blob: 5473528ccec53b1a6feec304dd79713141c5ceb5 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/pipe.c
*
* Copyright (C) 1991, 1992, 1999 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/log2.h>
#include <linux/mount.h>
#include <linux/pseudo_fs.h>
#include <linux/magic.h>
#include <linux/pipe_fs_i.h>
#include <linux/uio.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/audit.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <linux/memcontrol.h>
#include <linux/watch_queue.h>
#include <linux/sysctl.h>
#include <linux/uaccess.h>
#include <asm/ioctls.h>
#include "internal.h"
#include "pipe.h"
/*
* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual
* memory allocation, whereas PIPE_BUF makes atomicity guarantees.
*/
#define PIPE_SIZE PAGE_SIZE
/*
* New pipe buffers will be restricted to this size while the user is exceeding
* their pipe buffer quota. The general pipe use case needs at least two
* buffers: one for data yet to be read, and one for new data. If this is less
* than two, then a write to a non-empty pipe may block even if the pipe is not
* full. This can occur with GNU make jobserver or similar uses of pipes as
* semaphores: multiple processes may be waiting to write tokens back to the
* pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
*
* Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
* own risk, namely: pipe writes to non-full pipes may block until the pipe is
* emptied.
*/
#define PIPE_MIN_DEF_BUFFERS 2
/*
* The max size that a non-root user is allowed to grow the pipe. Can
* be set by root in /proc/sys/fs/pipe-max-size
*/
static unsigned int pipe_max_size = 1048576;
/* Maximum allocatable pages per user. Hard limit is unset by default, soft
* matches default values.
*/
static unsigned long pipe_user_pages_hard;
static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
/*
* We use head and tail indices that aren't masked off, except at the point of
* dereference, but rather they're allowed to wrap naturally. This means there
* isn't a dead spot in the buffer, but the ring has to be a power of two and
* <= 2^31.
* -- David Howells 2019-09-23.
*
* Reads with count = 0 should always return 0.
* -- Julian Bradfield 1999-06-07.
*
* FIFOs and Pipes now generate SIGIO for both readers and writers.
* -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
*
* pipe_read & write cleanup
* -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
*/
static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
{
if (pipe->files)
mutex_lock_nested(&pipe->mutex, subclass);
}
void pipe_lock(struct pipe_inode_info *pipe)
{
/*
* pipe_lock() nests non-pipe inode locks (for writing to a file)
*/
pipe_lock_nested(pipe, I_MUTEX_PARENT);
}
EXPORT_SYMBOL(pipe_lock);
void pipe_unlock(struct pipe_inode_info *pipe)
{
if (pipe->files)
mutex_unlock(&pipe->mutex);
}
EXPORT_SYMBOL(pipe_unlock);
static inline void __pipe_lock(struct pipe_inode_info *pipe)
{
mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
}
static inline void __pipe_unlock(struct pipe_inode_info *pipe)
{
mutex_unlock(&pipe->mutex);
}
void pipe_double_lock(struct pipe_inode_info *pipe1,
struct pipe_inode_info *pipe2)
{
BUG_ON(pipe1 == pipe2);
if (pipe1 < pipe2) {
pipe_lock_nested(pipe1, I_MUTEX_PARENT);
pipe_lock_nested(pipe2, I_MUTEX_CHILD);
} else {
pipe_lock_nested(pipe2, I_MUTEX_PARENT);
pipe_lock_nested(pipe1, I_MUTEX_CHILD);
}
}
void wakeup_pipe_readers(struct pipe_inode_info *pipe)
{
smp_mb();
if (waitqueue_active(&pipe->rd_wait))
wake_up_interruptible(&pipe->rd_wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
}
static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
unsigned int i;
for (i = 0; i < buf->nr; i++) {
struct folio *folio = buf->bvec[i].bv_folio;
/*
* If nobody else uses this page, and we don't already have a
* temporary page, let's keep track of it as a one-deep
* allocation cache. (Otherwise just release our reference to it)
*/
if (folio_ref_count(folio) == 1 && !pipe->spare_folio)
pipe->spare_folio = buf->bvec[i].bv_folio;
else
folio_put(buf->bvec[i].bv_folio);
}
}
static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct folio *folio = buf->bvec[buf->index].bv_folio;
if (folio_ref_count(folio) != 1)
return false;
memcg_kmem_uncharge_page(folio_page(folio, 0), 0);
__folio_lock(folio);
return true;
}
/**
* generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to attempt to steal
*
* Description:
* This function attempts to steal the &struct page attached to
* @buf. If successful, this function returns 0 and returns with
* the page locked. The caller may then reuse the page for whatever
* he wishes; the typical use is insertion into a different file
* page cache.
*/
bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct folio *folio = buf->bvec[buf->index].bv_folio;
/*
* A reference of one is golden, that means that the owner of this
* page is the only one holding a reference to it. lock the page
* and return OK.
*/
if (folio_ref_count(folio) == 1) {
__folio_lock(folio);
return true;
}
return false;
}
EXPORT_SYMBOL(generic_pipe_buf_try_steal);
/**
* generic_pipe_buf_get - get a reference to a &struct pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to get a reference to
*
* Description:
* This function grabs an extra reference to @buf. It's used in
* the tee() system call, when we duplicate the buffers in one
* pipe into another.
*/
bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
{
return folio_try_get(buf->bvec[buf->index].bv_folio);
}
EXPORT_SYMBOL(generic_pipe_buf_get);
/**
* generic_pipe_buf_release - put a reference to a &struct pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to put a reference to
*
* Description:
* This function releases a reference to @buf.
*/
void generic_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
unsigned int i;
for (i = 0; i < buf->nr; i++)
folio_put(buf->bvec[i].bv_folio);
}
EXPORT_SYMBOL(generic_pipe_buf_release);
static const struct pipe_buf_operations anon_pipe_buf_ops = {
.release = anon_pipe_buf_release,
.try_steal = anon_pipe_buf_try_steal,
.get = generic_pipe_buf_get,
};
/**
* pipe_query_space - Find out how much space is available in a pipe.
* @pipe: The pipe to query
* @len: The length requested (in) / the maximum length allowed (out)
* @error: Where to set any error
*
* Checks to see if there's space available in the pipe for *@len amount of
* data, returning the number of folios that can be added (0 if the pipe is
* full) and shrinking *@len to fit.
*
* If there are no readers, it will send SIGPIPE and set -EPIPE.
*/
size_t pipe_query_space(struct pipe_inode_info *pipe, size_t *len, int *error)
{
size_t npages;
if (unlikely(!pipe->readers)) {
send_sig(SIGPIPE, current, 0);
*error = -EPIPE;
return 0;
}
if (pipe->footprint >= pipe->max_footprint) {
*error = -EAGAIN;
return 0;
}
npages = pipe->max_footprint - pipe->footprint;
*len = min_t(size_t, *len, npages * PAGE_SIZE);
return npages;
}
EXPORT_SYMBOL(pipe_query_space);
/**
* pipe_query_content - Find out how much data is available in a pipe.
* @pipe: The pipe to query
* @len: Where to return the amount of data
*
* Checks to see if there's content available in the pipe and if so, returns
* the number of pages and sets *@len to the amount of bytes.
*/
size_t pipe_query_content(struct pipe_inode_info *pipe, size_t *len)
{
*len = pipe->content;
return pipe->footprint;
}
EXPORT_SYMBOL(pipe_query_content);
/**
* pipe_alloc_buffer - Allocate a pipe buffer
* @pipe: The pipe to allocate from
* @ops: The operations to set
* @bvcount: The number of folios we want to attach
* @gfp: Allocation mode
* @error: Where to place -ENOMEM if OOM occurs
*
* Allocate and return new pipe buffer with sufficient slots for the requested
* number of folios. Returns NULL if the pipe is full or we hit an OOM
* condition. In the OOM case, *@error will be set to -ENOMEM but left
* untouched otherwise.
*/
struct pipe_buffer *pipe_alloc_buffer(struct pipe_inode_info *pipe,
const struct pipe_buf_operations *ops,
size_t bvcount, gfp_t gfp, int *error)
{
struct pipe_buffer *buf;
size_t size = struct_size(buf, bvec, bvcount);
if (pipe_full(pipe))
return NULL;
if (bvcount < 1)
bvcount = 1;
if (pipe->spare_buffer) {
spin_lock_irq(&pipe->rd_wait.lock);
buf = pipe->spare_buffer;
if (buf) {
if (buf->max >= bvcount)
pipe->spare_buffer = NULL;
else
buf = NULL;
}
spin_unlock_irq(&pipe->rd_wait.lock);
if (buf) {
bvcount = buf->max;
memset(buf, 0, struct_size(buf, bvec, bvcount));
buf->ops = ops;
buf->max = bvcount;
return buf;
}
}
buf = kzalloc(size, gfp);
if (!buf) {
*error = -ENOMEM;
return NULL;
}
buf->ops = ops;
buf->max = bvcount;
return buf;
}
EXPORT_SYMBOL(pipe_alloc_buffer);
/**
* pipe_add - Pass filled data buffer into a pipe
* @pipe: Pipe to append to
* @buf: Buffer to add
* @full: Set to true if the pipe is now full
*
* This function adds the given buffer to the tail end of the pipe. The data
* is contained in an array of bio_vecs providing tuples of source page, offset
* and length. The buffer also points to operations for managing these pages.
*
* The buffer is discarded without being added if there is no data in it, there
* is no attached reader or the pipe is full. If the buffer would overrun the
* space in the pipe, it will be overcommitted.
*/
ssize_t pipe_add(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
bool *full)
{
if (buf->size == 0 || WARN_ON(pipe_full(pipe)))
goto discard;
spin_lock_irq(&pipe->rd_wait.lock);
list_add_tail(&buf->queue_link, &pipe->queue);
pipe->footprint += buf->footprint;
*full = pipe_full(pipe);
spin_unlock_irq(&pipe->rd_wait.lock);
return buf->size;
discard:
pipe_buf_release(pipe, buf);
*full = pipe_full(pipe);
return 0;
}
EXPORT_SYMBOL(pipe_add);
/**
* pipe_buf_release - put a reference to a pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to put a reference to
*/
void pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
{
const struct pipe_buf_operations *ops = buf->ops;
if (ops)
ops->release(pipe, buf);
if (buf->index >= buf->nr) {
spin_lock_irq(&pipe->rd_wait.lock);
pipe->footprint -= buf->footprint;
list_del(&buf->queue_link);
spin_unlock_irq(&pipe->rd_wait.lock);
kfree(buf);
}
}
#ifdef CONFIG_WATCH_QUEUE
/**
* pipe_set_lost_mark - Mark the pipe as having lost some data
* @pipe: Pipe to mark
*
* Set a mark on a pipe to indicate that some data was lost, either due to the
* pipe being full or failure to allocate memory. This will cause a
* lost-notification message to be read when the pipe gets around to the
* current add point.
*
* The caller must hold pipe->rd_wait.lock and have interrupts disabled.
*/
void pipe_set_lost_mark(struct pipe_inode_info *pipe)
{
struct pipe_buffer *buf;
spin_lock_irq(&pipe->rd_wait.lock);
if (pipe_empty(pipe)) {
pipe->note_loss = true;
} else {
buf = list_last_entry(&pipe->queue, struct pipe_buffer, queue_link);
buf->flags |= PIPE_BUF_FLAG_LOSS;
}
spin_unlock_irq(&pipe->rd_wait.lock);
}
#endif
/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
static inline bool pipe_readable(const struct pipe_inode_info *pipe)
{
return !pipe_empty(pipe) || !READ_ONCE(pipe->writers);
}
/*
* Deal with the consumption of some data from a pipe buffer. Returns true if
* we've consumed all the data.
*/
bool pipe_consume(struct pipe_inode_info *pipe, struct pipe_buffer *buf, size_t consumed)
{
if (WARN_ON_ONCE(consumed > buf->size))
consumed = buf->size;
buf->size -= consumed;
do {
struct bio_vec *bv = &buf->bvec[buf->index];
size_t part = min_t(size_t, consumed, bv->bv_len);
bv->bv_len -= part;
bv->bv_offset += part;
consumed -= part;
if (bv->bv_len > 0)
break;
buf->ops->release(pipe, buf);
buf->index++;
} while (consumed > 0);
return buf->size == 0;
}
/*
* Copy data from a pipe buffer into an iterator, confirming the pages in the
* buffer as we use them and releasing them when we've used them.
*/
static ssize_t pipe_copy_buf_to_iter(struct pipe_inode_info *pipe,
struct pipe_buffer *buf,
struct iov_iter *iter)
{
size_t part, n, copied = 0;
int ret = 0;
while (buf->size) {
struct bio_vec *bv = &buf->bvec[buf->nr];
if (buf->nr_confirmed <= buf->index) {
ret = pipe_buf_confirm(pipe, buf);
if (ret < 0)
break;
}
part = min_t(size_t, bv->bv_len, iov_iter_count(iter));
n = copy_folio_to_iter(bv->bv_folio, bv->bv_offset, part, iter);
if (unlikely(n < part)) {
ret = -EFAULT;
break;
}
copied += n;
pipe_consume(pipe, buf, n);
}
return copied ?: ret;
}
static ssize_t pipe_read(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *filp = iocb->ki_filp;
struct pipe_inode_info *pipe = filp->private_data;
bool was_full, wake_next_reader = false, stop;
ssize_t copied = 0, ret = 0;
/* Null read succeeds. */
if (unlikely(!iov_iter_count(iter)))
return 0;
__pipe_lock(pipe);
/*
* We only wake up writers if the pipe was full when we started
* reading in order to avoid unnecessary wakeups.
*
* But when we do wake up writers, we do so using a sync wakeup
* (WF_SYNC), because we want them to get going and generate more
* data for us.
*/
was_full = pipe_full(pipe);
for (;;) {
struct pipe_buffer *buf;
#ifdef CONFIG_WATCH_QUEUE
if (pipe->note_loss) {
struct watch_notification n;
if (iov_iter_count(iter) < 8) {
ret = -ENOBUFS;
break;
}
n.type = WATCH_TYPE_META;
n.subtype = WATCH_META_LOSS_NOTIFICATION;
n.info = watch_sizeof(n);
if (copy_to_iter(&n, sizeof(n), iter) != sizeof(n)) {
if (ret == 0)
ret = -EFAULT;
break;
}
copied += sizeof(n);
pipe->note_loss = false;
}
#endif
buf = pipe_head_buf(pipe);
if (buf) {
if (buf->ops->copy_to_iter)
ret = buf->ops->copy_to_iter(pipe, buf, iter);
else
ret = pipe_copy_buf_to_iter(pipe, buf, iter);
if (ret > 0)
copied += ret;
/* Was it a packet buffer? Clean up and exit */
stop = buf->flags & PIPE_BUF_FLAG_PACKET;
if (stop)
buf->size = 0;
if (!buf->size) {
#ifdef CONFIG_WATCH_QUEUE
if (buf->flags & PIPE_BUF_FLAG_LOSS)
pipe->note_loss = true;
#endif
pipe_buf_release(pipe, buf);
}
if (!iov_iter_count(iter))
break; /* common path: read succeeded */
if (!pipe_empty(pipe)) /* More to do? */
continue;
}
if (!pipe->writers)
break;
if (ret)
break;
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
break;
}
__pipe_unlock(pipe);
/*
* We only get here if we didn't actually read anything.
*
* However, we could have seen (and removed) a zero-sized
* pipe buffer, and might have made space in the buffers
* that way.
*
* You can't make zero-sized pipe buffers by doing an empty
* write (not even in packet mode), but they can happen if
* the writer gets an EFAULT when trying to fill a buffer
* that already got allocated and inserted in the buffer
* array.
*
* So we still need to wake up any pending writers in the
* _very_ unlikely case that the pipe was full, but we got
* no data.
*/
if (unlikely(was_full))
wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
/*
* But because we didn't read anything, at this point we can
* just return directly with -ERESTARTSYS if we're interrupted,
* since we've done any required wakeups and there's no need
* to mark anything accessed. And we've dropped the lock.
*/
if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
return -ERESTARTSYS;
__pipe_lock(pipe);
was_full = pipe_full(pipe);
wake_next_reader = true;
}
if (pipe_empty(pipe))
wake_next_reader = false;
__pipe_unlock(pipe);
if (was_full)
wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
if (wake_next_reader)
wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
if (ret > 0)
file_accessed(filp);
return copied ?: ret;
}
static inline int is_packetized(struct file *file)
{
return (file->f_flags & O_DIRECT) != 0;
}
/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
static inline bool pipe_writable(const struct pipe_inode_info *pipe)
{
return !pipe_full(pipe) || !READ_ONCE(pipe->readers);
}
/*
* copy_iter_to_folio - Copy data from an iterator into a folio
* @iter: Source iterator
* @folio: Destination folio
* @offset: Offset within the folio to start writing
* @len: Amount to copy
*/
static ssize_t copy_iter_to_folio(struct iov_iter *iter, struct folio *folio,
size_t offset, size_t len)
{
size_t copied = 0;
while (len > 0 && iov_iter_count(iter) > 0) {
size_t pnum = offset / PAGE_SIZE;
size_t poff = offset & ~PAGE_MASK;
size_t part = min3(len, PAGE_SIZE - offset, iov_iter_count(iter));
size_t n;
n = copy_page_from_iter(folio_page(folio, pnum), poff, part, iter);
offset += n;
copied += n;
if (n < part)
return copied ?: -EFAULT;
}
return copied;
}
static ssize_t pipe_write(struct kiocb *iocb, struct iov_iter *from)
{
struct file *filp = iocb->ki_filp;
struct pipe_inode_info *pipe = filp->private_data;
size_t total_len = iov_iter_count(from);
ssize_t written = 0, chars;
bool was_empty = false;
bool wake_next_writer = false;
bool full = pipe_full(pipe);
int ret = 0;
/* Null write succeeds. */
if (unlikely(total_len == 0))
return 0;
__pipe_lock(pipe);
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
ret = -EPIPE;
goto out;
}
#ifdef CONFIG_WATCH_QUEUE
if (pipe->watch_queue) {
ret = -EXDEV;
goto out;
}
#endif
/*
* If it wasn't empty we try to merge new data into
* the last buffer.
*
* That naturally merges small writes, but it also
* page-aligns the rest of the writes for large writes
* spanning multiple pages.
*/
was_empty = pipe_empty(pipe);
chars = total_len & (PAGE_SIZE-1);
if (chars && !was_empty) {
struct pipe_buffer *buf =
list_last_entry(&pipe->queue,
struct pipe_buffer, queue_link);
struct bio_vec *bv = &buf->bvec[0];
size_t offset = bv->bv_offset + bv->bv_len;
if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
offset + chars <= folio_size(bv->bv_folio)) {
ret = pipe_buf_confirm(pipe, buf);
if (ret)
goto out;
ret = copy_iter_to_folio(from, bv->bv_folio, offset, chars);
if (unlikely(ret < chars)) {
ret = -EFAULT;
goto out;
}
buf->size += ret;
if (!iov_iter_count(from))
goto out;
}
}
for (;;) {
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
ret = -EPIPE;
break;
}
if (!full) {
struct pipe_buffer *buf;
struct folio *folio = pipe->spare_folio;
ssize_t copied;
size_t part;
buf = pipe_alloc_buffer(pipe, &anon_pipe_buf_ops,
1, GFP_KERNEL, &ret);
if (!buf)
break;
folio = pipe->spare_folio;
if (!folio) {
folio = folio_alloc(GFP_HIGHUSER | __GFP_ACCOUNT, 0);
if (unlikely(!folio)) {
ret = -ENOMEM;
break;
}
} else {
pipe->spare_folio = NULL;
}
buf->bvec[0].bv_folio = folio;
buf->bvec[0].bv_offset = 0;
buf->bvec[0].bv_len = 0;
buf->nr = 1;
buf->footprint += folio_nr_pages(folio);
if (is_packetized(filp))
buf->flags = PIPE_BUF_FLAG_PACKET;
else
buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
part = min(iov_iter_count(from), folio_size(folio));
copied = copy_iter_to_folio(from, folio, 0, folio_size(folio));
if (unlikely(copied < part)) {
if (!ret)
ret = -EFAULT;
break;
}
ret += copied;
buf->bvec[0].bv_len += copied;
buf->size += copied;
ret = pipe_add(pipe, buf, &full);
if (!iov_iter_count(from))
break;
}
if (!full)
continue;
/* Wait for buffer space to become available. */
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
break;
}
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
/*
* We're going to release the pipe lock and wait for more
* space. We wake up any readers if necessary, and then
* after waiting we need to re-check whether the pipe
* become empty while we dropped the lock.
*/
__pipe_unlock(pipe);
if (was_empty)
wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
__pipe_lock(pipe);
was_empty = pipe_empty(pipe);
wake_next_writer = true;
full = pipe_full(pipe);
}
out:
if (pipe_full(pipe))
wake_next_writer = false;
__pipe_unlock(pipe);
/*
* If we do do a wakeup event, we do a 'sync' wakeup, because we
* want the reader to start processing things asap, rather than
* leave the data pending.
*
* This is particularly important for small writes, because of
* how (for example) the GNU make jobserver uses small writes to
* wake up pending jobs
*
* Epoll nonsensically wants a wakeup whether the pipe
* was already empty or not.
*/
if (was_empty || pipe->poll_usage)
wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
if (wake_next_writer)
wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
if (written && sb_start_write_trylock(file_inode(filp)->i_sb)) {
ret = file_update_time(filp);
if (ret)
written = ret;
sb_end_write(file_inode(filp)->i_sb);
}
return written ?: ret;
}
static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct pipe_inode_info *pipe = filp->private_data;
struct pipe_buffer *buf;
unsigned int count;
switch (cmd) {
case FIONREAD:
__pipe_lock(pipe);
count = 0;
list_for_each_entry(buf, &pipe->queue, queue_link) {
count += buf->size;
}
__pipe_unlock(pipe);
return put_user(count, (int __user *)arg);
#ifdef CONFIG_WATCH_QUEUE
case IOC_WATCH_QUEUE_SET_SIZE:
return 0; /* Does nothing for the moment. */
case IOC_WATCH_QUEUE_SET_FILTER:
return watch_queue_set_filter(
pipe, (struct watch_notification_filter __user *)arg);
#endif
default:
return -ENOIOCTLCMD;
}
}
/* No kernel lock held - fine */
static __poll_t
pipe_poll(struct file *filp, poll_table *wait)
{
__poll_t mask;
struct pipe_inode_info *pipe = filp->private_data;
/* Epoll has some historical nasty semantics, this enables them */
WRITE_ONCE(pipe->poll_usage, true);
/*
* Reading pipe state only -- no need for acquiring the semaphore.
*
* But because this is racy, the code has to add the
* entry to the poll table _first_ ..
*/
if (filp->f_mode & FMODE_READ)
poll_wait(filp, &pipe->rd_wait, wait);
if (filp->f_mode & FMODE_WRITE)
poll_wait(filp, &pipe->wr_wait, wait);
/*
* .. and only then can you do the racy tests. That way,
* if something changes and you got it wrong, the poll
* table entry will wake you up and fix it.
*/
mask = 0;
if (filp->f_mode & FMODE_READ) {
if (!pipe_empty(pipe))
mask |= EPOLLIN | EPOLLRDNORM;
if (!pipe->writers && filp->f_version != pipe->w_counter)
mask |= EPOLLHUP;
}
if (filp->f_mode & FMODE_WRITE) {
if (!pipe_full(pipe))
mask |= EPOLLOUT | EPOLLWRNORM;
/*
* Most Unices do not set EPOLLERR for FIFOs but on Linux they
* behave exactly like pipes for poll().
*/
if (!pipe->readers)
mask |= EPOLLERR;
}
return mask;
}
static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
{
int kill = 0;
spin_lock(&inode->i_lock);
if (!--pipe->files) {
inode->i_pipe = NULL;
kill = 1;
}
spin_unlock(&inode->i_lock);
if (kill)
free_pipe_info(pipe);
}
static int
pipe_release(struct inode *inode, struct file *file)
{
struct pipe_inode_info *pipe = file->private_data;
__pipe_lock(pipe);
if (file->f_mode & FMODE_READ)
pipe->readers--;
if (file->f_mode & FMODE_WRITE)
pipe->writers--;
/* Was that the last reader or writer, but not the other side? */
if (!pipe->readers != !pipe->writers) {
wake_up_interruptible_all(&pipe->rd_wait);
wake_up_interruptible_all(&pipe->wr_wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
__pipe_unlock(pipe);
put_pipe_info(inode, pipe);
return 0;
}
static int
pipe_fasync(int fd, struct file *filp, int on)
{
struct pipe_inode_info *pipe = filp->private_data;
int retval = 0;
__pipe_lock(pipe);
if (filp->f_mode & FMODE_READ)
retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
if (retval < 0 && (filp->f_mode & FMODE_READ))
/* this can happen only if on == T */
fasync_helper(-1, filp, 0, &pipe->fasync_readers);
}
__pipe_unlock(pipe);
return retval;
}
static unsigned long account_pipe_buffers(struct user_struct *user,
unsigned long old, unsigned long new)
{
return atomic_long_add_return(new - old, &user->pipe_bufs);
}
static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
{
unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
return soft_limit && user_bufs > soft_limit;
}
static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
{
unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
return hard_limit && user_bufs > hard_limit;
}
static bool pipe_is_unprivileged_user(void)
{
return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
}
struct pipe_inode_info *alloc_pipe_info(void)
{
struct pipe_inode_info *pipe;
struct user_struct *user = get_current_user();
size_t limit = PIPE_DEF_BUFFERS, user_bufs;
size_t sys = min_t(size_t, DIV_ROUND_UP(READ_ONCE(pipe_max_size), PAGE_SIZE), 1);
pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
if (pipe == NULL)
goto out_free_uid;
if (limit > sys && !capable(CAP_SYS_RESOURCE))
limit = sys;
user_bufs = account_pipe_buffers(user, 0, limit);
if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
user_bufs = account_pipe_buffers(user, limit, PIPE_MIN_DEF_BUFFERS);
limit = PIPE_MIN_DEF_BUFFERS;
}
if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
goto out_revert_acct;
INIT_LIST_HEAD(&pipe->queue);
init_waitqueue_head(&pipe->rd_wait);
init_waitqueue_head(&pipe->wr_wait);
pipe->r_counter = pipe->w_counter = 1;
pipe->max_footprint = limit;
pipe->user = user;
mutex_init(&pipe->mutex);
return pipe;
out_revert_acct:
(void) account_pipe_buffers(user, limit, 0);
kfree(pipe);
out_free_uid:
free_uid(user);
return NULL;
}
void free_pipe_info(struct pipe_inode_info *pipe)
{
struct pipe_buffer *buf;
#ifdef CONFIG_WATCH_QUEUE
if (pipe->watch_queue)
watch_queue_clear(pipe->watch_queue);
#endif
(void) account_pipe_buffers(pipe->user, pipe->footprint, 0);
free_uid(pipe->user);
while ((buf = list_first_entry_or_null(
&pipe->queue, struct pipe_buffer, queue_link))) {
pipe_buf_release(pipe, buf);
}
#ifdef CONFIG_WATCH_QUEUE
if (pipe->watch_queue)
put_watch_queue(pipe->watch_queue);
#endif
if (pipe->spare_folio)
folio_put(pipe->spare_folio);
kfree(pipe->spare_buffer);
kfree(pipe);
}
static struct vfsmount *pipe_mnt __read_mostly;
/*
* pipefs_dname() is called from d_path().
*/
static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(buffer, buflen, "pipe:[%lu]",
d_inode(dentry)->i_ino);
}
static const struct dentry_operations pipefs_dentry_operations = {
.d_dname = pipefs_dname,
};
static struct inode * get_pipe_inode(void)
{
struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
struct pipe_inode_info *pipe;
if (!inode)
goto fail_inode;
inode->i_ino = get_next_ino();
pipe = alloc_pipe_info();
if (!pipe)
goto fail_iput;
inode->i_pipe = pipe;
pipe->files = 2;
pipe->readers = pipe->writers = 1;
inode->i_fop = &pipefifo_fops;
/*
* Mark the inode dirty from the very beginning,
* that way it will never be moved to the dirty
* list because "mark_inode_dirty()" will think
* that it already _is_ on the dirty list.
*/
inode->i_state = I_DIRTY;
inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
return inode;
fail_iput:
iput(inode);
fail_inode:
return NULL;
}
int create_pipe_files(struct file **res, int flags)
{
struct inode *inode = get_pipe_inode();
struct file *f;
int error;
if (!inode)
return -ENFILE;
if (flags & O_NOTIFICATION_PIPE) {
error = watch_queue_init(inode->i_pipe);
if (error) {
free_pipe_info(inode->i_pipe);
iput(inode);
return error;
}
}
f = alloc_file_pseudo(inode, pipe_mnt, "",
O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
&pipefifo_fops);
if (IS_ERR(f)) {
free_pipe_info(inode->i_pipe);
iput(inode);
return PTR_ERR(f);
}
f->private_data = inode->i_pipe;
res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
&pipefifo_fops);
if (IS_ERR(res[0])) {
put_pipe_info(inode, inode->i_pipe);
fput(f);
return PTR_ERR(res[0]);
}
res[0]->private_data = inode->i_pipe;
res[1] = f;
stream_open(inode, res[0]);
stream_open(inode, res[1]);
return 0;
}
static int __do_pipe_flags(int *fd, struct file **files, int flags)
{
int error;
int fdw, fdr;
if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
return -EINVAL;
error = create_pipe_files(files, flags);
if (error)
return error;
error = get_unused_fd_flags(flags);
if (error < 0)
goto err_read_pipe;
fdr = error;
error = get_unused_fd_flags(flags);
if (error < 0)
goto err_fdr;
fdw = error;
audit_fd_pair(fdr, fdw);
fd[0] = fdr;
fd[1] = fdw;
return 0;
err_fdr:
put_unused_fd(fdr);
err_read_pipe:
fput(files[0]);
fput(files[1]);
return error;
}
int do_pipe_flags(int *fd, int flags)
{
struct file *files[2];
int error = __do_pipe_flags(fd, files, flags);
if (!error) {
fd_install(fd[0], files[0]);
fd_install(fd[1], files[1]);
}
return error;
}
/*
* sys_pipe() is the normal C calling standard for creating
* a pipe. It's not the way Unix traditionally does this, though.
*/
static int do_pipe2(int __user *fildes, int flags)
{
struct file *files[2];
int fd[2];
int error;
error = __do_pipe_flags(fd, files, flags);
if (!error) {
if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
fput(files[0]);
fput(files[1]);
put_unused_fd(fd[0]);
put_unused_fd(fd[1]);
error = -EFAULT;
} else {
fd_install(fd[0], files[0]);
fd_install(fd[1], files[1]);
}
}
return error;
}
SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
{
return do_pipe2(fildes, flags);
}
SYSCALL_DEFINE1(pipe, int __user *, fildes)
{
return do_pipe2(fildes, 0);
}
/*
* This is the stupid "wait for pipe to be readable or writable"
* model.
*
* See pipe_read/write() for the proper kind of exclusive wait,
* but that requires that we wake up any other readers/writers
* if we then do not end up reading everything (ie the whole
* "wake_next_reader/writer" logic in pipe_read/write()).
*/
void pipe_wait_readable(struct pipe_inode_info *pipe)
{
pipe_unlock(pipe);
wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
pipe_lock(pipe);
}
void pipe_wait_writable(struct pipe_inode_info *pipe)
{
pipe_unlock(pipe);
wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
pipe_lock(pipe);
}
/*
* This depends on both the wait (here) and the wakeup (wake_up_partner)
* holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
* race with the count check and waitqueue prep.
*
* Normally in order to avoid races, you'd do the prepare_to_wait() first,
* then check the condition you're waiting for, and only then sleep. But
* because of the pipe lock, we can check the condition before being on
* the wait queue.
*
* We use the 'rd_wait' waitqueue for pipe partner waiting.
*/
static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
{
DEFINE_WAIT(rdwait);
int cur = *cnt;
while (cur == *cnt) {
prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
pipe_unlock(pipe);
schedule();
finish_wait(&pipe->rd_wait, &rdwait);
pipe_lock(pipe);
if (signal_pending(current))
break;
}
return cur == *cnt ? -ERESTARTSYS : 0;
}
static void wake_up_partner(struct pipe_inode_info *pipe)
{
wake_up_interruptible_all(&pipe->rd_wait);
}
static int fifo_open(struct inode *inode, struct file *filp)
{
struct pipe_inode_info *pipe;
bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
int ret;
filp->f_version = 0;
spin_lock(&inode->i_lock);
if (inode->i_pipe) {
pipe = inode->i_pipe;
pipe->files++;
spin_unlock(&inode->i_lock);
} else {
spin_unlock(&inode->i_lock);
pipe = alloc_pipe_info();
if (!pipe)
return -ENOMEM;
pipe->files = 1;
spin_lock(&inode->i_lock);
if (unlikely(inode->i_pipe)) {
inode->i_pipe->files++;
spin_unlock(&inode->i_lock);
free_pipe_info(pipe);
pipe = inode->i_pipe;
} else {
inode->i_pipe = pipe;
spin_unlock(&inode->i_lock);
}
}
filp->private_data = pipe;
/* OK, we have a pipe and it's pinned down */
__pipe_lock(pipe);
/* We can only do regular read/write on fifos */
stream_open(inode, filp);
switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
case FMODE_READ:
/*
* O_RDONLY
* POSIX.1 says that O_NONBLOCK means return with the FIFO
* opened, even when there is no process writing the FIFO.
*/
pipe->r_counter++;
if (pipe->readers++ == 0)
wake_up_partner(pipe);
if (!is_pipe && !pipe->writers) {
if ((filp->f_flags & O_NONBLOCK)) {
/* suppress EPOLLHUP until we have
* seen a writer */
filp->f_version = pipe->w_counter;
} else {
if (wait_for_partner(pipe, &pipe->w_counter))
goto err_rd;
}
}
break;
case FMODE_WRITE:
/*
* O_WRONLY
* POSIX.1 says that O_NONBLOCK means return -1 with
* errno=ENXIO when there is no process reading the FIFO.
*/
ret = -ENXIO;
if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
goto err;
pipe->w_counter++;
if (!pipe->writers++)
wake_up_partner(pipe);
if (!is_pipe && !pipe->readers) {
if (wait_for_partner(pipe, &pipe->r_counter))
goto err_wr;
}
break;
case FMODE_READ | FMODE_WRITE:
/*
* O_RDWR
* POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
* This implementation will NEVER block on a O_RDWR open, since
* the process can at least talk to itself.
*/
pipe->readers++;
pipe->writers++;
pipe->r_counter++;
pipe->w_counter++;
if (pipe->readers == 1 || pipe->writers == 1)
wake_up_partner(pipe);
break;
default:
ret = -EINVAL;
goto err;
}
/* Ok! */
__pipe_unlock(pipe);
return 0;
err_rd:
if (!--pipe->readers)
wake_up_interruptible(&pipe->wr_wait);
ret = -ERESTARTSYS;
goto err;
err_wr:
if (!--pipe->writers)
wake_up_interruptible_all(&pipe->rd_wait);
ret = -ERESTARTSYS;
goto err;
err:
__pipe_unlock(pipe);
put_pipe_info(inode, pipe);
return ret;
}
const struct file_operations pipefifo_fops = {
.open = fifo_open,
.llseek = no_llseek,
.read_iter = pipe_read,
.write_iter = pipe_write,
.poll = pipe_poll,
.unlocked_ioctl = pipe_ioctl,
.release = pipe_release,
.fasync = pipe_fasync,
.splice_write = iter_file_splice_write,
};
/*
* Change the limit on the amount of data allowed into a pipe. Returns the pipe
* size if successful, or return -ERROR on error.
*/
static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
{
unsigned long user_bufs;
size_t limit;
size_t sys = min_t(size_t, DIV_ROUND_UP(pipe_max_size, PAGE_SIZE), 1);
long ret = 0;
#ifdef CONFIG_WATCH_QUEUE
if (pipe->watch_queue)
return -EBUSY;
#endif
limit = DIV_ROUND_UP(arg, PAGE_SIZE);
limit = min_t(size_t, limit, 1);
/*
* If trying to increase the pipe capacity, check that an unprivileged
* user is not trying to exceed various limits (soft limit check here,
* hard limit check just below). Decreasing the pipe capacity is
* always permitted, even if the user is currently over a limit.
*/
if (limit > pipe->max_footprint &&
limit > sys && !capable(CAP_SYS_RESOURCE))
return -EPERM;
user_bufs = account_pipe_buffers(pipe->user, pipe->max_footprint, limit);
if (limit > pipe->max_footprint &&
(too_many_pipe_buffers_hard(user_bufs) ||
too_many_pipe_buffers_soft(user_bufs)) &&
pipe_is_unprivileged_user()) {
ret = -EPERM;
goto out_revert_acct;
}
pipe->max_footprint = limit;
return pipe->max_footprint * PAGE_SIZE;
out_revert_acct:
(void) account_pipe_buffers(pipe->user, limit, pipe->max_footprint);
return ret;
}
/*
* Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
* not enough to verify that this is a pipe.
*/
struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
{
struct pipe_inode_info *pipe = file->private_data;
if (file->f_op != &pipefifo_fops || !pipe)
return NULL;
#ifdef CONFIG_WATCH_QUEUE
if (for_splice && pipe->watch_queue)
return NULL;
#endif
return pipe;
}
long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct pipe_inode_info *pipe;
long ret;
pipe = get_pipe_info(file, false);
if (!pipe)
return -EBADF;
__pipe_lock(pipe);
switch (cmd) {
case F_SETPIPE_SZ:
ret = pipe_set_size(pipe, arg);
break;
case F_GETPIPE_SZ:
ret = pipe->max_footprint;
break;
default:
ret = -EINVAL;
break;
}
__pipe_unlock(pipe);
return ret;
}
static const struct super_operations pipefs_ops = {
.destroy_inode = free_inode_nonrcu,
.statfs = simple_statfs,
};
/*
* pipefs should _never_ be mounted by userland - too much of security hassle,
* no real gain from having the whole whorehouse mounted. So we don't need
* any operations on the root directory. However, we need a non-trivial
* d_name - pipe: will go nicely and kill the special-casing in procfs.
*/
static int pipefs_init_fs_context(struct fs_context *fc)
{
struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
if (!ctx)
return -ENOMEM;
ctx->ops = &pipefs_ops;
ctx->dops = &pipefs_dentry_operations;
return 0;
}
static struct file_system_type pipe_fs_type = {
.name = "pipefs",
.init_fs_context = pipefs_init_fs_context,
.kill_sb = kill_anon_super,
};
#ifdef CONFIG_SYSCTL
static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
unsigned int *valp,
int write, void *data)
{
if (write) {
unsigned int val;
val = round_up(*lvalp, PAGE_SIZE);
if (val == 0)
return -EINVAL;
*valp = val;
} else {
unsigned int val = *valp;
*lvalp = (unsigned long) val;
}
return 0;
}
static int proc_dopipe_max_size(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
return do_proc_douintvec(table, write, buffer, lenp, ppos,
do_proc_dopipe_max_size_conv, NULL);
}
static struct ctl_table fs_pipe_sysctls[] = {
{
.procname = "pipe-max-size",
.data = &pipe_max_size,
.maxlen = sizeof(pipe_max_size),
.mode = 0644,
.proc_handler = proc_dopipe_max_size,
},
{
.procname = "pipe-user-pages-hard",
.data = &pipe_user_pages_hard,
.maxlen = sizeof(pipe_user_pages_hard),
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
},
{
.procname = "pipe-user-pages-soft",
.data = &pipe_user_pages_soft,
.maxlen = sizeof(pipe_user_pages_soft),
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
},
{ }
};
#endif
static int __init init_pipe_fs(void)
{
int err = register_filesystem(&pipe_fs_type);
if (!err) {
pipe_mnt = kern_mount(&pipe_fs_type);
if (IS_ERR(pipe_mnt)) {
err = PTR_ERR(pipe_mnt);
unregister_filesystem(&pipe_fs_type);
}
}
#ifdef CONFIG_SYSCTL
register_sysctl_init("fs", fs_pipe_sysctls);
#endif
return err;
}
fs_initcall(init_pipe_fs);