| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* handling of writes to regular files and writing back to the server |
| * |
| * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| */ |
| |
| #include <linux/backing-dev.h> |
| #include <linux/slab.h> |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/pagevec.h> |
| #include <linux/netfs.h> |
| #include <crypto/skcipher.h> |
| #include <crypto/sha2.h> |
| #include <trace/events/netfs.h> |
| #include "internal.h" |
| |
| #ifdef CONFIG_AFS_FSCACHE |
| /* |
| * Mark a page as having been made dirty and thus needing writeback. We also |
| * need to pin the cache object to write back to. |
| */ |
| bool afs_dirty_folio(struct address_space *mapping, struct folio *folio) |
| { |
| return fscache_dirty_folio(mapping, folio, |
| afs_vnode_cache(AFS_FS_I(mapping->host))); |
| } |
| #endif |
| |
| /* |
| * completion of write to server |
| */ |
| static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) |
| { |
| _enter("{%llx:%llu},{%x @%llx}", |
| vnode->fid.vid, vnode->fid.vnode, len, start); |
| |
| afs_prune_wb_keys(vnode); |
| _leave(""); |
| } |
| |
| /* |
| * Find a key to use for the writeback. We cached the keys used to author the |
| * writes on the vnode. *_wbk will contain the last writeback key used or NULL |
| * and we need to start from there if it's set. |
| */ |
| static int afs_get_writeback_key(struct afs_vnode *vnode, |
| struct afs_wb_key **_wbk) |
| { |
| struct afs_wb_key *wbk = NULL; |
| struct list_head *p; |
| int ret = -ENOKEY, ret2; |
| |
| spin_lock(&vnode->wb_lock); |
| if (*_wbk) |
| p = (*_wbk)->vnode_link.next; |
| else |
| p = vnode->wb_keys.next; |
| |
| while (p != &vnode->wb_keys) { |
| wbk = list_entry(p, struct afs_wb_key, vnode_link); |
| _debug("wbk %u", key_serial(wbk->key)); |
| ret2 = key_validate(wbk->key); |
| if (ret2 == 0) { |
| refcount_inc(&wbk->usage); |
| _debug("USE WB KEY %u", key_serial(wbk->key)); |
| break; |
| } |
| |
| wbk = NULL; |
| if (ret == -ENOKEY) |
| ret = ret2; |
| p = p->next; |
| } |
| |
| spin_unlock(&vnode->wb_lock); |
| if (*_wbk) |
| afs_put_wb_key(*_wbk); |
| *_wbk = wbk; |
| return 0; |
| } |
| |
| static void afs_store_data_success(struct afs_operation *op) |
| { |
| struct afs_vnode *vnode = op->file[0].vnode; |
| |
| op->ctime = op->file[0].scb.status.mtime_client; |
| afs_vnode_commit_status(op, &op->file[0]); |
| if (op->error == 0) { |
| if (!op->store.laundering) |
| afs_pages_written_back(vnode, op->store.pos, op->store.size); |
| afs_stat_v(vnode, n_stores); |
| atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); |
| } |
| } |
| |
| static const struct afs_operation_ops afs_store_data_operation = { |
| .issue_afs_rpc = afs_fs_store_data, |
| .issue_yfs_rpc = yfs_fs_store_data, |
| .success = afs_store_data_success, |
| }; |
| |
| /* |
| * write to a file |
| */ |
| static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, |
| bool laundering) |
| { |
| struct netfs_i_context *ictx = &vnode->netfs_ctx; |
| struct afs_operation *op; |
| struct afs_wb_key *wbk = NULL; |
| loff_t size = iov_iter_count(iter); |
| int ret = -ENOKEY; |
| |
| _enter("%s{%llx:%llu.%u},%llx,%llx", |
| vnode->volume->name, |
| vnode->fid.vid, |
| vnode->fid.vnode, |
| vnode->fid.unique, |
| size, pos); |
| |
| ret = afs_get_writeback_key(vnode, &wbk); |
| if (ret) { |
| _leave(" = %d [no keys]", ret); |
| return ret; |
| } |
| |
| op = afs_alloc_operation(wbk->key, vnode->volume); |
| if (IS_ERR(op)) { |
| afs_put_wb_key(wbk); |
| return -ENOMEM; |
| } |
| |
| afs_op_set_vnode(op, 0, vnode); |
| op->file[0].dv_delta = 1; |
| op->file[0].modification = true; |
| op->store.write_iter = iter; |
| op->store.pos = pos; |
| op->store.size = size; |
| op->store.i_size = max(pos + size, ictx->remote_i_size); |
| op->store.laundering = laundering; |
| op->mtime = vnode->vfs_inode.i_mtime; |
| op->flags |= AFS_OPERATION_UNINTR; |
| op->ops = &afs_store_data_operation; |
| |
| try_next_key: |
| afs_begin_vnode_operation(op); |
| afs_wait_for_operation(op); |
| |
| switch (op->error) { |
| case -EACCES: |
| case -EPERM: |
| case -ENOKEY: |
| case -EKEYEXPIRED: |
| case -EKEYREJECTED: |
| case -EKEYREVOKED: |
| _debug("next"); |
| |
| ret = afs_get_writeback_key(vnode, &wbk); |
| if (ret == 0) { |
| key_put(op->key); |
| op->key = key_get(wbk->key); |
| goto try_next_key; |
| } |
| break; |
| } |
| |
| afs_put_wb_key(wbk); |
| _leave(" = %d", op->error); |
| return afs_put_operation(op); |
| } |
| |
| static void afs_upload_to_server(struct netfs_io_subrequest *subreq) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode); |
| ssize_t ret; |
| |
| _enter("%x[%x]", subreq->rreq->debug_id, subreq->debug_index); |
| |
| trace_netfs_sreq(subreq, netfs_sreq_trace_submit); |
| ret = afs_store_data(vnode, &subreq->iter, subreq->start, false); |
| netfs_write_subrequest_terminated(subreq, ret < 0 ? ret : subreq->len, |
| false); |
| } |
| |
| static void afs_upload_to_server_worker(struct work_struct *work) |
| { |
| struct netfs_io_subrequest *subreq = |
| container_of(work, struct netfs_io_subrequest, work); |
| |
| afs_upload_to_server(subreq); |
| } |
| |
| /* |
| * Set up write requests for a writeback slice. We need to add a write request |
| * for each write we want to make. |
| */ |
| void afs_create_write_requests(struct netfs_io_request *wreq) |
| { |
| struct netfs_io_subrequest *subreq; |
| struct netfs_dirty_region *region; |
| |
| list_for_each_entry(region, &wreq->regions, flush_link) { |
| unsigned long long from = region->from; |
| unsigned long long to = region->to; |
| |
| while (from < to) { |
| unsigned long long len = region->to - region->from; |
| |
| if (wreq->wsize && len > wreq->wsize) |
| len = wreq->wsize; |
| subreq = netfs_create_write_request(wreq, NETFS_UPLOAD_TO_SERVER, |
| from, len, |
| afs_upload_to_server_worker); |
| if (subreq) |
| netfs_queue_write_request(subreq); |
| from += len; |
| } |
| } |
| } |
| |
| static void netfs_dump_sg(const char *prefix, struct scatterlist *sg, unsigned int n_sg) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < n_sg; i++) { |
| void *p = kmap_local_page(sg_page(sg)); |
| unsigned int l = min_t(size_t, sg->length, 16); |
| |
| printk("%s[%x] %016lx %04x %04x %*phN", |
| prefix, i, sg->page_link, sg->offset, sg->length, |
| l, p + sg->offset); |
| kunmap_local(p); |
| sg++; |
| } |
| } |
| |
| /* |
| * Encrypt part of a write for fscrypt. The caller reserved an extra |
| * scatterlist element before each of source_sg and dest_sg for our purposes, |
| * should we need them. |
| */ |
| int afs_encrypt_block(struct netfs_io_request *wreq, loff_t pos, size_t len, |
| struct scatterlist *source_sg, unsigned int n_source, |
| struct scatterlist *dest_sg, unsigned int n_dest) |
| { |
| struct crypto_sync_skcipher *ci; |
| struct skcipher_request *req; |
| struct crypto_skcipher *tfm; |
| struct sha256_state *sha; |
| void *buf = NULL; |
| __be64 *session_key; |
| u8 *iv, *b0; |
| int ret; |
| |
| ci = crypto_alloc_sync_skcipher("cts(cbc(aes))", 0, 0); |
| if (IS_ERR(ci)) { |
| ret = PTR_ERR(ci); |
| pr_err("Can't allocate cipher: %d\n", ret); |
| goto error; |
| } |
| tfm = &ci->base; |
| |
| if (crypto_sync_skcipher_ivsize(ci) > 16 && |
| crypto_sync_skcipher_blocksize(ci) > 16) { |
| pr_err("iv wrong size: %u\n", crypto_sync_skcipher_ivsize(ci)); |
| ret = -EINVAL; |
| goto error_ci; |
| } |
| |
| buf = kzalloc(4 * 16 + sizeof(*sha), GFP_KERNEL); |
| if (!buf) |
| goto error_ci; |
| b0 = buf; |
| iv = buf + 32; |
| session_key = buf + 48; |
| session_key[0] = cpu_to_be64(pos); |
| session_key[1] = cpu_to_le64(pos); |
| sha = buf + 64; |
| |
| *(__be64 *)iv = pos; |
| |
| ret = crypto_sync_skcipher_setkey(ci, (u8 *)session_key, 16); |
| if (ret < 0) { |
| pr_err("Setkey failed: %d\n", ret); |
| goto error_ci; |
| } |
| |
| ret = -ENOMEM; |
| req = skcipher_request_alloc(tfm, GFP_NOFS); |
| if (!req) |
| goto error_ci; |
| |
| skcipher_request_set_sync_tfm(req, ci); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| |
| /* If the length is so short that the CTS algorithm will refuse to |
| * handle it, prepend a predictable block on the front and discard the |
| * output. Since CTS does draw data backwards, we can regenerate the |
| * encryption on just that block at decryption time. |
| */ |
| if (len < 16) { |
| unsigned int i; |
| u8 *p = buf + 16; |
| |
| kdebug("preblock %16phN", iv); |
| sha256_init(sha); |
| sha256_update(sha, iv, 32); /* iv and session key */ |
| sha256_final(sha, b0); |
| kdebug("preblock %16phN", b0); |
| |
| netfs_dump_sg("SRC", source_sg, n_source); |
| if (sg_copy_to_buffer(source_sg, n_source, p, len) != len) { |
| ret = -EIO; |
| goto error_req; |
| } |
| |
| for (i = 0; i < len; i++) |
| p[i] += b0[i]; |
| |
| if (sg_copy_from_buffer(dest_sg, n_dest, p, len) != len) { |
| ret = -EIO; |
| goto error_req; |
| } |
| netfs_dump_sg("DST", dest_sg, n_dest); |
| ret = 0; |
| } else { |
| netfs_dump_sg("SRC", source_sg, n_source); |
| skcipher_request_set_crypt(req, source_sg, dest_sg, len, iv); |
| ret = crypto_skcipher_encrypt(req); |
| if (ret < 0) |
| pr_err("Encrypt failed: %d\n", ret); |
| netfs_dump_sg("DST", dest_sg, n_dest); |
| } |
| |
| error_req: |
| skcipher_request_free(req); |
| error_ci: |
| kfree(buf); |
| crypto_free_sync_skcipher(ci); |
| error: |
| return ret; |
| } |
| |
| /* |
| * Encrypt part of a write for fscrypt. The caller reserved an extra |
| * scatterlist element before each of source_sg and dest_sg for our purposes, |
| * should we need them. |
| */ |
| int afs_decrypt_block(struct netfs_io_request *wreq, loff_t pos, size_t len, |
| struct scatterlist *source_sg, unsigned int n_source, |
| struct scatterlist *dest_sg, unsigned int n_dest) |
| { |
| struct crypto_sync_skcipher *ci; |
| struct skcipher_request *req; |
| struct crypto_skcipher *tfm; |
| struct sha256_state *sha; |
| void *buf = NULL; |
| __be64 *session_key; |
| u8 *iv, *b0; |
| int ret; |
| |
| ci = crypto_alloc_sync_skcipher("cts(cbc(aes))", 0, 0); |
| if (IS_ERR(ci)) { |
| ret = PTR_ERR(ci); |
| pr_err("Can't allocate cipher: %d\n", ret); |
| goto error; |
| } |
| tfm = &ci->base; |
| |
| if (crypto_sync_skcipher_ivsize(ci) > 16 && |
| crypto_sync_skcipher_blocksize(ci) > 16) { |
| pr_err("iv wrong size: %u\n", crypto_sync_skcipher_ivsize(ci)); |
| ret = -EINVAL; |
| goto error_ci; |
| } |
| |
| buf = kzalloc(4 * 16 + sizeof(*sha), GFP_KERNEL); |
| if (!buf) |
| goto error_ci; |
| b0 = buf; |
| iv = buf + 32; |
| session_key = buf + 48; |
| session_key[0] = cpu_to_be64(pos); |
| session_key[1] = cpu_to_le64(pos); |
| sha = buf + 64; |
| |
| *(__be64 *)iv = pos; |
| |
| ret = crypto_sync_skcipher_setkey(ci, (u8 *)session_key, 16); |
| if (ret < 0) { |
| pr_err("Setkey failed: %d\n", ret); |
| goto error_ci; |
| } |
| |
| ret = -ENOMEM; |
| req = skcipher_request_alloc(tfm, GFP_NOFS); |
| if (!req) |
| goto error_ci; |
| |
| skcipher_request_set_sync_tfm(req, ci); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| |
| /* If the length is so short that the CTS algorithm will refuse to |
| * handle it, prepend a predictable block on the front and discard the |
| * output. Since CTS does draw data backwards, we can regenerate the |
| * encryption on just that block at decryption time. |
| */ |
| if (len < 16) { |
| unsigned int i; |
| u8 *p = buf + 32; |
| |
| kdebug("preblock %16phN", iv); |
| sha256_init(sha); |
| sha256_update(sha, iv, 32); /* iv and session key */ |
| sha256_final(sha, b0); |
| kdebug("preblock %16phN", b0); |
| |
| netfs_dump_sg("SRC", source_sg, n_source); |
| if (sg_copy_to_buffer(source_sg, n_source, p, len) != len) { |
| kdebug("scopy"); |
| ret = -EIO; |
| goto error_req; |
| } |
| |
| for (i = 0; i < len; i++) |
| p[i] -= b0[i]; |
| |
| if (sg_copy_from_buffer(dest_sg, n_dest, p, len) != len) { |
| kdebug("dcopy"); |
| ret = -EIO; |
| goto error_req; |
| } |
| netfs_dump_sg("DST", dest_sg, n_dest); |
| ret = 0; |
| } else { |
| skcipher_request_set_crypt(req, source_sg, dest_sg, len, iv); |
| ret = crypto_skcipher_decrypt(req); |
| if (ret < 0) |
| pr_err("Decrypt failed: %d\n", ret); |
| } |
| |
| error_req: |
| skcipher_request_free(req); |
| error_ci: |
| kfree(buf); |
| crypto_free_sync_skcipher(ci); |
| error: |
| return ret; |
| } |
| |
| /* |
| * flush any dirty pages for this process, and check for write errors. |
| * - the return status from this call provides a reliable indication of |
| * whether any write errors occurred for this process. |
| */ |
| int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); |
| struct afs_file *af = file->private_data; |
| int ret; |
| |
| _enter("{%llx:%llu},{n=%pD},%d", |
| vnode->fid.vid, vnode->fid.vnode, file, |
| datasync); |
| |
| ret = afs_validate(vnode, af->key); |
| if (ret < 0) |
| return ret; |
| |
| return file_write_and_wait_range(file, start, end); |
| } |
| |
| /* |
| * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. |
| */ |
| void afs_prune_wb_keys(struct afs_vnode *vnode) |
| { |
| LIST_HEAD(graveyard); |
| struct afs_wb_key *wbk, *tmp; |
| |
| /* Discard unused keys */ |
| spin_lock(&vnode->wb_lock); |
| |
| if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) && |
| !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) { |
| list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { |
| if (refcount_read(&wbk->usage) == 1) |
| list_move(&wbk->vnode_link, &graveyard); |
| } |
| } |
| |
| spin_unlock(&vnode->wb_lock); |
| |
| while (!list_empty(&graveyard)) { |
| wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); |
| list_del(&wbk->vnode_link); |
| afs_put_wb_key(wbk); |
| } |
| } |
| |
| /* |
| * Clean up a page during invalidation. |
| */ |
| int afs_launder_folio(struct folio *folio) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); |
| struct iov_iter iter; |
| struct bio_vec bv[1]; |
| loff_t i_size, pos; |
| size_t len; |
| int ret = 0; |
| |
| _enter("{%lx}", folio->index); |
| |
| if (folio_clear_dirty_for_io(folio)) { |
| i_size = i_size_read(&vnode->vfs_inode); |
| len = folio_size(folio); |
| pos = folio_pos(folio); |
| if (pos >= i_size) |
| goto out; |
| if (i_size - pos < len) |
| len = i_size - pos; |
| |
| bv[0].bv_page = &folio->page; |
| bv[0].bv_offset = 0; |
| bv[0].bv_len = len; |
| iov_iter_bvec(&iter, WRITE, bv, 1, len); |
| |
| ret = afs_store_data(vnode, &iter, pos, true); |
| } |
| |
| out: |
| folio_wait_fscache(folio); |
| return ret; |
| } |