| /* | 
 |  * Block multiqueue core code | 
 |  * | 
 |  * Copyright (C) 2013-2014 Jens Axboe | 
 |  * Copyright (C) 2013-2014 Christoph Hellwig | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/init.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/llist.h> | 
 | #include <linux/list_sort.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/sched/sysctl.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/prefetch.h> | 
 |  | 
 | #include <trace/events/block.h> | 
 |  | 
 | #include <linux/blk-mq.h> | 
 | #include "blk.h" | 
 | #include "blk-mq.h" | 
 | #include "blk-mq-tag.h" | 
 | #include "blk-stat.h" | 
 | #include "blk-wbt.h" | 
 |  | 
 | static DEFINE_MUTEX(all_q_mutex); | 
 | static LIST_HEAD(all_q_list); | 
 |  | 
 | /* | 
 |  * Check if any of the ctx's have pending work in this hardware queue | 
 |  */ | 
 | static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	return sbitmap_any_bit_set(&hctx->ctx_map); | 
 | } | 
 |  | 
 | /* | 
 |  * Mark this ctx as having pending work in this hardware queue | 
 |  */ | 
 | static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, | 
 | 				     struct blk_mq_ctx *ctx) | 
 | { | 
 | 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) | 
 | 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); | 
 | } | 
 |  | 
 | static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, | 
 | 				      struct blk_mq_ctx *ctx) | 
 | { | 
 | 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); | 
 | } | 
 |  | 
 | void blk_mq_freeze_queue_start(struct request_queue *q) | 
 | { | 
 | 	int freeze_depth; | 
 |  | 
 | 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth); | 
 | 	if (freeze_depth == 1) { | 
 | 		percpu_ref_kill(&q->q_usage_counter); | 
 | 		blk_mq_run_hw_queues(q, false); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); | 
 |  | 
 | static void blk_mq_freeze_queue_wait(struct request_queue *q) | 
 | { | 
 | 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); | 
 | } | 
 |  | 
 | /* | 
 |  * Guarantee no request is in use, so we can change any data structure of | 
 |  * the queue afterward. | 
 |  */ | 
 | void blk_freeze_queue(struct request_queue *q) | 
 | { | 
 | 	/* | 
 | 	 * In the !blk_mq case we are only calling this to kill the | 
 | 	 * q_usage_counter, otherwise this increases the freeze depth | 
 | 	 * and waits for it to return to zero.  For this reason there is | 
 | 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not | 
 | 	 * exported to drivers as the only user for unfreeze is blk_mq. | 
 | 	 */ | 
 | 	blk_mq_freeze_queue_start(q); | 
 | 	blk_mq_freeze_queue_wait(q); | 
 | } | 
 |  | 
 | void blk_mq_freeze_queue(struct request_queue *q) | 
 | { | 
 | 	/* | 
 | 	 * ...just an alias to keep freeze and unfreeze actions balanced | 
 | 	 * in the blk_mq_* namespace | 
 | 	 */ | 
 | 	blk_freeze_queue(q); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); | 
 |  | 
 | void blk_mq_unfreeze_queue(struct request_queue *q) | 
 | { | 
 | 	int freeze_depth; | 
 |  | 
 | 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth); | 
 | 	WARN_ON_ONCE(freeze_depth < 0); | 
 | 	if (!freeze_depth) { | 
 | 		percpu_ref_reinit(&q->q_usage_counter); | 
 | 		wake_up_all(&q->mq_freeze_wq); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); | 
 |  | 
 | /** | 
 |  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished | 
 |  * @q: request queue. | 
 |  * | 
 |  * Note: this function does not prevent that the struct request end_io() | 
 |  * callback function is invoked. Additionally, it is not prevented that | 
 |  * new queue_rq() calls occur unless the queue has been stopped first. | 
 |  */ | 
 | void blk_mq_quiesce_queue(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	unsigned int i; | 
 | 	bool rcu = false; | 
 |  | 
 | 	blk_mq_stop_hw_queues(q); | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		if (hctx->flags & BLK_MQ_F_BLOCKING) | 
 | 			synchronize_srcu(&hctx->queue_rq_srcu); | 
 | 		else | 
 | 			rcu = true; | 
 | 	} | 
 | 	if (rcu) | 
 | 		synchronize_rcu(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); | 
 |  | 
 | void blk_mq_wake_waiters(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	unsigned int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) | 
 | 		if (blk_mq_hw_queue_mapped(hctx)) | 
 | 			blk_mq_tag_wakeup_all(hctx->tags, true); | 
 |  | 
 | 	/* | 
 | 	 * If we are called because the queue has now been marked as | 
 | 	 * dying, we need to ensure that processes currently waiting on | 
 | 	 * the queue are notified as well. | 
 | 	 */ | 
 | 	wake_up_all(&q->mq_freeze_wq); | 
 | } | 
 |  | 
 | bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	return blk_mq_has_free_tags(hctx->tags); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_can_queue); | 
 |  | 
 | static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, | 
 | 			       struct request *rq, unsigned int op) | 
 | { | 
 | 	INIT_LIST_HEAD(&rq->queuelist); | 
 | 	/* csd/requeue_work/fifo_time is initialized before use */ | 
 | 	rq->q = q; | 
 | 	rq->mq_ctx = ctx; | 
 | 	rq->cmd_flags = op; | 
 | 	if (blk_queue_io_stat(q)) | 
 | 		rq->rq_flags |= RQF_IO_STAT; | 
 | 	/* do not touch atomic flags, it needs atomic ops against the timer */ | 
 | 	rq->cpu = -1; | 
 | 	INIT_HLIST_NODE(&rq->hash); | 
 | 	RB_CLEAR_NODE(&rq->rb_node); | 
 | 	rq->rq_disk = NULL; | 
 | 	rq->part = NULL; | 
 | 	rq->start_time = jiffies; | 
 | #ifdef CONFIG_BLK_CGROUP | 
 | 	rq->rl = NULL; | 
 | 	set_start_time_ns(rq); | 
 | 	rq->io_start_time_ns = 0; | 
 | #endif | 
 | 	rq->nr_phys_segments = 0; | 
 | #if defined(CONFIG_BLK_DEV_INTEGRITY) | 
 | 	rq->nr_integrity_segments = 0; | 
 | #endif | 
 | 	rq->special = NULL; | 
 | 	/* tag was already set */ | 
 | 	rq->errors = 0; | 
 |  | 
 | 	rq->cmd = rq->__cmd; | 
 |  | 
 | 	rq->extra_len = 0; | 
 | 	rq->sense_len = 0; | 
 | 	rq->resid_len = 0; | 
 | 	rq->sense = NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&rq->timeout_list); | 
 | 	rq->timeout = 0; | 
 |  | 
 | 	rq->end_io = NULL; | 
 | 	rq->end_io_data = NULL; | 
 | 	rq->next_rq = NULL; | 
 |  | 
 | 	ctx->rq_dispatched[op_is_sync(op)]++; | 
 | } | 
 |  | 
 | static struct request * | 
 | __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op) | 
 | { | 
 | 	struct request *rq; | 
 | 	unsigned int tag; | 
 |  | 
 | 	tag = blk_mq_get_tag(data); | 
 | 	if (tag != BLK_MQ_TAG_FAIL) { | 
 | 		rq = data->hctx->tags->rqs[tag]; | 
 |  | 
 | 		if (blk_mq_tag_busy(data->hctx)) { | 
 | 			rq->rq_flags = RQF_MQ_INFLIGHT; | 
 | 			atomic_inc(&data->hctx->nr_active); | 
 | 		} | 
 |  | 
 | 		rq->tag = tag; | 
 | 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); | 
 | 		return rq; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct request *blk_mq_alloc_request(struct request_queue *q, int rw, | 
 | 		unsigned int flags) | 
 | { | 
 | 	struct blk_mq_ctx *ctx; | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	struct request *rq; | 
 | 	struct blk_mq_alloc_data alloc_data; | 
 | 	int ret; | 
 |  | 
 | 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	ctx = blk_mq_get_ctx(q); | 
 | 	hctx = blk_mq_map_queue(q, ctx->cpu); | 
 | 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); | 
 | 	rq = __blk_mq_alloc_request(&alloc_data, rw); | 
 | 	blk_mq_put_ctx(ctx); | 
 |  | 
 | 	if (!rq) { | 
 | 		blk_queue_exit(q); | 
 | 		return ERR_PTR(-EWOULDBLOCK); | 
 | 	} | 
 |  | 
 | 	rq->__data_len = 0; | 
 | 	rq->__sector = (sector_t) -1; | 
 | 	rq->bio = rq->biotail = NULL; | 
 | 	return rq; | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_alloc_request); | 
 |  | 
 | struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, | 
 | 		unsigned int flags, unsigned int hctx_idx) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	struct blk_mq_ctx *ctx; | 
 | 	struct request *rq; | 
 | 	struct blk_mq_alloc_data alloc_data; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If the tag allocator sleeps we could get an allocation for a | 
 | 	 * different hardware context.  No need to complicate the low level | 
 | 	 * allocator for this for the rare use case of a command tied to | 
 | 	 * a specific queue. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (hctx_idx >= q->nr_hw_queues) | 
 | 		return ERR_PTR(-EIO); | 
 |  | 
 | 	ret = blk_queue_enter(q, true); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	/* | 
 | 	 * Check if the hardware context is actually mapped to anything. | 
 | 	 * If not tell the caller that it should skip this queue. | 
 | 	 */ | 
 | 	hctx = q->queue_hw_ctx[hctx_idx]; | 
 | 	if (!blk_mq_hw_queue_mapped(hctx)) { | 
 | 		ret = -EXDEV; | 
 | 		goto out_queue_exit; | 
 | 	} | 
 | 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); | 
 |  | 
 | 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); | 
 | 	rq = __blk_mq_alloc_request(&alloc_data, rw); | 
 | 	if (!rq) { | 
 | 		ret = -EWOULDBLOCK; | 
 | 		goto out_queue_exit; | 
 | 	} | 
 |  | 
 | 	return rq; | 
 |  | 
 | out_queue_exit: | 
 | 	blk_queue_exit(q); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); | 
 |  | 
 | static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, | 
 | 				  struct blk_mq_ctx *ctx, struct request *rq) | 
 | { | 
 | 	const int tag = rq->tag; | 
 | 	struct request_queue *q = rq->q; | 
 |  | 
 | 	if (rq->rq_flags & RQF_MQ_INFLIGHT) | 
 | 		atomic_dec(&hctx->nr_active); | 
 |  | 
 | 	wbt_done(q->rq_wb, &rq->issue_stat); | 
 | 	rq->rq_flags = 0; | 
 |  | 
 | 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); | 
 | 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); | 
 | 	blk_mq_put_tag(hctx, ctx, tag); | 
 | 	blk_queue_exit(q); | 
 | } | 
 |  | 
 | void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) | 
 | { | 
 | 	struct blk_mq_ctx *ctx = rq->mq_ctx; | 
 |  | 
 | 	ctx->rq_completed[rq_is_sync(rq)]++; | 
 | 	__blk_mq_free_request(hctx, ctx, rq); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); | 
 |  | 
 | void blk_mq_free_request(struct request *rq) | 
 | { | 
 | 	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_free_request); | 
 |  | 
 | inline void __blk_mq_end_request(struct request *rq, int error) | 
 | { | 
 | 	blk_account_io_done(rq); | 
 |  | 
 | 	if (rq->end_io) { | 
 | 		wbt_done(rq->q->rq_wb, &rq->issue_stat); | 
 | 		rq->end_io(rq, error); | 
 | 	} else { | 
 | 		if (unlikely(blk_bidi_rq(rq))) | 
 | 			blk_mq_free_request(rq->next_rq); | 
 | 		blk_mq_free_request(rq); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(__blk_mq_end_request); | 
 |  | 
 | void blk_mq_end_request(struct request *rq, int error) | 
 | { | 
 | 	if (blk_update_request(rq, error, blk_rq_bytes(rq))) | 
 | 		BUG(); | 
 | 	__blk_mq_end_request(rq, error); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_end_request); | 
 |  | 
 | static void __blk_mq_complete_request_remote(void *data) | 
 | { | 
 | 	struct request *rq = data; | 
 |  | 
 | 	rq->q->softirq_done_fn(rq); | 
 | } | 
 |  | 
 | static void blk_mq_ipi_complete_request(struct request *rq) | 
 | { | 
 | 	struct blk_mq_ctx *ctx = rq->mq_ctx; | 
 | 	bool shared = false; | 
 | 	int cpu; | 
 |  | 
 | 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { | 
 | 		rq->q->softirq_done_fn(rq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cpu = get_cpu(); | 
 | 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) | 
 | 		shared = cpus_share_cache(cpu, ctx->cpu); | 
 |  | 
 | 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { | 
 | 		rq->csd.func = __blk_mq_complete_request_remote; | 
 | 		rq->csd.info = rq; | 
 | 		rq->csd.flags = 0; | 
 | 		smp_call_function_single_async(ctx->cpu, &rq->csd); | 
 | 	} else { | 
 | 		rq->q->softirq_done_fn(rq); | 
 | 	} | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static void blk_mq_stat_add(struct request *rq) | 
 | { | 
 | 	if (rq->rq_flags & RQF_STATS) { | 
 | 		/* | 
 | 		 * We could rq->mq_ctx here, but there's less of a risk | 
 | 		 * of races if we have the completion event add the stats | 
 | 		 * to the local software queue. | 
 | 		 */ | 
 | 		struct blk_mq_ctx *ctx; | 
 |  | 
 | 		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); | 
 | 		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); | 
 | 	} | 
 | } | 
 |  | 
 | static void __blk_mq_complete_request(struct request *rq) | 
 | { | 
 | 	struct request_queue *q = rq->q; | 
 |  | 
 | 	blk_mq_stat_add(rq); | 
 |  | 
 | 	if (!q->softirq_done_fn) | 
 | 		blk_mq_end_request(rq, rq->errors); | 
 | 	else | 
 | 		blk_mq_ipi_complete_request(rq); | 
 | } | 
 |  | 
 | /** | 
 |  * blk_mq_complete_request - end I/O on a request | 
 |  * @rq:		the request being processed | 
 |  * | 
 |  * Description: | 
 |  *	Ends all I/O on a request. It does not handle partial completions. | 
 |  *	The actual completion happens out-of-order, through a IPI handler. | 
 |  **/ | 
 | void blk_mq_complete_request(struct request *rq, int error) | 
 | { | 
 | 	struct request_queue *q = rq->q; | 
 |  | 
 | 	if (unlikely(blk_should_fake_timeout(q))) | 
 | 		return; | 
 | 	if (!blk_mark_rq_complete(rq)) { | 
 | 		rq->errors = error; | 
 | 		__blk_mq_complete_request(rq); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_complete_request); | 
 |  | 
 | int blk_mq_request_started(struct request *rq) | 
 | { | 
 | 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_request_started); | 
 |  | 
 | void blk_mq_start_request(struct request *rq) | 
 | { | 
 | 	struct request_queue *q = rq->q; | 
 |  | 
 | 	trace_block_rq_issue(q, rq); | 
 |  | 
 | 	rq->resid_len = blk_rq_bytes(rq); | 
 | 	if (unlikely(blk_bidi_rq(rq))) | 
 | 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); | 
 |  | 
 | 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { | 
 | 		blk_stat_set_issue_time(&rq->issue_stat); | 
 | 		rq->rq_flags |= RQF_STATS; | 
 | 		wbt_issue(q->rq_wb, &rq->issue_stat); | 
 | 	} | 
 |  | 
 | 	blk_add_timer(rq); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that ->deadline is visible before set the started | 
 | 	 * flag and clear the completed flag. | 
 | 	 */ | 
 | 	smp_mb__before_atomic(); | 
 |  | 
 | 	/* | 
 | 	 * Mark us as started and clear complete. Complete might have been | 
 | 	 * set if requeue raced with timeout, which then marked it as | 
 | 	 * complete. So be sure to clear complete again when we start | 
 | 	 * the request, otherwise we'll ignore the completion event. | 
 | 	 */ | 
 | 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) | 
 | 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); | 
 | 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) | 
 | 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); | 
 |  | 
 | 	if (q->dma_drain_size && blk_rq_bytes(rq)) { | 
 | 		/* | 
 | 		 * Make sure space for the drain appears.  We know we can do | 
 | 		 * this because max_hw_segments has been adjusted to be one | 
 | 		 * fewer than the device can handle. | 
 | 		 */ | 
 | 		rq->nr_phys_segments++; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_start_request); | 
 |  | 
 | static void __blk_mq_requeue_request(struct request *rq) | 
 | { | 
 | 	struct request_queue *q = rq->q; | 
 |  | 
 | 	trace_block_rq_requeue(q, rq); | 
 | 	wbt_requeue(q->rq_wb, &rq->issue_stat); | 
 |  | 
 | 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { | 
 | 		if (q->dma_drain_size && blk_rq_bytes(rq)) | 
 | 			rq->nr_phys_segments--; | 
 | 	} | 
 | } | 
 |  | 
 | void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) | 
 | { | 
 | 	__blk_mq_requeue_request(rq); | 
 |  | 
 | 	BUG_ON(blk_queued_rq(rq)); | 
 | 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_requeue_request); | 
 |  | 
 | static void blk_mq_requeue_work(struct work_struct *work) | 
 | { | 
 | 	struct request_queue *q = | 
 | 		container_of(work, struct request_queue, requeue_work.work); | 
 | 	LIST_HEAD(rq_list); | 
 | 	struct request *rq, *next; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&q->requeue_lock, flags); | 
 | 	list_splice_init(&q->requeue_list, &rq_list); | 
 | 	spin_unlock_irqrestore(&q->requeue_lock, flags); | 
 |  | 
 | 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) { | 
 | 		if (!(rq->rq_flags & RQF_SOFTBARRIER)) | 
 | 			continue; | 
 |  | 
 | 		rq->rq_flags &= ~RQF_SOFTBARRIER; | 
 | 		list_del_init(&rq->queuelist); | 
 | 		blk_mq_insert_request(rq, true, false, false); | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&rq_list)) { | 
 | 		rq = list_entry(rq_list.next, struct request, queuelist); | 
 | 		list_del_init(&rq->queuelist); | 
 | 		blk_mq_insert_request(rq, false, false, false); | 
 | 	} | 
 |  | 
 | 	blk_mq_run_hw_queues(q, false); | 
 | } | 
 |  | 
 | void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, | 
 | 				bool kick_requeue_list) | 
 | { | 
 | 	struct request_queue *q = rq->q; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * We abuse this flag that is otherwise used by the I/O scheduler to | 
 | 	 * request head insertation from the workqueue. | 
 | 	 */ | 
 | 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); | 
 |  | 
 | 	spin_lock_irqsave(&q->requeue_lock, flags); | 
 | 	if (at_head) { | 
 | 		rq->rq_flags |= RQF_SOFTBARRIER; | 
 | 		list_add(&rq->queuelist, &q->requeue_list); | 
 | 	} else { | 
 | 		list_add_tail(&rq->queuelist, &q->requeue_list); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&q->requeue_lock, flags); | 
 |  | 
 | 	if (kick_requeue_list) | 
 | 		blk_mq_kick_requeue_list(q); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_add_to_requeue_list); | 
 |  | 
 | void blk_mq_kick_requeue_list(struct request_queue *q) | 
 | { | 
 | 	kblockd_schedule_delayed_work(&q->requeue_work, 0); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_kick_requeue_list); | 
 |  | 
 | void blk_mq_delay_kick_requeue_list(struct request_queue *q, | 
 | 				    unsigned long msecs) | 
 | { | 
 | 	kblockd_schedule_delayed_work(&q->requeue_work, | 
 | 				      msecs_to_jiffies(msecs)); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); | 
 |  | 
 | void blk_mq_abort_requeue_list(struct request_queue *q) | 
 | { | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(rq_list); | 
 |  | 
 | 	spin_lock_irqsave(&q->requeue_lock, flags); | 
 | 	list_splice_init(&q->requeue_list, &rq_list); | 
 | 	spin_unlock_irqrestore(&q->requeue_lock, flags); | 
 |  | 
 | 	while (!list_empty(&rq_list)) { | 
 | 		struct request *rq; | 
 |  | 
 | 		rq = list_first_entry(&rq_list, struct request, queuelist); | 
 | 		list_del_init(&rq->queuelist); | 
 | 		rq->errors = -EIO; | 
 | 		blk_mq_end_request(rq, rq->errors); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_abort_requeue_list); | 
 |  | 
 | struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) | 
 | { | 
 | 	if (tag < tags->nr_tags) { | 
 | 		prefetch(tags->rqs[tag]); | 
 | 		return tags->rqs[tag]; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_tag_to_rq); | 
 |  | 
 | struct blk_mq_timeout_data { | 
 | 	unsigned long next; | 
 | 	unsigned int next_set; | 
 | }; | 
 |  | 
 | void blk_mq_rq_timed_out(struct request *req, bool reserved) | 
 | { | 
 | 	struct blk_mq_ops *ops = req->q->mq_ops; | 
 | 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; | 
 |  | 
 | 	/* | 
 | 	 * We know that complete is set at this point. If STARTED isn't set | 
 | 	 * anymore, then the request isn't active and the "timeout" should | 
 | 	 * just be ignored. This can happen due to the bitflag ordering. | 
 | 	 * Timeout first checks if STARTED is set, and if it is, assumes | 
 | 	 * the request is active. But if we race with completion, then | 
 | 	 * we both flags will get cleared. So check here again, and ignore | 
 | 	 * a timeout event with a request that isn't active. | 
 | 	 */ | 
 | 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) | 
 | 		return; | 
 |  | 
 | 	if (ops->timeout) | 
 | 		ret = ops->timeout(req, reserved); | 
 |  | 
 | 	switch (ret) { | 
 | 	case BLK_EH_HANDLED: | 
 | 		__blk_mq_complete_request(req); | 
 | 		break; | 
 | 	case BLK_EH_RESET_TIMER: | 
 | 		blk_add_timer(req); | 
 | 		blk_clear_rq_complete(req); | 
 | 		break; | 
 | 	case BLK_EH_NOT_HANDLED: | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_ERR "block: bad eh return: %d\n", ret); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, | 
 | 		struct request *rq, void *priv, bool reserved) | 
 | { | 
 | 	struct blk_mq_timeout_data *data = priv; | 
 |  | 
 | 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { | 
 | 		/* | 
 | 		 * If a request wasn't started before the queue was | 
 | 		 * marked dying, kill it here or it'll go unnoticed. | 
 | 		 */ | 
 | 		if (unlikely(blk_queue_dying(rq->q))) { | 
 | 			rq->errors = -EIO; | 
 | 			blk_mq_end_request(rq, rq->errors); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (time_after_eq(jiffies, rq->deadline)) { | 
 | 		if (!blk_mark_rq_complete(rq)) | 
 | 			blk_mq_rq_timed_out(rq, reserved); | 
 | 	} else if (!data->next_set || time_after(data->next, rq->deadline)) { | 
 | 		data->next = rq->deadline; | 
 | 		data->next_set = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void blk_mq_timeout_work(struct work_struct *work) | 
 | { | 
 | 	struct request_queue *q = | 
 | 		container_of(work, struct request_queue, timeout_work); | 
 | 	struct blk_mq_timeout_data data = { | 
 | 		.next		= 0, | 
 | 		.next_set	= 0, | 
 | 	}; | 
 | 	int i; | 
 |  | 
 | 	/* A deadlock might occur if a request is stuck requiring a | 
 | 	 * timeout at the same time a queue freeze is waiting | 
 | 	 * completion, since the timeout code would not be able to | 
 | 	 * acquire the queue reference here. | 
 | 	 * | 
 | 	 * That's why we don't use blk_queue_enter here; instead, we use | 
 | 	 * percpu_ref_tryget directly, because we need to be able to | 
 | 	 * obtain a reference even in the short window between the queue | 
 | 	 * starting to freeze, by dropping the first reference in | 
 | 	 * blk_mq_freeze_queue_start, and the moment the last request is | 
 | 	 * consumed, marked by the instant q_usage_counter reaches | 
 | 	 * zero. | 
 | 	 */ | 
 | 	if (!percpu_ref_tryget(&q->q_usage_counter)) | 
 | 		return; | 
 |  | 
 | 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); | 
 |  | 
 | 	if (data.next_set) { | 
 | 		data.next = blk_rq_timeout(round_jiffies_up(data.next)); | 
 | 		mod_timer(&q->timeout, data.next); | 
 | 	} else { | 
 | 		struct blk_mq_hw_ctx *hctx; | 
 |  | 
 | 		queue_for_each_hw_ctx(q, hctx, i) { | 
 | 			/* the hctx may be unmapped, so check it here */ | 
 | 			if (blk_mq_hw_queue_mapped(hctx)) | 
 | 				blk_mq_tag_idle(hctx); | 
 | 		} | 
 | 	} | 
 | 	blk_queue_exit(q); | 
 | } | 
 |  | 
 | /* | 
 |  * Reverse check our software queue for entries that we could potentially | 
 |  * merge with. Currently includes a hand-wavy stop count of 8, to not spend | 
 |  * too much time checking for merges. | 
 |  */ | 
 | static bool blk_mq_attempt_merge(struct request_queue *q, | 
 | 				 struct blk_mq_ctx *ctx, struct bio *bio) | 
 | { | 
 | 	struct request *rq; | 
 | 	int checked = 8; | 
 |  | 
 | 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { | 
 | 		int el_ret; | 
 |  | 
 | 		if (!checked--) | 
 | 			break; | 
 |  | 
 | 		if (!blk_rq_merge_ok(rq, bio)) | 
 | 			continue; | 
 |  | 
 | 		el_ret = blk_try_merge(rq, bio); | 
 | 		if (el_ret == ELEVATOR_BACK_MERGE) { | 
 | 			if (bio_attempt_back_merge(q, rq, bio)) { | 
 | 				ctx->rq_merged++; | 
 | 				return true; | 
 | 			} | 
 | 			break; | 
 | 		} else if (el_ret == ELEVATOR_FRONT_MERGE) { | 
 | 			if (bio_attempt_front_merge(q, rq, bio)) { | 
 | 				ctx->rq_merged++; | 
 | 				return true; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | struct flush_busy_ctx_data { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	struct list_head *list; | 
 | }; | 
 |  | 
 | static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) | 
 | { | 
 | 	struct flush_busy_ctx_data *flush_data = data; | 
 | 	struct blk_mq_hw_ctx *hctx = flush_data->hctx; | 
 | 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; | 
 |  | 
 | 	sbitmap_clear_bit(sb, bitnr); | 
 | 	spin_lock(&ctx->lock); | 
 | 	list_splice_tail_init(&ctx->rq_list, flush_data->list); | 
 | 	spin_unlock(&ctx->lock); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Process software queues that have been marked busy, splicing them | 
 |  * to the for-dispatch | 
 |  */ | 
 | static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) | 
 | { | 
 | 	struct flush_busy_ctx_data data = { | 
 | 		.hctx = hctx, | 
 | 		.list = list, | 
 | 	}; | 
 |  | 
 | 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); | 
 | } | 
 |  | 
 | static inline unsigned int queued_to_index(unsigned int queued) | 
 | { | 
 | 	if (!queued) | 
 | 		return 0; | 
 |  | 
 | 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); | 
 | } | 
 |  | 
 | bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) | 
 | { | 
 | 	struct request_queue *q = hctx->queue; | 
 | 	struct request *rq; | 
 | 	LIST_HEAD(driver_list); | 
 | 	struct list_head *dptr; | 
 | 	int queued, ret = BLK_MQ_RQ_QUEUE_OK; | 
 |  | 
 | 	/* | 
 | 	 * Start off with dptr being NULL, so we start the first request | 
 | 	 * immediately, even if we have more pending. | 
 | 	 */ | 
 | 	dptr = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Now process all the entries, sending them to the driver. | 
 | 	 */ | 
 | 	queued = 0; | 
 | 	while (!list_empty(list)) { | 
 | 		struct blk_mq_queue_data bd; | 
 |  | 
 | 		rq = list_first_entry(list, struct request, queuelist); | 
 | 		list_del_init(&rq->queuelist); | 
 |  | 
 | 		bd.rq = rq; | 
 | 		bd.list = dptr; | 
 | 		bd.last = list_empty(list); | 
 |  | 
 | 		ret = q->mq_ops->queue_rq(hctx, &bd); | 
 | 		switch (ret) { | 
 | 		case BLK_MQ_RQ_QUEUE_OK: | 
 | 			queued++; | 
 | 			break; | 
 | 		case BLK_MQ_RQ_QUEUE_BUSY: | 
 | 			list_add(&rq->queuelist, list); | 
 | 			__blk_mq_requeue_request(rq); | 
 | 			break; | 
 | 		default: | 
 | 			pr_err("blk-mq: bad return on queue: %d\n", ret); | 
 | 		case BLK_MQ_RQ_QUEUE_ERROR: | 
 | 			rq->errors = -EIO; | 
 | 			blk_mq_end_request(rq, rq->errors); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (ret == BLK_MQ_RQ_QUEUE_BUSY) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * We've done the first request. If we have more than 1 | 
 | 		 * left in the list, set dptr to defer issue. | 
 | 		 */ | 
 | 		if (!dptr && list->next != list->prev) | 
 | 			dptr = &driver_list; | 
 | 	} | 
 |  | 
 | 	hctx->dispatched[queued_to_index(queued)]++; | 
 |  | 
 | 	/* | 
 | 	 * Any items that need requeuing? Stuff them into hctx->dispatch, | 
 | 	 * that is where we will continue on next queue run. | 
 | 	 */ | 
 | 	if (!list_empty(list)) { | 
 | 		spin_lock(&hctx->lock); | 
 | 		list_splice(list, &hctx->dispatch); | 
 | 		spin_unlock(&hctx->lock); | 
 |  | 
 | 		/* | 
 | 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but | 
 | 		 * it's possible the queue is stopped and restarted again | 
 | 		 * before this. Queue restart will dispatch requests. And since | 
 | 		 * requests in rq_list aren't added into hctx->dispatch yet, | 
 | 		 * the requests in rq_list might get lost. | 
 | 		 * | 
 | 		 * blk_mq_run_hw_queue() already checks the STOPPED bit | 
 | 		 **/ | 
 | 		blk_mq_run_hw_queue(hctx, true); | 
 | 	} | 
 |  | 
 | 	return ret != BLK_MQ_RQ_QUEUE_BUSY; | 
 | } | 
 |  | 
 | /* | 
 |  * Run this hardware queue, pulling any software queues mapped to it in. | 
 |  * Note that this function currently has various problems around ordering | 
 |  * of IO. In particular, we'd like FIFO behaviour on handling existing | 
 |  * items on the hctx->dispatch list. Ignore that for now. | 
 |  */ | 
 | static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	LIST_HEAD(rq_list); | 
 |  | 
 | 	if (unlikely(blk_mq_hctx_stopped(hctx))) | 
 | 		return; | 
 |  | 
 | 	hctx->run++; | 
 |  | 
 | 	/* | 
 | 	 * Touch any software queue that has pending entries. | 
 | 	 */ | 
 | 	flush_busy_ctxs(hctx, &rq_list); | 
 |  | 
 | 	/* | 
 | 	 * If we have previous entries on our dispatch list, grab them | 
 | 	 * and stuff them at the front for more fair dispatch. | 
 | 	 */ | 
 | 	if (!list_empty_careful(&hctx->dispatch)) { | 
 | 		spin_lock(&hctx->lock); | 
 | 		if (!list_empty(&hctx->dispatch)) | 
 | 			list_splice_init(&hctx->dispatch, &rq_list); | 
 | 		spin_unlock(&hctx->lock); | 
 | 	} | 
 |  | 
 | 	blk_mq_dispatch_rq_list(hctx, &rq_list); | 
 | } | 
 |  | 
 | static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	int srcu_idx; | 
 |  | 
 | 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && | 
 | 		cpu_online(hctx->next_cpu)); | 
 |  | 
 | 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { | 
 | 		rcu_read_lock(); | 
 | 		blk_mq_process_rq_list(hctx); | 
 | 		rcu_read_unlock(); | 
 | 	} else { | 
 | 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); | 
 | 		blk_mq_process_rq_list(hctx); | 
 | 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * It'd be great if the workqueue API had a way to pass | 
 |  * in a mask and had some smarts for more clever placement. | 
 |  * For now we just round-robin here, switching for every | 
 |  * BLK_MQ_CPU_WORK_BATCH queued items. | 
 |  */ | 
 | static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	if (hctx->queue->nr_hw_queues == 1) | 
 | 		return WORK_CPU_UNBOUND; | 
 |  | 
 | 	if (--hctx->next_cpu_batch <= 0) { | 
 | 		int next_cpu; | 
 |  | 
 | 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); | 
 | 		if (next_cpu >= nr_cpu_ids) | 
 | 			next_cpu = cpumask_first(hctx->cpumask); | 
 |  | 
 | 		hctx->next_cpu = next_cpu; | 
 | 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; | 
 | 	} | 
 |  | 
 | 	return hctx->next_cpu; | 
 | } | 
 |  | 
 | void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) | 
 | { | 
 | 	if (unlikely(blk_mq_hctx_stopped(hctx) || | 
 | 		     !blk_mq_hw_queue_mapped(hctx))) | 
 | 		return; | 
 |  | 
 | 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { | 
 | 		int cpu = get_cpu(); | 
 | 		if (cpumask_test_cpu(cpu, hctx->cpumask)) { | 
 | 			__blk_mq_run_hw_queue(hctx); | 
 | 			put_cpu(); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		put_cpu(); | 
 | 	} | 
 |  | 
 | 	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); | 
 | } | 
 |  | 
 | void blk_mq_run_hw_queues(struct request_queue *q, bool async) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		if ((!blk_mq_hctx_has_pending(hctx) && | 
 | 		    list_empty_careful(&hctx->dispatch)) || | 
 | 		    blk_mq_hctx_stopped(hctx)) | 
 | 			continue; | 
 |  | 
 | 		blk_mq_run_hw_queue(hctx, async); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_run_hw_queues); | 
 |  | 
 | /** | 
 |  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped | 
 |  * @q: request queue. | 
 |  * | 
 |  * The caller is responsible for serializing this function against | 
 |  * blk_mq_{start,stop}_hw_queue(). | 
 |  */ | 
 | bool blk_mq_queue_stopped(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) | 
 | 		if (blk_mq_hctx_stopped(hctx)) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_queue_stopped); | 
 |  | 
 | void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	cancel_work(&hctx->run_work); | 
 | 	cancel_delayed_work(&hctx->delay_work); | 
 | 	set_bit(BLK_MQ_S_STOPPED, &hctx->state); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_stop_hw_queue); | 
 |  | 
 | void blk_mq_stop_hw_queues(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) | 
 | 		blk_mq_stop_hw_queue(hctx); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_stop_hw_queues); | 
 |  | 
 | void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state); | 
 |  | 
 | 	blk_mq_run_hw_queue(hctx, false); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_start_hw_queue); | 
 |  | 
 | void blk_mq_start_hw_queues(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) | 
 | 		blk_mq_start_hw_queue(hctx); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_start_hw_queues); | 
 |  | 
 | void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) | 
 | { | 
 | 	if (!blk_mq_hctx_stopped(hctx)) | 
 | 		return; | 
 |  | 
 | 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state); | 
 | 	blk_mq_run_hw_queue(hctx, async); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); | 
 |  | 
 | void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) | 
 | 		blk_mq_start_stopped_hw_queue(hctx, async); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); | 
 |  | 
 | static void blk_mq_run_work_fn(struct work_struct *work) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 |  | 
 | 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work); | 
 |  | 
 | 	__blk_mq_run_hw_queue(hctx); | 
 | } | 
 |  | 
 | static void blk_mq_delay_work_fn(struct work_struct *work) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 |  | 
 | 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); | 
 |  | 
 | 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) | 
 | 		__blk_mq_run_hw_queue(hctx); | 
 | } | 
 |  | 
 | void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) | 
 | { | 
 | 	if (unlikely(!blk_mq_hw_queue_mapped(hctx))) | 
 | 		return; | 
 |  | 
 | 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), | 
 | 			&hctx->delay_work, msecs_to_jiffies(msecs)); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_delay_queue); | 
 |  | 
 | static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, | 
 | 					    struct request *rq, | 
 | 					    bool at_head) | 
 | { | 
 | 	struct blk_mq_ctx *ctx = rq->mq_ctx; | 
 |  | 
 | 	trace_block_rq_insert(hctx->queue, rq); | 
 |  | 
 | 	if (at_head) | 
 | 		list_add(&rq->queuelist, &ctx->rq_list); | 
 | 	else | 
 | 		list_add_tail(&rq->queuelist, &ctx->rq_list); | 
 | } | 
 |  | 
 | static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, | 
 | 				    struct request *rq, bool at_head) | 
 | { | 
 | 	struct blk_mq_ctx *ctx = rq->mq_ctx; | 
 |  | 
 | 	__blk_mq_insert_req_list(hctx, rq, at_head); | 
 | 	blk_mq_hctx_mark_pending(hctx, ctx); | 
 | } | 
 |  | 
 | void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, | 
 | 			   bool async) | 
 | { | 
 | 	struct blk_mq_ctx *ctx = rq->mq_ctx; | 
 | 	struct request_queue *q = rq->q; | 
 | 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	__blk_mq_insert_request(hctx, rq, at_head); | 
 | 	spin_unlock(&ctx->lock); | 
 |  | 
 | 	if (run_queue) | 
 | 		blk_mq_run_hw_queue(hctx, async); | 
 | } | 
 |  | 
 | static void blk_mq_insert_requests(struct request_queue *q, | 
 | 				     struct blk_mq_ctx *ctx, | 
 | 				     struct list_head *list, | 
 | 				     int depth, | 
 | 				     bool from_schedule) | 
 |  | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); | 
 |  | 
 | 	trace_block_unplug(q, depth, !from_schedule); | 
 |  | 
 | 	/* | 
 | 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is | 
 | 	 * offline now | 
 | 	 */ | 
 | 	spin_lock(&ctx->lock); | 
 | 	while (!list_empty(list)) { | 
 | 		struct request *rq; | 
 |  | 
 | 		rq = list_first_entry(list, struct request, queuelist); | 
 | 		BUG_ON(rq->mq_ctx != ctx); | 
 | 		list_del_init(&rq->queuelist); | 
 | 		__blk_mq_insert_req_list(hctx, rq, false); | 
 | 	} | 
 | 	blk_mq_hctx_mark_pending(hctx, ctx); | 
 | 	spin_unlock(&ctx->lock); | 
 |  | 
 | 	blk_mq_run_hw_queue(hctx, from_schedule); | 
 | } | 
 |  | 
 | static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) | 
 | { | 
 | 	struct request *rqa = container_of(a, struct request, queuelist); | 
 | 	struct request *rqb = container_of(b, struct request, queuelist); | 
 |  | 
 | 	return !(rqa->mq_ctx < rqb->mq_ctx || | 
 | 		 (rqa->mq_ctx == rqb->mq_ctx && | 
 | 		  blk_rq_pos(rqa) < blk_rq_pos(rqb))); | 
 | } | 
 |  | 
 | void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) | 
 | { | 
 | 	struct blk_mq_ctx *this_ctx; | 
 | 	struct request_queue *this_q; | 
 | 	struct request *rq; | 
 | 	LIST_HEAD(list); | 
 | 	LIST_HEAD(ctx_list); | 
 | 	unsigned int depth; | 
 |  | 
 | 	list_splice_init(&plug->mq_list, &list); | 
 |  | 
 | 	list_sort(NULL, &list, plug_ctx_cmp); | 
 |  | 
 | 	this_q = NULL; | 
 | 	this_ctx = NULL; | 
 | 	depth = 0; | 
 |  | 
 | 	while (!list_empty(&list)) { | 
 | 		rq = list_entry_rq(list.next); | 
 | 		list_del_init(&rq->queuelist); | 
 | 		BUG_ON(!rq->q); | 
 | 		if (rq->mq_ctx != this_ctx) { | 
 | 			if (this_ctx) { | 
 | 				blk_mq_insert_requests(this_q, this_ctx, | 
 | 							&ctx_list, depth, | 
 | 							from_schedule); | 
 | 			} | 
 |  | 
 | 			this_ctx = rq->mq_ctx; | 
 | 			this_q = rq->q; | 
 | 			depth = 0; | 
 | 		} | 
 |  | 
 | 		depth++; | 
 | 		list_add_tail(&rq->queuelist, &ctx_list); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If 'this_ctx' is set, we know we have entries to complete | 
 | 	 * on 'ctx_list'. Do those. | 
 | 	 */ | 
 | 	if (this_ctx) { | 
 | 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, | 
 | 				       from_schedule); | 
 | 	} | 
 | } | 
 |  | 
 | static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) | 
 | { | 
 | 	init_request_from_bio(rq, bio); | 
 |  | 
 | 	blk_account_io_start(rq, true); | 
 | } | 
 |  | 
 | static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && | 
 | 		!blk_queue_nomerges(hctx->queue); | 
 | } | 
 |  | 
 | static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, | 
 | 					 struct blk_mq_ctx *ctx, | 
 | 					 struct request *rq, struct bio *bio) | 
 | { | 
 | 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { | 
 | 		blk_mq_bio_to_request(rq, bio); | 
 | 		spin_lock(&ctx->lock); | 
 | insert_rq: | 
 | 		__blk_mq_insert_request(hctx, rq, false); | 
 | 		spin_unlock(&ctx->lock); | 
 | 		return false; | 
 | 	} else { | 
 | 		struct request_queue *q = hctx->queue; | 
 |  | 
 | 		spin_lock(&ctx->lock); | 
 | 		if (!blk_mq_attempt_merge(q, ctx, bio)) { | 
 | 			blk_mq_bio_to_request(rq, bio); | 
 | 			goto insert_rq; | 
 | 		} | 
 |  | 
 | 		spin_unlock(&ctx->lock); | 
 | 		__blk_mq_free_request(hctx, ctx, rq); | 
 | 		return true; | 
 | 	} | 
 | } | 
 |  | 
 | static struct request *blk_mq_map_request(struct request_queue *q, | 
 | 					  struct bio *bio, | 
 | 					  struct blk_mq_alloc_data *data) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	struct blk_mq_ctx *ctx; | 
 | 	struct request *rq; | 
 |  | 
 | 	blk_queue_enter_live(q); | 
 | 	ctx = blk_mq_get_ctx(q); | 
 | 	hctx = blk_mq_map_queue(q, ctx->cpu); | 
 |  | 
 | 	trace_block_getrq(q, bio, bio->bi_opf); | 
 | 	blk_mq_set_alloc_data(data, q, 0, ctx, hctx); | 
 | 	rq = __blk_mq_alloc_request(data, bio->bi_opf); | 
 |  | 
 | 	data->hctx->queued++; | 
 | 	return rq; | 
 | } | 
 |  | 
 | static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie) | 
 | { | 
 | 	int ret; | 
 | 	struct request_queue *q = rq->q; | 
 | 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); | 
 | 	struct blk_mq_queue_data bd = { | 
 | 		.rq = rq, | 
 | 		.list = NULL, | 
 | 		.last = 1 | 
 | 	}; | 
 | 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); | 
 |  | 
 | 	if (blk_mq_hctx_stopped(hctx)) | 
 | 		goto insert; | 
 |  | 
 | 	/* | 
 | 	 * For OK queue, we are done. For error, kill it. Any other | 
 | 	 * error (busy), just add it to our list as we previously | 
 | 	 * would have done | 
 | 	 */ | 
 | 	ret = q->mq_ops->queue_rq(hctx, &bd); | 
 | 	if (ret == BLK_MQ_RQ_QUEUE_OK) { | 
 | 		*cookie = new_cookie; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__blk_mq_requeue_request(rq); | 
 |  | 
 | 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) { | 
 | 		*cookie = BLK_QC_T_NONE; | 
 | 		rq->errors = -EIO; | 
 | 		blk_mq_end_request(rq, rq->errors); | 
 | 		return; | 
 | 	} | 
 |  | 
 | insert: | 
 | 	blk_mq_insert_request(rq, false, true, true); | 
 | } | 
 |  | 
 | /* | 
 |  * Multiple hardware queue variant. This will not use per-process plugs, | 
 |  * but will attempt to bypass the hctx queueing if we can go straight to | 
 |  * hardware for SYNC IO. | 
 |  */ | 
 | static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	const int is_sync = op_is_sync(bio->bi_opf); | 
 | 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); | 
 | 	struct blk_mq_alloc_data data; | 
 | 	struct request *rq; | 
 | 	unsigned int request_count = 0, srcu_idx; | 
 | 	struct blk_plug *plug; | 
 | 	struct request *same_queue_rq = NULL; | 
 | 	blk_qc_t cookie; | 
 | 	unsigned int wb_acct; | 
 |  | 
 | 	blk_queue_bounce(q, &bio); | 
 |  | 
 | 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { | 
 | 		bio_io_error(bio); | 
 | 		return BLK_QC_T_NONE; | 
 | 	} | 
 |  | 
 | 	blk_queue_split(q, &bio, q->bio_split); | 
 |  | 
 | 	if (!is_flush_fua && !blk_queue_nomerges(q) && | 
 | 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) | 
 | 		return BLK_QC_T_NONE; | 
 |  | 
 | 	wb_acct = wbt_wait(q->rq_wb, bio, NULL); | 
 |  | 
 | 	rq = blk_mq_map_request(q, bio, &data); | 
 | 	if (unlikely(!rq)) { | 
 | 		__wbt_done(q->rq_wb, wb_acct); | 
 | 		return BLK_QC_T_NONE; | 
 | 	} | 
 |  | 
 | 	wbt_track(&rq->issue_stat, wb_acct); | 
 |  | 
 | 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); | 
 |  | 
 | 	if (unlikely(is_flush_fua)) { | 
 | 		blk_mq_bio_to_request(rq, bio); | 
 | 		blk_insert_flush(rq); | 
 | 		goto run_queue; | 
 | 	} | 
 |  | 
 | 	plug = current->plug; | 
 | 	/* | 
 | 	 * If the driver supports defer issued based on 'last', then | 
 | 	 * queue it up like normal since we can potentially save some | 
 | 	 * CPU this way. | 
 | 	 */ | 
 | 	if (((plug && !blk_queue_nomerges(q)) || is_sync) && | 
 | 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { | 
 | 		struct request *old_rq = NULL; | 
 |  | 
 | 		blk_mq_bio_to_request(rq, bio); | 
 |  | 
 | 		/* | 
 | 		 * We do limited plugging. If the bio can be merged, do that. | 
 | 		 * Otherwise the existing request in the plug list will be | 
 | 		 * issued. So the plug list will have one request at most | 
 | 		 */ | 
 | 		if (plug) { | 
 | 			/* | 
 | 			 * The plug list might get flushed before this. If that | 
 | 			 * happens, same_queue_rq is invalid and plug list is | 
 | 			 * empty | 
 | 			 */ | 
 | 			if (same_queue_rq && !list_empty(&plug->mq_list)) { | 
 | 				old_rq = same_queue_rq; | 
 | 				list_del_init(&old_rq->queuelist); | 
 | 			} | 
 | 			list_add_tail(&rq->queuelist, &plug->mq_list); | 
 | 		} else /* is_sync */ | 
 | 			old_rq = rq; | 
 | 		blk_mq_put_ctx(data.ctx); | 
 | 		if (!old_rq) | 
 | 			goto done; | 
 |  | 
 | 		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { | 
 | 			rcu_read_lock(); | 
 | 			blk_mq_try_issue_directly(old_rq, &cookie); | 
 | 			rcu_read_unlock(); | 
 | 		} else { | 
 | 			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); | 
 | 			blk_mq_try_issue_directly(old_rq, &cookie); | 
 | 			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); | 
 | 		} | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { | 
 | 		/* | 
 | 		 * For a SYNC request, send it to the hardware immediately. For | 
 | 		 * an ASYNC request, just ensure that we run it later on. The | 
 | 		 * latter allows for merging opportunities and more efficient | 
 | 		 * dispatching. | 
 | 		 */ | 
 | run_queue: | 
 | 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); | 
 | 	} | 
 | 	blk_mq_put_ctx(data.ctx); | 
 | done: | 
 | 	return cookie; | 
 | } | 
 |  | 
 | /* | 
 |  * Single hardware queue variant. This will attempt to use any per-process | 
 |  * plug for merging and IO deferral. | 
 |  */ | 
 | static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	const int is_sync = op_is_sync(bio->bi_opf); | 
 | 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); | 
 | 	struct blk_plug *plug; | 
 | 	unsigned int request_count = 0; | 
 | 	struct blk_mq_alloc_data data; | 
 | 	struct request *rq; | 
 | 	blk_qc_t cookie; | 
 | 	unsigned int wb_acct; | 
 |  | 
 | 	blk_queue_bounce(q, &bio); | 
 |  | 
 | 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { | 
 | 		bio_io_error(bio); | 
 | 		return BLK_QC_T_NONE; | 
 | 	} | 
 |  | 
 | 	blk_queue_split(q, &bio, q->bio_split); | 
 |  | 
 | 	if (!is_flush_fua && !blk_queue_nomerges(q)) { | 
 | 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) | 
 | 			return BLK_QC_T_NONE; | 
 | 	} else | 
 | 		request_count = blk_plug_queued_count(q); | 
 |  | 
 | 	wb_acct = wbt_wait(q->rq_wb, bio, NULL); | 
 |  | 
 | 	rq = blk_mq_map_request(q, bio, &data); | 
 | 	if (unlikely(!rq)) { | 
 | 		__wbt_done(q->rq_wb, wb_acct); | 
 | 		return BLK_QC_T_NONE; | 
 | 	} | 
 |  | 
 | 	wbt_track(&rq->issue_stat, wb_acct); | 
 |  | 
 | 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); | 
 |  | 
 | 	if (unlikely(is_flush_fua)) { | 
 | 		blk_mq_bio_to_request(rq, bio); | 
 | 		blk_insert_flush(rq); | 
 | 		goto run_queue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A task plug currently exists. Since this is completely lockless, | 
 | 	 * utilize that to temporarily store requests until the task is | 
 | 	 * either done or scheduled away. | 
 | 	 */ | 
 | 	plug = current->plug; | 
 | 	if (plug) { | 
 | 		struct request *last = NULL; | 
 |  | 
 | 		blk_mq_bio_to_request(rq, bio); | 
 |  | 
 | 		/* | 
 | 		 * @request_count may become stale because of schedule | 
 | 		 * out, so check the list again. | 
 | 		 */ | 
 | 		if (list_empty(&plug->mq_list)) | 
 | 			request_count = 0; | 
 | 		if (!request_count) | 
 | 			trace_block_plug(q); | 
 | 		else | 
 | 			last = list_entry_rq(plug->mq_list.prev); | 
 |  | 
 | 		blk_mq_put_ctx(data.ctx); | 
 |  | 
 | 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last && | 
 | 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { | 
 | 			blk_flush_plug_list(plug, false); | 
 | 			trace_block_plug(q); | 
 | 		} | 
 |  | 
 | 		list_add_tail(&rq->queuelist, &plug->mq_list); | 
 | 		return cookie; | 
 | 	} | 
 |  | 
 | 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { | 
 | 		/* | 
 | 		 * For a SYNC request, send it to the hardware immediately. For | 
 | 		 * an ASYNC request, just ensure that we run it later on. The | 
 | 		 * latter allows for merging opportunities and more efficient | 
 | 		 * dispatching. | 
 | 		 */ | 
 | run_queue: | 
 | 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); | 
 | 	} | 
 |  | 
 | 	blk_mq_put_ctx(data.ctx); | 
 | 	return cookie; | 
 | } | 
 |  | 
 | static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, | 
 | 		struct blk_mq_tags *tags, unsigned int hctx_idx) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (tags->rqs && set->ops->exit_request) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < tags->nr_tags; i++) { | 
 | 			if (!tags->rqs[i]) | 
 | 				continue; | 
 | 			set->ops->exit_request(set->driver_data, tags->rqs[i], | 
 | 						hctx_idx, i); | 
 | 			tags->rqs[i] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&tags->page_list)) { | 
 | 		page = list_first_entry(&tags->page_list, struct page, lru); | 
 | 		list_del_init(&page->lru); | 
 | 		/* | 
 | 		 * Remove kmemleak object previously allocated in | 
 | 		 * blk_mq_init_rq_map(). | 
 | 		 */ | 
 | 		kmemleak_free(page_address(page)); | 
 | 		__free_pages(page, page->private); | 
 | 	} | 
 |  | 
 | 	kfree(tags->rqs); | 
 |  | 
 | 	blk_mq_free_tags(tags); | 
 | } | 
 |  | 
 | static size_t order_to_size(unsigned int order) | 
 | { | 
 | 	return (size_t)PAGE_SIZE << order; | 
 | } | 
 |  | 
 | static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, | 
 | 		unsigned int hctx_idx) | 
 | { | 
 | 	struct blk_mq_tags *tags; | 
 | 	unsigned int i, j, entries_per_page, max_order = 4; | 
 | 	size_t rq_size, left; | 
 |  | 
 | 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, | 
 | 				set->numa_node, | 
 | 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); | 
 | 	if (!tags) | 
 | 		return NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&tags->page_list); | 
 |  | 
 | 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), | 
 | 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, | 
 | 				 set->numa_node); | 
 | 	if (!tags->rqs) { | 
 | 		blk_mq_free_tags(tags); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * rq_size is the size of the request plus driver payload, rounded | 
 | 	 * to the cacheline size | 
 | 	 */ | 
 | 	rq_size = round_up(sizeof(struct request) + set->cmd_size, | 
 | 				cache_line_size()); | 
 | 	left = rq_size * set->queue_depth; | 
 |  | 
 | 	for (i = 0; i < set->queue_depth; ) { | 
 | 		int this_order = max_order; | 
 | 		struct page *page; | 
 | 		int to_do; | 
 | 		void *p; | 
 |  | 
 | 		while (this_order && left < order_to_size(this_order - 1)) | 
 | 			this_order--; | 
 |  | 
 | 		do { | 
 | 			page = alloc_pages_node(set->numa_node, | 
 | 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, | 
 | 				this_order); | 
 | 			if (page) | 
 | 				break; | 
 | 			if (!this_order--) | 
 | 				break; | 
 | 			if (order_to_size(this_order) < rq_size) | 
 | 				break; | 
 | 		} while (1); | 
 |  | 
 | 		if (!page) | 
 | 			goto fail; | 
 |  | 
 | 		page->private = this_order; | 
 | 		list_add_tail(&page->lru, &tags->page_list); | 
 |  | 
 | 		p = page_address(page); | 
 | 		/* | 
 | 		 * Allow kmemleak to scan these pages as they contain pointers | 
 | 		 * to additional allocations like via ops->init_request(). | 
 | 		 */ | 
 | 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); | 
 | 		entries_per_page = order_to_size(this_order) / rq_size; | 
 | 		to_do = min(entries_per_page, set->queue_depth - i); | 
 | 		left -= to_do * rq_size; | 
 | 		for (j = 0; j < to_do; j++) { | 
 | 			tags->rqs[i] = p; | 
 | 			if (set->ops->init_request) { | 
 | 				if (set->ops->init_request(set->driver_data, | 
 | 						tags->rqs[i], hctx_idx, i, | 
 | 						set->numa_node)) { | 
 | 					tags->rqs[i] = NULL; | 
 | 					goto fail; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			p += rq_size; | 
 | 			i++; | 
 | 		} | 
 | 	} | 
 | 	return tags; | 
 |  | 
 | fail: | 
 | 	blk_mq_free_rq_map(set, tags, hctx_idx); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * 'cpu' is going away. splice any existing rq_list entries from this | 
 |  * software queue to the hw queue dispatch list, and ensure that it | 
 |  * gets run. | 
 |  */ | 
 | static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	struct blk_mq_ctx *ctx; | 
 | 	LIST_HEAD(tmp); | 
 |  | 
 | 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); | 
 | 	ctx = __blk_mq_get_ctx(hctx->queue, cpu); | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	if (!list_empty(&ctx->rq_list)) { | 
 | 		list_splice_init(&ctx->rq_list, &tmp); | 
 | 		blk_mq_hctx_clear_pending(hctx, ctx); | 
 | 	} | 
 | 	spin_unlock(&ctx->lock); | 
 |  | 
 | 	if (list_empty(&tmp)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&hctx->lock); | 
 | 	list_splice_tail_init(&tmp, &hctx->dispatch); | 
 | 	spin_unlock(&hctx->lock); | 
 |  | 
 | 	blk_mq_run_hw_queue(hctx, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) | 
 | { | 
 | 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, | 
 | 					    &hctx->cpuhp_dead); | 
 | } | 
 |  | 
 | /* hctx->ctxs will be freed in queue's release handler */ | 
 | static void blk_mq_exit_hctx(struct request_queue *q, | 
 | 		struct blk_mq_tag_set *set, | 
 | 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) | 
 | { | 
 | 	unsigned flush_start_tag = set->queue_depth; | 
 |  | 
 | 	blk_mq_tag_idle(hctx); | 
 |  | 
 | 	if (set->ops->exit_request) | 
 | 		set->ops->exit_request(set->driver_data, | 
 | 				       hctx->fq->flush_rq, hctx_idx, | 
 | 				       flush_start_tag + hctx_idx); | 
 |  | 
 | 	if (set->ops->exit_hctx) | 
 | 		set->ops->exit_hctx(hctx, hctx_idx); | 
 |  | 
 | 	if (hctx->flags & BLK_MQ_F_BLOCKING) | 
 | 		cleanup_srcu_struct(&hctx->queue_rq_srcu); | 
 |  | 
 | 	blk_mq_remove_cpuhp(hctx); | 
 | 	blk_free_flush_queue(hctx->fq); | 
 | 	sbitmap_free(&hctx->ctx_map); | 
 | } | 
 |  | 
 | static void blk_mq_exit_hw_queues(struct request_queue *q, | 
 | 		struct blk_mq_tag_set *set, int nr_queue) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	unsigned int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		if (i == nr_queue) | 
 | 			break; | 
 | 		blk_mq_exit_hctx(q, set, hctx, i); | 
 | 	} | 
 | } | 
 |  | 
 | static void blk_mq_free_hw_queues(struct request_queue *q, | 
 | 		struct blk_mq_tag_set *set) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	unsigned int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) | 
 | 		free_cpumask_var(hctx->cpumask); | 
 | } | 
 |  | 
 | static int blk_mq_init_hctx(struct request_queue *q, | 
 | 		struct blk_mq_tag_set *set, | 
 | 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) | 
 | { | 
 | 	int node; | 
 | 	unsigned flush_start_tag = set->queue_depth; | 
 |  | 
 | 	node = hctx->numa_node; | 
 | 	if (node == NUMA_NO_NODE) | 
 | 		node = hctx->numa_node = set->numa_node; | 
 |  | 
 | 	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); | 
 | 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); | 
 | 	spin_lock_init(&hctx->lock); | 
 | 	INIT_LIST_HEAD(&hctx->dispatch); | 
 | 	hctx->queue = q; | 
 | 	hctx->queue_num = hctx_idx; | 
 | 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; | 
 |  | 
 | 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); | 
 |  | 
 | 	hctx->tags = set->tags[hctx_idx]; | 
 |  | 
 | 	/* | 
 | 	 * Allocate space for all possible cpus to avoid allocation at | 
 | 	 * runtime | 
 | 	 */ | 
 | 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), | 
 | 					GFP_KERNEL, node); | 
 | 	if (!hctx->ctxs) | 
 | 		goto unregister_cpu_notifier; | 
 |  | 
 | 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, | 
 | 			      node)) | 
 | 		goto free_ctxs; | 
 |  | 
 | 	hctx->nr_ctx = 0; | 
 |  | 
 | 	if (set->ops->init_hctx && | 
 | 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) | 
 | 		goto free_bitmap; | 
 |  | 
 | 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); | 
 | 	if (!hctx->fq) | 
 | 		goto exit_hctx; | 
 |  | 
 | 	if (set->ops->init_request && | 
 | 	    set->ops->init_request(set->driver_data, | 
 | 				   hctx->fq->flush_rq, hctx_idx, | 
 | 				   flush_start_tag + hctx_idx, node)) | 
 | 		goto free_fq; | 
 |  | 
 | 	if (hctx->flags & BLK_MQ_F_BLOCKING) | 
 | 		init_srcu_struct(&hctx->queue_rq_srcu); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  free_fq: | 
 | 	kfree(hctx->fq); | 
 |  exit_hctx: | 
 | 	if (set->ops->exit_hctx) | 
 | 		set->ops->exit_hctx(hctx, hctx_idx); | 
 |  free_bitmap: | 
 | 	sbitmap_free(&hctx->ctx_map); | 
 |  free_ctxs: | 
 | 	kfree(hctx->ctxs); | 
 |  unregister_cpu_notifier: | 
 | 	blk_mq_remove_cpuhp(hctx); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void blk_mq_init_cpu_queues(struct request_queue *q, | 
 | 				   unsigned int nr_hw_queues) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); | 
 | 		struct blk_mq_hw_ctx *hctx; | 
 |  | 
 | 		memset(__ctx, 0, sizeof(*__ctx)); | 
 | 		__ctx->cpu = i; | 
 | 		spin_lock_init(&__ctx->lock); | 
 | 		INIT_LIST_HEAD(&__ctx->rq_list); | 
 | 		__ctx->queue = q; | 
 | 		blk_stat_init(&__ctx->stat[BLK_STAT_READ]); | 
 | 		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); | 
 |  | 
 | 		/* If the cpu isn't online, the cpu is mapped to first hctx */ | 
 | 		if (!cpu_online(i)) | 
 | 			continue; | 
 |  | 
 | 		hctx = blk_mq_map_queue(q, i); | 
 |  | 
 | 		/* | 
 | 		 * Set local node, IFF we have more than one hw queue. If | 
 | 		 * not, we remain on the home node of the device | 
 | 		 */ | 
 | 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) | 
 | 			hctx->numa_node = local_memory_node(cpu_to_node(i)); | 
 | 	} | 
 | } | 
 |  | 
 | static void blk_mq_map_swqueue(struct request_queue *q, | 
 | 			       const struct cpumask *online_mask) | 
 | { | 
 | 	unsigned int i, hctx_idx; | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	struct blk_mq_ctx *ctx; | 
 | 	struct blk_mq_tag_set *set = q->tag_set; | 
 |  | 
 | 	/* | 
 | 	 * Avoid others reading imcomplete hctx->cpumask through sysfs | 
 | 	 */ | 
 | 	mutex_lock(&q->sysfs_lock); | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		cpumask_clear(hctx->cpumask); | 
 | 		hctx->nr_ctx = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Map software to hardware queues | 
 | 	 */ | 
 | 	for_each_possible_cpu(i) { | 
 | 		/* If the cpu isn't online, the cpu is mapped to first hctx */ | 
 | 		if (!cpumask_test_cpu(i, online_mask)) | 
 | 			continue; | 
 |  | 
 | 		hctx_idx = q->mq_map[i]; | 
 | 		/* unmapped hw queue can be remapped after CPU topo changed */ | 
 | 		if (!set->tags[hctx_idx]) { | 
 | 			set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx); | 
 |  | 
 | 			/* | 
 | 			 * If tags initialization fail for some hctx, | 
 | 			 * that hctx won't be brought online.  In this | 
 | 			 * case, remap the current ctx to hctx[0] which | 
 | 			 * is guaranteed to always have tags allocated | 
 | 			 */ | 
 | 			if (!set->tags[hctx_idx]) | 
 | 				q->mq_map[i] = 0; | 
 | 		} | 
 |  | 
 | 		ctx = per_cpu_ptr(q->queue_ctx, i); | 
 | 		hctx = blk_mq_map_queue(q, i); | 
 |  | 
 | 		cpumask_set_cpu(i, hctx->cpumask); | 
 | 		ctx->index_hw = hctx->nr_ctx; | 
 | 		hctx->ctxs[hctx->nr_ctx++] = ctx; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&q->sysfs_lock); | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		/* | 
 | 		 * If no software queues are mapped to this hardware queue, | 
 | 		 * disable it and free the request entries. | 
 | 		 */ | 
 | 		if (!hctx->nr_ctx) { | 
 | 			/* Never unmap queue 0.  We need it as a | 
 | 			 * fallback in case of a new remap fails | 
 | 			 * allocation | 
 | 			 */ | 
 | 			if (i && set->tags[i]) { | 
 | 				blk_mq_free_rq_map(set, set->tags[i], i); | 
 | 				set->tags[i] = NULL; | 
 | 			} | 
 | 			hctx->tags = NULL; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		hctx->tags = set->tags[i]; | 
 | 		WARN_ON(!hctx->tags); | 
 |  | 
 | 		/* | 
 | 		 * Set the map size to the number of mapped software queues. | 
 | 		 * This is more accurate and more efficient than looping | 
 | 		 * over all possibly mapped software queues. | 
 | 		 */ | 
 | 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); | 
 |  | 
 | 		/* | 
 | 		 * Initialize batch roundrobin counts | 
 | 		 */ | 
 | 		hctx->next_cpu = cpumask_first(hctx->cpumask); | 
 | 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; | 
 | 	} | 
 | } | 
 |  | 
 | static void queue_set_hctx_shared(struct request_queue *q, bool shared) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i; | 
 |  | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		if (shared) | 
 | 			hctx->flags |= BLK_MQ_F_TAG_SHARED; | 
 | 		else | 
 | 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED; | 
 | 	} | 
 | } | 
 |  | 
 | static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) | 
 | { | 
 | 	struct request_queue *q; | 
 |  | 
 | 	list_for_each_entry(q, &set->tag_list, tag_set_list) { | 
 | 		blk_mq_freeze_queue(q); | 
 | 		queue_set_hctx_shared(q, shared); | 
 | 		blk_mq_unfreeze_queue(q); | 
 | 	} | 
 | } | 
 |  | 
 | static void blk_mq_del_queue_tag_set(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_tag_set *set = q->tag_set; | 
 |  | 
 | 	mutex_lock(&set->tag_list_lock); | 
 | 	list_del_init(&q->tag_set_list); | 
 | 	if (list_is_singular(&set->tag_list)) { | 
 | 		/* just transitioned to unshared */ | 
 | 		set->flags &= ~BLK_MQ_F_TAG_SHARED; | 
 | 		/* update existing queue */ | 
 | 		blk_mq_update_tag_set_depth(set, false); | 
 | 	} | 
 | 	mutex_unlock(&set->tag_list_lock); | 
 | } | 
 |  | 
 | static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, | 
 | 				     struct request_queue *q) | 
 | { | 
 | 	q->tag_set = set; | 
 |  | 
 | 	mutex_lock(&set->tag_list_lock); | 
 |  | 
 | 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */ | 
 | 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { | 
 | 		set->flags |= BLK_MQ_F_TAG_SHARED; | 
 | 		/* update existing queue */ | 
 | 		blk_mq_update_tag_set_depth(set, true); | 
 | 	} | 
 | 	if (set->flags & BLK_MQ_F_TAG_SHARED) | 
 | 		queue_set_hctx_shared(q, true); | 
 | 	list_add_tail(&q->tag_set_list, &set->tag_list); | 
 |  | 
 | 	mutex_unlock(&set->tag_list_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * It is the actual release handler for mq, but we do it from | 
 |  * request queue's release handler for avoiding use-after-free | 
 |  * and headache because q->mq_kobj shouldn't have been introduced, | 
 |  * but we can't group ctx/kctx kobj without it. | 
 |  */ | 
 | void blk_mq_release(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	unsigned int i; | 
 |  | 
 | 	/* hctx kobj stays in hctx */ | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		if (!hctx) | 
 | 			continue; | 
 | 		kfree(hctx->ctxs); | 
 | 		kfree(hctx); | 
 | 	} | 
 |  | 
 | 	q->mq_map = NULL; | 
 |  | 
 | 	kfree(q->queue_hw_ctx); | 
 |  | 
 | 	/* ctx kobj stays in queue_ctx */ | 
 | 	free_percpu(q->queue_ctx); | 
 | } | 
 |  | 
 | struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | 
 | { | 
 | 	struct request_queue *uninit_q, *q; | 
 |  | 
 | 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); | 
 | 	if (!uninit_q) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	q = blk_mq_init_allocated_queue(set, uninit_q); | 
 | 	if (IS_ERR(q)) | 
 | 		blk_cleanup_queue(uninit_q); | 
 |  | 
 | 	return q; | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_init_queue); | 
 |  | 
 | static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, | 
 | 						struct request_queue *q) | 
 | { | 
 | 	int i, j; | 
 | 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; | 
 |  | 
 | 	blk_mq_sysfs_unregister(q); | 
 | 	for (i = 0; i < set->nr_hw_queues; i++) { | 
 | 		int node; | 
 |  | 
 | 		if (hctxs[i]) | 
 | 			continue; | 
 |  | 
 | 		node = blk_mq_hw_queue_to_node(q->mq_map, i); | 
 | 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), | 
 | 					GFP_KERNEL, node); | 
 | 		if (!hctxs[i]) | 
 | 			break; | 
 |  | 
 | 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, | 
 | 						node)) { | 
 | 			kfree(hctxs[i]); | 
 | 			hctxs[i] = NULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		atomic_set(&hctxs[i]->nr_active, 0); | 
 | 		hctxs[i]->numa_node = node; | 
 | 		hctxs[i]->queue_num = i; | 
 |  | 
 | 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) { | 
 | 			free_cpumask_var(hctxs[i]->cpumask); | 
 | 			kfree(hctxs[i]); | 
 | 			hctxs[i] = NULL; | 
 | 			break; | 
 | 		} | 
 | 		blk_mq_hctx_kobj_init(hctxs[i]); | 
 | 	} | 
 | 	for (j = i; j < q->nr_hw_queues; j++) { | 
 | 		struct blk_mq_hw_ctx *hctx = hctxs[j]; | 
 |  | 
 | 		if (hctx) { | 
 | 			if (hctx->tags) { | 
 | 				blk_mq_free_rq_map(set, hctx->tags, j); | 
 | 				set->tags[j] = NULL; | 
 | 			} | 
 | 			blk_mq_exit_hctx(q, set, hctx, j); | 
 | 			free_cpumask_var(hctx->cpumask); | 
 | 			kobject_put(&hctx->kobj); | 
 | 			kfree(hctx->ctxs); | 
 | 			kfree(hctx); | 
 | 			hctxs[j] = NULL; | 
 |  | 
 | 		} | 
 | 	} | 
 | 	q->nr_hw_queues = i; | 
 | 	blk_mq_sysfs_register(q); | 
 | } | 
 |  | 
 | struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, | 
 | 						  struct request_queue *q) | 
 | { | 
 | 	/* mark the queue as mq asap */ | 
 | 	q->mq_ops = set->ops; | 
 |  | 
 | 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx); | 
 | 	if (!q->queue_ctx) | 
 | 		goto err_exit; | 
 |  | 
 | 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), | 
 | 						GFP_KERNEL, set->numa_node); | 
 | 	if (!q->queue_hw_ctx) | 
 | 		goto err_percpu; | 
 |  | 
 | 	q->mq_map = set->mq_map; | 
 |  | 
 | 	blk_mq_realloc_hw_ctxs(set, q); | 
 | 	if (!q->nr_hw_queues) | 
 | 		goto err_hctxs; | 
 |  | 
 | 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work); | 
 | 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); | 
 |  | 
 | 	q->nr_queues = nr_cpu_ids; | 
 |  | 
 | 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; | 
 |  | 
 | 	if (!(set->flags & BLK_MQ_F_SG_MERGE)) | 
 | 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; | 
 |  | 
 | 	q->sg_reserved_size = INT_MAX; | 
 |  | 
 | 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); | 
 | 	INIT_LIST_HEAD(&q->requeue_list); | 
 | 	spin_lock_init(&q->requeue_lock); | 
 |  | 
 | 	if (q->nr_hw_queues > 1) | 
 | 		blk_queue_make_request(q, blk_mq_make_request); | 
 | 	else | 
 | 		blk_queue_make_request(q, blk_sq_make_request); | 
 |  | 
 | 	/* | 
 | 	 * Do this after blk_queue_make_request() overrides it... | 
 | 	 */ | 
 | 	q->nr_requests = set->queue_depth; | 
 |  | 
 | 	/* | 
 | 	 * Default to classic polling | 
 | 	 */ | 
 | 	q->poll_nsec = -1; | 
 |  | 
 | 	if (set->ops->complete) | 
 | 		blk_queue_softirq_done(q, set->ops->complete); | 
 |  | 
 | 	blk_mq_init_cpu_queues(q, set->nr_hw_queues); | 
 |  | 
 | 	get_online_cpus(); | 
 | 	mutex_lock(&all_q_mutex); | 
 |  | 
 | 	list_add_tail(&q->all_q_node, &all_q_list); | 
 | 	blk_mq_add_queue_tag_set(set, q); | 
 | 	blk_mq_map_swqueue(q, cpu_online_mask); | 
 |  | 
 | 	mutex_unlock(&all_q_mutex); | 
 | 	put_online_cpus(); | 
 |  | 
 | 	return q; | 
 |  | 
 | err_hctxs: | 
 | 	kfree(q->queue_hw_ctx); | 
 | err_percpu: | 
 | 	free_percpu(q->queue_ctx); | 
 | err_exit: | 
 | 	q->mq_ops = NULL; | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_init_allocated_queue); | 
 |  | 
 | void blk_mq_free_queue(struct request_queue *q) | 
 | { | 
 | 	struct blk_mq_tag_set	*set = q->tag_set; | 
 |  | 
 | 	mutex_lock(&all_q_mutex); | 
 | 	list_del_init(&q->all_q_node); | 
 | 	mutex_unlock(&all_q_mutex); | 
 |  | 
 | 	wbt_exit(q); | 
 |  | 
 | 	blk_mq_del_queue_tag_set(q); | 
 |  | 
 | 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); | 
 | 	blk_mq_free_hw_queues(q, set); | 
 | } | 
 |  | 
 | /* Basically redo blk_mq_init_queue with queue frozen */ | 
 | static void blk_mq_queue_reinit(struct request_queue *q, | 
 | 				const struct cpumask *online_mask) | 
 | { | 
 | 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); | 
 |  | 
 | 	blk_mq_sysfs_unregister(q); | 
 |  | 
 | 	/* | 
 | 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe | 
 | 	 * we should change hctx numa_node according to new topology (this | 
 | 	 * involves free and re-allocate memory, worthy doing?) | 
 | 	 */ | 
 |  | 
 | 	blk_mq_map_swqueue(q, online_mask); | 
 |  | 
 | 	blk_mq_sysfs_register(q); | 
 | } | 
 |  | 
 | /* | 
 |  * New online cpumask which is going to be set in this hotplug event. | 
 |  * Declare this cpumasks as global as cpu-hotplug operation is invoked | 
 |  * one-by-one and dynamically allocating this could result in a failure. | 
 |  */ | 
 | static struct cpumask cpuhp_online_new; | 
 |  | 
 | static void blk_mq_queue_reinit_work(void) | 
 | { | 
 | 	struct request_queue *q; | 
 |  | 
 | 	mutex_lock(&all_q_mutex); | 
 | 	/* | 
 | 	 * We need to freeze and reinit all existing queues.  Freezing | 
 | 	 * involves synchronous wait for an RCU grace period and doing it | 
 | 	 * one by one may take a long time.  Start freezing all queues in | 
 | 	 * one swoop and then wait for the completions so that freezing can | 
 | 	 * take place in parallel. | 
 | 	 */ | 
 | 	list_for_each_entry(q, &all_q_list, all_q_node) | 
 | 		blk_mq_freeze_queue_start(q); | 
 | 	list_for_each_entry(q, &all_q_list, all_q_node) | 
 | 		blk_mq_freeze_queue_wait(q); | 
 |  | 
 | 	list_for_each_entry(q, &all_q_list, all_q_node) | 
 | 		blk_mq_queue_reinit(q, &cpuhp_online_new); | 
 |  | 
 | 	list_for_each_entry(q, &all_q_list, all_q_node) | 
 | 		blk_mq_unfreeze_queue(q); | 
 |  | 
 | 	mutex_unlock(&all_q_mutex); | 
 | } | 
 |  | 
 | static int blk_mq_queue_reinit_dead(unsigned int cpu) | 
 | { | 
 | 	cpumask_copy(&cpuhp_online_new, cpu_online_mask); | 
 | 	blk_mq_queue_reinit_work(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Before hotadded cpu starts handling requests, new mappings must be | 
 |  * established.  Otherwise, these requests in hw queue might never be | 
 |  * dispatched. | 
 |  * | 
 |  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 | 
 |  * for CPU0, and ctx1 for CPU1). | 
 |  * | 
 |  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list | 
 |  * and set bit0 in pending bitmap as ctx1->index_hw is still zero. | 
 |  * | 
 |  * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in | 
 |  * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. | 
 |  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list | 
 |  * is ignored. | 
 |  */ | 
 | static int blk_mq_queue_reinit_prepare(unsigned int cpu) | 
 | { | 
 | 	cpumask_copy(&cpuhp_online_new, cpu_online_mask); | 
 | 	cpumask_set_cpu(cpu, &cpuhp_online_new); | 
 | 	blk_mq_queue_reinit_work(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < set->nr_hw_queues; i++) { | 
 | 		set->tags[i] = blk_mq_init_rq_map(set, i); | 
 | 		if (!set->tags[i]) | 
 | 			goto out_unwind; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unwind: | 
 | 	while (--i >= 0) | 
 | 		blk_mq_free_rq_map(set, set->tags[i], i); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate the request maps associated with this tag_set. Note that this | 
 |  * may reduce the depth asked for, if memory is tight. set->queue_depth | 
 |  * will be updated to reflect the allocated depth. | 
 |  */ | 
 | static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) | 
 | { | 
 | 	unsigned int depth; | 
 | 	int err; | 
 |  | 
 | 	depth = set->queue_depth; | 
 | 	do { | 
 | 		err = __blk_mq_alloc_rq_maps(set); | 
 | 		if (!err) | 
 | 			break; | 
 |  | 
 | 		set->queue_depth >>= 1; | 
 | 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { | 
 | 			err = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 	} while (set->queue_depth); | 
 |  | 
 | 	if (!set->queue_depth || err) { | 
 | 		pr_err("blk-mq: failed to allocate request map\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (depth != set->queue_depth) | 
 | 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n", | 
 | 						depth, set->queue_depth); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Alloc a tag set to be associated with one or more request queues. | 
 |  * May fail with EINVAL for various error conditions. May adjust the | 
 |  * requested depth down, if if it too large. In that case, the set | 
 |  * value will be stored in set->queue_depth. | 
 |  */ | 
 | int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); | 
 |  | 
 | 	if (!set->nr_hw_queues) | 
 | 		return -EINVAL; | 
 | 	if (!set->queue_depth) | 
 | 		return -EINVAL; | 
 | 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!set->ops->queue_rq) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) { | 
 | 		pr_info("blk-mq: reduced tag depth to %u\n", | 
 | 			BLK_MQ_MAX_DEPTH); | 
 | 		set->queue_depth = BLK_MQ_MAX_DEPTH; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If a crashdump is active, then we are potentially in a very | 
 | 	 * memory constrained environment. Limit us to 1 queue and | 
 | 	 * 64 tags to prevent using too much memory. | 
 | 	 */ | 
 | 	if (is_kdump_kernel()) { | 
 | 		set->nr_hw_queues = 1; | 
 | 		set->queue_depth = min(64U, set->queue_depth); | 
 | 	} | 
 | 	/* | 
 | 	 * There is no use for more h/w queues than cpus. | 
 | 	 */ | 
 | 	if (set->nr_hw_queues > nr_cpu_ids) | 
 | 		set->nr_hw_queues = nr_cpu_ids; | 
 |  | 
 | 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), | 
 | 				 GFP_KERNEL, set->numa_node); | 
 | 	if (!set->tags) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, | 
 | 			GFP_KERNEL, set->numa_node); | 
 | 	if (!set->mq_map) | 
 | 		goto out_free_tags; | 
 |  | 
 | 	if (set->ops->map_queues) | 
 | 		ret = set->ops->map_queues(set); | 
 | 	else | 
 | 		ret = blk_mq_map_queues(set); | 
 | 	if (ret) | 
 | 		goto out_free_mq_map; | 
 |  | 
 | 	ret = blk_mq_alloc_rq_maps(set); | 
 | 	if (ret) | 
 | 		goto out_free_mq_map; | 
 |  | 
 | 	mutex_init(&set->tag_list_lock); | 
 | 	INIT_LIST_HEAD(&set->tag_list); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_mq_map: | 
 | 	kfree(set->mq_map); | 
 | 	set->mq_map = NULL; | 
 | out_free_tags: | 
 | 	kfree(set->tags); | 
 | 	set->tags = NULL; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_alloc_tag_set); | 
 |  | 
 | void blk_mq_free_tag_set(struct blk_mq_tag_set *set) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_cpu_ids; i++) { | 
 | 		if (set->tags[i]) | 
 | 			blk_mq_free_rq_map(set, set->tags[i], i); | 
 | 	} | 
 |  | 
 | 	kfree(set->mq_map); | 
 | 	set->mq_map = NULL; | 
 |  | 
 | 	kfree(set->tags); | 
 | 	set->tags = NULL; | 
 | } | 
 | EXPORT_SYMBOL(blk_mq_free_tag_set); | 
 |  | 
 | int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) | 
 | { | 
 | 	struct blk_mq_tag_set *set = q->tag_set; | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	int i, ret; | 
 |  | 
 | 	if (!set || nr > set->queue_depth) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = 0; | 
 | 	queue_for_each_hw_ctx(q, hctx, i) { | 
 | 		if (!hctx->tags) | 
 | 			continue; | 
 | 		ret = blk_mq_tag_update_depth(hctx->tags, nr); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!ret) | 
 | 		q->nr_requests = nr; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) | 
 | { | 
 | 	struct request_queue *q; | 
 |  | 
 | 	if (nr_hw_queues > nr_cpu_ids) | 
 | 		nr_hw_queues = nr_cpu_ids; | 
 | 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry(q, &set->tag_list, tag_set_list) | 
 | 		blk_mq_freeze_queue(q); | 
 |  | 
 | 	set->nr_hw_queues = nr_hw_queues; | 
 | 	list_for_each_entry(q, &set->tag_list, tag_set_list) { | 
 | 		blk_mq_realloc_hw_ctxs(set, q); | 
 |  | 
 | 		if (q->nr_hw_queues > 1) | 
 | 			blk_queue_make_request(q, blk_mq_make_request); | 
 | 		else | 
 | 			blk_queue_make_request(q, blk_sq_make_request); | 
 |  | 
 | 		blk_mq_queue_reinit(q, cpu_online_mask); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(q, &set->tag_list, tag_set_list) | 
 | 		blk_mq_unfreeze_queue(q); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); | 
 |  | 
 | static unsigned long blk_mq_poll_nsecs(struct request_queue *q, | 
 | 				       struct blk_mq_hw_ctx *hctx, | 
 | 				       struct request *rq) | 
 | { | 
 | 	struct blk_rq_stat stat[2]; | 
 | 	unsigned long ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If stats collection isn't on, don't sleep but turn it on for | 
 | 	 * future users | 
 | 	 */ | 
 | 	if (!blk_stat_enable(q)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We don't have to do this once per IO, should optimize this | 
 | 	 * to just use the current window of stats until it changes | 
 | 	 */ | 
 | 	memset(&stat, 0, sizeof(stat)); | 
 | 	blk_hctx_stat_get(hctx, stat); | 
 |  | 
 | 	/* | 
 | 	 * As an optimistic guess, use half of the mean service time | 
 | 	 * for this type of request. We can (and should) make this smarter. | 
 | 	 * For instance, if the completion latencies are tight, we can | 
 | 	 * get closer than just half the mean. This is especially | 
 | 	 * important on devices where the completion latencies are longer | 
 | 	 * than ~10 usec. | 
 | 	 */ | 
 | 	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) | 
 | 		ret = (stat[BLK_STAT_READ].mean + 1) / 2; | 
 | 	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) | 
 | 		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, | 
 | 				     struct blk_mq_hw_ctx *hctx, | 
 | 				     struct request *rq) | 
 | { | 
 | 	struct hrtimer_sleeper hs; | 
 | 	enum hrtimer_mode mode; | 
 | 	unsigned int nsecs; | 
 | 	ktime_t kt; | 
 |  | 
 | 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * poll_nsec can be: | 
 | 	 * | 
 | 	 * -1:	don't ever hybrid sleep | 
 | 	 *  0:	use half of prev avg | 
 | 	 * >0:	use this specific value | 
 | 	 */ | 
 | 	if (q->poll_nsec == -1) | 
 | 		return false; | 
 | 	else if (q->poll_nsec > 0) | 
 | 		nsecs = q->poll_nsec; | 
 | 	else | 
 | 		nsecs = blk_mq_poll_nsecs(q, hctx, rq); | 
 |  | 
 | 	if (!nsecs) | 
 | 		return false; | 
 |  | 
 | 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); | 
 |  | 
 | 	/* | 
 | 	 * This will be replaced with the stats tracking code, using | 
 | 	 * 'avg_completion_time / 2' as the pre-sleep target. | 
 | 	 */ | 
 | 	kt = nsecs; | 
 |  | 
 | 	mode = HRTIMER_MODE_REL; | 
 | 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); | 
 | 	hrtimer_set_expires(&hs.timer, kt); | 
 |  | 
 | 	hrtimer_init_sleeper(&hs, current); | 
 | 	do { | 
 | 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) | 
 | 			break; | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		hrtimer_start_expires(&hs.timer, mode); | 
 | 		if (hs.task) | 
 | 			io_schedule(); | 
 | 		hrtimer_cancel(&hs.timer); | 
 | 		mode = HRTIMER_MODE_ABS; | 
 | 	} while (hs.task && !signal_pending(current)); | 
 |  | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	destroy_hrtimer_on_stack(&hs.timer); | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) | 
 | { | 
 | 	struct request_queue *q = hctx->queue; | 
 | 	long state; | 
 |  | 
 | 	/* | 
 | 	 * If we sleep, have the caller restart the poll loop to reset | 
 | 	 * the state. Like for the other success return cases, the | 
 | 	 * caller is responsible for checking if the IO completed. If | 
 | 	 * the IO isn't complete, we'll get called again and will go | 
 | 	 * straight to the busy poll loop. | 
 | 	 */ | 
 | 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) | 
 | 		return true; | 
 |  | 
 | 	hctx->poll_considered++; | 
 |  | 
 | 	state = current->state; | 
 | 	while (!need_resched()) { | 
 | 		int ret; | 
 |  | 
 | 		hctx->poll_invoked++; | 
 |  | 
 | 		ret = q->mq_ops->poll(hctx, rq->tag); | 
 | 		if (ret > 0) { | 
 | 			hctx->poll_success++; | 
 | 			set_current_state(TASK_RUNNING); | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		if (signal_pending_state(state, current)) | 
 | 			set_current_state(TASK_RUNNING); | 
 |  | 
 | 		if (current->state == TASK_RUNNING) | 
 | 			return true; | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		cpu_relax(); | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) | 
 | { | 
 | 	struct blk_mq_hw_ctx *hctx; | 
 | 	struct blk_plug *plug; | 
 | 	struct request *rq; | 
 |  | 
 | 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || | 
 | 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) | 
 | 		return false; | 
 |  | 
 | 	plug = current->plug; | 
 | 	if (plug) | 
 | 		blk_flush_plug_list(plug, false); | 
 |  | 
 | 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; | 
 | 	rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); | 
 |  | 
 | 	return __blk_mq_poll(hctx, rq); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_poll); | 
 |  | 
 | void blk_mq_disable_hotplug(void) | 
 | { | 
 | 	mutex_lock(&all_q_mutex); | 
 | } | 
 |  | 
 | void blk_mq_enable_hotplug(void) | 
 | { | 
 | 	mutex_unlock(&all_q_mutex); | 
 | } | 
 |  | 
 | static int __init blk_mq_init(void) | 
 | { | 
 | 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, | 
 | 				blk_mq_hctx_notify_dead); | 
 |  | 
 | 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", | 
 | 				  blk_mq_queue_reinit_prepare, | 
 | 				  blk_mq_queue_reinit_dead); | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(blk_mq_init); |