|  | /* | 
|  | *	linux/mm/filemap.c | 
|  | * | 
|  | * Copyright (C) 1994-1999  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file handles the generic file mmap semantics used by | 
|  | * most "normal" filesystems (but you don't /have/ to use this: | 
|  | * the NFS filesystem used to do this differently, for example) | 
|  | */ | 
|  | #include <linux/export.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/cleancache.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/rmap.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/filemap.h> | 
|  |  | 
|  | /* | 
|  | * FIXME: remove all knowledge of the buffer layer from the core VM | 
|  | */ | 
|  | #include <linux/buffer_head.h> /* for try_to_free_buffers */ | 
|  |  | 
|  | #include <asm/mman.h> | 
|  |  | 
|  | /* | 
|  | * Shared mappings implemented 30.11.1994. It's not fully working yet, | 
|  | * though. | 
|  | * | 
|  | * Shared mappings now work. 15.8.1995  Bruno. | 
|  | * | 
|  | * finished 'unifying' the page and buffer cache and SMP-threaded the | 
|  | * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lock ordering: | 
|  | * | 
|  | *  ->i_mmap_rwsem		(truncate_pagecache) | 
|  | *    ->private_lock		(__free_pte->__set_page_dirty_buffers) | 
|  | *      ->swap_lock		(exclusive_swap_page, others) | 
|  | *        ->i_pages lock | 
|  | * | 
|  | *  ->i_mutex | 
|  | *    ->i_mmap_rwsem		(truncate->unmap_mapping_range) | 
|  | * | 
|  | *  ->mmap_sem | 
|  | *    ->i_mmap_rwsem | 
|  | *      ->page_table_lock or pte_lock	(various, mainly in memory.c) | 
|  | *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock) | 
|  | * | 
|  | *  ->mmap_sem | 
|  | *    ->lock_page		(access_process_vm) | 
|  | * | 
|  | *  ->i_mutex			(generic_perform_write) | 
|  | *    ->mmap_sem		(fault_in_pages_readable->do_page_fault) | 
|  | * | 
|  | *  bdi->wb.list_lock | 
|  | *    sb_lock			(fs/fs-writeback.c) | 
|  | *    ->i_pages lock		(__sync_single_inode) | 
|  | * | 
|  | *  ->i_mmap_rwsem | 
|  | *    ->anon_vma.lock		(vma_adjust) | 
|  | * | 
|  | *  ->anon_vma.lock | 
|  | *    ->page_table_lock or pte_lock	(anon_vma_prepare and various) | 
|  | * | 
|  | *  ->page_table_lock or pte_lock | 
|  | *    ->swap_lock		(try_to_unmap_one) | 
|  | *    ->private_lock		(try_to_unmap_one) | 
|  | *    ->i_pages lock		(try_to_unmap_one) | 
|  | *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed) | 
|  | *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page) | 
|  | *    ->private_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->i_pages lock		(page_remove_rmap->set_page_dirty) | 
|  | *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->inode->i_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg) | 
|  | *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty) | 
|  | *    ->inode->i_lock		(zap_pte_range->set_page_dirty) | 
|  | *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers) | 
|  | * | 
|  | * ->i_mmap_rwsem | 
|  | *   ->tasklist_lock            (memory_failure, collect_procs_ao) | 
|  | */ | 
|  |  | 
|  | static int page_cache_tree_insert(struct address_space *mapping, | 
|  | struct page *page, void **shadowp) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | void **slot; | 
|  | int error; | 
|  |  | 
|  | error = __radix_tree_create(&mapping->i_pages, page->index, 0, | 
|  | &node, &slot); | 
|  | if (error) | 
|  | return error; | 
|  | if (*slot) { | 
|  | void *p; | 
|  |  | 
|  | p = radix_tree_deref_slot_protected(slot, | 
|  | &mapping->i_pages.xa_lock); | 
|  | if (!radix_tree_exceptional_entry(p)) | 
|  | return -EEXIST; | 
|  |  | 
|  | mapping->nrexceptional--; | 
|  | if (shadowp) | 
|  | *shadowp = p; | 
|  | } | 
|  | __radix_tree_replace(&mapping->i_pages, node, slot, page, | 
|  | workingset_lookup_update(mapping)); | 
|  | mapping->nrpages++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void page_cache_tree_delete(struct address_space *mapping, | 
|  | struct page *page, void *shadow) | 
|  | { | 
|  | int i, nr; | 
|  |  | 
|  | /* hugetlb pages are represented by one entry in the radix tree */ | 
|  | nr = PageHuge(page) ? 1 : hpage_nr_pages(page); | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | VM_BUG_ON_PAGE(nr != 1 && shadow, page); | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | struct radix_tree_node *node; | 
|  | void **slot; | 
|  |  | 
|  | __radix_tree_lookup(&mapping->i_pages, page->index + i, | 
|  | &node, &slot); | 
|  |  | 
|  | VM_BUG_ON_PAGE(!node && nr != 1, page); | 
|  |  | 
|  | radix_tree_clear_tags(&mapping->i_pages, node, slot); | 
|  | __radix_tree_replace(&mapping->i_pages, node, slot, shadow, | 
|  | workingset_lookup_update(mapping)); | 
|  | } | 
|  |  | 
|  | page->mapping = NULL; | 
|  | /* Leave page->index set: truncation lookup relies upon it */ | 
|  |  | 
|  | if (shadow) { | 
|  | mapping->nrexceptional += nr; | 
|  | /* | 
|  | * Make sure the nrexceptional update is committed before | 
|  | * the nrpages update so that final truncate racing | 
|  | * with reclaim does not see both counters 0 at the | 
|  | * same time and miss a shadow entry. | 
|  | */ | 
|  | smp_wmb(); | 
|  | } | 
|  | mapping->nrpages -= nr; | 
|  | } | 
|  |  | 
|  | static void unaccount_page_cache_page(struct address_space *mapping, | 
|  | struct page *page) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | /* | 
|  | * if we're uptodate, flush out into the cleancache, otherwise | 
|  | * invalidate any existing cleancache entries.  We can't leave | 
|  | * stale data around in the cleancache once our page is gone | 
|  | */ | 
|  | if (PageUptodate(page) && PageMappedToDisk(page)) | 
|  | cleancache_put_page(page); | 
|  | else | 
|  | cleancache_invalidate_page(mapping, page); | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | VM_BUG_ON_PAGE(page_mapped(page), page); | 
|  | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | 
|  | int mapcount; | 
|  |  | 
|  | pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n", | 
|  | current->comm, page_to_pfn(page)); | 
|  | dump_page(page, "still mapped when deleted"); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  |  | 
|  | mapcount = page_mapcount(page); | 
|  | if (mapping_exiting(mapping) && | 
|  | page_count(page) >= mapcount + 2) { | 
|  | /* | 
|  | * All vmas have already been torn down, so it's | 
|  | * a good bet that actually the page is unmapped, | 
|  | * and we'd prefer not to leak it: if we're wrong, | 
|  | * some other bad page check should catch it later. | 
|  | */ | 
|  | page_mapcount_reset(page); | 
|  | page_ref_sub(page, mapcount); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* hugetlb pages do not participate in page cache accounting. */ | 
|  | if (PageHuge(page)) | 
|  | return; | 
|  |  | 
|  | nr = hpage_nr_pages(page); | 
|  |  | 
|  | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | 
|  | if (PageSwapBacked(page)) { | 
|  | __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); | 
|  | if (PageTransHuge(page)) | 
|  | __dec_node_page_state(page, NR_SHMEM_THPS); | 
|  | } else { | 
|  | VM_BUG_ON_PAGE(PageTransHuge(page), page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point page must be either written or cleaned by | 
|  | * truncate.  Dirty page here signals a bug and loss of | 
|  | * unwritten data. | 
|  | * | 
|  | * This fixes dirty accounting after removing the page entirely | 
|  | * but leaves PageDirty set: it has no effect for truncated | 
|  | * page and anyway will be cleared before returning page into | 
|  | * buddy allocator. | 
|  | */ | 
|  | if (WARN_ON_ONCE(PageDirty(page))) | 
|  | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete a page from the page cache and free it. Caller has to make | 
|  | * sure the page is locked and that nobody else uses it - or that usage | 
|  | * is safe.  The caller must hold the i_pages lock. | 
|  | */ | 
|  | void __delete_from_page_cache(struct page *page, void *shadow) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  |  | 
|  | trace_mm_filemap_delete_from_page_cache(page); | 
|  |  | 
|  | unaccount_page_cache_page(mapping, page); | 
|  | page_cache_tree_delete(mapping, page, shadow); | 
|  | } | 
|  |  | 
|  | static void page_cache_free_page(struct address_space *mapping, | 
|  | struct page *page) | 
|  | { | 
|  | void (*freepage)(struct page *); | 
|  |  | 
|  | freepage = mapping->a_ops->freepage; | 
|  | if (freepage) | 
|  | freepage(page); | 
|  |  | 
|  | if (PageTransHuge(page) && !PageHuge(page)) { | 
|  | page_ref_sub(page, HPAGE_PMD_NR); | 
|  | VM_BUG_ON_PAGE(page_count(page) <= 0, page); | 
|  | } else { | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * delete_from_page_cache - delete page from page cache | 
|  | * @page: the page which the kernel is trying to remove from page cache | 
|  | * | 
|  | * This must be called only on pages that have been verified to be in the page | 
|  | * cache and locked.  It will never put the page into the free list, the caller | 
|  | * has a reference on the page. | 
|  | */ | 
|  | void delete_from_page_cache(struct page *page) | 
|  | { | 
|  | struct address_space *mapping = page_mapping(page); | 
|  | unsigned long flags; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | __delete_from_page_cache(page, NULL); | 
|  | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  |  | 
|  | page_cache_free_page(mapping, page); | 
|  | } | 
|  | EXPORT_SYMBOL(delete_from_page_cache); | 
|  |  | 
|  | /* | 
|  | * page_cache_tree_delete_batch - delete several pages from page cache | 
|  | * @mapping: the mapping to which pages belong | 
|  | * @pvec: pagevec with pages to delete | 
|  | * | 
|  | * The function walks over mapping->i_pages and removes pages passed in @pvec | 
|  | * from the mapping. The function expects @pvec to be sorted by page index. | 
|  | * It tolerates holes in @pvec (mapping entries at those indices are not | 
|  | * modified). The function expects only THP head pages to be present in the | 
|  | * @pvec and takes care to delete all corresponding tail pages from the | 
|  | * mapping as well. | 
|  | * | 
|  | * The function expects the i_pages lock to be held. | 
|  | */ | 
|  | static void | 
|  | page_cache_tree_delete_batch(struct address_space *mapping, | 
|  | struct pagevec *pvec) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | int total_pages = 0; | 
|  | int i = 0, tail_pages = 0; | 
|  | struct page *page; | 
|  | pgoff_t start; | 
|  |  | 
|  | start = pvec->pages[0]->index; | 
|  | radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { | 
|  | if (i >= pagevec_count(pvec) && !tail_pages) | 
|  | break; | 
|  | page = radix_tree_deref_slot_protected(slot, | 
|  | &mapping->i_pages.xa_lock); | 
|  | if (radix_tree_exceptional_entry(page)) | 
|  | continue; | 
|  | if (!tail_pages) { | 
|  | /* | 
|  | * Some page got inserted in our range? Skip it. We | 
|  | * have our pages locked so they are protected from | 
|  | * being removed. | 
|  | */ | 
|  | if (page != pvec->pages[i]) | 
|  | continue; | 
|  | WARN_ON_ONCE(!PageLocked(page)); | 
|  | if (PageTransHuge(page) && !PageHuge(page)) | 
|  | tail_pages = HPAGE_PMD_NR - 1; | 
|  | page->mapping = NULL; | 
|  | /* | 
|  | * Leave page->index set: truncation lookup relies | 
|  | * upon it | 
|  | */ | 
|  | i++; | 
|  | } else { | 
|  | tail_pages--; | 
|  | } | 
|  | radix_tree_clear_tags(&mapping->i_pages, iter.node, slot); | 
|  | __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL, | 
|  | workingset_lookup_update(mapping)); | 
|  | total_pages++; | 
|  | } | 
|  | mapping->nrpages -= total_pages; | 
|  | } | 
|  |  | 
|  | void delete_from_page_cache_batch(struct address_space *mapping, | 
|  | struct pagevec *pvec) | 
|  | { | 
|  | int i; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!pagevec_count(pvec)) | 
|  | return; | 
|  |  | 
|  | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | for (i = 0; i < pagevec_count(pvec); i++) { | 
|  | trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); | 
|  |  | 
|  | unaccount_page_cache_page(mapping, pvec->pages[i]); | 
|  | } | 
|  | page_cache_tree_delete_batch(mapping, pvec); | 
|  | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  |  | 
|  | for (i = 0; i < pagevec_count(pvec); i++) | 
|  | page_cache_free_page(mapping, pvec->pages[i]); | 
|  | } | 
|  |  | 
|  | int filemap_check_errors(struct address_space *mapping) | 
|  | { | 
|  | int ret = 0; | 
|  | /* Check for outstanding write errors */ | 
|  | if (test_bit(AS_ENOSPC, &mapping->flags) && | 
|  | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | 
|  | ret = -ENOSPC; | 
|  | if (test_bit(AS_EIO, &mapping->flags) && | 
|  | test_and_clear_bit(AS_EIO, &mapping->flags)) | 
|  | ret = -EIO; | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_check_errors); | 
|  |  | 
|  | static int filemap_check_and_keep_errors(struct address_space *mapping) | 
|  | { | 
|  | /* Check for outstanding write errors */ | 
|  | if (test_bit(AS_EIO, &mapping->flags)) | 
|  | return -EIO; | 
|  | if (test_bit(AS_ENOSPC, &mapping->flags)) | 
|  | return -ENOSPC; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range | 
|  | * @mapping:	address space structure to write | 
|  | * @start:	offset in bytes where the range starts | 
|  | * @end:	offset in bytes where the range ends (inclusive) | 
|  | * @sync_mode:	enable synchronous operation | 
|  | * | 
|  | * Start writeback against all of a mapping's dirty pages that lie | 
|  | * within the byte offsets <start, end> inclusive. | 
|  | * | 
|  | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | 
|  | * opposed to a regular memory cleansing writeback.  The difference between | 
|  | * these two operations is that if a dirty page/buffer is encountered, it must | 
|  | * be waited upon, and not just skipped over. | 
|  | */ | 
|  | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 
|  | loff_t end, int sync_mode) | 
|  | { | 
|  | int ret; | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = sync_mode, | 
|  | .nr_to_write = LONG_MAX, | 
|  | .range_start = start, | 
|  | .range_end = end, | 
|  | }; | 
|  |  | 
|  | if (!mapping_cap_writeback_dirty(mapping)) | 
|  | return 0; | 
|  |  | 
|  | wbc_attach_fdatawrite_inode(&wbc, mapping->host); | 
|  | ret = do_writepages(mapping, &wbc); | 
|  | wbc_detach_inode(&wbc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int __filemap_fdatawrite(struct address_space *mapping, | 
|  | int sync_mode) | 
|  | { | 
|  | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); | 
|  | } | 
|  |  | 
|  | int filemap_fdatawrite(struct address_space *mapping) | 
|  | { | 
|  | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawrite); | 
|  |  | 
|  | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 
|  | loff_t end) | 
|  | { | 
|  | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawrite_range); | 
|  |  | 
|  | /** | 
|  | * filemap_flush - mostly a non-blocking flush | 
|  | * @mapping:	target address_space | 
|  | * | 
|  | * This is a mostly non-blocking flush.  Not suitable for data-integrity | 
|  | * purposes - I/O may not be started against all dirty pages. | 
|  | */ | 
|  | int filemap_flush(struct address_space *mapping) | 
|  | { | 
|  | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_flush); | 
|  |  | 
|  | /** | 
|  | * filemap_range_has_page - check if a page exists in range. | 
|  | * @mapping:           address space within which to check | 
|  | * @start_byte:        offset in bytes where the range starts | 
|  | * @end_byte:          offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Find at least one page in the range supplied, usually used to check if | 
|  | * direct writing in this range will trigger a writeback. | 
|  | */ | 
|  | bool filemap_range_has_page(struct address_space *mapping, | 
|  | loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | pgoff_t index = start_byte >> PAGE_SHIFT; | 
|  | pgoff_t end = end_byte >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  |  | 
|  | if (end_byte < start_byte) | 
|  | return false; | 
|  |  | 
|  | if (mapping->nrpages == 0) | 
|  | return false; | 
|  |  | 
|  | if (!find_get_pages_range(mapping, &index, end, 1, &page)) | 
|  | return false; | 
|  | put_page(page); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_range_has_page); | 
|  |  | 
|  | static void __filemap_fdatawait_range(struct address_space *mapping, | 
|  | loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | pgoff_t index = start_byte >> PAGE_SHIFT; | 
|  | pgoff_t end = end_byte >> PAGE_SHIFT; | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  |  | 
|  | if (end_byte < start_byte) | 
|  | return; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | while (index <= end) { | 
|  | unsigned i; | 
|  |  | 
|  | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, | 
|  | end, PAGECACHE_TAG_WRITEBACK); | 
|  | if (!nr_pages) | 
|  | break; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | wait_on_page_writeback(page); | 
|  | ClearPageError(page); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_fdatawait_range - wait for writeback to complete | 
|  | * @mapping:		address space structure to wait for | 
|  | * @start_byte:		offset in bytes where the range starts | 
|  | * @end_byte:		offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Walk the list of under-writeback pages of the given address space | 
|  | * in the given range and wait for all of them.  Check error status of | 
|  | * the address space and return it. | 
|  | * | 
|  | * Since the error status of the address space is cleared by this function, | 
|  | * callers are responsible for checking the return value and handling and/or | 
|  | * reporting the error. | 
|  | */ | 
|  | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | 
|  | loff_t end_byte) | 
|  | { | 
|  | __filemap_fdatawait_range(mapping, start_byte, end_byte); | 
|  | return filemap_check_errors(mapping); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawait_range); | 
|  |  | 
|  | /** | 
|  | * file_fdatawait_range - wait for writeback to complete | 
|  | * @file:		file pointing to address space structure to wait for | 
|  | * @start_byte:		offset in bytes where the range starts | 
|  | * @end_byte:		offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Walk the list of under-writeback pages of the address space that file | 
|  | * refers to, in the given range and wait for all of them.  Check error | 
|  | * status of the address space vs. the file->f_wb_err cursor and return it. | 
|  | * | 
|  | * Since the error status of the file is advanced by this function, | 
|  | * callers are responsible for checking the return value and handling and/or | 
|  | * reporting the error. | 
|  | */ | 
|  | int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | __filemap_fdatawait_range(mapping, start_byte, end_byte); | 
|  | return file_check_and_advance_wb_err(file); | 
|  | } | 
|  | EXPORT_SYMBOL(file_fdatawait_range); | 
|  |  | 
|  | /** | 
|  | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | 
|  | * @mapping: address space structure to wait for | 
|  | * | 
|  | * Walk the list of under-writeback pages of the given address space | 
|  | * and wait for all of them.  Unlike filemap_fdatawait(), this function | 
|  | * does not clear error status of the address space. | 
|  | * | 
|  | * Use this function if callers don't handle errors themselves.  Expected | 
|  | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | 
|  | * fsfreeze(8) | 
|  | */ | 
|  | int filemap_fdatawait_keep_errors(struct address_space *mapping) | 
|  | { | 
|  | __filemap_fdatawait_range(mapping, 0, LLONG_MAX); | 
|  | return filemap_check_and_keep_errors(mapping); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawait_keep_errors); | 
|  |  | 
|  | static bool mapping_needs_writeback(struct address_space *mapping) | 
|  | { | 
|  | return (!dax_mapping(mapping) && mapping->nrpages) || | 
|  | (dax_mapping(mapping) && mapping->nrexceptional); | 
|  | } | 
|  |  | 
|  | int filemap_write_and_wait(struct address_space *mapping) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (mapping_needs_writeback(mapping)) { | 
|  | err = filemap_fdatawrite(mapping); | 
|  | /* | 
|  | * Even if the above returned error, the pages may be | 
|  | * written partially (e.g. -ENOSPC), so we wait for it. | 
|  | * But the -EIO is special case, it may indicate the worst | 
|  | * thing (e.g. bug) happened, so we avoid waiting for it. | 
|  | */ | 
|  | if (err != -EIO) { | 
|  | int err2 = filemap_fdatawait(mapping); | 
|  | if (!err) | 
|  | err = err2; | 
|  | } else { | 
|  | /* Clear any previously stored errors */ | 
|  | filemap_check_errors(mapping); | 
|  | } | 
|  | } else { | 
|  | err = filemap_check_errors(mapping); | 
|  | } | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_write_and_wait); | 
|  |  | 
|  | /** | 
|  | * filemap_write_and_wait_range - write out & wait on a file range | 
|  | * @mapping:	the address_space for the pages | 
|  | * @lstart:	offset in bytes where the range starts | 
|  | * @lend:	offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Write out and wait upon file offsets lstart->lend, inclusive. | 
|  | * | 
|  | * Note that @lend is inclusive (describes the last byte to be written) so | 
|  | * that this function can be used to write to the very end-of-file (end = -1). | 
|  | */ | 
|  | int filemap_write_and_wait_range(struct address_space *mapping, | 
|  | loff_t lstart, loff_t lend) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (mapping_needs_writeback(mapping)) { | 
|  | err = __filemap_fdatawrite_range(mapping, lstart, lend, | 
|  | WB_SYNC_ALL); | 
|  | /* See comment of filemap_write_and_wait() */ | 
|  | if (err != -EIO) { | 
|  | int err2 = filemap_fdatawait_range(mapping, | 
|  | lstart, lend); | 
|  | if (!err) | 
|  | err = err2; | 
|  | } else { | 
|  | /* Clear any previously stored errors */ | 
|  | filemap_check_errors(mapping); | 
|  | } | 
|  | } else { | 
|  | err = filemap_check_errors(mapping); | 
|  | } | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_write_and_wait_range); | 
|  |  | 
|  | void __filemap_set_wb_err(struct address_space *mapping, int err) | 
|  | { | 
|  | errseq_t eseq = errseq_set(&mapping->wb_err, err); | 
|  |  | 
|  | trace_filemap_set_wb_err(mapping, eseq); | 
|  | } | 
|  | EXPORT_SYMBOL(__filemap_set_wb_err); | 
|  |  | 
|  | /** | 
|  | * file_check_and_advance_wb_err - report wb error (if any) that was previously | 
|  | * 				   and advance wb_err to current one | 
|  | * @file: struct file on which the error is being reported | 
|  | * | 
|  | * When userland calls fsync (or something like nfsd does the equivalent), we | 
|  | * want to report any writeback errors that occurred since the last fsync (or | 
|  | * since the file was opened if there haven't been any). | 
|  | * | 
|  | * Grab the wb_err from the mapping. If it matches what we have in the file, | 
|  | * then just quickly return 0. The file is all caught up. | 
|  | * | 
|  | * If it doesn't match, then take the mapping value, set the "seen" flag in | 
|  | * it and try to swap it into place. If it works, or another task beat us | 
|  | * to it with the new value, then update the f_wb_err and return the error | 
|  | * portion. The error at this point must be reported via proper channels | 
|  | * (a'la fsync, or NFS COMMIT operation, etc.). | 
|  | * | 
|  | * While we handle mapping->wb_err with atomic operations, the f_wb_err | 
|  | * value is protected by the f_lock since we must ensure that it reflects | 
|  | * the latest value swapped in for this file descriptor. | 
|  | */ | 
|  | int file_check_and_advance_wb_err(struct file *file) | 
|  | { | 
|  | int err = 0; | 
|  | errseq_t old = READ_ONCE(file->f_wb_err); | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | /* Locklessly handle the common case where nothing has changed */ | 
|  | if (errseq_check(&mapping->wb_err, old)) { | 
|  | /* Something changed, must use slow path */ | 
|  | spin_lock(&file->f_lock); | 
|  | old = file->f_wb_err; | 
|  | err = errseq_check_and_advance(&mapping->wb_err, | 
|  | &file->f_wb_err); | 
|  | trace_file_check_and_advance_wb_err(file, old); | 
|  | spin_unlock(&file->f_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're mostly using this function as a drop in replacement for | 
|  | * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect | 
|  | * that the legacy code would have had on these flags. | 
|  | */ | 
|  | clear_bit(AS_EIO, &mapping->flags); | 
|  | clear_bit(AS_ENOSPC, &mapping->flags); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(file_check_and_advance_wb_err); | 
|  |  | 
|  | /** | 
|  | * file_write_and_wait_range - write out & wait on a file range | 
|  | * @file:	file pointing to address_space with pages | 
|  | * @lstart:	offset in bytes where the range starts | 
|  | * @lend:	offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Write out and wait upon file offsets lstart->lend, inclusive. | 
|  | * | 
|  | * Note that @lend is inclusive (describes the last byte to be written) so | 
|  | * that this function can be used to write to the very end-of-file (end = -1). | 
|  | * | 
|  | * After writing out and waiting on the data, we check and advance the | 
|  | * f_wb_err cursor to the latest value, and return any errors detected there. | 
|  | */ | 
|  | int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) | 
|  | { | 
|  | int err = 0, err2; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | if (mapping_needs_writeback(mapping)) { | 
|  | err = __filemap_fdatawrite_range(mapping, lstart, lend, | 
|  | WB_SYNC_ALL); | 
|  | /* See comment of filemap_write_and_wait() */ | 
|  | if (err != -EIO) | 
|  | __filemap_fdatawait_range(mapping, lstart, lend); | 
|  | } | 
|  | err2 = file_check_and_advance_wb_err(file); | 
|  | if (!err) | 
|  | err = err2; | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(file_write_and_wait_range); | 
|  |  | 
|  | /** | 
|  | * replace_page_cache_page - replace a pagecache page with a new one | 
|  | * @old:	page to be replaced | 
|  | * @new:	page to replace with | 
|  | * @gfp_mask:	allocation mode | 
|  | * | 
|  | * This function replaces a page in the pagecache with a new one.  On | 
|  | * success it acquires the pagecache reference for the new page and | 
|  | * drops it for the old page.  Both the old and new pages must be | 
|  | * locked.  This function does not add the new page to the LRU, the | 
|  | * caller must do that. | 
|  | * | 
|  | * The remove + add is atomic.  The only way this function can fail is | 
|  | * memory allocation failure. | 
|  | */ | 
|  | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(old), old); | 
|  | VM_BUG_ON_PAGE(!PageLocked(new), new); | 
|  | VM_BUG_ON_PAGE(new->mapping, new); | 
|  |  | 
|  | error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK); | 
|  | if (!error) { | 
|  | struct address_space *mapping = old->mapping; | 
|  | void (*freepage)(struct page *); | 
|  | unsigned long flags; | 
|  |  | 
|  | pgoff_t offset = old->index; | 
|  | freepage = mapping->a_ops->freepage; | 
|  |  | 
|  | get_page(new); | 
|  | new->mapping = mapping; | 
|  | new->index = offset; | 
|  |  | 
|  | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | __delete_from_page_cache(old, NULL); | 
|  | error = page_cache_tree_insert(mapping, new, NULL); | 
|  | BUG_ON(error); | 
|  |  | 
|  | /* | 
|  | * hugetlb pages do not participate in page cache accounting. | 
|  | */ | 
|  | if (!PageHuge(new)) | 
|  | __inc_node_page_state(new, NR_FILE_PAGES); | 
|  | if (PageSwapBacked(new)) | 
|  | __inc_node_page_state(new, NR_SHMEM); | 
|  | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | mem_cgroup_migrate(old, new); | 
|  | radix_tree_preload_end(); | 
|  | if (freepage) | 
|  | freepage(old); | 
|  | put_page(old); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(replace_page_cache_page); | 
|  |  | 
|  | static int __add_to_page_cache_locked(struct page *page, | 
|  | struct address_space *mapping, | 
|  | pgoff_t offset, gfp_t gfp_mask, | 
|  | void **shadowp) | 
|  | { | 
|  | int huge = PageHuge(page); | 
|  | struct mem_cgroup *memcg; | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | 
|  |  | 
|  | if (!huge) { | 
|  | error = mem_cgroup_try_charge(page, current->mm, | 
|  | gfp_mask, &memcg, false); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK); | 
|  | if (error) { | 
|  | if (!huge) | 
|  | mem_cgroup_cancel_charge(page, memcg, false); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | get_page(page); | 
|  | page->mapping = mapping; | 
|  | page->index = offset; | 
|  |  | 
|  | xa_lock_irq(&mapping->i_pages); | 
|  | error = page_cache_tree_insert(mapping, page, shadowp); | 
|  | radix_tree_preload_end(); | 
|  | if (unlikely(error)) | 
|  | goto err_insert; | 
|  |  | 
|  | /* hugetlb pages do not participate in page cache accounting. */ | 
|  | if (!huge) | 
|  | __inc_node_page_state(page, NR_FILE_PAGES); | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | if (!huge) | 
|  | mem_cgroup_commit_charge(page, memcg, false, false); | 
|  | trace_mm_filemap_add_to_page_cache(page); | 
|  | return 0; | 
|  | err_insert: | 
|  | page->mapping = NULL; | 
|  | /* Leave page->index set: truncation relies upon it */ | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | if (!huge) | 
|  | mem_cgroup_cancel_charge(page, memcg, false); | 
|  | put_page(page); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * add_to_page_cache_locked - add a locked page to the pagecache | 
|  | * @page:	page to add | 
|  | * @mapping:	the page's address_space | 
|  | * @offset:	page index | 
|  | * @gfp_mask:	page allocation mode | 
|  | * | 
|  | * This function is used to add a page to the pagecache. It must be locked. | 
|  | * This function does not add the page to the LRU.  The caller must do that. | 
|  | */ | 
|  | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | 
|  | pgoff_t offset, gfp_t gfp_mask) | 
|  | { | 
|  | return __add_to_page_cache_locked(page, mapping, offset, | 
|  | gfp_mask, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(add_to_page_cache_locked); | 
|  |  | 
|  | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | 
|  | pgoff_t offset, gfp_t gfp_mask) | 
|  | { | 
|  | void *shadow = NULL; | 
|  | int ret; | 
|  |  | 
|  | __SetPageLocked(page); | 
|  | ret = __add_to_page_cache_locked(page, mapping, offset, | 
|  | gfp_mask, &shadow); | 
|  | if (unlikely(ret)) | 
|  | __ClearPageLocked(page); | 
|  | else { | 
|  | /* | 
|  | * The page might have been evicted from cache only | 
|  | * recently, in which case it should be activated like | 
|  | * any other repeatedly accessed page. | 
|  | * The exception is pages getting rewritten; evicting other | 
|  | * data from the working set, only to cache data that will | 
|  | * get overwritten with something else, is a waste of memory. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_WRITE) && | 
|  | shadow && workingset_refault(shadow)) { | 
|  | SetPageActive(page); | 
|  | workingset_activation(page); | 
|  | } else | 
|  | ClearPageActive(page); | 
|  | lru_cache_add(page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | struct page *__page_cache_alloc(gfp_t gfp) | 
|  | { | 
|  | int n; | 
|  | struct page *page; | 
|  |  | 
|  | if (cpuset_do_page_mem_spread()) { | 
|  | unsigned int cpuset_mems_cookie; | 
|  | do { | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | n = cpuset_mem_spread_node(); | 
|  | page = __alloc_pages_node(n, gfp, 0); | 
|  | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); | 
|  |  | 
|  | return page; | 
|  | } | 
|  | return alloc_pages(gfp, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(__page_cache_alloc); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * In order to wait for pages to become available there must be | 
|  | * waitqueues associated with pages. By using a hash table of | 
|  | * waitqueues where the bucket discipline is to maintain all | 
|  | * waiters on the same queue and wake all when any of the pages | 
|  | * become available, and for the woken contexts to check to be | 
|  | * sure the appropriate page became available, this saves space | 
|  | * at a cost of "thundering herd" phenomena during rare hash | 
|  | * collisions. | 
|  | */ | 
|  | #define PAGE_WAIT_TABLE_BITS 8 | 
|  | #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) | 
|  | static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; | 
|  |  | 
|  | static wait_queue_head_t *page_waitqueue(struct page *page) | 
|  | { | 
|  | return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; | 
|  | } | 
|  |  | 
|  | void __init pagecache_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) | 
|  | init_waitqueue_head(&page_wait_table[i]); | 
|  |  | 
|  | page_writeback_init(); | 
|  | } | 
|  |  | 
|  | /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ | 
|  | struct wait_page_key { | 
|  | struct page *page; | 
|  | int bit_nr; | 
|  | int page_match; | 
|  | }; | 
|  |  | 
|  | struct wait_page_queue { | 
|  | struct page *page; | 
|  | int bit_nr; | 
|  | wait_queue_entry_t wait; | 
|  | }; | 
|  |  | 
|  | static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) | 
|  | { | 
|  | struct wait_page_key *key = arg; | 
|  | struct wait_page_queue *wait_page | 
|  | = container_of(wait, struct wait_page_queue, wait); | 
|  |  | 
|  | if (wait_page->page != key->page) | 
|  | return 0; | 
|  | key->page_match = 1; | 
|  |  | 
|  | if (wait_page->bit_nr != key->bit_nr) | 
|  | return 0; | 
|  |  | 
|  | /* Stop walking if it's locked */ | 
|  | if (test_bit(key->bit_nr, &key->page->flags)) | 
|  | return -1; | 
|  |  | 
|  | return autoremove_wake_function(wait, mode, sync, key); | 
|  | } | 
|  |  | 
|  | static void wake_up_page_bit(struct page *page, int bit_nr) | 
|  | { | 
|  | wait_queue_head_t *q = page_waitqueue(page); | 
|  | struct wait_page_key key; | 
|  | unsigned long flags; | 
|  | wait_queue_entry_t bookmark; | 
|  |  | 
|  | key.page = page; | 
|  | key.bit_nr = bit_nr; | 
|  | key.page_match = 0; | 
|  |  | 
|  | bookmark.flags = 0; | 
|  | bookmark.private = NULL; | 
|  | bookmark.func = NULL; | 
|  | INIT_LIST_HEAD(&bookmark.entry); | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); | 
|  |  | 
|  | while (bookmark.flags & WQ_FLAG_BOOKMARK) { | 
|  | /* | 
|  | * Take a breather from holding the lock, | 
|  | * allow pages that finish wake up asynchronously | 
|  | * to acquire the lock and remove themselves | 
|  | * from wait queue | 
|  | */ | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | cpu_relax(); | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is possible for other pages to have collided on the waitqueue | 
|  | * hash, so in that case check for a page match. That prevents a long- | 
|  | * term waiter | 
|  | * | 
|  | * It is still possible to miss a case here, when we woke page waiters | 
|  | * and removed them from the waitqueue, but there are still other | 
|  | * page waiters. | 
|  | */ | 
|  | if (!waitqueue_active(q) || !key.page_match) { | 
|  | ClearPageWaiters(page); | 
|  | /* | 
|  | * It's possible to miss clearing Waiters here, when we woke | 
|  | * our page waiters, but the hashed waitqueue has waiters for | 
|  | * other pages on it. | 
|  | * | 
|  | * That's okay, it's a rare case. The next waker will clear it. | 
|  | */ | 
|  | } | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  |  | 
|  | static void wake_up_page(struct page *page, int bit) | 
|  | { | 
|  | if (!PageWaiters(page)) | 
|  | return; | 
|  | wake_up_page_bit(page, bit); | 
|  | } | 
|  |  | 
|  | static inline int wait_on_page_bit_common(wait_queue_head_t *q, | 
|  | struct page *page, int bit_nr, int state, bool lock) | 
|  | { | 
|  | struct wait_page_queue wait_page; | 
|  | wait_queue_entry_t *wait = &wait_page.wait; | 
|  | int ret = 0; | 
|  |  | 
|  | init_wait(wait); | 
|  | wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; | 
|  | wait->func = wake_page_function; | 
|  | wait_page.page = page; | 
|  | wait_page.bit_nr = bit_nr; | 
|  |  | 
|  | for (;;) { | 
|  | spin_lock_irq(&q->lock); | 
|  |  | 
|  | if (likely(list_empty(&wait->entry))) { | 
|  | __add_wait_queue_entry_tail(q, wait); | 
|  | SetPageWaiters(page); | 
|  | } | 
|  |  | 
|  | set_current_state(state); | 
|  |  | 
|  | spin_unlock_irq(&q->lock); | 
|  |  | 
|  | if (likely(test_bit(bit_nr, &page->flags))) { | 
|  | io_schedule(); | 
|  | } | 
|  |  | 
|  | if (lock) { | 
|  | if (!test_and_set_bit_lock(bit_nr, &page->flags)) | 
|  | break; | 
|  | } else { | 
|  | if (!test_bit(bit_nr, &page->flags)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(signal_pending_state(state, current))) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | finish_wait(q, wait); | 
|  |  | 
|  | /* | 
|  | * A signal could leave PageWaiters set. Clearing it here if | 
|  | * !waitqueue_active would be possible (by open-coding finish_wait), | 
|  | * but still fail to catch it in the case of wait hash collision. We | 
|  | * already can fail to clear wait hash collision cases, so don't | 
|  | * bother with signals either. | 
|  | */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void wait_on_page_bit(struct page *page, int bit_nr) | 
|  | { | 
|  | wait_queue_head_t *q = page_waitqueue(page); | 
|  | wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); | 
|  | } | 
|  | EXPORT_SYMBOL(wait_on_page_bit); | 
|  |  | 
|  | int wait_on_page_bit_killable(struct page *page, int bit_nr) | 
|  | { | 
|  | wait_queue_head_t *q = page_waitqueue(page); | 
|  | return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); | 
|  | } | 
|  | EXPORT_SYMBOL(wait_on_page_bit_killable); | 
|  |  | 
|  | /** | 
|  | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | 
|  | * @page: Page defining the wait queue of interest | 
|  | * @waiter: Waiter to add to the queue | 
|  | * | 
|  | * Add an arbitrary @waiter to the wait queue for the nominated @page. | 
|  | */ | 
|  | void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) | 
|  | { | 
|  | wait_queue_head_t *q = page_waitqueue(page); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __add_wait_queue_entry_tail(q, waiter); | 
|  | SetPageWaiters(page); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_page_wait_queue); | 
|  |  | 
|  | #ifndef clear_bit_unlock_is_negative_byte | 
|  |  | 
|  | /* | 
|  | * PG_waiters is the high bit in the same byte as PG_lock. | 
|  | * | 
|  | * On x86 (and on many other architectures), we can clear PG_lock and | 
|  | * test the sign bit at the same time. But if the architecture does | 
|  | * not support that special operation, we just do this all by hand | 
|  | * instead. | 
|  | * | 
|  | * The read of PG_waiters has to be after (or concurrently with) PG_locked | 
|  | * being cleared, but a memory barrier should be unneccssary since it is | 
|  | * in the same byte as PG_locked. | 
|  | */ | 
|  | static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) | 
|  | { | 
|  | clear_bit_unlock(nr, mem); | 
|  | /* smp_mb__after_atomic(); */ | 
|  | return test_bit(PG_waiters, mem); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * unlock_page - unlock a locked page | 
|  | * @page: the page | 
|  | * | 
|  | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | 
|  | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | 
|  | * mechanism between PageLocked pages and PageWriteback pages is shared. | 
|  | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. | 
|  | * | 
|  | * Note that this depends on PG_waiters being the sign bit in the byte | 
|  | * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to | 
|  | * clear the PG_locked bit and test PG_waiters at the same time fairly | 
|  | * portably (architectures that do LL/SC can test any bit, while x86 can | 
|  | * test the sign bit). | 
|  | */ | 
|  | void unlock_page(struct page *page) | 
|  | { | 
|  | BUILD_BUG_ON(PG_waiters != 7); | 
|  | page = compound_head(page); | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) | 
|  | wake_up_page_bit(page, PG_locked); | 
|  | } | 
|  | EXPORT_SYMBOL(unlock_page); | 
|  |  | 
|  | /** | 
|  | * end_page_writeback - end writeback against a page | 
|  | * @page: the page | 
|  | */ | 
|  | void end_page_writeback(struct page *page) | 
|  | { | 
|  | /* | 
|  | * TestClearPageReclaim could be used here but it is an atomic | 
|  | * operation and overkill in this particular case. Failing to | 
|  | * shuffle a page marked for immediate reclaim is too mild to | 
|  | * justify taking an atomic operation penalty at the end of | 
|  | * ever page writeback. | 
|  | */ | 
|  | if (PageReclaim(page)) { | 
|  | ClearPageReclaim(page); | 
|  | rotate_reclaimable_page(page); | 
|  | } | 
|  |  | 
|  | if (!test_clear_page_writeback(page)) | 
|  | BUG(); | 
|  |  | 
|  | smp_mb__after_atomic(); | 
|  | wake_up_page(page, PG_writeback); | 
|  | } | 
|  | EXPORT_SYMBOL(end_page_writeback); | 
|  |  | 
|  | /* | 
|  | * After completing I/O on a page, call this routine to update the page | 
|  | * flags appropriately | 
|  | */ | 
|  | void page_endio(struct page *page, bool is_write, int err) | 
|  | { | 
|  | if (!is_write) { | 
|  | if (!err) { | 
|  | SetPageUptodate(page); | 
|  | } else { | 
|  | ClearPageUptodate(page); | 
|  | SetPageError(page); | 
|  | } | 
|  | unlock_page(page); | 
|  | } else { | 
|  | if (err) { | 
|  | struct address_space *mapping; | 
|  |  | 
|  | SetPageError(page); | 
|  | mapping = page_mapping(page); | 
|  | if (mapping) | 
|  | mapping_set_error(mapping, err); | 
|  | } | 
|  | end_page_writeback(page); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(page_endio); | 
|  |  | 
|  | /** | 
|  | * __lock_page - get a lock on the page, assuming we need to sleep to get it | 
|  | * @__page: the page to lock | 
|  | */ | 
|  | void __lock_page(struct page *__page) | 
|  | { | 
|  | struct page *page = compound_head(__page); | 
|  | wait_queue_head_t *q = page_waitqueue(page); | 
|  | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); | 
|  | } | 
|  | EXPORT_SYMBOL(__lock_page); | 
|  |  | 
|  | int __lock_page_killable(struct page *__page) | 
|  | { | 
|  | struct page *page = compound_head(__page); | 
|  | wait_queue_head_t *q = page_waitqueue(page); | 
|  | return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__lock_page_killable); | 
|  |  | 
|  | /* | 
|  | * Return values: | 
|  | * 1 - page is locked; mmap_sem is still held. | 
|  | * 0 - page is not locked. | 
|  | *     mmap_sem has been released (up_read()), unless flags had both | 
|  | *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | 
|  | *     which case mmap_sem is still held. | 
|  | * | 
|  | * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 | 
|  | * with the page locked and the mmap_sem unperturbed. | 
|  | */ | 
|  | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, | 
|  | unsigned int flags) | 
|  | { | 
|  | if (flags & FAULT_FLAG_ALLOW_RETRY) { | 
|  | /* | 
|  | * CAUTION! In this case, mmap_sem is not released | 
|  | * even though return 0. | 
|  | */ | 
|  | if (flags & FAULT_FLAG_RETRY_NOWAIT) | 
|  | return 0; | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | if (flags & FAULT_FLAG_KILLABLE) | 
|  | wait_on_page_locked_killable(page); | 
|  | else | 
|  | wait_on_page_locked(page); | 
|  | return 0; | 
|  | } else { | 
|  | if (flags & FAULT_FLAG_KILLABLE) { | 
|  | int ret; | 
|  |  | 
|  | ret = __lock_page_killable(page); | 
|  | if (ret) { | 
|  | up_read(&mm->mmap_sem); | 
|  | return 0; | 
|  | } | 
|  | } else | 
|  | __lock_page(page); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_cache_next_hole - find the next hole (not-present entry) | 
|  | * @mapping: mapping | 
|  | * @index: index | 
|  | * @max_scan: maximum range to search | 
|  | * | 
|  | * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the | 
|  | * lowest indexed hole. | 
|  | * | 
|  | * Returns: the index of the hole if found, otherwise returns an index | 
|  | * outside of the set specified (in which case 'return - index >= | 
|  | * max_scan' will be true). In rare cases of index wrap-around, 0 will | 
|  | * be returned. | 
|  | * | 
|  | * page_cache_next_hole may be called under rcu_read_lock. However, | 
|  | * like radix_tree_gang_lookup, this will not atomically search a | 
|  | * snapshot of the tree at a single point in time. For example, if a | 
|  | * hole is created at index 5, then subsequently a hole is created at | 
|  | * index 10, page_cache_next_hole covering both indexes may return 10 | 
|  | * if called under rcu_read_lock. | 
|  | */ | 
|  | pgoff_t page_cache_next_hole(struct address_space *mapping, | 
|  | pgoff_t index, unsigned long max_scan) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < max_scan; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | page = radix_tree_lookup(&mapping->i_pages, index); | 
|  | if (!page || radix_tree_exceptional_entry(page)) | 
|  | break; | 
|  | index++; | 
|  | if (index == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return index; | 
|  | } | 
|  | EXPORT_SYMBOL(page_cache_next_hole); | 
|  |  | 
|  | /** | 
|  | * page_cache_prev_hole - find the prev hole (not-present entry) | 
|  | * @mapping: mapping | 
|  | * @index: index | 
|  | * @max_scan: maximum range to search | 
|  | * | 
|  | * Search backwards in the range [max(index-max_scan+1, 0), index] for | 
|  | * the first hole. | 
|  | * | 
|  | * Returns: the index of the hole if found, otherwise returns an index | 
|  | * outside of the set specified (in which case 'index - return >= | 
|  | * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX | 
|  | * will be returned. | 
|  | * | 
|  | * page_cache_prev_hole may be called under rcu_read_lock. However, | 
|  | * like radix_tree_gang_lookup, this will not atomically search a | 
|  | * snapshot of the tree at a single point in time. For example, if a | 
|  | * hole is created at index 10, then subsequently a hole is created at | 
|  | * index 5, page_cache_prev_hole covering both indexes may return 5 if | 
|  | * called under rcu_read_lock. | 
|  | */ | 
|  | pgoff_t page_cache_prev_hole(struct address_space *mapping, | 
|  | pgoff_t index, unsigned long max_scan) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < max_scan; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | page = radix_tree_lookup(&mapping->i_pages, index); | 
|  | if (!page || radix_tree_exceptional_entry(page)) | 
|  | break; | 
|  | index--; | 
|  | if (index == ULONG_MAX) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return index; | 
|  | } | 
|  | EXPORT_SYMBOL(page_cache_prev_hole); | 
|  |  | 
|  | /** | 
|  | * find_get_entry - find and get a page cache entry | 
|  | * @mapping: the address_space to search | 
|  | * @offset: the page cache index | 
|  | * | 
|  | * Looks up the page cache slot at @mapping & @offset.  If there is a | 
|  | * page cache page, it is returned with an increased refcount. | 
|  | * | 
|  | * If the slot holds a shadow entry of a previously evicted page, or a | 
|  | * swap entry from shmem/tmpfs, it is returned. | 
|  | * | 
|  | * Otherwise, %NULL is returned. | 
|  | */ | 
|  | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) | 
|  | { | 
|  | void **pagep; | 
|  | struct page *head, *page; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | repeat: | 
|  | page = NULL; | 
|  | pagep = radix_tree_lookup_slot(&mapping->i_pages, offset); | 
|  | if (pagep) { | 
|  | page = radix_tree_deref_slot(pagep); | 
|  | if (unlikely(!page)) | 
|  | goto out; | 
|  | if (radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) | 
|  | goto repeat; | 
|  | /* | 
|  | * A shadow entry of a recently evicted page, | 
|  | * or a swap entry from shmem/tmpfs.  Return | 
|  | * it without attempting to raise page count. | 
|  | */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | head = compound_head(page); | 
|  | if (!page_cache_get_speculative(head)) | 
|  | goto repeat; | 
|  |  | 
|  | /* The page was split under us? */ | 
|  | if (compound_head(page) != head) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Has the page moved? | 
|  | * This is part of the lockless pagecache protocol. See | 
|  | * include/linux/pagemap.h for details. | 
|  | */ | 
|  | if (unlikely(page != *pagep)) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_entry); | 
|  |  | 
|  | /** | 
|  | * find_lock_entry - locate, pin and lock a page cache entry | 
|  | * @mapping: the address_space to search | 
|  | * @offset: the page cache index | 
|  | * | 
|  | * Looks up the page cache slot at @mapping & @offset.  If there is a | 
|  | * page cache page, it is returned locked and with an increased | 
|  | * refcount. | 
|  | * | 
|  | * If the slot holds a shadow entry of a previously evicted page, or a | 
|  | * swap entry from shmem/tmpfs, it is returned. | 
|  | * | 
|  | * Otherwise, %NULL is returned. | 
|  | * | 
|  | * find_lock_entry() may sleep. | 
|  | */ | 
|  | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | repeat: | 
|  | page = find_get_entry(mapping, offset); | 
|  | if (page && !radix_tree_exception(page)) { | 
|  | lock_page(page); | 
|  | /* Has the page been truncated? */ | 
|  | if (unlikely(page_mapping(page) != mapping)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto repeat; | 
|  | } | 
|  | VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); | 
|  | } | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(find_lock_entry); | 
|  |  | 
|  | /** | 
|  | * pagecache_get_page - find and get a page reference | 
|  | * @mapping: the address_space to search | 
|  | * @offset: the page index | 
|  | * @fgp_flags: PCG flags | 
|  | * @gfp_mask: gfp mask to use for the page cache data page allocation | 
|  | * | 
|  | * Looks up the page cache slot at @mapping & @offset. | 
|  | * | 
|  | * PCG flags modify how the page is returned. | 
|  | * | 
|  | * @fgp_flags can be: | 
|  | * | 
|  | * - FGP_ACCESSED: the page will be marked accessed | 
|  | * - FGP_LOCK: Page is return locked | 
|  | * - FGP_CREAT: If page is not present then a new page is allocated using | 
|  | *   @gfp_mask and added to the page cache and the VM's LRU | 
|  | *   list. The page is returned locked and with an increased | 
|  | *   refcount. Otherwise, NULL is returned. | 
|  | * | 
|  | * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even | 
|  | * if the GFP flags specified for FGP_CREAT are atomic. | 
|  | * | 
|  | * If there is a page cache page, it is returned with an increased refcount. | 
|  | */ | 
|  | struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, | 
|  | int fgp_flags, gfp_t gfp_mask) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | repeat: | 
|  | page = find_get_entry(mapping, offset); | 
|  | if (radix_tree_exceptional_entry(page)) | 
|  | page = NULL; | 
|  | if (!page) | 
|  | goto no_page; | 
|  |  | 
|  | if (fgp_flags & FGP_LOCK) { | 
|  | if (fgp_flags & FGP_NOWAIT) { | 
|  | if (!trylock_page(page)) { | 
|  | put_page(page); | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | lock_page(page); | 
|  | } | 
|  |  | 
|  | /* Has the page been truncated? */ | 
|  | if (unlikely(page->mapping != mapping)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto repeat; | 
|  | } | 
|  | VM_BUG_ON_PAGE(page->index != offset, page); | 
|  | } | 
|  |  | 
|  | if (page && (fgp_flags & FGP_ACCESSED)) | 
|  | mark_page_accessed(page); | 
|  |  | 
|  | no_page: | 
|  | if (!page && (fgp_flags & FGP_CREAT)) { | 
|  | int err; | 
|  | if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) | 
|  | gfp_mask |= __GFP_WRITE; | 
|  | if (fgp_flags & FGP_NOFS) | 
|  | gfp_mask &= ~__GFP_FS; | 
|  |  | 
|  | page = __page_cache_alloc(gfp_mask); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) | 
|  | fgp_flags |= FGP_LOCK; | 
|  |  | 
|  | /* Init accessed so avoid atomic mark_page_accessed later */ | 
|  | if (fgp_flags & FGP_ACCESSED) | 
|  | __SetPageReferenced(page); | 
|  |  | 
|  | err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); | 
|  | if (unlikely(err)) { | 
|  | put_page(page); | 
|  | page = NULL; | 
|  | if (err == -EEXIST) | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(pagecache_get_page); | 
|  |  | 
|  | /** | 
|  | * find_get_entries - gang pagecache lookup | 
|  | * @mapping:	The address_space to search | 
|  | * @start:	The starting page cache index | 
|  | * @nr_entries:	The maximum number of entries | 
|  | * @entries:	Where the resulting entries are placed | 
|  | * @indices:	The cache indices corresponding to the entries in @entries | 
|  | * | 
|  | * find_get_entries() will search for and return a group of up to | 
|  | * @nr_entries entries in the mapping.  The entries are placed at | 
|  | * @entries.  find_get_entries() takes a reference against any actual | 
|  | * pages it returns. | 
|  | * | 
|  | * The search returns a group of mapping-contiguous page cache entries | 
|  | * with ascending indexes.  There may be holes in the indices due to | 
|  | * not-present pages. | 
|  | * | 
|  | * Any shadow entries of evicted pages, or swap entries from | 
|  | * shmem/tmpfs, are included in the returned array. | 
|  | * | 
|  | * find_get_entries() returns the number of pages and shadow entries | 
|  | * which were found. | 
|  | */ | 
|  | unsigned find_get_entries(struct address_space *mapping, | 
|  | pgoff_t start, unsigned int nr_entries, | 
|  | struct page **entries, pgoff_t *indices) | 
|  | { | 
|  | void **slot; | 
|  | unsigned int ret = 0; | 
|  | struct radix_tree_iter iter; | 
|  |  | 
|  | if (!nr_entries) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { | 
|  | struct page *head, *page; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot(slot); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  | if (radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * A shadow entry of a recently evicted page, a swap | 
|  | * entry from shmem/tmpfs or a DAX entry.  Return it | 
|  | * without attempting to raise page count. | 
|  | */ | 
|  | goto export; | 
|  | } | 
|  |  | 
|  | head = compound_head(page); | 
|  | if (!page_cache_get_speculative(head)) | 
|  | goto repeat; | 
|  |  | 
|  | /* The page was split under us? */ | 
|  | if (compound_head(page) != head) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *slot)) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  | export: | 
|  | indices[ret] = iter.index; | 
|  | entries[ret] = page; | 
|  | if (++ret == nr_entries) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_get_pages_range - gang pagecache lookup | 
|  | * @mapping:	The address_space to search | 
|  | * @start:	The starting page index | 
|  | * @end:	The final page index (inclusive) | 
|  | * @nr_pages:	The maximum number of pages | 
|  | * @pages:	Where the resulting pages are placed | 
|  | * | 
|  | * find_get_pages_range() will search for and return a group of up to @nr_pages | 
|  | * pages in the mapping starting at index @start and up to index @end | 
|  | * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes | 
|  | * a reference against the returned pages. | 
|  | * | 
|  | * The search returns a group of mapping-contiguous pages with ascending | 
|  | * indexes.  There may be holes in the indices due to not-present pages. | 
|  | * We also update @start to index the next page for the traversal. | 
|  | * | 
|  | * find_get_pages_range() returns the number of pages which were found. If this | 
|  | * number is smaller than @nr_pages, the end of specified range has been | 
|  | * reached. | 
|  | */ | 
|  | unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, | 
|  | pgoff_t end, unsigned int nr_pages, | 
|  | struct page **pages) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | unsigned ret = 0; | 
|  |  | 
|  | if (unlikely(!nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) { | 
|  | struct page *head, *page; | 
|  |  | 
|  | if (iter.index > end) | 
|  | break; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot(slot); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  |  | 
|  | if (radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * A shadow entry of a recently evicted page, | 
|  | * or a swap entry from shmem/tmpfs.  Skip | 
|  | * over it. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | head = compound_head(page); | 
|  | if (!page_cache_get_speculative(head)) | 
|  | goto repeat; | 
|  |  | 
|  | /* The page was split under us? */ | 
|  | if (compound_head(page) != head) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *slot)) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | pages[ret] = page; | 
|  | if (++ret == nr_pages) { | 
|  | *start = pages[ret - 1]->index + 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We come here when there is no page beyond @end. We take care to not | 
|  | * overflow the index @start as it confuses some of the callers. This | 
|  | * breaks the iteration when there is page at index -1 but that is | 
|  | * already broken anyway. | 
|  | */ | 
|  | if (end == (pgoff_t)-1) | 
|  | *start = (pgoff_t)-1; | 
|  | else | 
|  | *start = end + 1; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_get_pages_contig - gang contiguous pagecache lookup | 
|  | * @mapping:	The address_space to search | 
|  | * @index:	The starting page index | 
|  | * @nr_pages:	The maximum number of pages | 
|  | * @pages:	Where the resulting pages are placed | 
|  | * | 
|  | * find_get_pages_contig() works exactly like find_get_pages(), except | 
|  | * that the returned number of pages are guaranteed to be contiguous. | 
|  | * | 
|  | * find_get_pages_contig() returns the number of pages which were found. | 
|  | */ | 
|  | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | 
|  | unsigned int nr_pages, struct page **pages) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) { | 
|  | struct page *head, *page; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot(slot); | 
|  | /* The hole, there no reason to continue */ | 
|  | if (unlikely(!page)) | 
|  | break; | 
|  |  | 
|  | if (radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * A shadow entry of a recently evicted page, | 
|  | * or a swap entry from shmem/tmpfs.  Stop | 
|  | * looking for contiguous pages. | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | head = compound_head(page); | 
|  | if (!page_cache_get_speculative(head)) | 
|  | goto repeat; | 
|  |  | 
|  | /* The page was split under us? */ | 
|  | if (compound_head(page) != head) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *slot)) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * must check mapping and index after taking the ref. | 
|  | * otherwise we can get both false positives and false | 
|  | * negatives, which is just confusing to the caller. | 
|  | */ | 
|  | if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { | 
|  | put_page(page); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pages[ret] = page; | 
|  | if (++ret == nr_pages) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_pages_contig); | 
|  |  | 
|  | /** | 
|  | * find_get_pages_range_tag - find and return pages in given range matching @tag | 
|  | * @mapping:	the address_space to search | 
|  | * @index:	the starting page index | 
|  | * @end:	The final page index (inclusive) | 
|  | * @tag:	the tag index | 
|  | * @nr_pages:	the maximum number of pages | 
|  | * @pages:	where the resulting pages are placed | 
|  | * | 
|  | * Like find_get_pages, except we only return pages which are tagged with | 
|  | * @tag.   We update @index to index the next page for the traversal. | 
|  | */ | 
|  | unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, | 
|  | pgoff_t end, int tag, unsigned int nr_pages, | 
|  | struct page **pages) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | unsigned ret = 0; | 
|  |  | 
|  | if (unlikely(!nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) { | 
|  | struct page *head, *page; | 
|  |  | 
|  | if (iter.index > end) | 
|  | break; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot(slot); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  |  | 
|  | if (radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * A shadow entry of a recently evicted page. | 
|  | * | 
|  | * Those entries should never be tagged, but | 
|  | * this tree walk is lockless and the tags are | 
|  | * looked up in bulk, one radix tree node at a | 
|  | * time, so there is a sizable window for page | 
|  | * reclaim to evict a page we saw tagged. | 
|  | * | 
|  | * Skip over it. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | head = compound_head(page); | 
|  | if (!page_cache_get_speculative(head)) | 
|  | goto repeat; | 
|  |  | 
|  | /* The page was split under us? */ | 
|  | if (compound_head(page) != head) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *slot)) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | pages[ret] = page; | 
|  | if (++ret == nr_pages) { | 
|  | *index = pages[ret - 1]->index + 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We come here when we got at @end. We take care to not overflow the | 
|  | * index @index as it confuses some of the callers. This breaks the | 
|  | * iteration when there is page at index -1 but that is already broken | 
|  | * anyway. | 
|  | */ | 
|  | if (end == (pgoff_t)-1) | 
|  | *index = (pgoff_t)-1; | 
|  | else | 
|  | *index = end + 1; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_pages_range_tag); | 
|  |  | 
|  | /** | 
|  | * find_get_entries_tag - find and return entries that match @tag | 
|  | * @mapping:	the address_space to search | 
|  | * @start:	the starting page cache index | 
|  | * @tag:	the tag index | 
|  | * @nr_entries:	the maximum number of entries | 
|  | * @entries:	where the resulting entries are placed | 
|  | * @indices:	the cache indices corresponding to the entries in @entries | 
|  | * | 
|  | * Like find_get_entries, except we only return entries which are tagged with | 
|  | * @tag. | 
|  | */ | 
|  | unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, | 
|  | int tag, unsigned int nr_entries, | 
|  | struct page **entries, pgoff_t *indices) | 
|  | { | 
|  | void **slot; | 
|  | unsigned int ret = 0; | 
|  | struct radix_tree_iter iter; | 
|  |  | 
|  | if (!nr_entries) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) { | 
|  | struct page *head, *page; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot(slot); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  | if (radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A shadow entry of a recently evicted page, a swap | 
|  | * entry from shmem/tmpfs or a DAX entry.  Return it | 
|  | * without attempting to raise page count. | 
|  | */ | 
|  | goto export; | 
|  | } | 
|  |  | 
|  | head = compound_head(page); | 
|  | if (!page_cache_get_speculative(head)) | 
|  | goto repeat; | 
|  |  | 
|  | /* The page was split under us? */ | 
|  | if (compound_head(page) != head) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *slot)) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  | export: | 
|  | indices[ret] = iter.index; | 
|  | entries[ret] = page; | 
|  | if (++ret == nr_entries) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_entries_tag); | 
|  |  | 
|  | /* | 
|  | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | 
|  | * a _large_ part of the i/o request. Imagine the worst scenario: | 
|  | * | 
|  | *      ---R__________________________________________B__________ | 
|  | *         ^ reading here                             ^ bad block(assume 4k) | 
|  | * | 
|  | * read(R) => miss => readahead(R...B) => media error => frustrating retries | 
|  | * => failing the whole request => read(R) => read(R+1) => | 
|  | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | 
|  | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | 
|  | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | 
|  | * | 
|  | * It is going insane. Fix it by quickly scaling down the readahead size. | 
|  | */ | 
|  | static void shrink_readahead_size_eio(struct file *filp, | 
|  | struct file_ra_state *ra) | 
|  | { | 
|  | ra->ra_pages /= 4; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * generic_file_buffered_read - generic file read routine | 
|  | * @iocb:	the iocb to read | 
|  | * @iter:	data destination | 
|  | * @written:	already copied | 
|  | * | 
|  | * This is a generic file read routine, and uses the | 
|  | * mapping->a_ops->readpage() function for the actual low-level stuff. | 
|  | * | 
|  | * This is really ugly. But the goto's actually try to clarify some | 
|  | * of the logic when it comes to error handling etc. | 
|  | */ | 
|  | static ssize_t generic_file_buffered_read(struct kiocb *iocb, | 
|  | struct iov_iter *iter, ssize_t written) | 
|  | { | 
|  | struct file *filp = iocb->ki_filp; | 
|  | struct address_space *mapping = filp->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | struct file_ra_state *ra = &filp->f_ra; | 
|  | loff_t *ppos = &iocb->ki_pos; | 
|  | pgoff_t index; | 
|  | pgoff_t last_index; | 
|  | pgoff_t prev_index; | 
|  | unsigned long offset;      /* offset into pagecache page */ | 
|  | unsigned int prev_offset; | 
|  | int error = 0; | 
|  |  | 
|  | if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) | 
|  | return 0; | 
|  | iov_iter_truncate(iter, inode->i_sb->s_maxbytes); | 
|  |  | 
|  | index = *ppos >> PAGE_SHIFT; | 
|  | prev_index = ra->prev_pos >> PAGE_SHIFT; | 
|  | prev_offset = ra->prev_pos & (PAGE_SIZE-1); | 
|  | last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; | 
|  | offset = *ppos & ~PAGE_MASK; | 
|  |  | 
|  | for (;;) { | 
|  | struct page *page; | 
|  | pgoff_t end_index; | 
|  | loff_t isize; | 
|  | unsigned long nr, ret; | 
|  |  | 
|  | cond_resched(); | 
|  | find_page: | 
|  | if (fatal_signal_pending(current)) { | 
|  | error = -EINTR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page = find_get_page(mapping, index); | 
|  | if (!page) { | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) | 
|  | goto would_block; | 
|  | page_cache_sync_readahead(mapping, | 
|  | ra, filp, | 
|  | index, last_index - index); | 
|  | page = find_get_page(mapping, index); | 
|  | if (unlikely(page == NULL)) | 
|  | goto no_cached_page; | 
|  | } | 
|  | if (PageReadahead(page)) { | 
|  | page_cache_async_readahead(mapping, | 
|  | ra, filp, page, | 
|  | index, last_index - index); | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | put_page(page); | 
|  | goto would_block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See comment in do_read_cache_page on why | 
|  | * wait_on_page_locked is used to avoid unnecessarily | 
|  | * serialisations and why it's safe. | 
|  | */ | 
|  | error = wait_on_page_locked_killable(page); | 
|  | if (unlikely(error)) | 
|  | goto readpage_error; | 
|  | if (PageUptodate(page)) | 
|  | goto page_ok; | 
|  |  | 
|  | if (inode->i_blkbits == PAGE_SHIFT || | 
|  | !mapping->a_ops->is_partially_uptodate) | 
|  | goto page_not_up_to_date; | 
|  | /* pipes can't handle partially uptodate pages */ | 
|  | if (unlikely(iter->type & ITER_PIPE)) | 
|  | goto page_not_up_to_date; | 
|  | if (!trylock_page(page)) | 
|  | goto page_not_up_to_date; | 
|  | /* Did it get truncated before we got the lock? */ | 
|  | if (!page->mapping) | 
|  | goto page_not_up_to_date_locked; | 
|  | if (!mapping->a_ops->is_partially_uptodate(page, | 
|  | offset, iter->count)) | 
|  | goto page_not_up_to_date_locked; | 
|  | unlock_page(page); | 
|  | } | 
|  | page_ok: | 
|  | /* | 
|  | * i_size must be checked after we know the page is Uptodate. | 
|  | * | 
|  | * Checking i_size after the check allows us to calculate | 
|  | * the correct value for "nr", which means the zero-filled | 
|  | * part of the page is not copied back to userspace (unless | 
|  | * another truncate extends the file - this is desired though). | 
|  | */ | 
|  |  | 
|  | isize = i_size_read(inode); | 
|  | end_index = (isize - 1) >> PAGE_SHIFT; | 
|  | if (unlikely(!isize || index > end_index)) { | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* nr is the maximum number of bytes to copy from this page */ | 
|  | nr = PAGE_SIZE; | 
|  | if (index == end_index) { | 
|  | nr = ((isize - 1) & ~PAGE_MASK) + 1; | 
|  | if (nr <= offset) { | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | nr = nr - offset; | 
|  |  | 
|  | /* If users can be writing to this page using arbitrary | 
|  | * virtual addresses, take care about potential aliasing | 
|  | * before reading the page on the kernel side. | 
|  | */ | 
|  | if (mapping_writably_mapped(mapping)) | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | /* | 
|  | * When a sequential read accesses a page several times, | 
|  | * only mark it as accessed the first time. | 
|  | */ | 
|  | if (prev_index != index || offset != prev_offset) | 
|  | mark_page_accessed(page); | 
|  | prev_index = index; | 
|  |  | 
|  | /* | 
|  | * Ok, we have the page, and it's up-to-date, so | 
|  | * now we can copy it to user space... | 
|  | */ | 
|  |  | 
|  | ret = copy_page_to_iter(page, offset, nr, iter); | 
|  | offset += ret; | 
|  | index += offset >> PAGE_SHIFT; | 
|  | offset &= ~PAGE_MASK; | 
|  | prev_offset = offset; | 
|  |  | 
|  | put_page(page); | 
|  | written += ret; | 
|  | if (!iov_iter_count(iter)) | 
|  | goto out; | 
|  | if (ret < nr) { | 
|  | error = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | continue; | 
|  |  | 
|  | page_not_up_to_date: | 
|  | /* Get exclusive access to the page ... */ | 
|  | error = lock_page_killable(page); | 
|  | if (unlikely(error)) | 
|  | goto readpage_error; | 
|  |  | 
|  | page_not_up_to_date_locked: | 
|  | /* Did it get truncated before we got the lock? */ | 
|  | if (!page->mapping) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Did somebody else fill it already? */ | 
|  | if (PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | goto page_ok; | 
|  | } | 
|  |  | 
|  | readpage: | 
|  | /* | 
|  | * A previous I/O error may have been due to temporary | 
|  | * failures, eg. multipath errors. | 
|  | * PG_error will be set again if readpage fails. | 
|  | */ | 
|  | ClearPageError(page); | 
|  | /* Start the actual read. The read will unlock the page. */ | 
|  | error = mapping->a_ops->readpage(filp, page); | 
|  |  | 
|  | if (unlikely(error)) { | 
|  | if (error == AOP_TRUNCATED_PAGE) { | 
|  | put_page(page); | 
|  | error = 0; | 
|  | goto find_page; | 
|  | } | 
|  | goto readpage_error; | 
|  | } | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | error = lock_page_killable(page); | 
|  | if (unlikely(error)) | 
|  | goto readpage_error; | 
|  | if (!PageUptodate(page)) { | 
|  | if (page->mapping == NULL) { | 
|  | /* | 
|  | * invalidate_mapping_pages got it | 
|  | */ | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto find_page; | 
|  | } | 
|  | unlock_page(page); | 
|  | shrink_readahead_size_eio(filp, ra); | 
|  | error = -EIO; | 
|  | goto readpage_error; | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  |  | 
|  | goto page_ok; | 
|  |  | 
|  | readpage_error: | 
|  | /* UHHUH! A synchronous read error occurred. Report it */ | 
|  | put_page(page); | 
|  | goto out; | 
|  |  | 
|  | no_cached_page: | 
|  | /* | 
|  | * Ok, it wasn't cached, so we need to create a new | 
|  | * page.. | 
|  | */ | 
|  | page = page_cache_alloc(mapping); | 
|  | if (!page) { | 
|  | error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | error = add_to_page_cache_lru(page, mapping, index, | 
|  | mapping_gfp_constraint(mapping, GFP_KERNEL)); | 
|  | if (error) { | 
|  | put_page(page); | 
|  | if (error == -EEXIST) { | 
|  | error = 0; | 
|  | goto find_page; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | goto readpage; | 
|  | } | 
|  |  | 
|  | would_block: | 
|  | error = -EAGAIN; | 
|  | out: | 
|  | ra->prev_pos = prev_index; | 
|  | ra->prev_pos <<= PAGE_SHIFT; | 
|  | ra->prev_pos |= prev_offset; | 
|  |  | 
|  | *ppos = ((loff_t)index << PAGE_SHIFT) + offset; | 
|  | file_accessed(filp); | 
|  | return written ? written : error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * generic_file_read_iter - generic filesystem read routine | 
|  | * @iocb:	kernel I/O control block | 
|  | * @iter:	destination for the data read | 
|  | * | 
|  | * This is the "read_iter()" routine for all filesystems | 
|  | * that can use the page cache directly. | 
|  | */ | 
|  | ssize_t | 
|  | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) | 
|  | { | 
|  | size_t count = iov_iter_count(iter); | 
|  | ssize_t retval = 0; | 
|  |  | 
|  | if (!count) | 
|  | goto out; /* skip atime */ | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_DIRECT) { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | loff_t size; | 
|  |  | 
|  | size = i_size_read(inode); | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | if (filemap_range_has_page(mapping, iocb->ki_pos, | 
|  | iocb->ki_pos + count - 1)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | retval = filemap_write_and_wait_range(mapping, | 
|  | iocb->ki_pos, | 
|  | iocb->ki_pos + count - 1); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | file_accessed(file); | 
|  |  | 
|  | retval = mapping->a_ops->direct_IO(iocb, iter); | 
|  | if (retval >= 0) { | 
|  | iocb->ki_pos += retval; | 
|  | count -= retval; | 
|  | } | 
|  | iov_iter_revert(iter, count - iov_iter_count(iter)); | 
|  |  | 
|  | /* | 
|  | * Btrfs can have a short DIO read if we encounter | 
|  | * compressed extents, so if there was an error, or if | 
|  | * we've already read everything we wanted to, or if | 
|  | * there was a short read because we hit EOF, go ahead | 
|  | * and return.  Otherwise fallthrough to buffered io for | 
|  | * the rest of the read.  Buffered reads will not work for | 
|  | * DAX files, so don't bother trying. | 
|  | */ | 
|  | if (retval < 0 || !count || iocb->ki_pos >= size || | 
|  | IS_DAX(inode)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | retval = generic_file_buffered_read(iocb, iter, retval); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_read_iter); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /** | 
|  | * page_cache_read - adds requested page to the page cache if not already there | 
|  | * @file:	file to read | 
|  | * @offset:	page index | 
|  | * @gfp_mask:	memory allocation flags | 
|  | * | 
|  | * This adds the requested page to the page cache if it isn't already there, | 
|  | * and schedules an I/O to read in its contents from disk. | 
|  | */ | 
|  | static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | page = __page_cache_alloc(gfp_mask); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask); | 
|  | if (ret == 0) | 
|  | ret = mapping->a_ops->readpage(file, page); | 
|  | else if (ret == -EEXIST) | 
|  | ret = 0; /* losing race to add is OK */ | 
|  |  | 
|  | put_page(page); | 
|  |  | 
|  | } while (ret == AOP_TRUNCATED_PAGE); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define MMAP_LOTSAMISS  (100) | 
|  |  | 
|  | /* | 
|  | * Synchronous readahead happens when we don't even find | 
|  | * a page in the page cache at all. | 
|  | */ | 
|  | static void do_sync_mmap_readahead(struct vm_area_struct *vma, | 
|  | struct file_ra_state *ra, | 
|  | struct file *file, | 
|  | pgoff_t offset) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | /* If we don't want any read-ahead, don't bother */ | 
|  | if (vma->vm_flags & VM_RAND_READ) | 
|  | return; | 
|  | if (!ra->ra_pages) | 
|  | return; | 
|  |  | 
|  | if (vma->vm_flags & VM_SEQ_READ) { | 
|  | page_cache_sync_readahead(mapping, ra, file, offset, | 
|  | ra->ra_pages); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Avoid banging the cache line if not needed */ | 
|  | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | 
|  | ra->mmap_miss++; | 
|  |  | 
|  | /* | 
|  | * Do we miss much more than hit in this file? If so, | 
|  | * stop bothering with read-ahead. It will only hurt. | 
|  | */ | 
|  | if (ra->mmap_miss > MMAP_LOTSAMISS) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * mmap read-around | 
|  | */ | 
|  | ra->start = max_t(long, 0, offset - ra->ra_pages / 2); | 
|  | ra->size = ra->ra_pages; | 
|  | ra->async_size = ra->ra_pages / 4; | 
|  | ra_submit(ra, mapping, file); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Asynchronous readahead happens when we find the page and PG_readahead, | 
|  | * so we want to possibly extend the readahead further.. | 
|  | */ | 
|  | static void do_async_mmap_readahead(struct vm_area_struct *vma, | 
|  | struct file_ra_state *ra, | 
|  | struct file *file, | 
|  | struct page *page, | 
|  | pgoff_t offset) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | /* If we don't want any read-ahead, don't bother */ | 
|  | if (vma->vm_flags & VM_RAND_READ) | 
|  | return; | 
|  | if (ra->mmap_miss > 0) | 
|  | ra->mmap_miss--; | 
|  | if (PageReadahead(page)) | 
|  | page_cache_async_readahead(mapping, ra, file, | 
|  | page, offset, ra->ra_pages); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_fault - read in file data for page fault handling | 
|  | * @vmf:	struct vm_fault containing details of the fault | 
|  | * | 
|  | * filemap_fault() is invoked via the vma operations vector for a | 
|  | * mapped memory region to read in file data during a page fault. | 
|  | * | 
|  | * The goto's are kind of ugly, but this streamlines the normal case of having | 
|  | * it in the page cache, and handles the special cases reasonably without | 
|  | * having a lot of duplicated code. | 
|  | * | 
|  | * vma->vm_mm->mmap_sem must be held on entry. | 
|  | * | 
|  | * If our return value has VM_FAULT_RETRY set, it's because | 
|  | * lock_page_or_retry() returned 0. | 
|  | * The mmap_sem has usually been released in this case. | 
|  | * See __lock_page_or_retry() for the exception. | 
|  | * | 
|  | * If our return value does not have VM_FAULT_RETRY set, the mmap_sem | 
|  | * has not been released. | 
|  | * | 
|  | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | 
|  | */ | 
|  | int filemap_fault(struct vm_fault *vmf) | 
|  | { | 
|  | int error; | 
|  | struct file *file = vmf->vma->vm_file; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct file_ra_state *ra = &file->f_ra; | 
|  | struct inode *inode = mapping->host; | 
|  | pgoff_t offset = vmf->pgoff; | 
|  | pgoff_t max_off; | 
|  | struct page *page; | 
|  | int ret = 0; | 
|  |  | 
|  | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); | 
|  | if (unlikely(offset >= max_off)) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | /* | 
|  | * Do we have something in the page cache already? | 
|  | */ | 
|  | page = find_get_page(mapping, offset); | 
|  | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { | 
|  | /* | 
|  | * We found the page, so try async readahead before | 
|  | * waiting for the lock. | 
|  | */ | 
|  | do_async_mmap_readahead(vmf->vma, ra, file, page, offset); | 
|  | } else if (!page) { | 
|  | /* No page in the page cache at all */ | 
|  | do_sync_mmap_readahead(vmf->vma, ra, file, offset); | 
|  | count_vm_event(PGMAJFAULT); | 
|  | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); | 
|  | ret = VM_FAULT_MAJOR; | 
|  | retry_find: | 
|  | page = find_get_page(mapping, offset); | 
|  | if (!page) | 
|  | goto no_cached_page; | 
|  | } | 
|  |  | 
|  | if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { | 
|  | put_page(page); | 
|  | return ret | VM_FAULT_RETRY; | 
|  | } | 
|  |  | 
|  | /* Did it get truncated? */ | 
|  | if (unlikely(page->mapping != mapping)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto retry_find; | 
|  | } | 
|  | VM_BUG_ON_PAGE(page->index != offset, page); | 
|  |  | 
|  | /* | 
|  | * We have a locked page in the page cache, now we need to check | 
|  | * that it's up-to-date. If not, it is going to be due to an error. | 
|  | */ | 
|  | if (unlikely(!PageUptodate(page))) | 
|  | goto page_not_uptodate; | 
|  |  | 
|  | /* | 
|  | * Found the page and have a reference on it. | 
|  | * We must recheck i_size under page lock. | 
|  | */ | 
|  | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); | 
|  | if (unlikely(offset >= max_off)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | vmf->page = page; | 
|  | return ret | VM_FAULT_LOCKED; | 
|  |  | 
|  | no_cached_page: | 
|  | /* | 
|  | * We're only likely to ever get here if MADV_RANDOM is in | 
|  | * effect. | 
|  | */ | 
|  | error = page_cache_read(file, offset, vmf->gfp_mask); | 
|  |  | 
|  | /* | 
|  | * The page we want has now been added to the page cache. | 
|  | * In the unlikely event that someone removed it in the | 
|  | * meantime, we'll just come back here and read it again. | 
|  | */ | 
|  | if (error >= 0) | 
|  | goto retry_find; | 
|  |  | 
|  | /* | 
|  | * An error return from page_cache_read can result if the | 
|  | * system is low on memory, or a problem occurs while trying | 
|  | * to schedule I/O. | 
|  | */ | 
|  | if (error == -ENOMEM) | 
|  | return VM_FAULT_OOM; | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | page_not_uptodate: | 
|  | /* | 
|  | * Umm, take care of errors if the page isn't up-to-date. | 
|  | * Try to re-read it _once_. We do this synchronously, | 
|  | * because there really aren't any performance issues here | 
|  | * and we need to check for errors. | 
|  | */ | 
|  | ClearPageError(page); | 
|  | error = mapping->a_ops->readpage(file, page); | 
|  | if (!error) { | 
|  | wait_on_page_locked(page); | 
|  | if (!PageUptodate(page)) | 
|  | error = -EIO; | 
|  | } | 
|  | put_page(page); | 
|  |  | 
|  | if (!error || error == AOP_TRUNCATED_PAGE) | 
|  | goto retry_find; | 
|  |  | 
|  | /* Things didn't work out. Return zero to tell the mm layer so. */ | 
|  | shrink_readahead_size_eio(file, ra); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fault); | 
|  |  | 
|  | void filemap_map_pages(struct vm_fault *vmf, | 
|  | pgoff_t start_pgoff, pgoff_t end_pgoff) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | struct file *file = vmf->vma->vm_file; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | pgoff_t last_pgoff = start_pgoff; | 
|  | unsigned long max_idx; | 
|  | struct page *head, *page; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) { | 
|  | if (iter.index > end_pgoff) | 
|  | break; | 
|  | repeat: | 
|  | page = radix_tree_deref_slot(slot); | 
|  | if (unlikely(!page)) | 
|  | goto next; | 
|  | if (radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | head = compound_head(page); | 
|  | if (!page_cache_get_speculative(head)) | 
|  | goto repeat; | 
|  |  | 
|  | /* The page was split under us? */ | 
|  | if (compound_head(page) != head) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Has the page moved? */ | 
|  | if (unlikely(page != *slot)) { | 
|  | put_page(head); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | if (!PageUptodate(page) || | 
|  | PageReadahead(page) || | 
|  | PageHWPoison(page)) | 
|  | goto skip; | 
|  | if (!trylock_page(page)) | 
|  | goto skip; | 
|  |  | 
|  | if (page->mapping != mapping || !PageUptodate(page)) | 
|  | goto unlock; | 
|  |  | 
|  | max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); | 
|  | if (page->index >= max_idx) | 
|  | goto unlock; | 
|  |  | 
|  | if (file->f_ra.mmap_miss > 0) | 
|  | file->f_ra.mmap_miss--; | 
|  |  | 
|  | vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; | 
|  | if (vmf->pte) | 
|  | vmf->pte += iter.index - last_pgoff; | 
|  | last_pgoff = iter.index; | 
|  | if (alloc_set_pte(vmf, NULL, page)) | 
|  | goto unlock; | 
|  | unlock_page(page); | 
|  | goto next; | 
|  | unlock: | 
|  | unlock_page(page); | 
|  | skip: | 
|  | put_page(page); | 
|  | next: | 
|  | /* Huge page is mapped? No need to proceed. */ | 
|  | if (pmd_trans_huge(*vmf->pmd)) | 
|  | break; | 
|  | if (iter.index == end_pgoff) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_map_pages); | 
|  |  | 
|  | int filemap_page_mkwrite(struct vm_fault *vmf) | 
|  | { | 
|  | struct page *page = vmf->page; | 
|  | struct inode *inode = file_inode(vmf->vma->vm_file); | 
|  | int ret = VM_FAULT_LOCKED; | 
|  |  | 
|  | sb_start_pagefault(inode->i_sb); | 
|  | file_update_time(vmf->vma->vm_file); | 
|  | lock_page(page); | 
|  | if (page->mapping != inode->i_mapping) { | 
|  | unlock_page(page); | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * We mark the page dirty already here so that when freeze is in | 
|  | * progress, we are guaranteed that writeback during freezing will | 
|  | * see the dirty page and writeprotect it again. | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | wait_for_stable_page(page); | 
|  | out: | 
|  | sb_end_pagefault(inode->i_sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | const struct vm_operations_struct generic_file_vm_ops = { | 
|  | .fault		= filemap_fault, | 
|  | .map_pages	= filemap_map_pages, | 
|  | .page_mkwrite	= filemap_page_mkwrite, | 
|  | }; | 
|  |  | 
|  | /* This is used for a general mmap of a disk file */ | 
|  |  | 
|  | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | if (!mapping->a_ops->readpage) | 
|  | return -ENOEXEC; | 
|  | file_accessed(file); | 
|  | vma->vm_ops = &generic_file_vm_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is for filesystems which do not implement ->writepage. | 
|  | */ | 
|  | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | 
|  | return -EINVAL; | 
|  | return generic_file_mmap(file, vma); | 
|  | } | 
|  | #else | 
|  | int filemap_page_mkwrite(struct vm_fault *vmf) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | EXPORT_SYMBOL(filemap_page_mkwrite); | 
|  | EXPORT_SYMBOL(generic_file_mmap); | 
|  | EXPORT_SYMBOL(generic_file_readonly_mmap); | 
|  |  | 
|  | static struct page *wait_on_page_read(struct page *page) | 
|  | { | 
|  | if (!IS_ERR(page)) { | 
|  | wait_on_page_locked(page); | 
|  | if (!PageUptodate(page)) { | 
|  | put_page(page); | 
|  | page = ERR_PTR(-EIO); | 
|  | } | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *do_read_cache_page(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | int (*filler)(void *, struct page *), | 
|  | void *data, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct page *page; | 
|  | int err; | 
|  | repeat: | 
|  | page = find_get_page(mapping, index); | 
|  | if (!page) { | 
|  | page = __page_cache_alloc(gfp); | 
|  | if (!page) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | err = add_to_page_cache_lru(page, mapping, index, gfp); | 
|  | if (unlikely(err)) { | 
|  | put_page(page); | 
|  | if (err == -EEXIST) | 
|  | goto repeat; | 
|  | /* Presumably ENOMEM for radix tree node */ | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | filler: | 
|  | err = filler(data, page); | 
|  | if (err < 0) { | 
|  | put_page(page); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | page = wait_on_page_read(page); | 
|  | if (IS_ERR(page)) | 
|  | return page; | 
|  | goto out; | 
|  | } | 
|  | if (PageUptodate(page)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Page is not up to date and may be locked due one of the following | 
|  | * case a: Page is being filled and the page lock is held | 
|  | * case b: Read/write error clearing the page uptodate status | 
|  | * case c: Truncation in progress (page locked) | 
|  | * case d: Reclaim in progress | 
|  | * | 
|  | * Case a, the page will be up to date when the page is unlocked. | 
|  | *    There is no need to serialise on the page lock here as the page | 
|  | *    is pinned so the lock gives no additional protection. Even if the | 
|  | *    the page is truncated, the data is still valid if PageUptodate as | 
|  | *    it's a race vs truncate race. | 
|  | * Case b, the page will not be up to date | 
|  | * Case c, the page may be truncated but in itself, the data may still | 
|  | *    be valid after IO completes as it's a read vs truncate race. The | 
|  | *    operation must restart if the page is not uptodate on unlock but | 
|  | *    otherwise serialising on page lock to stabilise the mapping gives | 
|  | *    no additional guarantees to the caller as the page lock is | 
|  | *    released before return. | 
|  | * Case d, similar to truncation. If reclaim holds the page lock, it | 
|  | *    will be a race with remove_mapping that determines if the mapping | 
|  | *    is valid on unlock but otherwise the data is valid and there is | 
|  | *    no need to serialise with page lock. | 
|  | * | 
|  | * As the page lock gives no additional guarantee, we optimistically | 
|  | * wait on the page to be unlocked and check if it's up to date and | 
|  | * use the page if it is. Otherwise, the page lock is required to | 
|  | * distinguish between the different cases. The motivation is that we | 
|  | * avoid spurious serialisations and wakeups when multiple processes | 
|  | * wait on the same page for IO to complete. | 
|  | */ | 
|  | wait_on_page_locked(page); | 
|  | if (PageUptodate(page)) | 
|  | goto out; | 
|  |  | 
|  | /* Distinguish between all the cases under the safety of the lock */ | 
|  | lock_page(page); | 
|  |  | 
|  | /* Case c or d, restart the operation */ | 
|  | if (!page->mapping) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Someone else locked and filled the page in a very small window */ | 
|  | if (PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | goto out; | 
|  | } | 
|  | goto filler; | 
|  |  | 
|  | out: | 
|  | mark_page_accessed(page); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_cache_page - read into page cache, fill it if needed | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @filler:	function to perform the read | 
|  | * @data:	first arg to filler(data, page) function, often left as NULL | 
|  | * | 
|  | * Read into the page cache. If a page already exists, and PageUptodate() is | 
|  | * not set, try to fill the page and wait for it to become unlocked. | 
|  | * | 
|  | * If the page does not get brought uptodate, return -EIO. | 
|  | */ | 
|  | struct page *read_cache_page(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | int (*filler)(void *, struct page *), | 
|  | void *data) | 
|  | { | 
|  | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); | 
|  | } | 
|  | EXPORT_SYMBOL(read_cache_page); | 
|  |  | 
|  | /** | 
|  | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @gfp:	the page allocator flags to use if allocating | 
|  | * | 
|  | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | 
|  | * any new page allocations done using the specified allocation flags. | 
|  | * | 
|  | * If the page does not get brought uptodate, return -EIO. | 
|  | */ | 
|  | struct page *read_cache_page_gfp(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | gfp_t gfp) | 
|  | { | 
|  | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | 
|  |  | 
|  | return do_read_cache_page(mapping, index, filler, NULL, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(read_cache_page_gfp); | 
|  |  | 
|  | /* | 
|  | * Performs necessary checks before doing a write | 
|  | * | 
|  | * Can adjust writing position or amount of bytes to write. | 
|  | * Returns appropriate error code that caller should return or | 
|  | * zero in case that write should be allowed. | 
|  | */ | 
|  | inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | unsigned long limit = rlimit(RLIMIT_FSIZE); | 
|  | loff_t pos; | 
|  |  | 
|  | if (!iov_iter_count(from)) | 
|  | return 0; | 
|  |  | 
|  | /* FIXME: this is for backwards compatibility with 2.4 */ | 
|  | if (iocb->ki_flags & IOCB_APPEND) | 
|  | iocb->ki_pos = i_size_read(inode); | 
|  |  | 
|  | pos = iocb->ki_pos; | 
|  |  | 
|  | if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (limit != RLIM_INFINITY) { | 
|  | if (iocb->ki_pos >= limit) { | 
|  | send_sig(SIGXFSZ, current, 0); | 
|  | return -EFBIG; | 
|  | } | 
|  | iov_iter_truncate(from, limit - (unsigned long)pos); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * LFS rule | 
|  | */ | 
|  | if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && | 
|  | !(file->f_flags & O_LARGEFILE))) { | 
|  | if (pos >= MAX_NON_LFS) | 
|  | return -EFBIG; | 
|  | iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Are we about to exceed the fs block limit ? | 
|  | * | 
|  | * If we have written data it becomes a short write.  If we have | 
|  | * exceeded without writing data we send a signal and return EFBIG. | 
|  | * Linus frestrict idea will clean these up nicely.. | 
|  | */ | 
|  | if (unlikely(pos >= inode->i_sb->s_maxbytes)) | 
|  | return -EFBIG; | 
|  |  | 
|  | iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); | 
|  | return iov_iter_count(from); | 
|  | } | 
|  | EXPORT_SYMBOL(generic_write_checks); | 
|  |  | 
|  | int pagecache_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | const struct address_space_operations *aops = mapping->a_ops; | 
|  |  | 
|  | return aops->write_begin(file, mapping, pos, len, flags, | 
|  | pagep, fsdata); | 
|  | } | 
|  | EXPORT_SYMBOL(pagecache_write_begin); | 
|  |  | 
|  | int pagecache_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | const struct address_space_operations *aops = mapping->a_ops; | 
|  |  | 
|  | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); | 
|  | } | 
|  | EXPORT_SYMBOL(pagecache_write_end); | 
|  |  | 
|  | ssize_t | 
|  | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file	*file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode	*inode = mapping->host; | 
|  | loff_t		pos = iocb->ki_pos; | 
|  | ssize_t		written; | 
|  | size_t		write_len; | 
|  | pgoff_t		end; | 
|  |  | 
|  | write_len = iov_iter_count(from); | 
|  | end = (pos + write_len - 1) >> PAGE_SHIFT; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | /* If there are pages to writeback, return */ | 
|  | if (filemap_range_has_page(inode->i_mapping, pos, | 
|  | pos + iov_iter_count(from))) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | written = filemap_write_and_wait_range(mapping, pos, | 
|  | pos + write_len - 1); | 
|  | if (written) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a write we want buffered reads to be sure to go to disk to get | 
|  | * the new data.  We invalidate clean cached page from the region we're | 
|  | * about to write.  We do this *before* the write so that we can return | 
|  | * without clobbering -EIOCBQUEUED from ->direct_IO(). | 
|  | */ | 
|  | written = invalidate_inode_pages2_range(mapping, | 
|  | pos >> PAGE_SHIFT, end); | 
|  | /* | 
|  | * If a page can not be invalidated, return 0 to fall back | 
|  | * to buffered write. | 
|  | */ | 
|  | if (written) { | 
|  | if (written == -EBUSY) | 
|  | return 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | written = mapping->a_ops->direct_IO(iocb, from); | 
|  |  | 
|  | /* | 
|  | * Finally, try again to invalidate clean pages which might have been | 
|  | * cached by non-direct readahead, or faulted in by get_user_pages() | 
|  | * if the source of the write was an mmap'ed region of the file | 
|  | * we're writing.  Either one is a pretty crazy thing to do, | 
|  | * so we don't support it 100%.  If this invalidation | 
|  | * fails, tough, the write still worked... | 
|  | * | 
|  | * Most of the time we do not need this since dio_complete() will do | 
|  | * the invalidation for us. However there are some file systems that | 
|  | * do not end up with dio_complete() being called, so let's not break | 
|  | * them by removing it completely | 
|  | */ | 
|  | if (mapping->nrpages) | 
|  | invalidate_inode_pages2_range(mapping, | 
|  | pos >> PAGE_SHIFT, end); | 
|  |  | 
|  | if (written > 0) { | 
|  | pos += written; | 
|  | write_len -= written; | 
|  | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | 
|  | i_size_write(inode, pos); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  | iocb->ki_pos = pos; | 
|  | } | 
|  | iov_iter_revert(from, write_len - iov_iter_count(from)); | 
|  | out: | 
|  | return written; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_direct_write); | 
|  |  | 
|  | /* | 
|  | * Find or create a page at the given pagecache position. Return the locked | 
|  | * page. This function is specifically for buffered writes. | 
|  | */ | 
|  | struct page *grab_cache_page_write_begin(struct address_space *mapping, | 
|  | pgoff_t index, unsigned flags) | 
|  | { | 
|  | struct page *page; | 
|  | int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; | 
|  |  | 
|  | if (flags & AOP_FLAG_NOFS) | 
|  | fgp_flags |= FGP_NOFS; | 
|  |  | 
|  | page = pagecache_get_page(mapping, index, fgp_flags, | 
|  | mapping_gfp_mask(mapping)); | 
|  | if (page) | 
|  | wait_for_stable_page(page); | 
|  |  | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(grab_cache_page_write_begin); | 
|  |  | 
|  | ssize_t generic_perform_write(struct file *file, | 
|  | struct iov_iter *i, loff_t pos) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | const struct address_space_operations *a_ops = mapping->a_ops; | 
|  | long status = 0; | 
|  | ssize_t written = 0; | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | do { | 
|  | struct page *page; | 
|  | unsigned long offset;	/* Offset into pagecache page */ | 
|  | unsigned long bytes;	/* Bytes to write to page */ | 
|  | size_t copied;		/* Bytes copied from user */ | 
|  | void *fsdata; | 
|  |  | 
|  | offset = (pos & (PAGE_SIZE - 1)); | 
|  | bytes = min_t(unsigned long, PAGE_SIZE - offset, | 
|  | iov_iter_count(i)); | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * Bring in the user page that we will copy from _first_. | 
|  | * Otherwise there's a nasty deadlock on copying from the | 
|  | * same page as we're writing to, without it being marked | 
|  | * up-to-date. | 
|  | * | 
|  | * Not only is this an optimisation, but it is also required | 
|  | * to check that the address is actually valid, when atomic | 
|  | * usercopies are used, below. | 
|  | */ | 
|  | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | 
|  | status = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | status = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | status = a_ops->write_begin(file, mapping, pos, bytes, flags, | 
|  | &page, &fsdata); | 
|  | if (unlikely(status < 0)) | 
|  | break; | 
|  |  | 
|  | if (mapping_writably_mapped(mapping)) | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | status = a_ops->write_end(file, mapping, pos, bytes, copied, | 
|  | page, fsdata); | 
|  | if (unlikely(status < 0)) | 
|  | break; | 
|  | copied = status; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | iov_iter_advance(i, copied); | 
|  | if (unlikely(copied == 0)) { | 
|  | /* | 
|  | * If we were unable to copy any data at all, we must | 
|  | * fall back to a single segment length write. | 
|  | * | 
|  | * If we didn't fallback here, we could livelock | 
|  | * because not all segments in the iov can be copied at | 
|  | * once without a pagefault. | 
|  | */ | 
|  | bytes = min_t(unsigned long, PAGE_SIZE - offset, | 
|  | iov_iter_single_seg_count(i)); | 
|  | goto again; | 
|  | } | 
|  | pos += copied; | 
|  | written += copied; | 
|  |  | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | } while (iov_iter_count(i)); | 
|  |  | 
|  | return written ? written : status; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_perform_write); | 
|  |  | 
|  | /** | 
|  | * __generic_file_write_iter - write data to a file | 
|  | * @iocb:	IO state structure (file, offset, etc.) | 
|  | * @from:	iov_iter with data to write | 
|  | * | 
|  | * This function does all the work needed for actually writing data to a | 
|  | * file. It does all basic checks, removes SUID from the file, updates | 
|  | * modification times and calls proper subroutines depending on whether we | 
|  | * do direct IO or a standard buffered write. | 
|  | * | 
|  | * It expects i_mutex to be grabbed unless we work on a block device or similar | 
|  | * object which does not need locking at all. | 
|  | * | 
|  | * This function does *not* take care of syncing data in case of O_SYNC write. | 
|  | * A caller has to handle it. This is mainly due to the fact that we want to | 
|  | * avoid syncing under i_mutex. | 
|  | */ | 
|  | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space * mapping = file->f_mapping; | 
|  | struct inode 	*inode = mapping->host; | 
|  | ssize_t		written = 0; | 
|  | ssize_t		err; | 
|  | ssize_t		status; | 
|  |  | 
|  | /* We can write back this queue in page reclaim */ | 
|  | current->backing_dev_info = inode_to_bdi(inode); | 
|  | err = file_remove_privs(file); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = file_update_time(file); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_DIRECT) { | 
|  | loff_t pos, endbyte; | 
|  |  | 
|  | written = generic_file_direct_write(iocb, from); | 
|  | /* | 
|  | * If the write stopped short of completing, fall back to | 
|  | * buffered writes.  Some filesystems do this for writes to | 
|  | * holes, for example.  For DAX files, a buffered write will | 
|  | * not succeed (even if it did, DAX does not handle dirty | 
|  | * page-cache pages correctly). | 
|  | */ | 
|  | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) | 
|  | goto out; | 
|  |  | 
|  | status = generic_perform_write(file, from, pos = iocb->ki_pos); | 
|  | /* | 
|  | * If generic_perform_write() returned a synchronous error | 
|  | * then we want to return the number of bytes which were | 
|  | * direct-written, or the error code if that was zero.  Note | 
|  | * that this differs from normal direct-io semantics, which | 
|  | * will return -EFOO even if some bytes were written. | 
|  | */ | 
|  | if (unlikely(status < 0)) { | 
|  | err = status; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * We need to ensure that the page cache pages are written to | 
|  | * disk and invalidated to preserve the expected O_DIRECT | 
|  | * semantics. | 
|  | */ | 
|  | endbyte = pos + status - 1; | 
|  | err = filemap_write_and_wait_range(mapping, pos, endbyte); | 
|  | if (err == 0) { | 
|  | iocb->ki_pos = endbyte + 1; | 
|  | written += status; | 
|  | invalidate_mapping_pages(mapping, | 
|  | pos >> PAGE_SHIFT, | 
|  | endbyte >> PAGE_SHIFT); | 
|  | } else { | 
|  | /* | 
|  | * We don't know how much we wrote, so just return | 
|  | * the number of bytes which were direct-written | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | written = generic_perform_write(file, from, iocb->ki_pos); | 
|  | if (likely(written > 0)) | 
|  | iocb->ki_pos += written; | 
|  | } | 
|  | out: | 
|  | current->backing_dev_info = NULL; | 
|  | return written ? written : err; | 
|  | } | 
|  | EXPORT_SYMBOL(__generic_file_write_iter); | 
|  |  | 
|  | /** | 
|  | * generic_file_write_iter - write data to a file | 
|  | * @iocb:	IO state structure | 
|  | * @from:	iov_iter with data to write | 
|  | * | 
|  | * This is a wrapper around __generic_file_write_iter() to be used by most | 
|  | * filesystems. It takes care of syncing the file in case of O_SYNC file | 
|  | * and acquires i_mutex as needed. | 
|  | */ | 
|  | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | ssize_t ret; | 
|  |  | 
|  | inode_lock(inode); | 
|  | ret = generic_write_checks(iocb, from); | 
|  | if (ret > 0) | 
|  | ret = __generic_file_write_iter(iocb, from); | 
|  | inode_unlock(inode); | 
|  |  | 
|  | if (ret > 0) | 
|  | ret = generic_write_sync(iocb, ret); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_write_iter); | 
|  |  | 
|  | /** | 
|  | * try_to_release_page() - release old fs-specific metadata on a page | 
|  | * | 
|  | * @page: the page which the kernel is trying to free | 
|  | * @gfp_mask: memory allocation flags (and I/O mode) | 
|  | * | 
|  | * The address_space is to try to release any data against the page | 
|  | * (presumably at page->private).  If the release was successful, return '1'. | 
|  | * Otherwise return zero. | 
|  | * | 
|  | * This may also be called if PG_fscache is set on a page, indicating that the | 
|  | * page is known to the local caching routines. | 
|  | * | 
|  | * The @gfp_mask argument specifies whether I/O may be performed to release | 
|  | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). | 
|  | * | 
|  | */ | 
|  | int try_to_release_page(struct page *page, gfp_t gfp_mask) | 
|  | { | 
|  | struct address_space * const mapping = page->mapping; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | if (PageWriteback(page)) | 
|  | return 0; | 
|  |  | 
|  | if (mapping && mapping->a_ops->releasepage) | 
|  | return mapping->a_ops->releasepage(page, gfp_mask); | 
|  | return try_to_free_buffers(page); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(try_to_release_page); |