_data(log, sh, ctx, payload, | 
|  | log_offset); | 
|  | } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) | 
|  | r5l_recovery_load_parity(log, sh, ctx, payload, | 
|  | log_offset); | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | log_offset = r5l_ring_add(log, log_offset, | 
|  | le32_to_cpu(payload->size)); | 
|  |  | 
|  | mb_offset += sizeof(struct r5l_payload_data_parity) + | 
|  | sizeof(__le32) * | 
|  | (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load the stripe into cache. The stripe will be written out later by | 
|  | * the stripe cache state machine. | 
|  | */ | 
|  | static void r5c_recovery_load_one_stripe(struct r5l_log *log, | 
|  | struct stripe_head *sh) | 
|  | { | 
|  | struct r5dev *dev; | 
|  | int i; | 
|  |  | 
|  | for (i = sh->disks; i--; ) { | 
|  | dev = sh->dev + i; | 
|  | if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { | 
|  | set_bit(R5_InJournal, &dev->flags); | 
|  | set_bit(R5_UPTODATE, &dev->flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan through the log for all to-be-flushed data | 
|  | * | 
|  | * For stripes with data and parity, namely Data-Parity stripe | 
|  | * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. | 
|  | * | 
|  | * For stripes with only data, namely Data-Only stripe | 
|  | * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. | 
|  | * | 
|  | * For a stripe, if we see data after parity, we should discard all previous | 
|  | * data and parity for this stripe, as these data are already flushed to | 
|  | * the array. | 
|  | * | 
|  | * At the end of the scan, we return the new journal_tail, which points to | 
|  | * first data-only stripe on the journal device, or next invalid meta block. | 
|  | */ | 
|  | static int r5c_recovery_flush_log(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | int ret = 0; | 
|  |  | 
|  | /* scan through the log */ | 
|  | while (1) { | 
|  | if (r5l_recovery_read_meta_block(log, ctx)) | 
|  | break; | 
|  |  | 
|  | ret = r5c_recovery_analyze_meta_block(log, ctx, | 
|  | &ctx->cached_list); | 
|  | /* | 
|  | * -EAGAIN means mismatch in data block, in this case, we still | 
|  | * try scan the next metablock | 
|  | */ | 
|  | if (ret && ret != -EAGAIN) | 
|  | break;   /* ret == -EINVAL or -ENOMEM */ | 
|  | ctx->seq++; | 
|  | ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); | 
|  | } | 
|  |  | 
|  | if (ret == -ENOMEM) { | 
|  | r5c_recovery_drop_stripes(&ctx->cached_list, ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* replay data-parity stripes */ | 
|  | r5c_recovery_replay_stripes(&ctx->cached_list, ctx); | 
|  |  | 
|  | /* load data-only stripes to stripe cache */ | 
|  | list_for_each_entry(sh, &ctx->cached_list, lru) { | 
|  | WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); | 
|  | r5c_recovery_load_one_stripe(log, sh); | 
|  | ctx->data_only_stripes++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we did a recovery. Now ctx.pos points to an invalid meta block. New | 
|  | * log will start here. but we can't let superblock point to last valid | 
|  | * meta block. The log might looks like: | 
|  | * | meta 1| meta 2| meta 3| | 
|  | * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If | 
|  | * superblock points to meta 1, we write a new valid meta 2n.  if crash | 
|  | * happens again, new recovery will start from meta 1. Since meta 2n is | 
|  | * valid now, recovery will think meta 3 is valid, which is wrong. | 
|  | * The solution is we create a new meta in meta2 with its seq == meta | 
|  | * 1's seq + 10000 and let superblock points to meta2. The same recovery | 
|  | * will not think meta 3 is a valid meta, because its seq doesn't match | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Before recovery, the log looks like the following | 
|  | * | 
|  | *   --------------------------------------------- | 
|  | *   |           valid log        | invalid log  | | 
|  | *   --------------------------------------------- | 
|  | *   ^ | 
|  | *   |- log->last_checkpoint | 
|  | *   |- log->last_cp_seq | 
|  | * | 
|  | * Now we scan through the log until we see invalid entry | 
|  | * | 
|  | *   --------------------------------------------- | 
|  | *   |           valid log        | invalid log  | | 
|  | *   --------------------------------------------- | 
|  | *   ^                            ^ | 
|  | *   |- log->last_checkpoint      |- ctx->pos | 
|  | *   |- log->last_cp_seq          |- ctx->seq | 
|  | * | 
|  | * From this point, we need to increase seq number by 10 to avoid | 
|  | * confusing next recovery. | 
|  | * | 
|  | *   --------------------------------------------- | 
|  | *   |           valid log        | invalid log  | | 
|  | *   --------------------------------------------- | 
|  | *   ^                              ^ | 
|  | *   |- log->last_checkpoint        |- ctx->pos+1 | 
|  | *   |- log->last_cp_seq            |- ctx->seq+10001 | 
|  | * | 
|  | * However, it is not safe to start the state machine yet, because data only | 
|  | * parities are not yet secured in RAID. To save these data only parities, we | 
|  | * rewrite them from seq+11. | 
|  | * | 
|  | *   ----------------------------------------------------------------- | 
|  | *   |           valid log        | data only stripes | invalid log  | | 
|  | *   ----------------------------------------------------------------- | 
|  | *   ^                                                ^ | 
|  | *   |- log->last_checkpoint                          |- ctx->pos+n | 
|  | *   |- log->last_cp_seq                              |- ctx->seq+10000+n | 
|  | * | 
|  | * If failure happens again during this process, the recovery can safe start | 
|  | * again from log->last_checkpoint. | 
|  | * | 
|  | * Once data only stripes are rewritten to journal, we move log_tail | 
|  | * | 
|  | *   ----------------------------------------------------------------- | 
|  | *   |     old log        |    data only stripes    | invalid log  | | 
|  | *   ----------------------------------------------------------------- | 
|  | *                        ^                         ^ | 
|  | *                        |- log->last_checkpoint   |- ctx->pos+n | 
|  | *                        |- log->last_cp_seq       |- ctx->seq+10000+n | 
|  | * | 
|  | * Then we can safely start the state machine. If failure happens from this | 
|  | * point on, the recovery will start from new log->last_checkpoint. | 
|  | */ | 
|  | static int | 
|  | r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct page *page; | 
|  | sector_t next_checkpoint = MaxSector; | 
|  |  | 
|  | page = alloc_page(GFP_KERNEL); | 
|  | if (!page) { | 
|  | pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", | 
|  | mdname(mddev)); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | WARN_ON(list_empty(&ctx->cached_list)); | 
|  |  | 
|  | list_for_each_entry(sh, &ctx->cached_list, lru) { | 
|  | struct r5l_meta_block *mb; | 
|  | int i; | 
|  | int offset; | 
|  | sector_t write_pos; | 
|  |  | 
|  | WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); | 
|  | r5l_recovery_create_empty_meta_block(log, page, | 
|  | ctx->pos, ctx->seq); | 
|  | mb = page_address(page); | 
|  | offset = le32_to_cpu(mb->meta_size); | 
|  | write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); | 
|  |  | 
|  | for (i = sh->disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | struct r5l_payload_data_parity *payload; | 
|  | void *addr; | 
|  |  | 
|  | if (test_bit(R5_InJournal, &dev->flags)) { | 
|  | payload = (void *)mb + offset; | 
|  | payload->header.type = cpu_to_le16( | 
|  | R5LOG_PAYLOAD_DATA); | 
|  | payload->size = cpu_to_le32(BLOCK_SECTORS); | 
|  | payload->location = cpu_to_le64( | 
|  | raid5_compute_blocknr(sh, i, 0)); | 
|  | addr = kmap_atomic(dev->page); | 
|  | payload->checksum[0] = cpu_to_le32( | 
|  | crc32c_le(log->uuid_checksum, addr, | 
|  | PAGE_SIZE)); | 
|  | kunmap_atomic(addr); | 
|  | sync_page_io(log->rdev, write_pos, PAGE_SIZE, | 
|  | dev->page, REQ_OP_WRITE, 0, false); | 
|  | write_pos = r5l_ring_add(log, write_pos, | 
|  | BLOCK_SECTORS); | 
|  | offset += sizeof(__le32) + | 
|  | sizeof(struct r5l_payload_data_parity); | 
|  |  | 
|  | } | 
|  | } | 
|  | mb->meta_size = cpu_to_le32(offset); | 
|  | mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, | 
|  | mb, PAGE_SIZE)); | 
|  | sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, | 
|  | REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); | 
|  | sh->log_start = ctx->pos; | 
|  | list_add_tail(&sh->r5c, &log->stripe_in_journal_list); | 
|  | atomic_inc(&log->stripe_in_journal_count); | 
|  | ctx->pos = write_pos; | 
|  | ctx->seq += 1; | 
|  | next_checkpoint = sh->log_start; | 
|  | } | 
|  | log->next_checkpoint = next_checkpoint; | 
|  | __free_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, | 
|  | struct r5l_recovery_ctx *ctx) | 
|  | { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct stripe_head *sh, *next; | 
|  | bool cleared_pending = false; | 
|  |  | 
|  | if (ctx->data_only_stripes == 0) | 
|  | return; | 
|  |  | 
|  | if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { | 
|  | cleared_pending = true; | 
|  | clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); | 
|  | } | 
|  | log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; | 
|  |  | 
|  | list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { | 
|  | r5c_make_stripe_write_out(sh); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | list_del_init(&sh->lru); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  |  | 
|  | /* reuse conf->wait_for_quiescent in recovery */ | 
|  | wait_event(conf->wait_for_quiescent, | 
|  | atomic_read(&conf->active_stripes) == 0); | 
|  |  | 
|  | log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; | 
|  | if (cleared_pending) | 
|  | set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); | 
|  | } | 
|  |  | 
|  | static int r5l_recovery_log(struct r5l_log *log) | 
|  | { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5l_recovery_ctx *ctx; | 
|  | int ret; | 
|  | sector_t pos; | 
|  |  | 
|  | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctx->pos = log->last_checkpoint; | 
|  | ctx->seq = log->last_cp_seq; | 
|  | INIT_LIST_HEAD(&ctx->cached_list); | 
|  | ctx->meta_page = alloc_page(GFP_KERNEL); | 
|  |  | 
|  | if (!ctx->meta_page) { | 
|  | ret =  -ENOMEM; | 
|  | goto meta_page; | 
|  | } | 
|  |  | 
|  | if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { | 
|  | ret = -ENOMEM; | 
|  | goto ra_pool; | 
|  | } | 
|  |  | 
|  | ret = r5c_recovery_flush_log(log, ctx); | 
|  |  | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | pos = ctx->pos; | 
|  | ctx->seq += 10000; | 
|  |  | 
|  | if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) | 
|  | pr_info("md/raid:%s: starting from clean shutdown\n", | 
|  | mdname(mddev)); | 
|  | else | 
|  | pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", | 
|  | mdname(mddev), ctx->data_only_stripes, | 
|  | ctx->data_parity_stripes); | 
|  |  | 
|  | if (ctx->data_only_stripes == 0) { | 
|  | log->next_checkpoint = ctx->pos; | 
|  | r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); | 
|  | ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); | 
|  | } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { | 
|  | pr_err("md/raid:%s: failed to rewrite stripes to journal\n", | 
|  | mdname(mddev)); | 
|  | ret =  -EIO; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | log->log_start = ctx->pos; | 
|  | log->seq = ctx->seq; | 
|  | log->last_checkpoint = pos; | 
|  | r5l_write_super(log, pos); | 
|  |  | 
|  | r5c_recovery_flush_data_only_stripes(log, ctx); | 
|  | ret = 0; | 
|  | error: | 
|  | r5l_recovery_free_ra_pool(log, ctx); | 
|  | ra_pool: | 
|  | __free_page(ctx->meta_page); | 
|  | meta_page: | 
|  | kfree(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void r5l_write_super(struct r5l_log *log, sector_t cp) | 
|  | { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  |  | 
|  | log->rdev->journal_tail = cp; | 
|  | set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
|  | } | 
|  |  | 
|  | static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&mddev->lock); | 
|  | conf = mddev->private; | 
|  | if (!conf || !conf->log) { | 
|  | spin_unlock(&mddev->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (conf->log->r5c_journal_mode) { | 
|  | case R5C_JOURNAL_MODE_WRITE_THROUGH: | 
|  | ret = snprintf( | 
|  | page, PAGE_SIZE, "[%s] %s\n", | 
|  | r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], | 
|  | r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); | 
|  | break; | 
|  | case R5C_JOURNAL_MODE_WRITE_BACK: | 
|  | ret = snprintf( | 
|  | page, PAGE_SIZE, "%s [%s]\n", | 
|  | r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], | 
|  | r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); | 
|  | break; | 
|  | default: | 
|  | ret = 0; | 
|  | } | 
|  | spin_unlock(&mddev->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set journal cache mode on @mddev (external API initially needed by dm-raid). | 
|  | * | 
|  | * @mode as defined in 'enum r5c_journal_mode'. | 
|  | * | 
|  | */ | 
|  | int r5c_journal_mode_set(struct mddev *mddev, int mode) | 
|  | { | 
|  | struct r5conf *conf; | 
|  |  | 
|  | if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || | 
|  | mode > R5C_JOURNAL_MODE_WRITE_BACK) | 
|  | return -EINVAL; | 
|  |  | 
|  | conf = mddev->private; | 
|  | if (!conf || !conf->log) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (raid5_calc_degraded(conf) > 0 && | 
|  | mode == R5C_JOURNAL_MODE_WRITE_BACK) | 
|  | return -EINVAL; | 
|  |  | 
|  | mddev_suspend(mddev); | 
|  | conf->log->r5c_journal_mode = mode; | 
|  | mddev_resume(mddev); | 
|  |  | 
|  | pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", | 
|  | mdname(mddev), mode, r5c_journal_mode_str[mode]); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(r5c_journal_mode_set); | 
|  |  | 
|  | static ssize_t r5c_journal_mode_store(struct mddev *mddev, | 
|  | const char *page, size_t length) | 
|  | { | 
|  | int mode = ARRAY_SIZE(r5c_journal_mode_str); | 
|  | size_t len = length; | 
|  | int ret; | 
|  |  | 
|  | if (len < 2) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (page[len - 1] == '\n') | 
|  | len--; | 
|  |  | 
|  | while (mode--) | 
|  | if (strlen(r5c_journal_mode_str[mode]) == len && | 
|  | !strncmp(page, r5c_journal_mode_str[mode], len)) | 
|  | break; | 
|  | ret = mddev_lock(mddev); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = r5c_journal_mode_set(mddev, mode); | 
|  | mddev_unlock(mddev); | 
|  | return ret ?: length; | 
|  | } | 
|  |  | 
|  | struct md_sysfs_entry | 
|  | r5c_journal_mode = __ATTR(journal_mode, 0644, | 
|  | r5c_journal_mode_show, r5c_journal_mode_store); | 
|  |  | 
|  | /* | 
|  | * Try handle write operation in caching phase. This function should only | 
|  | * be called in write-back mode. | 
|  | * | 
|  | * If all outstanding writes can be handled in caching phase, returns 0 | 
|  | * If writes requires write-out phase, call r5c_make_stripe_write_out() | 
|  | * and returns -EAGAIN | 
|  | */ | 
|  | int r5c_try_caching_write(struct r5conf *conf, | 
|  | struct stripe_head *sh, | 
|  | struct stripe_head_state *s, | 
|  | int disks) | 
|  | { | 
|  | struct r5l_log *log = conf->log; | 
|  | int i; | 
|  | struct r5dev *dev; | 
|  | int to_cache = 0; | 
|  | void **pslot; | 
|  | sector_t tree_index; | 
|  | int ret; | 
|  | uintptr_t refcount; | 
|  |  | 
|  | BUG_ON(!r5c_is_writeback(log)); | 
|  |  | 
|  | if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { | 
|  | /* | 
|  | * There are two different scenarios here: | 
|  | *  1. The stripe has some data cached, and it is sent to | 
|  | *     write-out phase for reclaim | 
|  | *  2. The stripe is clean, and this is the first write | 
|  | * | 
|  | * For 1, return -EAGAIN, so we continue with | 
|  | * handle_stripe_dirtying(). | 
|  | * | 
|  | * For 2, set STRIPE_R5C_CACHING and continue with caching | 
|  | * write. | 
|  | */ | 
|  |  | 
|  | /* case 1: anything injournal or anything in written */ | 
|  | if (s->injournal > 0 || s->written > 0) | 
|  | return -EAGAIN; | 
|  | /* case 2 */ | 
|  | set_bit(STRIPE_R5C_CACHING, &sh->state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When run in degraded mode, array is set to write-through mode. | 
|  | * This check helps drain pending write safely in the transition to | 
|  | * write-through mode. | 
|  | * | 
|  | * When a stripe is syncing, the write is also handled in write | 
|  | * through mode. | 
|  | */ | 
|  | if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { | 
|  | r5c_make_stripe_write_out(sh); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | dev = &sh->dev[i]; | 
|  | /* if non-overwrite, use writing-out phase */ | 
|  | if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && | 
|  | !test_bit(R5_InJournal, &dev->flags)) { | 
|  | r5c_make_stripe_write_out(sh); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if the stripe is not counted in big_stripe_tree, add it now */ | 
|  | if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && | 
|  | !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { | 
|  | tree_index = r5c_tree_index(conf, sh->sector); | 
|  | spin_lock(&log->tree_lock); | 
|  | pslot = radix_tree_lookup_slot(&log->big_stripe_tree, | 
|  | tree_index); | 
|  | if (pslot) { | 
|  | refcount = (uintptr_t)radix_tree_deref_slot_protected( | 
|  | pslot, &log->tree_lock) >> | 
|  | R5C_RADIX_COUNT_SHIFT; | 
|  | radix_tree_replace_slot( | 
|  | &log->big_stripe_tree, pslot, | 
|  | (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); | 
|  | } else { | 
|  | /* | 
|  | * this radix_tree_insert can fail safely, so no | 
|  | * need to call radix_tree_preload() | 
|  | */ | 
|  | ret = radix_tree_insert( | 
|  | &log->big_stripe_tree, tree_index, | 
|  | (void *)(1 << R5C_RADIX_COUNT_SHIFT)); | 
|  | if (ret) { | 
|  | spin_unlock(&log->tree_lock); | 
|  | r5c_make_stripe_write_out(sh); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | spin_unlock(&log->tree_lock); | 
|  |  | 
|  | /* | 
|  | * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is | 
|  | * counted in the radix tree | 
|  | */ | 
|  | set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); | 
|  | atomic_inc(&conf->r5c_cached_partial_stripes); | 
|  | } | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | dev = &sh->dev[i]; | 
|  | if (dev->towrite) { | 
|  | set_bit(R5_Wantwrite, &dev->flags); | 
|  | set_bit(R5_Wantdrain, &dev->flags); | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | to_cache++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (to_cache) { | 
|  | set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); | 
|  | /* | 
|  | * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() | 
|  | * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in | 
|  | * r5c_handle_data_cached() | 
|  | */ | 
|  | set_bit(STRIPE_LOG_TRAPPED, &sh->state); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free extra pages (orig_page) we allocated for prexor | 
|  | */ | 
|  | void r5c_release_extra_page(struct stripe_head *sh) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int i; | 
|  | bool using_disk_info_extra_page; | 
|  |  | 
|  | using_disk_info_extra_page = | 
|  | sh->dev[0].orig_page == conf->disks[0].extra_page; | 
|  |  | 
|  | for (i = sh->disks; i--; ) | 
|  | if (sh->dev[i].page != sh->dev[i].orig_page) { | 
|  | struct page *p = sh->dev[i].orig_page; | 
|  |  | 
|  | sh->dev[i].orig_page = sh->dev[i].page; | 
|  | clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); | 
|  |  | 
|  | if (!using_disk_info_extra_page) | 
|  | put_page(p); | 
|  | } | 
|  |  | 
|  | if (using_disk_info_extra_page) { | 
|  | clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | void r5c_use_extra_page(struct stripe_head *sh) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int i; | 
|  | struct r5dev *dev; | 
|  |  | 
|  | for (i = sh->disks; i--; ) { | 
|  | dev = &sh->dev[i]; | 
|  | if (dev->orig_page != dev->page) | 
|  | put_page(dev->orig_page); | 
|  | dev->orig_page = conf->disks[i].extra_page; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the | 
|  | * stripe is committed to RAID disks. | 
|  | */ | 
|  | void r5c_finish_stripe_write_out(struct r5conf *conf, | 
|  | struct stripe_head *sh, | 
|  | struct stripe_head_state *s) | 
|  | { | 
|  | struct r5l_log *log = conf->log; | 
|  | int i; | 
|  | int do_wakeup = 0; | 
|  | sector_t tree_index; | 
|  | void **pslot; | 
|  | uintptr_t refcount; | 
|  |  | 
|  | if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); | 
|  | clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); | 
|  |  | 
|  | if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) | 
|  | return; | 
|  |  | 
|  | for (i = sh->disks; i--; ) { | 
|  | clear_bit(R5_InJournal, &sh->dev[i].flags); | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
|  | do_wakeup = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * analyse_stripe() runs before r5c_finish_stripe_write_out(), | 
|  | * We updated R5_InJournal, so we also update s->injournal. | 
|  | */ | 
|  | s->injournal = 0; | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) | 
|  | if (atomic_dec_and_test(&conf->pending_full_writes)) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  |  | 
|  | if (do_wakeup) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  |  | 
|  | spin_lock_irq(&log->stripe_in_journal_lock); | 
|  | list_del_init(&sh->r5c); | 
|  | spin_unlock_irq(&log->stripe_in_journal_lock); | 
|  | sh->log_start = MaxSector; | 
|  |  | 
|  | atomic_dec(&log->stripe_in_journal_count); | 
|  | r5c_update_log_state(log); | 
|  |  | 
|  | /* stop counting this stripe in big_stripe_tree */ | 
|  | if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || | 
|  | test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { | 
|  | tree_index = r5c_tree_index(conf, sh->sector); | 
|  | spin_lock(&log->tree_lock); | 
|  | pslot = radix_tree_lookup_slot(&log->big_stripe_tree, | 
|  | tree_index); | 
|  | BUG_ON(pslot == NULL); | 
|  | refcount = (uintptr_t)radix_tree_deref_slot_protected( | 
|  | pslot, &log->tree_lock) >> | 
|  | R5C_RADIX_COUNT_SHIFT; | 
|  | if (refcount == 1) | 
|  | radix_tree_delete(&log->big_stripe_tree, tree_index); | 
|  | else | 
|  | radix_tree_replace_slot( | 
|  | &log->big_stripe_tree, pslot, | 
|  | (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); | 
|  | spin_unlock(&log->tree_lock); | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { | 
|  | BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); | 
|  | atomic_dec(&conf->r5c_flushing_partial_stripes); | 
|  | atomic_dec(&conf->r5c_cached_partial_stripes); | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { | 
|  | BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); | 
|  | atomic_dec(&conf->r5c_flushing_full_stripes); | 
|  | atomic_dec(&conf->r5c_cached_full_stripes); | 
|  | } | 
|  |  | 
|  | r5l_append_flush_payload(log, sh->sector); | 
|  | /* stripe is flused to raid disks, we can do resync now */ | 
|  | if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  |  | 
|  | int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int pages = 0; | 
|  | int reserve; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!log); | 
|  |  | 
|  | for (i = 0; i < sh->disks; i++) { | 
|  | void *addr; | 
|  |  | 
|  | if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) | 
|  | continue; | 
|  | addr = kmap_atomic(sh->dev[i].page); | 
|  | sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, | 
|  | addr, PAGE_SIZE); | 
|  | kunmap_atomic(addr); | 
|  | pages++; | 
|  | } | 
|  | WARN_ON(pages == 0); | 
|  |  | 
|  | /* | 
|  | * The stripe must enter state machine again to call endio, so | 
|  | * don't delay. | 
|  | */ | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  | atomic_inc(&sh->count); | 
|  |  | 
|  | mutex_lock(&log->io_mutex); | 
|  | /* meta + data */ | 
|  | reserve = (1 + pages) << (PAGE_SHIFT - 9); | 
|  |  | 
|  | if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && | 
|  | sh->log_start == MaxSector) | 
|  | r5l_add_no_space_stripe(log, sh); | 
|  | else if (!r5l_has_free_space(log, reserve)) { | 
|  | if (sh->log_start == log->last_checkpoint) | 
|  | BUG(); | 
|  | else | 
|  | r5l_add_no_space_stripe(log, sh); | 
|  | } else { | 
|  | ret = r5l_log_stripe(log, sh, pages, 0); | 
|  | if (ret) { | 
|  | spin_lock_irq(&log->io_list_lock); | 
|  | list_add_tail(&sh->log_list, &log->no_mem_stripes); | 
|  | spin_unlock_irq(&log->io_list_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&log->io_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check whether this big stripe is in write back cache. */ | 
|  | bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) | 
|  | { | 
|  | struct r5l_log *log = conf->log; | 
|  | sector_t tree_index; | 
|  | void *slot; | 
|  |  | 
|  | if (!log) | 
|  | return false; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | tree_index = r5c_tree_index(conf, sect); | 
|  | slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); | 
|  | return slot != NULL; | 
|  | } | 
|  |  | 
|  | static int r5l_load_log(struct r5l_log *log) | 
|  | { | 
|  | struct md_rdev *rdev = log->rdev; | 
|  | struct page *page; | 
|  | struct r5l_meta_block *mb; | 
|  | sector_t cp = log->rdev->journal_tail; | 
|  | u32 stored_crc, expected_crc; | 
|  | bool create_super = false; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Make sure it's valid */ | 
|  | if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) | 
|  | cp = 0; | 
|  | page = alloc_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { | 
|  | ret = -EIO; | 
|  | goto ioerr; | 
|  | } | 
|  | mb = page_address(page); | 
|  |  | 
|  | if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || | 
|  | mb->version != R5LOG_VERSION) { | 
|  | create_super = true; | 
|  | goto create; | 
|  | } | 
|  | stored_crc = le32_to_cpu(mb->checksum); | 
|  | mb->checksum = 0; | 
|  | expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); | 
|  | if (stored_crc != expected_crc) { | 
|  | create_super = true; | 
|  | goto create; | 
|  | } | 
|  | if (le64_to_cpu(mb->position) != cp) { | 
|  | create_super = true; | 
|  | goto create; | 
|  | } | 
|  | create: | 
|  | if (create_super) { | 
|  | log->last_cp_seq = prandom_u32(); | 
|  | cp = 0; | 
|  | r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); | 
|  | /* | 
|  | * Make sure super points to correct address. Log might have | 
|  | * data very soon. If super hasn't correct log tail address, | 
|  | * recovery can't find the log | 
|  | */ | 
|  | r5l_write_super(log, cp); | 
|  | } else | 
|  | log->last_cp_seq = le64_to_cpu(mb->seq); | 
|  |  | 
|  | log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); | 
|  | log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; | 
|  | if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) | 
|  | log->max_free_space = RECLAIM_MAX_FREE_SPACE; | 
|  | log->last_checkpoint = cp; | 
|  |  | 
|  | __free_page(page); | 
|  |  | 
|  | if (create_super) { | 
|  | log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); | 
|  | log->seq = log->last_cp_seq + 1; | 
|  | log->next_checkpoint = cp; | 
|  | } else | 
|  | ret = r5l_recovery_log(log); | 
|  |  | 
|  | r5c_update_log_state(log); | 
|  | return ret; | 
|  | ioerr: | 
|  | __free_page(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int r5l_start(struct r5l_log *log) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!log) | 
|  | return 0; | 
|  |  | 
|  | ret = r5l_load_log(log); | 
|  | if (ret) { | 
|  | struct mddev *mddev = log->rdev->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | r5l_exit_log(conf); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct r5l_log *log = conf->log; | 
|  |  | 
|  | if (!log) | 
|  | return; | 
|  |  | 
|  | if ((raid5_calc_degraded(conf) > 0 || | 
|  | test_bit(Journal, &rdev->flags)) && | 
|  | conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) | 
|  | schedule_work(&log->disable_writeback_work); | 
|  | } | 
|  |  | 
|  | int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(rdev->bdev); | 
|  | struct r5l_log *log; | 
|  | char b[BDEVNAME_SIZE]; | 
|  | int ret; | 
|  |  | 
|  | pr_debug("md/raid:%s: using device %s as journal\n", | 
|  | mdname(conf->mddev), bdevname(rdev->bdev, b)); | 
|  |  | 
|  | if (PAGE_SIZE != 4096) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and | 
|  | * raid_disks r5l_payload_data_parity. | 
|  | * | 
|  | * Write journal and cache does not work for very big array | 
|  | * (raid_disks > 203) | 
|  | */ | 
|  | if (sizeof(struct r5l_meta_block) + | 
|  | ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * | 
|  | conf->raid_disks) > PAGE_SIZE) { | 
|  | pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", | 
|  | mdname(conf->mddev), conf->raid_disks); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | log = kzalloc(sizeof(*log), GFP_KERNEL); | 
|  | if (!log) | 
|  | return -ENOMEM; | 
|  | log->rdev = rdev; | 
|  |  | 
|  | log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; | 
|  |  | 
|  | log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, | 
|  | sizeof(rdev->mddev->uuid)); | 
|  |  | 
|  | mutex_init(&log->io_mutex); | 
|  |  | 
|  | spin_lock_init(&log->io_list_lock); | 
|  | INIT_LIST_HEAD(&log->running_ios); | 
|  | INIT_LIST_HEAD(&log->io_end_ios); | 
|  | INIT_LIST_HEAD(&log->flushing_ios); | 
|  | INIT_LIST_HEAD(&log->finished_ios); | 
|  | bio_init(&log->flush_bio, NULL, 0); | 
|  |  | 
|  | log->io_kc = KMEM_CACHE(r5l_io_unit, 0); | 
|  | if (!log->io_kc) | 
|  | goto io_kc; | 
|  |  | 
|  | ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); | 
|  | if (ret) | 
|  | goto io_pool; | 
|  |  | 
|  | ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); | 
|  | if (ret) | 
|  | goto io_bs; | 
|  |  | 
|  | ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); | 
|  | if (ret) | 
|  | goto out_mempool; | 
|  |  | 
|  | spin_lock_init(&log->tree_lock); | 
|  | INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); | 
|  |  | 
|  | log->reclaim_thread = md_register_thread(r5l_reclaim_thread, | 
|  | log->rdev->mddev, "reclaim"); | 
|  | if (!log->reclaim_thread) | 
|  | goto reclaim_thread; | 
|  | log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; | 
|  |  | 
|  | init_waitqueue_head(&log->iounit_wait); | 
|  |  | 
|  | INIT_LIST_HEAD(&log->no_mem_stripes); | 
|  |  | 
|  | INIT_LIST_HEAD(&log->no_space_stripes); | 
|  | spin_lock_init(&log->no_space_stripes_lock); | 
|  |  | 
|  | INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); | 
|  | INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); | 
|  |  | 
|  | log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; | 
|  | INIT_LIST_HEAD(&log->stripe_in_journal_list); | 
|  | spin_lock_init(&log->stripe_in_journal_lock); | 
|  | atomic_set(&log->stripe_in_journal_count, 0); | 
|  |  | 
|  | rcu_assign_pointer(conf->log, log); | 
|  |  | 
|  | set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); | 
|  | return 0; | 
|  |  | 
|  | reclaim_thread: | 
|  | mempool_exit(&log->meta_pool); | 
|  | out_mempool: | 
|  | bioset_exit(&log->bs); | 
|  | io_bs: | 
|  | mempool_exit(&log->io_pool); | 
|  | io_pool: | 
|  | kmem_cache_destroy(log->io_kc); | 
|  | io_kc: | 
|  | kfree(log); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | void r5l_exit_log(struct r5conf *conf) | 
|  | { | 
|  | struct r5l_log *log = conf->log; | 
|  |  | 
|  | conf->log = NULL; | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* Ensure disable_writeback_work wakes up and exits */ | 
|  | wake_up(&conf->mddev->sb_wait); | 
|  | flush_work(&log->disable_writeback_work); | 
|  | md_unregister_thread(&log->reclaim_thread); | 
|  | mempool_exit(&log->meta_pool); | 
|  | bioset_exit(&log->bs); | 
|  | mempool_exit(&log->io_pool); | 
|  | kmem_cache_destroy(log->io_kc); | 
|  | kfree(log); | 
|  | } |