|  | /* | 
|  | *  arch/microblaze/mm/fault.c | 
|  | * | 
|  | *    Copyright (C) 2007 Xilinx, Inc.  All rights reserved. | 
|  | * | 
|  | *  Derived from "arch/ppc/mm/fault.c" | 
|  | *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  Derived from "arch/i386/mm/fault.c" | 
|  | *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  Modified by Cort Dougan and Paul Mackerras. | 
|  | * | 
|  | * This file is subject to the terms and conditions of the GNU General | 
|  | * Public License.  See the file COPYING in the main directory of this | 
|  | * archive for more details. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/extable.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/perf_event.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <linux/mmu_context.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/exceptions.h> | 
|  |  | 
|  | static unsigned long pte_misses;	/* updated by do_page_fault() */ | 
|  | static unsigned long pte_errors;	/* updated by do_page_fault() */ | 
|  |  | 
|  | /* | 
|  | * Check whether the instruction at regs->pc is a store using | 
|  | * an update addressing form which will update r1. | 
|  | */ | 
|  | static int store_updates_sp(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int inst; | 
|  |  | 
|  | if (get_user(inst, (unsigned int __user *)regs->pc)) | 
|  | return 0; | 
|  | /* check for 1 in the rD field */ | 
|  | if (((inst >> 21) & 0x1f) != 1) | 
|  | return 0; | 
|  | /* check for store opcodes */ | 
|  | if ((inst & 0xd0000000) == 0xd0000000) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * bad_page_fault is called when we have a bad access from the kernel. | 
|  | * It is called from do_page_fault above and from some of the procedures | 
|  | * in traps.c. | 
|  | */ | 
|  | void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) | 
|  | { | 
|  | const struct exception_table_entry *fixup; | 
|  | /* MS: no context */ | 
|  | /* Are we prepared to handle this fault?  */ | 
|  | fixup = search_exception_tables(regs->pc); | 
|  | if (fixup) { | 
|  | regs->pc = fixup->fixup; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* kernel has accessed a bad area */ | 
|  | die("kernel access of bad area", regs, sig); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The error_code parameter is ESR for a data fault, | 
|  | * 0 for an instruction fault. | 
|  | */ | 
|  | void do_page_fault(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | int code = SEGV_MAPERR; | 
|  | int is_write = error_code & ESR_S; | 
|  | vm_fault_t fault; | 
|  | unsigned int flags = FAULT_FLAG_DEFAULT; | 
|  |  | 
|  | regs->ear = address; | 
|  | regs->esr = error_code; | 
|  |  | 
|  | /* On a kernel SLB miss we can only check for a valid exception entry */ | 
|  | if (unlikely(kernel_mode(regs) && (address >= TASK_SIZE))) { | 
|  | pr_warn("kernel task_size exceed"); | 
|  | _exception(SIGSEGV, regs, code, address); | 
|  | } | 
|  |  | 
|  | /* for instr TLB miss and instr storage exception ESR_S is undefined */ | 
|  | if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11) | 
|  | is_write = 0; | 
|  |  | 
|  | if (unlikely(faulthandler_disabled() || !mm)) { | 
|  | if (kernel_mode(regs)) | 
|  | goto bad_area_nosemaphore; | 
|  |  | 
|  | /* faulthandler_disabled() in user mode is really bad, | 
|  | as is current->mm == NULL. */ | 
|  | pr_emerg("Page fault in user mode with faulthandler_disabled(), mm = %p\n", | 
|  | mm); | 
|  | pr_emerg("r15 = %lx  MSR = %lx\n", | 
|  | regs->r15, regs->msr); | 
|  | die("Weird page fault", regs, SIGSEGV); | 
|  | } | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | flags |= FAULT_FLAG_USER; | 
|  |  | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); | 
|  |  | 
|  | /* When running in the kernel we expect faults to occur only to | 
|  | * addresses in user space.  All other faults represent errors in the | 
|  | * kernel and should generate an OOPS.  Unfortunately, in the case of an | 
|  | * erroneous fault occurring in a code path which already holds mmap_lock | 
|  | * we will deadlock attempting to validate the fault against the | 
|  | * address space.  Luckily the kernel only validly references user | 
|  | * space from well defined areas of code, which are listed in the | 
|  | * exceptions table. | 
|  | * | 
|  | * As the vast majority of faults will be valid we will only perform | 
|  | * the source reference check when there is a possibility of a deadlock. | 
|  | * Attempt to lock the address space, if we cannot we then validate the | 
|  | * source.  If this is invalid we can skip the address space check, | 
|  | * thus avoiding the deadlock. | 
|  | */ | 
|  | if (unlikely(!mmap_read_trylock(mm))) { | 
|  | if (kernel_mode(regs) && !search_exception_tables(regs->pc)) | 
|  | goto bad_area_nosemaphore; | 
|  |  | 
|  | retry: | 
|  | mmap_read_lock(mm); | 
|  | } | 
|  |  | 
|  | vma = find_vma(mm, address); | 
|  | if (unlikely(!vma)) | 
|  | goto bad_area; | 
|  |  | 
|  | if (vma->vm_start <= address) | 
|  | goto good_area; | 
|  |  | 
|  | if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) | 
|  | goto bad_area; | 
|  |  | 
|  | if (unlikely(!is_write)) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * N.B. The ABI allows programs to access up to | 
|  | * a few hundred bytes below the stack pointer (TBD). | 
|  | * The kernel signal delivery code writes up to about 1.5kB | 
|  | * below the stack pointer (r1) before decrementing it. | 
|  | * The exec code can write slightly over 640kB to the stack | 
|  | * before setting the user r1.  Thus we allow the stack to | 
|  | * expand to 1MB without further checks. | 
|  | */ | 
|  | if (unlikely(address + 0x100000 < vma->vm_end)) { | 
|  |  | 
|  | /* get user regs even if this fault is in kernel mode */ | 
|  | struct pt_regs *uregs = current->thread.regs; | 
|  | if (uregs == NULL) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * A user-mode access to an address a long way below | 
|  | * the stack pointer is only valid if the instruction | 
|  | * is one which would update the stack pointer to the | 
|  | * address accessed if the instruction completed, | 
|  | * i.e. either stwu rs,n(r1) or stwux rs,r1,rb | 
|  | * (or the byte, halfword, float or double forms). | 
|  | * | 
|  | * If we don't check this then any write to the area | 
|  | * between the last mapped region and the stack will | 
|  | * expand the stack rather than segfaulting. | 
|  | */ | 
|  | if (address + 2048 < uregs->r1 | 
|  | && (kernel_mode(regs) || !store_updates_sp(regs))) | 
|  | goto bad_area; | 
|  | } | 
|  | vma = expand_stack(mm, address); | 
|  | if (!vma) | 
|  | goto bad_area_nosemaphore; | 
|  |  | 
|  | good_area: | 
|  | code = SEGV_ACCERR; | 
|  |  | 
|  | /* a write */ | 
|  | if (unlikely(is_write)) { | 
|  | if (unlikely(!(vma->vm_flags & VM_WRITE))) | 
|  | goto bad_area; | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  | /* a read */ | 
|  | } else { | 
|  | /* protection fault */ | 
|  | if (unlikely(error_code & 0x08000000)) | 
|  | goto bad_area; | 
|  | if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC)))) | 
|  | goto bad_area; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, | 
|  | * make sure we exit gracefully rather than endlessly redo | 
|  | * the fault. | 
|  | */ | 
|  | fault = handle_mm_fault(vma, address, flags, regs); | 
|  |  | 
|  | if (fault_signal_pending(fault, regs)) { | 
|  | if (!user_mode(regs)) | 
|  | bad_page_fault(regs, address, SIGBUS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The fault is fully completed (including releasing mmap lock) */ | 
|  | if (fault & VM_FAULT_COMPLETED) | 
|  | return; | 
|  |  | 
|  | if (unlikely(fault & VM_FAULT_ERROR)) { | 
|  | if (fault & VM_FAULT_OOM) | 
|  | goto out_of_memory; | 
|  | else if (fault & VM_FAULT_SIGSEGV) | 
|  | goto bad_area; | 
|  | else if (fault & VM_FAULT_SIGBUS) | 
|  | goto do_sigbus; | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (fault & VM_FAULT_RETRY) { | 
|  | flags |= FAULT_FLAG_TRIED; | 
|  |  | 
|  | /* | 
|  | * No need to mmap_read_unlock(mm) as we would | 
|  | * have already released it in __lock_page_or_retry | 
|  | * in mm/filemap.c. | 
|  | */ | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | /* | 
|  | * keep track of tlb+htab misses that are good addrs but | 
|  | * just need pte's created via handle_mm_fault() | 
|  | * -- Cort | 
|  | */ | 
|  | pte_misses++; | 
|  | return; | 
|  |  | 
|  | bad_area: | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | bad_area_nosemaphore: | 
|  | pte_errors++; | 
|  |  | 
|  | /* User mode accesses cause a SIGSEGV */ | 
|  | if (user_mode(regs)) { | 
|  | _exception(SIGSEGV, regs, code, address); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bad_page_fault(regs, address, SIGSEGV); | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We ran out of memory, or some other thing happened to us that made | 
|  | * us unable to handle the page fault gracefully. | 
|  | */ | 
|  | out_of_memory: | 
|  | mmap_read_unlock(mm); | 
|  | if (!user_mode(regs)) | 
|  | bad_page_fault(regs, address, SIGKILL); | 
|  | else | 
|  | pagefault_out_of_memory(); | 
|  | return; | 
|  |  | 
|  | do_sigbus: | 
|  | mmap_read_unlock(mm); | 
|  | if (user_mode(regs)) { | 
|  | force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); | 
|  | return; | 
|  | } | 
|  | bad_page_fault(regs, address, SIGBUS); | 
|  | } |