| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/fs/pipe.c |
| * |
| * Copyright (C) 1991, 1992, 1999 Linus Torvalds |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/file.h> |
| #include <linux/poll.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/log2.h> |
| #include <linux/mount.h> |
| #include <linux/pseudo_fs.h> |
| #include <linux/magic.h> |
| #include <linux/pipe_fs_i.h> |
| #include <linux/uio.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/audit.h> |
| #include <linux/syscalls.h> |
| #include <linux/fcntl.h> |
| #include <linux/memcontrol.h> |
| #include <linux/watch_queue.h> |
| #include <linux/sysctl.h> |
| |
| #include <linux/uaccess.h> |
| #include <asm/ioctls.h> |
| |
| #include "internal.h" |
| #include "pipe.h" |
| |
| /* |
| * Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual |
| * memory allocation, whereas PIPE_BUF makes atomicity guarantees. |
| */ |
| #define PIPE_SIZE PAGE_SIZE |
| |
| /* |
| * New pipe buffers will be restricted to this size while the user is exceeding |
| * their pipe buffer quota. The general pipe use case needs at least two |
| * buffers: one for data yet to be read, and one for new data. If this is less |
| * than two, then a write to a non-empty pipe may block even if the pipe is not |
| * full. This can occur with GNU make jobserver or similar uses of pipes as |
| * semaphores: multiple processes may be waiting to write tokens back to the |
| * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. |
| * |
| * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their |
| * own risk, namely: pipe writes to non-full pipes may block until the pipe is |
| * emptied. |
| */ |
| #define PIPE_MIN_DEF_BUFFERS 2 |
| |
| /* |
| * The max size that a non-root user is allowed to grow the pipe. Can |
| * be set by root in /proc/sys/fs/pipe-max-size |
| */ |
| static unsigned int pipe_max_size = 1048576; |
| |
| /* Maximum allocatable pages per user. Hard limit is unset by default, soft |
| * matches default values. |
| */ |
| static unsigned long pipe_user_pages_hard; |
| static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; |
| |
| /* |
| * We use head and tail indices that aren't masked off, except at the point of |
| * dereference, but rather they're allowed to wrap naturally. This means there |
| * isn't a dead spot in the buffer, but the ring has to be a power of two and |
| * <= 2^31. |
| * -- David Howells 2019-09-23. |
| * |
| * Reads with count = 0 should always return 0. |
| * -- Julian Bradfield 1999-06-07. |
| * |
| * FIFOs and Pipes now generate SIGIO for both readers and writers. |
| * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 |
| * |
| * pipe_read & write cleanup |
| * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 |
| */ |
| |
| static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) |
| { |
| if (pipe->files) |
| mutex_lock_nested(&pipe->mutex, subclass); |
| } |
| |
| void pipe_lock(struct pipe_inode_info *pipe) |
| { |
| /* |
| * pipe_lock() nests non-pipe inode locks (for writing to a file) |
| */ |
| pipe_lock_nested(pipe, I_MUTEX_PARENT); |
| } |
| EXPORT_SYMBOL(pipe_lock); |
| |
| void pipe_unlock(struct pipe_inode_info *pipe) |
| { |
| if (pipe->files) |
| mutex_unlock(&pipe->mutex); |
| } |
| EXPORT_SYMBOL(pipe_unlock); |
| |
| static inline void __pipe_lock(struct pipe_inode_info *pipe) |
| { |
| mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); |
| } |
| |
| static inline void __pipe_unlock(struct pipe_inode_info *pipe) |
| { |
| mutex_unlock(&pipe->mutex); |
| } |
| |
| void pipe_double_lock(struct pipe_inode_info *pipe1, |
| struct pipe_inode_info *pipe2) |
| { |
| BUG_ON(pipe1 == pipe2); |
| |
| if (pipe1 < pipe2) { |
| pipe_lock_nested(pipe1, I_MUTEX_PARENT); |
| pipe_lock_nested(pipe2, I_MUTEX_CHILD); |
| } else { |
| pipe_lock_nested(pipe2, I_MUTEX_PARENT); |
| pipe_lock_nested(pipe1, I_MUTEX_CHILD); |
| } |
| } |
| |
| void wakeup_pipe_readers(struct pipe_inode_info *pipe) |
| { |
| smp_mb(); |
| if (waitqueue_active(&pipe->rd_wait)) |
| wake_up_interruptible(&pipe->rd_wait); |
| kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| } |
| |
| static void anon_pipe_buf_release(struct pipe_inode_info *pipe, |
| struct pipe_buffer *buf) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < buf->nr; i++) { |
| struct folio *folio = buf->bvec[i].bv_folio; |
| |
| /* |
| * If nobody else uses this page, and we don't already have a |
| * temporary page, let's keep track of it as a one-deep |
| * allocation cache. (Otherwise just release our reference to it) |
| */ |
| if (folio_ref_count(folio) == 1 && !pipe->spare_folio) |
| pipe->spare_folio = buf->bvec[i].bv_folio; |
| else |
| folio_put(buf->bvec[i].bv_folio); |
| } |
| } |
| |
| static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, |
| struct pipe_buffer *buf) |
| { |
| struct folio *folio = buf->bvec[buf->index].bv_folio; |
| |
| if (folio_ref_count(folio) != 1) |
| return false; |
| memcg_kmem_uncharge_page(folio_page(folio, 0), 0); |
| __folio_lock(folio); |
| return true; |
| } |
| |
| /** |
| * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer |
| * @pipe: the pipe that the buffer belongs to |
| * @buf: the buffer to attempt to steal |
| * |
| * Description: |
| * This function attempts to steal the &struct page attached to |
| * @buf. If successful, this function returns 0 and returns with |
| * the page locked. The caller may then reuse the page for whatever |
| * he wishes; the typical use is insertion into a different file |
| * page cache. |
| */ |
| bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, |
| struct pipe_buffer *buf) |
| { |
| struct folio *folio = buf->bvec[buf->index].bv_folio; |
| |
| /* |
| * A reference of one is golden, that means that the owner of this |
| * page is the only one holding a reference to it. lock the page |
| * and return OK. |
| */ |
| if (folio_ref_count(folio) == 1) { |
| __folio_lock(folio); |
| return true; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL(generic_pipe_buf_try_steal); |
| |
| /** |
| * generic_pipe_buf_get - get a reference to a &struct pipe_buffer |
| * @pipe: the pipe that the buffer belongs to |
| * @buf: the buffer to get a reference to |
| * |
| * Description: |
| * This function grabs an extra reference to @buf. It's used in |
| * the tee() system call, when we duplicate the buffers in one |
| * pipe into another. |
| */ |
| bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) |
| { |
| return folio_try_get(buf->bvec[buf->index].bv_folio); |
| } |
| EXPORT_SYMBOL(generic_pipe_buf_get); |
| |
| /** |
| * generic_pipe_buf_release - put a reference to a &struct pipe_buffer |
| * @pipe: the pipe that the buffer belongs to |
| * @buf: the buffer to put a reference to |
| * |
| * Description: |
| * This function releases a reference to @buf. |
| */ |
| void generic_pipe_buf_release(struct pipe_inode_info *pipe, |
| struct pipe_buffer *buf) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < buf->nr; i++) |
| folio_put(buf->bvec[i].bv_folio); |
| } |
| EXPORT_SYMBOL(generic_pipe_buf_release); |
| |
| static const struct pipe_buf_operations anon_pipe_buf_ops = { |
| .release = anon_pipe_buf_release, |
| .try_steal = anon_pipe_buf_try_steal, |
| .get = generic_pipe_buf_get, |
| }; |
| |
| /** |
| * pipe_query_space - Find out how much space is available in a pipe. |
| * @pipe: The pipe to query |
| * @len: The length requested (in) / the maximum length allowed (out) |
| * @error: Where to set any error |
| * |
| * Checks to see if there's space available in the pipe for *@len amount of |
| * data, returning the number of folios that can be added (0 if the pipe is |
| * full) and shrinking *@len to fit. |
| * |
| * If there are no readers, it will send SIGPIPE and set -EPIPE. |
| */ |
| size_t pipe_query_space(struct pipe_inode_info *pipe, size_t *len, int *error) |
| { |
| size_t npages; |
| |
| if (unlikely(!pipe->readers)) { |
| send_sig(SIGPIPE, current, 0); |
| *error = -EPIPE; |
| return 0; |
| } |
| if (pipe->footprint >= pipe->max_footprint) { |
| *error = -EAGAIN; |
| return 0; |
| } |
| |
| npages = pipe->max_footprint - pipe->footprint; |
| *len = min_t(size_t, *len, npages * PAGE_SIZE); |
| return npages; |
| } |
| EXPORT_SYMBOL(pipe_query_space); |
| |
| /** |
| * pipe_query_content - Find out how much data is available in a pipe. |
| * @pipe: The pipe to query |
| * @len: Where to return the amount of data |
| * |
| * Checks to see if there's content available in the pipe and if so, returns |
| * the number of pages and sets *@len to the amount of bytes. |
| */ |
| size_t pipe_query_content(struct pipe_inode_info *pipe, size_t *len) |
| { |
| *len = pipe->content; |
| return pipe->footprint; |
| } |
| EXPORT_SYMBOL(pipe_query_content); |
| |
| /** |
| * pipe_alloc_buffer - Allocate a pipe buffer |
| * @pipe: The pipe to allocate from |
| * @ops: The operations to set |
| * @bvcount: The number of folios we want to attach |
| * @gfp: Allocation mode |
| * @error: Where to place -ENOMEM if OOM occurs |
| * |
| * Allocate and return new pipe buffer with sufficient slots for the requested |
| * number of folios. Returns NULL if the pipe is full or we hit an OOM |
| * condition. In the OOM case, *@error will be set to -ENOMEM but left |
| * untouched otherwise. |
| */ |
| struct pipe_buffer *pipe_alloc_buffer(struct pipe_inode_info *pipe, |
| const struct pipe_buf_operations *ops, |
| size_t bvcount, gfp_t gfp, int *error) |
| { |
| struct pipe_buffer *buf; |
| size_t size = struct_size(buf, bvec, bvcount); |
| |
| if (pipe_full(pipe)) |
| return NULL; |
| |
| if (bvcount < 1) |
| bvcount = 1; |
| |
| if (pipe->spare_buffer) { |
| spin_lock_irq(&pipe->rd_wait.lock); |
| buf = pipe->spare_buffer; |
| if (buf) { |
| if (buf->max >= bvcount) |
| pipe->spare_buffer = NULL; |
| else |
| buf = NULL; |
| } |
| spin_unlock_irq(&pipe->rd_wait.lock); |
| if (buf) { |
| bvcount = buf->max; |
| memset(buf, 0, struct_size(buf, bvec, bvcount)); |
| buf->ops = ops; |
| buf->max = bvcount; |
| return buf; |
| } |
| } |
| |
| buf = kzalloc(size, gfp); |
| if (!buf) { |
| *error = -ENOMEM; |
| return NULL; |
| } |
| |
| buf->ops = ops; |
| buf->max = bvcount; |
| return buf; |
| } |
| EXPORT_SYMBOL(pipe_alloc_buffer); |
| |
| /** |
| * pipe_add - Pass filled data buffer into a pipe |
| * @pipe: Pipe to append to |
| * @buf: Buffer to add |
| * @full: Set to true if the pipe is now full |
| * |
| * This function adds the given buffer to the tail end of the pipe. The data |
| * is contained in an array of bio_vecs providing tuples of source page, offset |
| * and length. The buffer also points to operations for managing these pages. |
| * |
| * The buffer is discarded without being added if there is no data in it, there |
| * is no attached reader or the pipe is full. If the buffer would overrun the |
| * space in the pipe, it will be overcommitted. |
| */ |
| ssize_t pipe_add(struct pipe_inode_info *pipe, struct pipe_buffer *buf, |
| bool *full) |
| { |
| if (buf->size == 0 || WARN_ON(pipe_full(pipe))) |
| goto discard; |
| |
| spin_lock_irq(&pipe->rd_wait.lock); |
| list_add_tail(&buf->queue_link, &pipe->queue); |
| pipe->footprint += buf->footprint; |
| *full = pipe_full(pipe); |
| spin_unlock_irq(&pipe->rd_wait.lock); |
| return buf->size; |
| |
| discard: |
| pipe_buf_release(pipe, buf); |
| *full = pipe_full(pipe); |
| return 0; |
| } |
| EXPORT_SYMBOL(pipe_add); |
| |
| /** |
| * pipe_buf_release - put a reference to a pipe_buffer |
| * @pipe: the pipe that the buffer belongs to |
| * @buf: the buffer to put a reference to |
| */ |
| void pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) |
| { |
| const struct pipe_buf_operations *ops = buf->ops; |
| |
| if (ops) |
| ops->release(pipe, buf); |
| if (buf->index >= buf->nr) { |
| spin_lock_irq(&pipe->rd_wait.lock); |
| pipe->footprint -= buf->footprint; |
| list_del(&buf->queue_link); |
| spin_unlock_irq(&pipe->rd_wait.lock); |
| kfree(buf); |
| } |
| } |
| |
| #ifdef CONFIG_WATCH_QUEUE |
| /** |
| * pipe_set_lost_mark - Mark the pipe as having lost some data |
| * @pipe: Pipe to mark |
| * |
| * Set a mark on a pipe to indicate that some data was lost, either due to the |
| * pipe being full or failure to allocate memory. This will cause a |
| * lost-notification message to be read when the pipe gets around to the |
| * current add point. |
| * |
| * The caller must hold pipe->rd_wait.lock and have interrupts disabled. |
| */ |
| void pipe_set_lost_mark(struct pipe_inode_info *pipe) |
| { |
| struct pipe_buffer *buf; |
| |
| spin_lock_irq(&pipe->rd_wait.lock); |
| if (pipe_empty(pipe)) { |
| pipe->note_loss = true; |
| } else { |
| buf = list_last_entry(&pipe->queue, struct pipe_buffer, queue_link); |
| buf->flags |= PIPE_BUF_FLAG_LOSS; |
| } |
| spin_unlock_irq(&pipe->rd_wait.lock); |
| } |
| #endif |
| |
| /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ |
| static inline bool pipe_readable(const struct pipe_inode_info *pipe) |
| { |
| return !pipe_empty(pipe) || !READ_ONCE(pipe->writers); |
| } |
| |
| /* |
| * Deal with the consumption of some data from a pipe buffer. Returns true if |
| * we've consumed all the data. |
| */ |
| bool pipe_consume(struct pipe_inode_info *pipe, struct pipe_buffer *buf, size_t consumed) |
| { |
| if (WARN_ON_ONCE(consumed > buf->size)) |
| consumed = buf->size; |
| buf->size -= consumed; |
| |
| do { |
| struct bio_vec *bv = &buf->bvec[buf->index]; |
| size_t part = min_t(size_t, consumed, bv->bv_len); |
| |
| bv->bv_len -= part; |
| bv->bv_offset += part; |
| consumed -= part; |
| |
| if (bv->bv_len > 0) |
| break; |
| |
| buf->ops->release(pipe, buf); |
| buf->index++; |
| } while (consumed > 0); |
| |
| return buf->size == 0; |
| } |
| |
| /* |
| * Copy data from a pipe buffer into an iterator, confirming the pages in the |
| * buffer as we use them and releasing them when we've used them. |
| */ |
| static ssize_t pipe_copy_buf_to_iter(struct pipe_inode_info *pipe, |
| struct pipe_buffer *buf, |
| struct iov_iter *iter) |
| { |
| size_t part, n, copied = 0; |
| int ret = 0; |
| |
| while (buf->size) { |
| struct bio_vec *bv = &buf->bvec[buf->nr]; |
| |
| if (buf->nr_confirmed <= buf->index) { |
| ret = pipe_buf_confirm(pipe, buf); |
| if (ret < 0) |
| break; |
| } |
| |
| part = min_t(size_t, bv->bv_len, iov_iter_count(iter)); |
| n = copy_folio_to_iter(bv->bv_folio, bv->bv_offset, part, iter); |
| if (unlikely(n < part)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| copied += n; |
| pipe_consume(pipe, buf, n); |
| } |
| |
| return copied ?: ret; |
| } |
| |
| static ssize_t pipe_read(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| struct file *filp = iocb->ki_filp; |
| struct pipe_inode_info *pipe = filp->private_data; |
| bool was_full, wake_next_reader = false, stop; |
| ssize_t copied = 0, ret = 0; |
| |
| /* Null read succeeds. */ |
| if (unlikely(!iov_iter_count(iter))) |
| return 0; |
| |
| __pipe_lock(pipe); |
| |
| /* |
| * We only wake up writers if the pipe was full when we started |
| * reading in order to avoid unnecessary wakeups. |
| * |
| * But when we do wake up writers, we do so using a sync wakeup |
| * (WF_SYNC), because we want them to get going and generate more |
| * data for us. |
| */ |
| was_full = pipe_full(pipe); |
| for (;;) { |
| struct pipe_buffer *buf; |
| |
| #ifdef CONFIG_WATCH_QUEUE |
| if (pipe->note_loss) { |
| struct watch_notification n; |
| |
| if (iov_iter_count(iter) < 8) { |
| ret = -ENOBUFS; |
| break; |
| } |
| |
| n.type = WATCH_TYPE_META; |
| n.subtype = WATCH_META_LOSS_NOTIFICATION; |
| n.info = watch_sizeof(n); |
| if (copy_to_iter(&n, sizeof(n), iter) != sizeof(n)) { |
| if (ret == 0) |
| ret = -EFAULT; |
| break; |
| } |
| copied += sizeof(n); |
| pipe->note_loss = false; |
| } |
| #endif |
| |
| buf = pipe_head_buf(pipe); |
| if (buf) { |
| if (buf->ops->copy_to_iter) |
| ret = buf->ops->copy_to_iter(pipe, buf, iter); |
| else |
| ret = pipe_copy_buf_to_iter(pipe, buf, iter); |
| if (ret > 0) |
| copied += ret; |
| |
| /* Was it a packet buffer? Clean up and exit */ |
| stop = buf->flags & PIPE_BUF_FLAG_PACKET; |
| if (stop) |
| buf->size = 0; |
| |
| if (!buf->size) { |
| #ifdef CONFIG_WATCH_QUEUE |
| if (buf->flags & PIPE_BUF_FLAG_LOSS) |
| pipe->note_loss = true; |
| #endif |
| pipe_buf_release(pipe, buf); |
| } |
| |
| if (!iov_iter_count(iter)) |
| break; /* common path: read succeeded */ |
| if (!pipe_empty(pipe)) /* More to do? */ |
| continue; |
| } |
| |
| if (!pipe->writers) |
| break; |
| if (ret) |
| break; |
| if (filp->f_flags & O_NONBLOCK) { |
| ret = -EAGAIN; |
| break; |
| } |
| __pipe_unlock(pipe); |
| |
| /* |
| * We only get here if we didn't actually read anything. |
| * |
| * However, we could have seen (and removed) a zero-sized |
| * pipe buffer, and might have made space in the buffers |
| * that way. |
| * |
| * You can't make zero-sized pipe buffers by doing an empty |
| * write (not even in packet mode), but they can happen if |
| * the writer gets an EFAULT when trying to fill a buffer |
| * that already got allocated and inserted in the buffer |
| * array. |
| * |
| * So we still need to wake up any pending writers in the |
| * _very_ unlikely case that the pipe was full, but we got |
| * no data. |
| */ |
| if (unlikely(was_full)) |
| wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); |
| kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); |
| |
| /* |
| * But because we didn't read anything, at this point we can |
| * just return directly with -ERESTARTSYS if we're interrupted, |
| * since we've done any required wakeups and there's no need |
| * to mark anything accessed. And we've dropped the lock. |
| */ |
| if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) |
| return -ERESTARTSYS; |
| |
| __pipe_lock(pipe); |
| was_full = pipe_full(pipe); |
| wake_next_reader = true; |
| } |
| if (pipe_empty(pipe)) |
| wake_next_reader = false; |
| __pipe_unlock(pipe); |
| |
| if (was_full) |
| wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); |
| if (wake_next_reader) |
| wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); |
| kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); |
| if (ret > 0) |
| file_accessed(filp); |
| return copied ?: ret; |
| } |
| |
| static inline int is_packetized(struct file *file) |
| { |
| return (file->f_flags & O_DIRECT) != 0; |
| } |
| |
| /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ |
| static inline bool pipe_writable(const struct pipe_inode_info *pipe) |
| { |
| return !pipe_full(pipe) || !READ_ONCE(pipe->readers); |
| } |
| |
| /* |
| * copy_iter_to_folio - Copy data from an iterator into a folio |
| * @iter: Source iterator |
| * @folio: Destination folio |
| * @offset: Offset within the folio to start writing |
| * @len: Amount to copy |
| */ |
| static ssize_t copy_iter_to_folio(struct iov_iter *iter, struct folio *folio, |
| size_t offset, size_t len) |
| { |
| size_t copied = 0; |
| |
| while (len > 0 && iov_iter_count(iter) > 0) { |
| size_t pnum = offset / PAGE_SIZE; |
| size_t poff = offset & ~PAGE_MASK; |
| size_t part = min3(len, PAGE_SIZE - offset, iov_iter_count(iter)); |
| size_t n; |
| |
| n = copy_page_from_iter(folio_page(folio, pnum), poff, part, iter); |
| offset += n; |
| copied += n; |
| if (n < part) |
| return copied ?: -EFAULT; |
| } |
| |
| return copied; |
| } |
| |
| static ssize_t pipe_write(struct kiocb *iocb, struct iov_iter *from) |
| { |
| struct file *filp = iocb->ki_filp; |
| struct pipe_inode_info *pipe = filp->private_data; |
| size_t total_len = iov_iter_count(from); |
| ssize_t written = 0, chars; |
| bool was_empty = false; |
| bool wake_next_writer = false; |
| bool full = pipe_full(pipe); |
| int ret = 0; |
| |
| /* Null write succeeds. */ |
| if (unlikely(total_len == 0)) |
| return 0; |
| |
| __pipe_lock(pipe); |
| |
| if (!pipe->readers) { |
| send_sig(SIGPIPE, current, 0); |
| ret = -EPIPE; |
| goto out; |
| } |
| |
| #ifdef CONFIG_WATCH_QUEUE |
| if (pipe->watch_queue) { |
| ret = -EXDEV; |
| goto out; |
| } |
| #endif |
| |
| /* |
| * If it wasn't empty we try to merge new data into |
| * the last buffer. |
| * |
| * That naturally merges small writes, but it also |
| * page-aligns the rest of the writes for large writes |
| * spanning multiple pages. |
| */ |
| was_empty = pipe_empty(pipe); |
| chars = total_len & (PAGE_SIZE-1); |
| if (chars && !was_empty) { |
| struct pipe_buffer *buf = |
| list_last_entry(&pipe->queue, |
| struct pipe_buffer, queue_link); |
| struct bio_vec *bv = &buf->bvec[0]; |
| size_t offset = bv->bv_offset + bv->bv_len; |
| |
| if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && |
| offset + chars <= folio_size(bv->bv_folio)) { |
| ret = pipe_buf_confirm(pipe, buf); |
| if (ret) |
| goto out; |
| |
| ret = copy_iter_to_folio(from, bv->bv_folio, offset, chars); |
| if (unlikely(ret < chars)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| buf->size += ret; |
| if (!iov_iter_count(from)) |
| goto out; |
| } |
| } |
| |
| for (;;) { |
| if (!pipe->readers) { |
| send_sig(SIGPIPE, current, 0); |
| ret = -EPIPE; |
| break; |
| } |
| |
| if (!full) { |
| struct pipe_buffer *buf; |
| struct folio *folio = pipe->spare_folio; |
| ssize_t copied; |
| size_t part; |
| |
| buf = pipe_alloc_buffer(pipe, &anon_pipe_buf_ops, |
| 1, GFP_KERNEL, &ret); |
| if (!buf) |
| break; |
| |
| folio = pipe->spare_folio; |
| if (!folio) { |
| folio = folio_alloc(GFP_HIGHUSER | __GFP_ACCOUNT, 0); |
| if (unlikely(!folio)) { |
| ret = -ENOMEM; |
| break; |
| } |
| } else { |
| pipe->spare_folio = NULL; |
| } |
| |
| buf->bvec[0].bv_folio = folio; |
| buf->bvec[0].bv_offset = 0; |
| buf->bvec[0].bv_len = 0; |
| buf->nr = 1; |
| buf->footprint += folio_nr_pages(folio); |
| |
| if (is_packetized(filp)) |
| buf->flags = PIPE_BUF_FLAG_PACKET; |
| else |
| buf->flags = PIPE_BUF_FLAG_CAN_MERGE; |
| |
| part = min(iov_iter_count(from), folio_size(folio)); |
| copied = copy_iter_to_folio(from, folio, 0, folio_size(folio)); |
| if (unlikely(copied < part)) { |
| if (!ret) |
| ret = -EFAULT; |
| break; |
| } |
| ret += copied; |
| buf->bvec[0].bv_len += copied; |
| buf->size += copied; |
| ret = pipe_add(pipe, buf, &full); |
| |
| if (!iov_iter_count(from)) |
| break; |
| } |
| |
| if (!full) |
| continue; |
| |
| /* Wait for buffer space to become available. */ |
| if (filp->f_flags & O_NONBLOCK) { |
| ret = -EAGAIN; |
| break; |
| } |
| if (signal_pending(current)) { |
| ret = -ERESTARTSYS; |
| break; |
| } |
| |
| /* |
| * We're going to release the pipe lock and wait for more |
| * space. We wake up any readers if necessary, and then |
| * after waiting we need to re-check whether the pipe |
| * become empty while we dropped the lock. |
| */ |
| __pipe_unlock(pipe); |
| if (was_empty) |
| wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); |
| kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); |
| __pipe_lock(pipe); |
| was_empty = pipe_empty(pipe); |
| wake_next_writer = true; |
| full = pipe_full(pipe); |
| } |
| out: |
| if (pipe_full(pipe)) |
| wake_next_writer = false; |
| __pipe_unlock(pipe); |
| |
| /* |
| * If we do do a wakeup event, we do a 'sync' wakeup, because we |
| * want the reader to start processing things asap, rather than |
| * leave the data pending. |
| * |
| * This is particularly important for small writes, because of |
| * how (for example) the GNU make jobserver uses small writes to |
| * wake up pending jobs |
| * |
| * Epoll nonsensically wants a wakeup whether the pipe |
| * was already empty or not. |
| */ |
| if (was_empty || pipe->poll_usage) |
| wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); |
| kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| if (wake_next_writer) |
| wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); |
| if (written && sb_start_write_trylock(file_inode(filp)->i_sb)) { |
| ret = file_update_time(filp); |
| if (ret) |
| written = ret; |
| sb_end_write(file_inode(filp)->i_sb); |
| } |
| return written ?: ret; |
| } |
| |
| static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) |
| { |
| struct pipe_inode_info *pipe = filp->private_data; |
| struct pipe_buffer *buf; |
| unsigned int count; |
| |
| switch (cmd) { |
| case FIONREAD: |
| __pipe_lock(pipe); |
| count = 0; |
| list_for_each_entry(buf, &pipe->queue, queue_link) { |
| count += buf->size; |
| } |
| __pipe_unlock(pipe); |
| |
| return put_user(count, (int __user *)arg); |
| |
| #ifdef CONFIG_WATCH_QUEUE |
| case IOC_WATCH_QUEUE_SET_SIZE: |
| return 0; /* Does nothing for the moment. */ |
| |
| case IOC_WATCH_QUEUE_SET_FILTER: |
| return watch_queue_set_filter( |
| pipe, (struct watch_notification_filter __user *)arg); |
| #endif |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| |
| /* No kernel lock held - fine */ |
| static __poll_t |
| pipe_poll(struct file *filp, poll_table *wait) |
| { |
| __poll_t mask; |
| struct pipe_inode_info *pipe = filp->private_data; |
| |
| /* Epoll has some historical nasty semantics, this enables them */ |
| WRITE_ONCE(pipe->poll_usage, true); |
| |
| /* |
| * Reading pipe state only -- no need for acquiring the semaphore. |
| * |
| * But because this is racy, the code has to add the |
| * entry to the poll table _first_ .. |
| */ |
| if (filp->f_mode & FMODE_READ) |
| poll_wait(filp, &pipe->rd_wait, wait); |
| if (filp->f_mode & FMODE_WRITE) |
| poll_wait(filp, &pipe->wr_wait, wait); |
| |
| /* |
| * .. and only then can you do the racy tests. That way, |
| * if something changes and you got it wrong, the poll |
| * table entry will wake you up and fix it. |
| */ |
| mask = 0; |
| if (filp->f_mode & FMODE_READ) { |
| if (!pipe_empty(pipe)) |
| mask |= EPOLLIN | EPOLLRDNORM; |
| if (!pipe->writers && filp->f_version != pipe->w_counter) |
| mask |= EPOLLHUP; |
| } |
| |
| if (filp->f_mode & FMODE_WRITE) { |
| if (!pipe_full(pipe)) |
| mask |= EPOLLOUT | EPOLLWRNORM; |
| /* |
| * Most Unices do not set EPOLLERR for FIFOs but on Linux they |
| * behave exactly like pipes for poll(). |
| */ |
| if (!pipe->readers) |
| mask |= EPOLLERR; |
| } |
| |
| return mask; |
| } |
| |
| static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) |
| { |
| int kill = 0; |
| |
| spin_lock(&inode->i_lock); |
| if (!--pipe->files) { |
| inode->i_pipe = NULL; |
| kill = 1; |
| } |
| spin_unlock(&inode->i_lock); |
| |
| if (kill) |
| free_pipe_info(pipe); |
| } |
| |
| static int |
| pipe_release(struct inode *inode, struct file *file) |
| { |
| struct pipe_inode_info *pipe = file->private_data; |
| |
| __pipe_lock(pipe); |
| if (file->f_mode & FMODE_READ) |
| pipe->readers--; |
| if (file->f_mode & FMODE_WRITE) |
| pipe->writers--; |
| |
| /* Was that the last reader or writer, but not the other side? */ |
| if (!pipe->readers != !pipe->writers) { |
| wake_up_interruptible_all(&pipe->rd_wait); |
| wake_up_interruptible_all(&pipe->wr_wait); |
| kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); |
| } |
| __pipe_unlock(pipe); |
| |
| put_pipe_info(inode, pipe); |
| return 0; |
| } |
| |
| static int |
| pipe_fasync(int fd, struct file *filp, int on) |
| { |
| struct pipe_inode_info *pipe = filp->private_data; |
| int retval = 0; |
| |
| __pipe_lock(pipe); |
| if (filp->f_mode & FMODE_READ) |
| retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); |
| if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { |
| retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); |
| if (retval < 0 && (filp->f_mode & FMODE_READ)) |
| /* this can happen only if on == T */ |
| fasync_helper(-1, filp, 0, &pipe->fasync_readers); |
| } |
| __pipe_unlock(pipe); |
| return retval; |
| } |
| |
| static unsigned long account_pipe_buffers(struct user_struct *user, |
| unsigned long old, unsigned long new) |
| { |
| return atomic_long_add_return(new - old, &user->pipe_bufs); |
| } |
| |
| static bool too_many_pipe_buffers_soft(unsigned long user_bufs) |
| { |
| unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); |
| |
| return soft_limit && user_bufs > soft_limit; |
| } |
| |
| static bool too_many_pipe_buffers_hard(unsigned long user_bufs) |
| { |
| unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); |
| |
| return hard_limit && user_bufs > hard_limit; |
| } |
| |
| static bool pipe_is_unprivileged_user(void) |
| { |
| return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); |
| } |
| |
| struct pipe_inode_info *alloc_pipe_info(void) |
| { |
| struct pipe_inode_info *pipe; |
| struct user_struct *user = get_current_user(); |
| size_t limit = PIPE_DEF_BUFFERS, user_bufs; |
| size_t sys = min_t(size_t, DIV_ROUND_UP(READ_ONCE(pipe_max_size), PAGE_SIZE), 1); |
| |
| pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); |
| if (pipe == NULL) |
| goto out_free_uid; |
| |
| if (limit > sys && !capable(CAP_SYS_RESOURCE)) |
| limit = sys; |
| |
| user_bufs = account_pipe_buffers(user, 0, limit); |
| |
| if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { |
| user_bufs = account_pipe_buffers(user, limit, PIPE_MIN_DEF_BUFFERS); |
| limit = PIPE_MIN_DEF_BUFFERS; |
| } |
| |
| if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) |
| goto out_revert_acct; |
| |
| INIT_LIST_HEAD(&pipe->queue); |
| init_waitqueue_head(&pipe->rd_wait); |
| init_waitqueue_head(&pipe->wr_wait); |
| pipe->r_counter = pipe->w_counter = 1; |
| pipe->max_footprint = limit; |
| pipe->user = user; |
| mutex_init(&pipe->mutex); |
| return pipe; |
| |
| out_revert_acct: |
| (void) account_pipe_buffers(user, limit, 0); |
| kfree(pipe); |
| out_free_uid: |
| free_uid(user); |
| return NULL; |
| } |
| |
| void free_pipe_info(struct pipe_inode_info *pipe) |
| { |
| struct pipe_buffer *buf; |
| |
| #ifdef CONFIG_WATCH_QUEUE |
| if (pipe->watch_queue) |
| watch_queue_clear(pipe->watch_queue); |
| #endif |
| |
| (void) account_pipe_buffers(pipe->user, pipe->footprint, 0); |
| free_uid(pipe->user); |
| while ((buf = list_first_entry_or_null( |
| &pipe->queue, struct pipe_buffer, queue_link))) { |
| pipe_buf_release(pipe, buf); |
| } |
| #ifdef CONFIG_WATCH_QUEUE |
| if (pipe->watch_queue) |
| put_watch_queue(pipe->watch_queue); |
| #endif |
| if (pipe->spare_folio) |
| folio_put(pipe->spare_folio); |
| kfree(pipe->spare_buffer); |
| kfree(pipe); |
| } |
| |
| static struct vfsmount *pipe_mnt __read_mostly; |
| |
| /* |
| * pipefs_dname() is called from d_path(). |
| */ |
| static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) |
| { |
| return dynamic_dname(buffer, buflen, "pipe:[%lu]", |
| d_inode(dentry)->i_ino); |
| } |
| |
| static const struct dentry_operations pipefs_dentry_operations = { |
| .d_dname = pipefs_dname, |
| }; |
| |
| static struct inode * get_pipe_inode(void) |
| { |
| struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); |
| struct pipe_inode_info *pipe; |
| |
| if (!inode) |
| goto fail_inode; |
| |
| inode->i_ino = get_next_ino(); |
| |
| pipe = alloc_pipe_info(); |
| if (!pipe) |
| goto fail_iput; |
| |
| inode->i_pipe = pipe; |
| pipe->files = 2; |
| pipe->readers = pipe->writers = 1; |
| inode->i_fop = &pipefifo_fops; |
| |
| /* |
| * Mark the inode dirty from the very beginning, |
| * that way it will never be moved to the dirty |
| * list because "mark_inode_dirty()" will think |
| * that it already _is_ on the dirty list. |
| */ |
| inode->i_state = I_DIRTY; |
| inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; |
| inode->i_uid = current_fsuid(); |
| inode->i_gid = current_fsgid(); |
| inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); |
| |
| return inode; |
| |
| fail_iput: |
| iput(inode); |
| |
| fail_inode: |
| return NULL; |
| } |
| |
| int create_pipe_files(struct file **res, int flags) |
| { |
| struct inode *inode = get_pipe_inode(); |
| struct file *f; |
| int error; |
| |
| if (!inode) |
| return -ENFILE; |
| |
| if (flags & O_NOTIFICATION_PIPE) { |
| error = watch_queue_init(inode->i_pipe); |
| if (error) { |
| free_pipe_info(inode->i_pipe); |
| iput(inode); |
| return error; |
| } |
| } |
| |
| f = alloc_file_pseudo(inode, pipe_mnt, "", |
| O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), |
| &pipefifo_fops); |
| if (IS_ERR(f)) { |
| free_pipe_info(inode->i_pipe); |
| iput(inode); |
| return PTR_ERR(f); |
| } |
| |
| f->private_data = inode->i_pipe; |
| |
| res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), |
| &pipefifo_fops); |
| if (IS_ERR(res[0])) { |
| put_pipe_info(inode, inode->i_pipe); |
| fput(f); |
| return PTR_ERR(res[0]); |
| } |
| res[0]->private_data = inode->i_pipe; |
| res[1] = f; |
| stream_open(inode, res[0]); |
| stream_open(inode, res[1]); |
| return 0; |
| } |
| |
| static int __do_pipe_flags(int *fd, struct file **files, int flags) |
| { |
| int error; |
| int fdw, fdr; |
| |
| if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) |
| return -EINVAL; |
| |
| error = create_pipe_files(files, flags); |
| if (error) |
| return error; |
| |
| error = get_unused_fd_flags(flags); |
| if (error < 0) |
| goto err_read_pipe; |
| fdr = error; |
| |
| error = get_unused_fd_flags(flags); |
| if (error < 0) |
| goto err_fdr; |
| fdw = error; |
| |
| audit_fd_pair(fdr, fdw); |
| fd[0] = fdr; |
| fd[1] = fdw; |
| return 0; |
| |
| err_fdr: |
| put_unused_fd(fdr); |
| err_read_pipe: |
| fput(files[0]); |
| fput(files[1]); |
| return error; |
| } |
| |
| int do_pipe_flags(int *fd, int flags) |
| { |
| struct file *files[2]; |
| int error = __do_pipe_flags(fd, files, flags); |
| if (!error) { |
| fd_install(fd[0], files[0]); |
| fd_install(fd[1], files[1]); |
| } |
| return error; |
| } |
| |
| /* |
| * sys_pipe() is the normal C calling standard for creating |
| * a pipe. It's not the way Unix traditionally does this, though. |
| */ |
| static int do_pipe2(int __user *fildes, int flags) |
| { |
| struct file *files[2]; |
| int fd[2]; |
| int error; |
| |
| error = __do_pipe_flags(fd, files, flags); |
| if (!error) { |
| if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { |
| fput(files[0]); |
| fput(files[1]); |
| put_unused_fd(fd[0]); |
| put_unused_fd(fd[1]); |
| error = -EFAULT; |
| } else { |
| fd_install(fd[0], files[0]); |
| fd_install(fd[1], files[1]); |
| } |
| } |
| return error; |
| } |
| |
| SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) |
| { |
| return do_pipe2(fildes, flags); |
| } |
| |
| SYSCALL_DEFINE1(pipe, int __user *, fildes) |
| { |
| return do_pipe2(fildes, 0); |
| } |
| |
| /* |
| * This is the stupid "wait for pipe to be readable or writable" |
| * model. |
| * |
| * See pipe_read/write() for the proper kind of exclusive wait, |
| * but that requires that we wake up any other readers/writers |
| * if we then do not end up reading everything (ie the whole |
| * "wake_next_reader/writer" logic in pipe_read/write()). |
| */ |
| void pipe_wait_readable(struct pipe_inode_info *pipe) |
| { |
| pipe_unlock(pipe); |
| wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); |
| pipe_lock(pipe); |
| } |
| |
| void pipe_wait_writable(struct pipe_inode_info *pipe) |
| { |
| pipe_unlock(pipe); |
| wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); |
| pipe_lock(pipe); |
| } |
| |
| /* |
| * This depends on both the wait (here) and the wakeup (wake_up_partner) |
| * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot |
| * race with the count check and waitqueue prep. |
| * |
| * Normally in order to avoid races, you'd do the prepare_to_wait() first, |
| * then check the condition you're waiting for, and only then sleep. But |
| * because of the pipe lock, we can check the condition before being on |
| * the wait queue. |
| * |
| * We use the 'rd_wait' waitqueue for pipe partner waiting. |
| */ |
| static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) |
| { |
| DEFINE_WAIT(rdwait); |
| int cur = *cnt; |
| |
| while (cur == *cnt) { |
| prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); |
| pipe_unlock(pipe); |
| schedule(); |
| finish_wait(&pipe->rd_wait, &rdwait); |
| pipe_lock(pipe); |
| if (signal_pending(current)) |
| break; |
| } |
| return cur == *cnt ? -ERESTARTSYS : 0; |
| } |
| |
| static void wake_up_partner(struct pipe_inode_info *pipe) |
| { |
| wake_up_interruptible_all(&pipe->rd_wait); |
| } |
| |
| static int fifo_open(struct inode *inode, struct file *filp) |
| { |
| struct pipe_inode_info *pipe; |
| bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; |
| int ret; |
| |
| filp->f_version = 0; |
| |
| spin_lock(&inode->i_lock); |
| if (inode->i_pipe) { |
| pipe = inode->i_pipe; |
| pipe->files++; |
| spin_unlock(&inode->i_lock); |
| } else { |
| spin_unlock(&inode->i_lock); |
| pipe = alloc_pipe_info(); |
| if (!pipe) |
| return -ENOMEM; |
| pipe->files = 1; |
| spin_lock(&inode->i_lock); |
| if (unlikely(inode->i_pipe)) { |
| inode->i_pipe->files++; |
| spin_unlock(&inode->i_lock); |
| free_pipe_info(pipe); |
| pipe = inode->i_pipe; |
| } else { |
| inode->i_pipe = pipe; |
| spin_unlock(&inode->i_lock); |
| } |
| } |
| filp->private_data = pipe; |
| /* OK, we have a pipe and it's pinned down */ |
| |
| __pipe_lock(pipe); |
| |
| /* We can only do regular read/write on fifos */ |
| stream_open(inode, filp); |
| |
| switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { |
| case FMODE_READ: |
| /* |
| * O_RDONLY |
| * POSIX.1 says that O_NONBLOCK means return with the FIFO |
| * opened, even when there is no process writing the FIFO. |
| */ |
| pipe->r_counter++; |
| if (pipe->readers++ == 0) |
| wake_up_partner(pipe); |
| |
| if (!is_pipe && !pipe->writers) { |
| if ((filp->f_flags & O_NONBLOCK)) { |
| /* suppress EPOLLHUP until we have |
| * seen a writer */ |
| filp->f_version = pipe->w_counter; |
| } else { |
| if (wait_for_partner(pipe, &pipe->w_counter)) |
| goto err_rd; |
| } |
| } |
| break; |
| |
| case FMODE_WRITE: |
| /* |
| * O_WRONLY |
| * POSIX.1 says that O_NONBLOCK means return -1 with |
| * errno=ENXIO when there is no process reading the FIFO. |
| */ |
| ret = -ENXIO; |
| if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) |
| goto err; |
| |
| pipe->w_counter++; |
| if (!pipe->writers++) |
| wake_up_partner(pipe); |
| |
| if (!is_pipe && !pipe->readers) { |
| if (wait_for_partner(pipe, &pipe->r_counter)) |
| goto err_wr; |
| } |
| break; |
| |
| case FMODE_READ | FMODE_WRITE: |
| /* |
| * O_RDWR |
| * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. |
| * This implementation will NEVER block on a O_RDWR open, since |
| * the process can at least talk to itself. |
| */ |
| |
| pipe->readers++; |
| pipe->writers++; |
| pipe->r_counter++; |
| pipe->w_counter++; |
| if (pipe->readers == 1 || pipe->writers == 1) |
| wake_up_partner(pipe); |
| break; |
| |
| default: |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* Ok! */ |
| __pipe_unlock(pipe); |
| return 0; |
| |
| err_rd: |
| if (!--pipe->readers) |
| wake_up_interruptible(&pipe->wr_wait); |
| ret = -ERESTARTSYS; |
| goto err; |
| |
| err_wr: |
| if (!--pipe->writers) |
| wake_up_interruptible_all(&pipe->rd_wait); |
| ret = -ERESTARTSYS; |
| goto err; |
| |
| err: |
| __pipe_unlock(pipe); |
| |
| put_pipe_info(inode, pipe); |
| return ret; |
| } |
| |
| const struct file_operations pipefifo_fops = { |
| .open = fifo_open, |
| .llseek = no_llseek, |
| .read_iter = pipe_read, |
| .write_iter = pipe_write, |
| .poll = pipe_poll, |
| .unlocked_ioctl = pipe_ioctl, |
| .release = pipe_release, |
| .fasync = pipe_fasync, |
| .splice_write = iter_file_splice_write, |
| }; |
| |
| /* |
| * Change the limit on the amount of data allowed into a pipe. Returns the pipe |
| * size if successful, or return -ERROR on error. |
| */ |
| static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) |
| { |
| unsigned long user_bufs; |
| size_t limit; |
| size_t sys = min_t(size_t, DIV_ROUND_UP(pipe_max_size, PAGE_SIZE), 1); |
| long ret = 0; |
| |
| #ifdef CONFIG_WATCH_QUEUE |
| if (pipe->watch_queue) |
| return -EBUSY; |
| #endif |
| |
| limit = DIV_ROUND_UP(arg, PAGE_SIZE); |
| limit = min_t(size_t, limit, 1); |
| |
| /* |
| * If trying to increase the pipe capacity, check that an unprivileged |
| * user is not trying to exceed various limits (soft limit check here, |
| * hard limit check just below). Decreasing the pipe capacity is |
| * always permitted, even if the user is currently over a limit. |
| */ |
| if (limit > pipe->max_footprint && |
| limit > sys && !capable(CAP_SYS_RESOURCE)) |
| return -EPERM; |
| |
| user_bufs = account_pipe_buffers(pipe->user, pipe->max_footprint, limit); |
| |
| if (limit > pipe->max_footprint && |
| (too_many_pipe_buffers_hard(user_bufs) || |
| too_many_pipe_buffers_soft(user_bufs)) && |
| pipe_is_unprivileged_user()) { |
| ret = -EPERM; |
| goto out_revert_acct; |
| } |
| |
| pipe->max_footprint = limit; |
| return pipe->max_footprint * PAGE_SIZE; |
| |
| out_revert_acct: |
| (void) account_pipe_buffers(pipe->user, limit, pipe->max_footprint); |
| return ret; |
| } |
| |
| /* |
| * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is |
| * not enough to verify that this is a pipe. |
| */ |
| struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) |
| { |
| struct pipe_inode_info *pipe = file->private_data; |
| |
| if (file->f_op != &pipefifo_fops || !pipe) |
| return NULL; |
| #ifdef CONFIG_WATCH_QUEUE |
| if (for_splice && pipe->watch_queue) |
| return NULL; |
| #endif |
| return pipe; |
| } |
| |
| long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct pipe_inode_info *pipe; |
| long ret; |
| |
| pipe = get_pipe_info(file, false); |
| if (!pipe) |
| return -EBADF; |
| |
| __pipe_lock(pipe); |
| |
| switch (cmd) { |
| case F_SETPIPE_SZ: |
| ret = pipe_set_size(pipe, arg); |
| break; |
| case F_GETPIPE_SZ: |
| ret = pipe->max_footprint; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| __pipe_unlock(pipe); |
| return ret; |
| } |
| |
| static const struct super_operations pipefs_ops = { |
| .destroy_inode = free_inode_nonrcu, |
| .statfs = simple_statfs, |
| }; |
| |
| /* |
| * pipefs should _never_ be mounted by userland - too much of security hassle, |
| * no real gain from having the whole whorehouse mounted. So we don't need |
| * any operations on the root directory. However, we need a non-trivial |
| * d_name - pipe: will go nicely and kill the special-casing in procfs. |
| */ |
| |
| static int pipefs_init_fs_context(struct fs_context *fc) |
| { |
| struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); |
| if (!ctx) |
| return -ENOMEM; |
| ctx->ops = &pipefs_ops; |
| ctx->dops = &pipefs_dentry_operations; |
| return 0; |
| } |
| |
| static struct file_system_type pipe_fs_type = { |
| .name = "pipefs", |
| .init_fs_context = pipefs_init_fs_context, |
| .kill_sb = kill_anon_super, |
| }; |
| |
| #ifdef CONFIG_SYSCTL |
| static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, |
| unsigned int *valp, |
| int write, void *data) |
| { |
| if (write) { |
| unsigned int val; |
| |
| val = round_up(*lvalp, PAGE_SIZE); |
| if (val == 0) |
| return -EINVAL; |
| |
| *valp = val; |
| } else { |
| unsigned int val = *valp; |
| *lvalp = (unsigned long) val; |
| } |
| |
| return 0; |
| } |
| |
| static int proc_dopipe_max_size(struct ctl_table *table, int write, |
| void *buffer, size_t *lenp, loff_t *ppos) |
| { |
| return do_proc_douintvec(table, write, buffer, lenp, ppos, |
| do_proc_dopipe_max_size_conv, NULL); |
| } |
| |
| static struct ctl_table fs_pipe_sysctls[] = { |
| { |
| .procname = "pipe-max-size", |
| .data = &pipe_max_size, |
| .maxlen = sizeof(pipe_max_size), |
| .mode = 0644, |
| .proc_handler = proc_dopipe_max_size, |
| }, |
| { |
| .procname = "pipe-user-pages-hard", |
| .data = &pipe_user_pages_hard, |
| .maxlen = sizeof(pipe_user_pages_hard), |
| .mode = 0644, |
| .proc_handler = proc_doulongvec_minmax, |
| }, |
| { |
| .procname = "pipe-user-pages-soft", |
| .data = &pipe_user_pages_soft, |
| .maxlen = sizeof(pipe_user_pages_soft), |
| .mode = 0644, |
| .proc_handler = proc_doulongvec_minmax, |
| }, |
| { } |
| }; |
| #endif |
| |
| static int __init init_pipe_fs(void) |
| { |
| int err = register_filesystem(&pipe_fs_type); |
| |
| if (!err) { |
| pipe_mnt = kern_mount(&pipe_fs_type); |
| if (IS_ERR(pipe_mnt)) { |
| err = PTR_ERR(pipe_mnt); |
| unregister_filesystem(&pipe_fs_type); |
| } |
| } |
| #ifdef CONFIG_SYSCTL |
| register_sysctl_init("fs", fs_pipe_sysctls); |
| #endif |
| return err; |
| } |
| |
| fs_initcall(init_pipe_fs); |