| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_MINMAX_H |
| #define _LINUX_MINMAX_H |
| |
| #include <linux/build_bug.h> |
| #include <linux/compiler.h> |
| #include <linux/const.h> |
| #include <linux/types.h> |
| |
| /* |
| * min()/max()/clamp() macros must accomplish three things: |
| * |
| * - Avoid multiple evaluations of the arguments (so side-effects like |
| * "x++" happen only once) when non-constant. |
| * - Retain result as a constant expressions when called with only |
| * constant expressions (to avoid tripping VLA warnings in stack |
| * allocation usage). |
| * - Perform signed v unsigned type-checking (to generate compile |
| * errors instead of nasty runtime surprises). |
| * - Unsigned char/short are always promoted to signed int and can be |
| * compared against signed or unsigned arguments. |
| * - Unsigned arguments can be compared against non-negative signed constants. |
| * - Comparison of a signed argument against an unsigned constant fails |
| * even if the constant is below __INT_MAX__ and could be cast to int. |
| */ |
| #define __typecheck(x, y) \ |
| (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) |
| |
| /* is_signed_type() isn't a constexpr for pointer types */ |
| #define __is_signed(x) \ |
| __builtin_choose_expr(__is_constexpr(is_signed_type(typeof(x))), \ |
| is_signed_type(typeof(x)), 0) |
| |
| /* True for a non-negative signed int constant */ |
| #define __is_noneg_int(x) \ |
| (__builtin_choose_expr(__is_constexpr(x) && __is_signed(x), x, -1) >= 0) |
| |
| #define __types_ok(x, y) \ |
| (__is_signed(x) == __is_signed(y) || \ |
| __is_signed((x) + 0) == __is_signed((y) + 0) || \ |
| __is_noneg_int(x) || __is_noneg_int(y)) |
| |
| #define __cmp_op_min < |
| #define __cmp_op_max > |
| |
| #define __cmp(op, x, y) ((x) __cmp_op_##op (y) ? (x) : (y)) |
| |
| #define __cmp_once(op, x, y, unique_x, unique_y) ({ \ |
| typeof(x) unique_x = (x); \ |
| typeof(y) unique_y = (y); \ |
| static_assert(__types_ok(x, y), \ |
| #op "(" #x ", " #y ") signedness error, fix types or consider u" #op "() before " #op "_t()"); \ |
| __cmp(op, unique_x, unique_y); }) |
| |
| #define __careful_cmp(op, x, y) \ |
| __builtin_choose_expr(__is_constexpr((x) - (y)), \ |
| __cmp(op, x, y), \ |
| __cmp_once(op, x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y))) |
| |
| #define __clamp(val, lo, hi) \ |
| ((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val))) |
| |
| #define __clamp_once(val, lo, hi, unique_val, unique_lo, unique_hi) ({ \ |
| typeof(val) unique_val = (val); \ |
| typeof(lo) unique_lo = (lo); \ |
| typeof(hi) unique_hi = (hi); \ |
| static_assert(__builtin_choose_expr(__is_constexpr((lo) > (hi)), \ |
| (lo) <= (hi), true), \ |
| "clamp() low limit " #lo " greater than high limit " #hi); \ |
| static_assert(__types_ok(val, lo), "clamp() 'lo' signedness error"); \ |
| static_assert(__types_ok(val, hi), "clamp() 'hi' signedness error"); \ |
| __clamp(unique_val, unique_lo, unique_hi); }) |
| |
| #define __careful_clamp(val, lo, hi) ({ \ |
| __builtin_choose_expr(__is_constexpr((val) - (lo) + (hi)), \ |
| __clamp(val, lo, hi), \ |
| __clamp_once(val, lo, hi, __UNIQUE_ID(__val), \ |
| __UNIQUE_ID(__lo), __UNIQUE_ID(__hi))); }) |
| |
| /** |
| * min - return minimum of two values of the same or compatible types |
| * @x: first value |
| * @y: second value |
| */ |
| #define min(x, y) __careful_cmp(min, x, y) |
| |
| /** |
| * max - return maximum of two values of the same or compatible types |
| * @x: first value |
| * @y: second value |
| */ |
| #define max(x, y) __careful_cmp(max, x, y) |
| |
| /** |
| * umin - return minimum of two non-negative values |
| * Signed types are zero extended to match a larger unsigned type. |
| * @x: first value |
| * @y: second value |
| */ |
| #define umin(x, y) \ |
| __careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull) |
| |
| /** |
| * umax - return maximum of two non-negative values |
| * @x: first value |
| * @y: second value |
| */ |
| #define umax(x, y) \ |
| __careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull) |
| |
| /** |
| * min3 - return minimum of three values |
| * @x: first value |
| * @y: second value |
| * @z: third value |
| */ |
| #define min3(x, y, z) min((typeof(x))min(x, y), z) |
| |
| /** |
| * max3 - return maximum of three values |
| * @x: first value |
| * @y: second value |
| * @z: third value |
| */ |
| #define max3(x, y, z) max((typeof(x))max(x, y), z) |
| |
| /** |
| * min_not_zero - return the minimum that is _not_ zero, unless both are zero |
| * @x: value1 |
| * @y: value2 |
| */ |
| #define min_not_zero(x, y) ({ \ |
| typeof(x) __x = (x); \ |
| typeof(y) __y = (y); \ |
| __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) |
| |
| /** |
| * clamp - return a value clamped to a given range with strict typechecking |
| * @val: current value |
| * @lo: lowest allowable value |
| * @hi: highest allowable value |
| * |
| * This macro does strict typechecking of @lo/@hi to make sure they are of the |
| * same type as @val. See the unnecessary pointer comparisons. |
| */ |
| #define clamp(val, lo, hi) __careful_clamp(val, lo, hi) |
| |
| /* |
| * ..and if you can't take the strict |
| * types, you can specify one yourself. |
| * |
| * Or not use min/max/clamp at all, of course. |
| */ |
| |
| /** |
| * min_t - return minimum of two values, using the specified type |
| * @type: data type to use |
| * @x: first value |
| * @y: second value |
| */ |
| #define min_t(type, x, y) __careful_cmp(min, (type)(x), (type)(y)) |
| |
| /** |
| * max_t - return maximum of two values, using the specified type |
| * @type: data type to use |
| * @x: first value |
| * @y: second value |
| */ |
| #define max_t(type, x, y) __careful_cmp(max, (type)(x), (type)(y)) |
| |
| /* |
| * Do not check the array parameter using __must_be_array(). |
| * In the following legit use-case where the "array" passed is a simple pointer, |
| * __must_be_array() will return a failure. |
| * --- 8< --- |
| * int *buff |
| * ... |
| * min = min_array(buff, nb_items); |
| * --- 8< --- |
| * |
| * The first typeof(&(array)[0]) is needed in order to support arrays of both |
| * 'int *buff' and 'int buff[N]' types. |
| * |
| * The array can be an array of const items. |
| * typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order |
| * to discard the const qualifier for the __element variable. |
| */ |
| #define __minmax_array(op, array, len) ({ \ |
| typeof(&(array)[0]) __array = (array); \ |
| typeof(len) __len = (len); \ |
| __unqual_scalar_typeof(__array[0]) __element = __array[--__len];\ |
| while (__len--) \ |
| __element = op(__element, __array[__len]); \ |
| __element; }) |
| |
| /** |
| * min_array - return minimum of values present in an array |
| * @array: array |
| * @len: array length |
| * |
| * Note that @len must not be zero (empty array). |
| */ |
| #define min_array(array, len) __minmax_array(min, array, len) |
| |
| /** |
| * max_array - return maximum of values present in an array |
| * @array: array |
| * @len: array length |
| * |
| * Note that @len must not be zero (empty array). |
| */ |
| #define max_array(array, len) __minmax_array(max, array, len) |
| |
| /** |
| * clamp_t - return a value clamped to a given range using a given type |
| * @type: the type of variable to use |
| * @val: current value |
| * @lo: minimum allowable value |
| * @hi: maximum allowable value |
| * |
| * This macro does no typechecking and uses temporary variables of type |
| * @type to make all the comparisons. |
| */ |
| #define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi)) |
| |
| /** |
| * clamp_val - return a value clamped to a given range using val's type |
| * @val: current value |
| * @lo: minimum allowable value |
| * @hi: maximum allowable value |
| * |
| * This macro does no typechecking and uses temporary variables of whatever |
| * type the input argument @val is. This is useful when @val is an unsigned |
| * type and @lo and @hi are literals that will otherwise be assigned a signed |
| * integer type. |
| */ |
| #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) |
| |
| static inline bool in_range64(u64 val, u64 start, u64 len) |
| { |
| return (val - start) < len; |
| } |
| |
| static inline bool in_range32(u32 val, u32 start, u32 len) |
| { |
| return (val - start) < len; |
| } |
| |
| /** |
| * in_range - Determine if a value lies within a range. |
| * @val: Value to test. |
| * @start: First value in range. |
| * @len: Number of values in range. |
| * |
| * This is more efficient than "if (start <= val && val < (start + len))". |
| * It also gives a different answer if @start + @len overflows the size of |
| * the type by a sufficient amount to encompass @val. Decide for yourself |
| * which behaviour you want, or prove that start + len never overflow. |
| * Do not blindly replace one form with the other. |
| */ |
| #define in_range(val, start, len) \ |
| ((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ? \ |
| in_range32(val, start, len) : in_range64(val, start, len)) |
| |
| /** |
| * swap - swap values of @a and @b |
| * @a: first value |
| * @b: second value |
| */ |
| #define swap(a, b) \ |
| do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) |
| |
| #endif /* _LINUX_MINMAX_H */ |