|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/mm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | static inline bool not_found(struct page_vma_mapped_walk *pvmw) | 
|  | { | 
|  | page_vma_mapped_walk_done(pvmw); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool map_pte(struct page_vma_mapped_walk *pvmw) | 
|  | { | 
|  | pvmw->pte = pte_offset_map(pvmw->pmd, pvmw->address); | 
|  | if (!(pvmw->flags & PVMW_SYNC)) { | 
|  | if (pvmw->flags & PVMW_MIGRATION) { | 
|  | if (!is_swap_pte(*pvmw->pte)) | 
|  | return false; | 
|  | } else { | 
|  | /* | 
|  | * We get here when we are trying to unmap a private | 
|  | * device page from the process address space. Such | 
|  | * page is not CPU accessible and thus is mapped as | 
|  | * a special swap entry, nonetheless it still does | 
|  | * count as a valid regular mapping for the page (and | 
|  | * is accounted as such in page maps count). | 
|  | * | 
|  | * So handle this special case as if it was a normal | 
|  | * page mapping ie lock CPU page table and returns | 
|  | * true. | 
|  | * | 
|  | * For more details on device private memory see HMM | 
|  | * (include/linux/hmm.h or mm/hmm.c). | 
|  | */ | 
|  | if (is_swap_pte(*pvmw->pte)) { | 
|  | swp_entry_t entry; | 
|  |  | 
|  | /* Handle un-addressable ZONE_DEVICE memory */ | 
|  | entry = pte_to_swp_entry(*pvmw->pte); | 
|  | if (!is_device_private_entry(entry)) | 
|  | return false; | 
|  | } else if (!pte_present(*pvmw->pte)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | pvmw->ptl = pte_lockptr(pvmw->vma->vm_mm, pvmw->pmd); | 
|  | spin_lock(pvmw->ptl); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool pfn_in_hpage(struct page *hpage, unsigned long pfn) | 
|  | { | 
|  | unsigned long hpage_pfn = page_to_pfn(hpage); | 
|  |  | 
|  | /* THP can be referenced by any subpage */ | 
|  | return pfn >= hpage_pfn && pfn - hpage_pfn < hpage_nr_pages(hpage); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_pte - check if @pvmw->page is mapped at the @pvmw->pte | 
|  | * | 
|  | * page_vma_mapped_walk() found a place where @pvmw->page is *potentially* | 
|  | * mapped. check_pte() has to validate this. | 
|  | * | 
|  | * @pvmw->pte may point to empty PTE, swap PTE or PTE pointing to arbitrary | 
|  | * page. | 
|  | * | 
|  | * If PVMW_MIGRATION flag is set, returns true if @pvmw->pte contains migration | 
|  | * entry that points to @pvmw->page or any subpage in case of THP. | 
|  | * | 
|  | * If PVMW_MIGRATION flag is not set, returns true if @pvmw->pte points to | 
|  | * @pvmw->page or any subpage in case of THP. | 
|  | * | 
|  | * Otherwise, return false. | 
|  | * | 
|  | */ | 
|  | static bool check_pte(struct page_vma_mapped_walk *pvmw) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | if (pvmw->flags & PVMW_MIGRATION) { | 
|  | swp_entry_t entry; | 
|  | if (!is_swap_pte(*pvmw->pte)) | 
|  | return false; | 
|  | entry = pte_to_swp_entry(*pvmw->pte); | 
|  |  | 
|  | if (!is_migration_entry(entry)) | 
|  | return false; | 
|  |  | 
|  | pfn = migration_entry_to_pfn(entry); | 
|  | } else if (is_swap_pte(*pvmw->pte)) { | 
|  | swp_entry_t entry; | 
|  |  | 
|  | /* Handle un-addressable ZONE_DEVICE memory */ | 
|  | entry = pte_to_swp_entry(*pvmw->pte); | 
|  | if (!is_device_private_entry(entry)) | 
|  | return false; | 
|  |  | 
|  | pfn = device_private_entry_to_pfn(entry); | 
|  | } else { | 
|  | if (!pte_present(*pvmw->pte)) | 
|  | return false; | 
|  |  | 
|  | pfn = pte_pfn(*pvmw->pte); | 
|  | } | 
|  |  | 
|  | return pfn_in_hpage(pvmw->page, pfn); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_vma_mapped_walk - check if @pvmw->page is mapped in @pvmw->vma at | 
|  | * @pvmw->address | 
|  | * @pvmw: pointer to struct page_vma_mapped_walk. page, vma, address and flags | 
|  | * must be set. pmd, pte and ptl must be NULL. | 
|  | * | 
|  | * Returns true if the page is mapped in the vma. @pvmw->pmd and @pvmw->pte point | 
|  | * to relevant page table entries. @pvmw->ptl is locked. @pvmw->address is | 
|  | * adjusted if needed (for PTE-mapped THPs). | 
|  | * | 
|  | * If @pvmw->pmd is set but @pvmw->pte is not, you have found PMD-mapped page | 
|  | * (usually THP). For PTE-mapped THP, you should run page_vma_mapped_walk() in | 
|  | * a loop to find all PTEs that map the THP. | 
|  | * | 
|  | * For HugeTLB pages, @pvmw->pte is set to the relevant page table entry | 
|  | * regardless of which page table level the page is mapped at. @pvmw->pmd is | 
|  | * NULL. | 
|  | * | 
|  | * Retruns false if there are no more page table entries for the page in | 
|  | * the vma. @pvmw->ptl is unlocked and @pvmw->pte is unmapped. | 
|  | * | 
|  | * If you need to stop the walk before page_vma_mapped_walk() returned false, | 
|  | * use page_vma_mapped_walk_done(). It will do the housekeeping. | 
|  | */ | 
|  | bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw) | 
|  | { | 
|  | struct mm_struct *mm = pvmw->vma->vm_mm; | 
|  | struct page *page = pvmw->page; | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t pmde; | 
|  |  | 
|  | /* The only possible pmd mapping has been handled on last iteration */ | 
|  | if (pvmw->pmd && !pvmw->pte) | 
|  | return not_found(pvmw); | 
|  |  | 
|  | if (pvmw->pte) | 
|  | goto next_pte; | 
|  |  | 
|  | if (unlikely(PageHuge(pvmw->page))) { | 
|  | /* when pud is not present, pte will be NULL */ | 
|  | pvmw->pte = huge_pte_offset(mm, pvmw->address, | 
|  | PAGE_SIZE << compound_order(page)); | 
|  | if (!pvmw->pte) | 
|  | return false; | 
|  |  | 
|  | pvmw->ptl = huge_pte_lockptr(page_hstate(page), mm, pvmw->pte); | 
|  | spin_lock(pvmw->ptl); | 
|  | if (!check_pte(pvmw)) | 
|  | return not_found(pvmw); | 
|  | return true; | 
|  | } | 
|  | restart: | 
|  | pgd = pgd_offset(mm, pvmw->address); | 
|  | if (!pgd_present(*pgd)) | 
|  | return false; | 
|  | p4d = p4d_offset(pgd, pvmw->address); | 
|  | if (!p4d_present(*p4d)) | 
|  | return false; | 
|  | pud = pud_offset(p4d, pvmw->address); | 
|  | if (!pud_present(*pud)) | 
|  | return false; | 
|  | pvmw->pmd = pmd_offset(pud, pvmw->address); | 
|  | /* | 
|  | * Make sure the pmd value isn't cached in a register by the | 
|  | * compiler and used as a stale value after we've observed a | 
|  | * subsequent update. | 
|  | */ | 
|  | pmde = READ_ONCE(*pvmw->pmd); | 
|  | if (pmd_trans_huge(pmde) || is_pmd_migration_entry(pmde)) { | 
|  | pvmw->ptl = pmd_lock(mm, pvmw->pmd); | 
|  | if (likely(pmd_trans_huge(*pvmw->pmd))) { | 
|  | if (pvmw->flags & PVMW_MIGRATION) | 
|  | return not_found(pvmw); | 
|  | if (pmd_page(*pvmw->pmd) != page) | 
|  | return not_found(pvmw); | 
|  | return true; | 
|  | } else if (!pmd_present(*pvmw->pmd)) { | 
|  | if (thp_migration_supported()) { | 
|  | if (!(pvmw->flags & PVMW_MIGRATION)) | 
|  | return not_found(pvmw); | 
|  | if (is_migration_entry(pmd_to_swp_entry(*pvmw->pmd))) { | 
|  | swp_entry_t entry = pmd_to_swp_entry(*pvmw->pmd); | 
|  |  | 
|  | if (migration_entry_to_page(entry) != page) | 
|  | return not_found(pvmw); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return not_found(pvmw); | 
|  | } else { | 
|  | /* THP pmd was split under us: handle on pte level */ | 
|  | spin_unlock(pvmw->ptl); | 
|  | pvmw->ptl = NULL; | 
|  | } | 
|  | } else if (!pmd_present(pmde)) { | 
|  | return false; | 
|  | } | 
|  | if (!map_pte(pvmw)) | 
|  | goto next_pte; | 
|  | while (1) { | 
|  | if (check_pte(pvmw)) | 
|  | return true; | 
|  | next_pte: | 
|  | /* Seek to next pte only makes sense for THP */ | 
|  | if (!PageTransHuge(pvmw->page) || PageHuge(pvmw->page)) | 
|  | return not_found(pvmw); | 
|  | do { | 
|  | pvmw->address += PAGE_SIZE; | 
|  | if (pvmw->address >= pvmw->vma->vm_end || | 
|  | pvmw->address >= | 
|  | __vma_address(pvmw->page, pvmw->vma) + | 
|  | hpage_nr_pages(pvmw->page) * PAGE_SIZE) | 
|  | return not_found(pvmw); | 
|  | /* Did we cross page table boundary? */ | 
|  | if (pvmw->address % PMD_SIZE == 0) { | 
|  | pte_unmap(pvmw->pte); | 
|  | if (pvmw->ptl) { | 
|  | spin_unlock(pvmw->ptl); | 
|  | pvmw->ptl = NULL; | 
|  | } | 
|  | goto restart; | 
|  | } else { | 
|  | pvmw->pte++; | 
|  | } | 
|  | } while (pte_none(*pvmw->pte)); | 
|  |  | 
|  | if (!pvmw->ptl) { | 
|  | pvmw->ptl = pte_lockptr(mm, pvmw->pmd); | 
|  | spin_lock(pvmw->ptl); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_mapped_in_vma - check whether a page is really mapped in a VMA | 
|  | * @page: the page to test | 
|  | * @vma: the VMA to test | 
|  | * | 
|  | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | 
|  | * if the page is not mapped into the page tables of this VMA.  Only | 
|  | * valid for normal file or anonymous VMAs. | 
|  | */ | 
|  | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  | struct page_vma_mapped_walk pvmw = { | 
|  | .page = page, | 
|  | .vma = vma, | 
|  | .flags = PVMW_SYNC, | 
|  | }; | 
|  | unsigned long start, end; | 
|  |  | 
|  | start = __vma_address(page, vma); | 
|  | end = start + PAGE_SIZE * (hpage_nr_pages(page) - 1); | 
|  |  | 
|  | if (unlikely(end < vma->vm_start || start >= vma->vm_end)) | 
|  | return 0; | 
|  | pvmw.address = max(start, vma->vm_start); | 
|  | if (!page_vma_mapped_walk(&pvmw)) | 
|  | return 0; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | return 1; | 
|  | } |