| // SPDX-License-Identifier: GPL-2.0 |
| |
| //! Operating performance points. |
| //! |
| //! This module provides rust abstractions for interacting with the OPP subsystem. |
| //! |
| //! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h) |
| //! |
| //! Reference: <https://docs.kernel.org/power/opp.html> |
| |
| use crate::{ |
| clk::Hertz, |
| cpumask::{Cpumask, CpumaskVar}, |
| device::Device, |
| error::{code::*, from_err_ptr, from_result, to_result, Error, Result, VTABLE_DEFAULT_ERROR}, |
| ffi::c_ulong, |
| prelude::*, |
| str::CString, |
| types::{ARef, AlwaysRefCounted, Opaque}, |
| }; |
| |
| #[cfg(CONFIG_CPU_FREQ)] |
| /// Frequency table implementation. |
| mod freq { |
| use super::*; |
| use crate::cpufreq; |
| use core::ops::Deref; |
| |
| /// OPP frequency table. |
| /// |
| /// A [`cpufreq::Table`] created from [`Table`]. |
| pub struct FreqTable { |
| dev: ARef<Device>, |
| ptr: *mut bindings::cpufreq_frequency_table, |
| } |
| |
| impl FreqTable { |
| /// Creates a new instance of [`FreqTable`] from [`Table`]. |
| pub(crate) fn new(table: &Table) -> Result<Self> { |
| let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut(); |
| |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { |
| bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr) |
| })?; |
| |
| Ok(Self { |
| dev: table.dev.clone(), |
| ptr, |
| }) |
| } |
| |
| /// Returns a reference to the underlying [`cpufreq::Table`]. |
| #[inline] |
| fn table(&self) -> &cpufreq::Table { |
| // SAFETY: The `ptr` is guaranteed by the C code to be valid. |
| unsafe { cpufreq::Table::from_raw(self.ptr) } |
| } |
| } |
| |
| impl Deref for FreqTable { |
| type Target = cpufreq::Table; |
| |
| #[inline] |
| fn deref(&self) -> &Self::Target { |
| self.table() |
| } |
| } |
| |
| impl Drop for FreqTable { |
| fn drop(&mut self) { |
| // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only |
| // freed here. |
| unsafe { |
| bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw()) |
| }; |
| } |
| } |
| } |
| |
| #[cfg(CONFIG_CPU_FREQ)] |
| pub use freq::FreqTable; |
| |
| use core::{marker::PhantomData, ptr}; |
| |
| use macros::vtable; |
| |
| /// Creates a null-terminated slice of pointers to [`Cstring`]s. |
| fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> { |
| // Allocated a null-terminated vector of pointers. |
| let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?; |
| |
| for name in names.iter() { |
| list.push(name.as_ptr() as _, GFP_KERNEL)?; |
| } |
| |
| list.push(ptr::null(), GFP_KERNEL)?; |
| Ok(list) |
| } |
| |
| /// The voltage unit. |
| /// |
| /// Represents voltage in microvolts, wrapping a [`c_ulong`] value. |
| /// |
| /// ## Examples |
| /// |
| /// ``` |
| /// use kernel::opp::MicroVolt; |
| /// |
| /// let raw = 90500; |
| /// let volt = MicroVolt(raw); |
| /// |
| /// assert_eq!(usize::from(volt), raw); |
| /// assert_eq!(volt, MicroVolt(raw)); |
| /// ``` |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] |
| pub struct MicroVolt(pub c_ulong); |
| |
| impl From<MicroVolt> for c_ulong { |
| #[inline] |
| fn from(volt: MicroVolt) -> Self { |
| volt.0 |
| } |
| } |
| |
| /// The power unit. |
| /// |
| /// Represents power in microwatts, wrapping a [`c_ulong`] value. |
| /// |
| /// ## Examples |
| /// |
| /// ``` |
| /// use kernel::opp::MicroWatt; |
| /// |
| /// let raw = 1000000; |
| /// let power = MicroWatt(raw); |
| /// |
| /// assert_eq!(usize::from(power), raw); |
| /// assert_eq!(power, MicroWatt(raw)); |
| /// ``` |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] |
| pub struct MicroWatt(pub c_ulong); |
| |
| impl From<MicroWatt> for c_ulong { |
| #[inline] |
| fn from(power: MicroWatt) -> Self { |
| power.0 |
| } |
| } |
| |
| /// Handle for a dynamically created [`OPP`]. |
| /// |
| /// The associated [`OPP`] is automatically removed when the [`Token`] is dropped. |
| /// |
| /// ## Examples |
| /// |
| /// The following example demonstrates how to create an [`OPP`] dynamically. |
| /// |
| /// ``` |
| /// use kernel::clk::Hertz; |
| /// use kernel::device::Device; |
| /// use kernel::error::Result; |
| /// use kernel::opp::{Data, MicroVolt, Token}; |
| /// use kernel::types::ARef; |
| /// |
| /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> { |
| /// let data = Data::new(freq, volt, level, false); |
| /// |
| /// // OPP is removed once token goes out of scope. |
| /// data.add_opp(dev) |
| /// } |
| /// ``` |
| pub struct Token { |
| dev: ARef<Device>, |
| freq: Hertz, |
| } |
| |
| impl Token { |
| /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop. |
| fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?; |
| Ok(Self { |
| dev: dev.clone(), |
| freq: data.freq(), |
| }) |
| } |
| } |
| |
| impl Drop for Token { |
| fn drop(&mut self) { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) }; |
| } |
| } |
| |
| /// OPP data. |
| /// |
| /// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance |
| /// points (OPPs) dynamically. |
| /// |
| /// ## Examples |
| /// |
| /// The following example demonstrates how to create an [`OPP`] with [`Data`]. |
| /// |
| /// ``` |
| /// use kernel::clk::Hertz; |
| /// use kernel::device::Device; |
| /// use kernel::error::Result; |
| /// use kernel::opp::{Data, MicroVolt, Token}; |
| /// use kernel::types::ARef; |
| /// |
| /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> { |
| /// let data = Data::new(freq, volt, level, false); |
| /// |
| /// // OPP is removed once token goes out of scope. |
| /// data.add_opp(dev) |
| /// } |
| /// ``` |
| #[repr(transparent)] |
| pub struct Data(bindings::dev_pm_opp_data); |
| |
| impl Data { |
| /// Creates a new instance of [`Data`]. |
| /// |
| /// This can be used to define a dynamic OPP to be added to a device. |
| pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self { |
| Self(bindings::dev_pm_opp_data { |
| turbo, |
| freq: freq.into(), |
| u_volt: volt.into(), |
| level, |
| }) |
| } |
| |
| /// Adds an [`OPP`] dynamically. |
| /// |
| /// Returns a [`Token`] that ensures the OPP is automatically removed |
| /// when it goes out of scope. |
| #[inline] |
| pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> { |
| Token::new(dev, self) |
| } |
| |
| /// Returns the frequency associated with this OPP data. |
| #[inline] |
| fn freq(&self) -> Hertz { |
| Hertz(self.0.freq) |
| } |
| } |
| |
| /// [`OPP`] search options. |
| /// |
| /// ## Examples |
| /// |
| /// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency. |
| /// |
| /// ``` |
| /// use kernel::clk::Hertz; |
| /// use kernel::error::Result; |
| /// use kernel::opp::{OPP, SearchType, Table}; |
| /// use kernel::types::ARef; |
| /// |
| /// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> { |
| /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; |
| /// |
| /// pr_info!("OPP frequency is: {:?}\n", opp.freq(None)); |
| /// pr_info!("OPP voltage is: {:?}\n", opp.voltage()); |
| /// pr_info!("OPP level is: {}\n", opp.level()); |
| /// pr_info!("OPP power is: {:?}\n", opp.power()); |
| /// |
| /// Ok(opp) |
| /// } |
| /// ``` |
| #[derive(Copy, Clone, Debug, Eq, PartialEq)] |
| pub enum SearchType { |
| /// Match the exact frequency. |
| Exact, |
| /// Find the highest frequency less than or equal to the given value. |
| Floor, |
| /// Find the lowest frequency greater than or equal to the given value. |
| Ceil, |
| } |
| |
| /// OPP configuration callbacks. |
| /// |
| /// Implement this trait to customize OPP clock and regulator setup for your device. |
| #[vtable] |
| pub trait ConfigOps { |
| /// This is typically used to scale clocks when transitioning between OPPs. |
| #[inline] |
| fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result { |
| build_error!(VTABLE_DEFAULT_ERROR) |
| } |
| |
| /// This provides access to the old and new OPPs, allowing for safe regulator adjustments. |
| #[inline] |
| fn config_regulators( |
| _dev: &Device, |
| _opp_old: &OPP, |
| _opp_new: &OPP, |
| _data: *mut *mut bindings::regulator, |
| _count: u32, |
| ) -> Result { |
| build_error!(VTABLE_DEFAULT_ERROR) |
| } |
| } |
| |
| /// OPP configuration token. |
| /// |
| /// Returned by the OPP core when configuration is applied to a [`Device`]. The associated |
| /// configuration is automatically cleared when the token is dropped. |
| pub struct ConfigToken(i32); |
| |
| impl Drop for ConfigToken { |
| fn drop(&mut self) { |
| // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`. |
| unsafe { bindings::dev_pm_opp_clear_config(self.0) }; |
| } |
| } |
| |
| /// OPP configurations. |
| /// |
| /// Rust abstraction for the C `struct dev_pm_opp_config`. |
| /// |
| /// ## Examples |
| /// |
| /// The following example demonstrates how to set OPP property-name configuration for a [`Device`]. |
| /// |
| /// ``` |
| /// use kernel::device::Device; |
| /// use kernel::error::Result; |
| /// use kernel::opp::{Config, ConfigOps, ConfigToken}; |
| /// use kernel::str::CString; |
| /// use kernel::types::ARef; |
| /// use kernel::macros::vtable; |
| /// |
| /// #[derive(Default)] |
| /// struct Driver; |
| /// |
| /// #[vtable] |
| /// impl ConfigOps for Driver {} |
| /// |
| /// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> { |
| /// let name = CString::try_from_fmt(fmt!("{}", "slow"))?; |
| /// |
| /// // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope. |
| /// Config::<Driver>::new() |
| /// .set_prop_name(name)? |
| /// .set(dev) |
| /// } |
| /// ``` |
| #[derive(Default)] |
| pub struct Config<T: ConfigOps> |
| where |
| T: Default, |
| { |
| clk_names: Option<KVec<CString>>, |
| prop_name: Option<CString>, |
| regulator_names: Option<KVec<CString>>, |
| supported_hw: Option<KVec<u32>>, |
| |
| // Tuple containing (required device, index) |
| required_dev: Option<(ARef<Device>, u32)>, |
| _data: PhantomData<T>, |
| } |
| |
| impl<T: ConfigOps + Default> Config<T> { |
| /// Creates a new instance of [`Config`]. |
| #[inline] |
| pub fn new() -> Self { |
| Self::default() |
| } |
| |
| /// Initializes clock names. |
| pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> { |
| if self.clk_names.is_some() { |
| return Err(EBUSY); |
| } |
| |
| if names.is_empty() { |
| return Err(EINVAL); |
| } |
| |
| self.clk_names = Some(names); |
| Ok(self) |
| } |
| |
| /// Initializes property name. |
| pub fn set_prop_name(mut self, name: CString) -> Result<Self> { |
| if self.prop_name.is_some() { |
| return Err(EBUSY); |
| } |
| |
| self.prop_name = Some(name); |
| Ok(self) |
| } |
| |
| /// Initializes regulator names. |
| pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> { |
| if self.regulator_names.is_some() { |
| return Err(EBUSY); |
| } |
| |
| if names.is_empty() { |
| return Err(EINVAL); |
| } |
| |
| self.regulator_names = Some(names); |
| |
| Ok(self) |
| } |
| |
| /// Initializes required devices. |
| pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> { |
| if self.required_dev.is_some() { |
| return Err(EBUSY); |
| } |
| |
| self.required_dev = Some((dev, index)); |
| Ok(self) |
| } |
| |
| /// Initializes supported hardware. |
| pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> { |
| if self.supported_hw.is_some() { |
| return Err(EBUSY); |
| } |
| |
| if hw.is_empty() { |
| return Err(EINVAL); |
| } |
| |
| self.supported_hw = Some(hw); |
| Ok(self) |
| } |
| |
| /// Sets the configuration with the OPP core. |
| /// |
| /// The returned [`ConfigToken`] will remove the configuration when dropped. |
| pub fn set(self, dev: &Device) -> Result<ConfigToken> { |
| let (_clk_list, clk_names) = match &self.clk_names { |
| Some(x) => { |
| let list = to_c_str_array(x)?; |
| let ptr = list.as_ptr(); |
| (Some(list), ptr) |
| } |
| None => (None, ptr::null()), |
| }; |
| |
| let (_regulator_list, regulator_names) = match &self.regulator_names { |
| Some(x) => { |
| let list = to_c_str_array(x)?; |
| let ptr = list.as_ptr(); |
| (Some(list), ptr) |
| } |
| None => (None, ptr::null()), |
| }; |
| |
| let prop_name = self |
| .prop_name |
| .as_ref() |
| .map_or(ptr::null(), |p| p.as_char_ptr()); |
| |
| let (supported_hw, supported_hw_count) = self |
| .supported_hw |
| .as_ref() |
| .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32)); |
| |
| let (required_dev, required_dev_index) = self |
| .required_dev |
| .as_ref() |
| .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx)); |
| |
| let mut config = bindings::dev_pm_opp_config { |
| clk_names, |
| config_clks: if T::HAS_CONFIG_CLKS { |
| Some(Self::config_clks) |
| } else { |
| None |
| }, |
| prop_name, |
| regulator_names, |
| config_regulators: if T::HAS_CONFIG_REGULATORS { |
| Some(Self::config_regulators) |
| } else { |
| None |
| }, |
| supported_hw, |
| supported_hw_count, |
| |
| required_dev, |
| required_dev_index, |
| }; |
| |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. The OPP core guarantees not to access fields of [`Config`] after this call |
| // and so we don't need to save a copy of them for future use. |
| let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) }; |
| if ret < 0 { |
| Err(Error::from_errno(ret)) |
| } else { |
| Ok(ConfigToken(ret)) |
| } |
| } |
| |
| /// Config's clk callback. |
| /// |
| /// SAFETY: Called from C. Inputs must be valid pointers. |
| extern "C" fn config_clks( |
| dev: *mut bindings::device, |
| opp_table: *mut bindings::opp_table, |
| opp: *mut bindings::dev_pm_opp, |
| _data: *mut kernel::ffi::c_void, |
| scaling_down: bool, |
| ) -> kernel::ffi::c_int { |
| from_result(|| { |
| // SAFETY: 'dev' is guaranteed by the C code to be valid. |
| let dev = unsafe { Device::get_device(dev) }; |
| T::config_clks( |
| &dev, |
| // SAFETY: 'opp_table' is guaranteed by the C code to be valid. |
| &unsafe { Table::from_raw_table(opp_table, &dev) }, |
| // SAFETY: 'opp' is guaranteed by the C code to be valid. |
| unsafe { OPP::from_raw_opp(opp)? }, |
| scaling_down, |
| ) |
| .map(|()| 0) |
| }) |
| } |
| |
| /// Config's regulator callback. |
| /// |
| /// SAFETY: Called from C. Inputs must be valid pointers. |
| extern "C" fn config_regulators( |
| dev: *mut bindings::device, |
| old_opp: *mut bindings::dev_pm_opp, |
| new_opp: *mut bindings::dev_pm_opp, |
| regulators: *mut *mut bindings::regulator, |
| count: kernel::ffi::c_uint, |
| ) -> kernel::ffi::c_int { |
| from_result(|| { |
| // SAFETY: 'dev' is guaranteed by the C code to be valid. |
| let dev = unsafe { Device::get_device(dev) }; |
| T::config_regulators( |
| &dev, |
| // SAFETY: 'old_opp' is guaranteed by the C code to be valid. |
| unsafe { OPP::from_raw_opp(old_opp)? }, |
| // SAFETY: 'new_opp' is guaranteed by the C code to be valid. |
| unsafe { OPP::from_raw_opp(new_opp)? }, |
| regulators, |
| count, |
| ) |
| .map(|()| 0) |
| }) |
| } |
| } |
| |
| /// A reference-counted OPP table. |
| /// |
| /// Rust abstraction for the C `struct opp_table`. |
| /// |
| /// # Invariants |
| /// |
| /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`]. |
| /// |
| /// Instances of this type are reference-counted. |
| /// |
| /// ## Examples |
| /// |
| /// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its |
| /// frequency. |
| /// |
| /// ``` |
| /// # #![cfg(CONFIG_OF)] |
| /// use kernel::clk::Hertz; |
| /// use kernel::cpumask::Cpumask; |
| /// use kernel::device::Device; |
| /// use kernel::error::Result; |
| /// use kernel::opp::Table; |
| /// use kernel::types::ARef; |
| /// |
| /// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> { |
| /// let mut opp_table = Table::from_of_cpumask(dev, mask)?; |
| /// |
| /// if opp_table.opp_count()? == 0 { |
| /// return Err(EINVAL); |
| /// } |
| /// |
| /// pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns()); |
| /// pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq()); |
| /// |
| /// opp_table.set_rate(freq)?; |
| /// Ok(opp_table) |
| /// } |
| /// ``` |
| pub struct Table { |
| ptr: *mut bindings::opp_table, |
| dev: ARef<Device>, |
| #[allow(dead_code)] |
| em: bool, |
| #[allow(dead_code)] |
| of: bool, |
| cpus: Option<CpumaskVar>, |
| } |
| |
| /// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries. |
| unsafe impl Send for Table {} |
| |
| /// SAFETY: It is okay to access [`Table`] through shared references from other threads because |
| /// we're either accessing properties that don't change or that are properly synchronised by C code. |
| unsafe impl Sync for Table {} |
| |
| impl Table { |
| /// Creates a new reference-counted [`Table`] from a raw pointer. |
| /// |
| /// # Safety |
| /// |
| /// Callers must ensure that `ptr` is valid and non-null. |
| unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self { |
| // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented. |
| // |
| // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope. |
| unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) }; |
| |
| Self { |
| ptr, |
| dev: dev.clone(), |
| em: false, |
| of: false, |
| cpus: None, |
| } |
| } |
| |
| /// Creates a new reference-counted [`Table`] instance for a [`Device`]. |
| pub fn from_dev(dev: &Device) -> Result<Self> { |
| // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety |
| // requirements. |
| // |
| // INVARIANT: The reference-count is incremented by the C code and is decremented when |
| // [`Table`] goes out of scope. |
| let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?; |
| |
| Ok(Self { |
| ptr, |
| dev: dev.into(), |
| em: false, |
| of: false, |
| cpus: None, |
| }) |
| } |
| |
| /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree |
| /// entries. |
| #[cfg(CONFIG_OF)] |
| pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> { |
| // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety |
| // requirements. |
| // |
| // INVARIANT: The reference-count is incremented by the C code and is decremented when |
| // [`Table`] goes out of scope. |
| to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?; |
| |
| // Get the newly created [`Table`]. |
| let mut table = Self::from_dev(dev)?; |
| table.of = true; |
| |
| Ok(table) |
| } |
| |
| /// Remove device tree based [`Table`]. |
| #[cfg(CONFIG_OF)] |
| #[inline] |
| fn remove_of(&self) { |
| // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety |
| // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the |
| // same now. |
| unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) }; |
| } |
| |
| /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree |
| /// entries. |
| #[cfg(CONFIG_OF)] |
| pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> { |
| // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`] |
| // instance. |
| // |
| // INVARIANT: The reference-count is incremented by the C code and is decremented when |
| // [`Table`] goes out of scope. |
| to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?; |
| |
| // Fetch the newly created table. |
| let mut table = Self::from_dev(dev)?; |
| table.cpus = Some(CpumaskVar::try_clone(cpumask)?); |
| |
| Ok(table) |
| } |
| |
| /// Remove device tree based [`Table`] for a [`Cpumask`]. |
| #[cfg(CONFIG_OF)] |
| #[inline] |
| fn remove_of_cpumask(&self, cpumask: &Cpumask) { |
| // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier, |
| // it is safe to drop the same now. |
| unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) }; |
| } |
| |
| /// Returns the number of [`OPP`]s in the [`Table`]. |
| pub fn opp_count(&self) -> Result<u32> { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) }; |
| if ret < 0 { |
| Err(Error::from_errno(ret)) |
| } else { |
| Ok(ret as u32) |
| } |
| } |
| |
| /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. |
| #[inline] |
| pub fn max_clock_latency_ns(&self) -> usize { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) } |
| } |
| |
| /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. |
| #[inline] |
| pub fn max_volt_latency_ns(&self) -> usize { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) } |
| } |
| |
| /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. |
| #[inline] |
| pub fn max_transition_latency_ns(&self) -> usize { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) } |
| } |
| |
| /// Returns the suspend [`OPP`]'s frequency. |
| #[inline] |
| pub fn suspend_freq(&self) -> Hertz { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) }) |
| } |
| |
| /// Synchronizes regulators used by the [`Table`]. |
| #[inline] |
| pub fn sync_regulators(&self) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) }) |
| } |
| |
| /// Gets sharing CPUs. |
| #[inline] |
| pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) }) |
| } |
| |
| /// Sets sharing CPUs. |
| pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { |
| bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw()) |
| })?; |
| |
| if let Some(mask) = self.cpus.as_mut() { |
| // Update the cpumask as this will be used while removing the table. |
| cpumask.copy(mask); |
| } |
| |
| Ok(()) |
| } |
| |
| /// Gets sharing CPUs from device tree. |
| #[cfg(CONFIG_OF)] |
| #[inline] |
| pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { |
| bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) |
| }) |
| } |
| |
| /// Updates the voltage value for an [`OPP`]. |
| #[inline] |
| pub fn adjust_voltage( |
| &self, |
| freq: Hertz, |
| volt: MicroVolt, |
| volt_min: MicroVolt, |
| volt_max: MicroVolt, |
| ) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { |
| bindings::dev_pm_opp_adjust_voltage( |
| self.dev.as_raw(), |
| freq.into(), |
| volt.into(), |
| volt_min.into(), |
| volt_max.into(), |
| ) |
| }) |
| } |
| |
| /// Creates [`FreqTable`] from [`Table`]. |
| #[cfg(CONFIG_CPU_FREQ)] |
| #[inline] |
| pub fn cpufreq_table(&mut self) -> Result<FreqTable> { |
| FreqTable::new(self) |
| } |
| |
| /// Configures device with [`OPP`] matching the frequency value. |
| #[inline] |
| pub fn set_rate(&self, freq: Hertz) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) }) |
| } |
| |
| /// Configures device with [`OPP`]. |
| #[inline] |
| pub fn set_opp(&self, opp: &OPP) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) }) |
| } |
| |
| /// Finds [`OPP`] based on frequency. |
| pub fn opp_from_freq( |
| &self, |
| freq: Hertz, |
| available: Option<bool>, |
| index: Option<u32>, |
| stype: SearchType, |
| ) -> Result<ARef<OPP>> { |
| let raw_dev = self.dev.as_raw(); |
| let index = index.unwrap_or(0); |
| let mut rate = freq.into(); |
| |
| let ptr = from_err_ptr(match stype { |
| SearchType::Exact => { |
| if let Some(available) = available { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and |
| // its safety requirements. The returned pointer will be owned by the new |
| // [`OPP`] instance. |
| unsafe { |
| bindings::dev_pm_opp_find_freq_exact_indexed( |
| raw_dev, rate, index, available, |
| ) |
| } |
| } else { |
| return Err(EINVAL); |
| } |
| } |
| |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. The returned pointer will be owned by the new [`OPP`] instance. |
| SearchType::Ceil => unsafe { |
| bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index) |
| }, |
| |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. The returned pointer will be owned by the new [`OPP`] instance. |
| SearchType::Floor => unsafe { |
| bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index) |
| }, |
| })?; |
| |
| // SAFETY: The `ptr` is guaranteed by the C code to be valid. |
| unsafe { OPP::from_raw_opp_owned(ptr) } |
| } |
| |
| /// Finds [`OPP`] based on level. |
| pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> { |
| let raw_dev = self.dev.as_raw(); |
| |
| let ptr = from_err_ptr(match stype { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. The returned pointer will be owned by the new [`OPP`] instance. |
| SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) }, |
| |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. The returned pointer will be owned by the new [`OPP`] instance. |
| SearchType::Ceil => unsafe { |
| bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level) |
| }, |
| |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. The returned pointer will be owned by the new [`OPP`] instance. |
| SearchType::Floor => unsafe { |
| bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level) |
| }, |
| })?; |
| |
| // SAFETY: The `ptr` is guaranteed by the C code to be valid. |
| unsafe { OPP::from_raw_opp_owned(ptr) } |
| } |
| |
| /// Finds [`OPP`] based on bandwidth. |
| pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> { |
| let raw_dev = self.dev.as_raw(); |
| |
| let ptr = from_err_ptr(match stype { |
| // The OPP core doesn't support this yet. |
| SearchType::Exact => return Err(EINVAL), |
| |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. The returned pointer will be owned by the new [`OPP`] instance. |
| SearchType::Ceil => unsafe { |
| bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index) |
| }, |
| |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. The returned pointer will be owned by the new [`OPP`] instance. |
| SearchType::Floor => unsafe { |
| bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index) |
| }, |
| })?; |
| |
| // SAFETY: The `ptr` is guaranteed by the C code to be valid. |
| unsafe { OPP::from_raw_opp_owned(ptr) } |
| } |
| |
| /// Enables the [`OPP`]. |
| #[inline] |
| pub fn enable_opp(&self, freq: Hertz) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) }) |
| } |
| |
| /// Disables the [`OPP`]. |
| #[inline] |
| pub fn disable_opp(&self, freq: Hertz) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) }) |
| } |
| |
| /// Registers with the Energy model. |
| #[cfg(CONFIG_OF)] |
| pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. |
| to_result(unsafe { |
| bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw()) |
| })?; |
| |
| self.em = true; |
| Ok(()) |
| } |
| |
| /// Unregisters with the Energy model. |
| #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))] |
| #[inline] |
| fn of_unregister_em(&self) { |
| // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety |
| // requirements. We registered with the EM framework earlier, it is safe to unregister now. |
| unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) }; |
| } |
| } |
| |
| impl Drop for Table { |
| fn drop(&mut self) { |
| // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe |
| // to relinquish it now. |
| unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) }; |
| |
| #[cfg(CONFIG_OF)] |
| { |
| #[cfg(CONFIG_ENERGY_MODEL)] |
| if self.em { |
| self.of_unregister_em(); |
| } |
| |
| if self.of { |
| self.remove_of(); |
| } else if let Some(cpumask) = self.cpus.take() { |
| self.remove_of_cpumask(&cpumask); |
| } |
| } |
| } |
| } |
| |
| /// A reference-counted Operating performance point (OPP). |
| /// |
| /// Rust abstraction for the C `struct dev_pm_opp`. |
| /// |
| /// # Invariants |
| /// |
| /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`]. |
| /// |
| /// Instances of this type are reference-counted. The reference count is incremented by the |
| /// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>` |
| /// represents a pointer that owns a reference count on the [`OPP`]. |
| /// |
| /// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code. |
| /// |
| /// ## Examples |
| /// |
| /// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and |
| /// configure the device with it. |
| /// |
| /// ``` |
| /// use kernel::clk::Hertz; |
| /// use kernel::error::Result; |
| /// use kernel::opp::{SearchType, Table}; |
| /// |
| /// fn configure_opp(table: &Table, freq: Hertz) -> Result { |
| /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; |
| /// |
| /// if opp.freq(None) != freq { |
| /// return Err(EINVAL); |
| /// } |
| /// |
| /// table.set_opp(&opp) |
| /// } |
| /// ``` |
| #[repr(transparent)] |
| pub struct OPP(Opaque<bindings::dev_pm_opp>); |
| |
| /// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries. |
| unsafe impl Send for OPP {} |
| |
| /// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're |
| /// either accessing properties that don't change or that are properly synchronised by C code. |
| unsafe impl Sync for OPP {} |
| |
| /// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted. |
| unsafe impl AlwaysRefCounted for OPP { |
| fn inc_ref(&self) { |
| // SAFETY: The existence of a shared reference means that the refcount is nonzero. |
| unsafe { bindings::dev_pm_opp_get(self.0.get()) }; |
| } |
| |
| unsafe fn dec_ref(obj: ptr::NonNull<Self>) { |
| // SAFETY: The safety requirements guarantee that the refcount is nonzero. |
| unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) } |
| } |
| } |
| |
| impl OPP { |
| /// Creates an owned reference to a [`OPP`] from a valid pointer. |
| /// |
| /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the |
| /// [`ARef`] object is dropped. |
| /// |
| /// # Safety |
| /// |
| /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented. |
| /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as |
| /// the returned [`ARef`] object takes over the refcount increment on the underlying object and |
| /// the same will be dropped along with it. |
| pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> { |
| let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?; |
| |
| // SAFETY: The safety requirements guarantee the validity of the pointer. |
| // |
| // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope. |
| Ok(unsafe { ARef::from_raw(ptr.cast()) }) |
| } |
| |
| /// Creates a reference to a [`OPP`] from a valid pointer. |
| /// |
| /// The refcount is not updated by the Rust API unless the returned reference is converted to |
| /// an [`ARef`] object. |
| /// |
| /// # Safety |
| /// |
| /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`. |
| #[inline] |
| pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> { |
| // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the |
| // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`. |
| Ok(unsafe { &*ptr.cast() }) |
| } |
| |
| #[inline] |
| fn as_raw(&self) -> *mut bindings::dev_pm_opp { |
| self.0.get() |
| } |
| |
| /// Returns the frequency of an [`OPP`]. |
| pub fn freq(&self, index: Option<u32>) -> Hertz { |
| let index = index.unwrap_or(0); |
| |
| // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to |
| // use it. |
| Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) }) |
| } |
| |
| /// Returns the voltage of an [`OPP`]. |
| #[inline] |
| pub fn voltage(&self) -> MicroVolt { |
| // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to |
| // use it. |
| MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) }) |
| } |
| |
| /// Returns the level of an [`OPP`]. |
| #[inline] |
| pub fn level(&self) -> u32 { |
| // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to |
| // use it. |
| unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) } |
| } |
| |
| /// Returns the power of an [`OPP`]. |
| #[inline] |
| pub fn power(&self) -> MicroWatt { |
| // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to |
| // use it. |
| MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) }) |
| } |
| |
| /// Returns the required pstate of an [`OPP`]. |
| #[inline] |
| pub fn required_pstate(&self, index: u32) -> u32 { |
| // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to |
| // use it. |
| unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) } |
| } |
| |
| /// Returns true if the [`OPP`] is turbo. |
| #[inline] |
| pub fn is_turbo(&self) -> bool { |
| // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to |
| // use it. |
| unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) } |
| } |
| } |