blob: 262d9df766fef6721bce3312fc074649d066f71a [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2024-2025 Linaro Ltd
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/units.h>
#include <media/v4l2-cci.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#define OG0VE1B_LINK_FREQ_500MHZ (500 * HZ_PER_MHZ)
#define OG0VE1B_MCLK_FREQ_24MHZ (24 * HZ_PER_MHZ)
#define OG0VE1B_REG_CHIP_ID CCI_REG24(0x300a)
#define OG0VE1B_CHIP_ID 0xc75645
#define OG0VE1B_REG_MODE_SELECT CCI_REG8(0x0100)
#define OG0VE1B_MODE_STANDBY 0x00
#define OG0VE1B_MODE_STREAMING BIT(0)
#define OG0VE1B_REG_SOFTWARE_RST CCI_REG8(0x0103)
#define OG0VE1B_SOFTWARE_RST BIT(0)
/* Exposure controls from sensor */
#define OG0VE1B_REG_EXPOSURE CCI_REG24(0x3500)
#define OG0VE1B_EXPOSURE_MIN 1
#define OG0VE1B_EXPOSURE_MAX_MARGIN 14
#define OG0VE1B_EXPOSURE_STEP 1
#define OG0VE1B_EXPOSURE_DEFAULT 554
/* Analogue gain controls from sensor */
#define OG0VE1B_REG_ANALOGUE_GAIN CCI_REG16(0x350a)
#define OG0VE1B_ANALOGUE_GAIN_MIN 1
#define OG0VE1B_ANALOGUE_GAIN_MAX 0x1ff
#define OG0VE1B_ANALOGUE_GAIN_STEP 1
#define OG0VE1B_ANALOGUE_GAIN_DEFAULT 16
/* Test pattern */
#define OG0VE1B_REG_PRE_ISP CCI_REG8(0x5e00)
#define OG0VE1B_TEST_PATTERN_ENABLE BIT(7)
#define to_og0ve1b(_sd) container_of(_sd, struct og0ve1b, sd)
static const s64 og0ve1b_link_freq_menu[] = {
OG0VE1B_LINK_FREQ_500MHZ,
};
struct og0ve1b_reg_list {
const struct cci_reg_sequence *regs;
unsigned int num_regs;
};
struct og0ve1b_mode {
u32 width; /* Frame width in pixels */
u32 height; /* Frame height in pixels */
u32 hts; /* Horizontal timing size */
u32 vts; /* Default vertical timing size */
u32 bpp; /* Bits per pixel */
const struct og0ve1b_reg_list reg_list; /* Sensor register setting */
};
static const char * const og0ve1b_test_pattern_menu[] = {
"Disabled",
"Vertical Colour Bars",
};
static const char * const og0ve1b_supply_names[] = {
"avdd", /* Analog power */
"dovdd", /* Digital I/O power */
"dvdd", /* Digital core power */
};
#define OG0VE1B_NUM_SUPPLIES ARRAY_SIZE(og0ve1b_supply_names)
struct og0ve1b {
struct device *dev;
struct regmap *regmap;
struct clk *xvclk;
struct gpio_desc *reset_gpio;
struct regulator_bulk_data supplies[OG0VE1B_NUM_SUPPLIES];
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
/* Saved register value */
u64 pre_isp;
};
static const struct cci_reg_sequence og0ve1b_640x480_120fps_mode[] = {
{ CCI_REG8(0x30a0), 0x02 },
{ CCI_REG8(0x30a1), 0x00 },
{ CCI_REG8(0x30a2), 0x48 },
{ CCI_REG8(0x30a3), 0x34 },
{ CCI_REG8(0x30a4), 0xf7 },
{ CCI_REG8(0x30a5), 0x00 },
{ CCI_REG8(0x3082), 0x32 },
{ CCI_REG8(0x3083), 0x01 },
{ CCI_REG8(0x301c), 0xf0 },
{ CCI_REG8(0x301e), 0x0b },
{ CCI_REG8(0x3106), 0x10 },
{ CCI_REG8(0x3708), 0x77 },
{ CCI_REG8(0x3709), 0xf8 },
{ CCI_REG8(0x3717), 0x00 },
{ CCI_REG8(0x3782), 0x00 },
{ CCI_REG8(0x3783), 0x47 },
{ CCI_REG8(0x37a2), 0x00 },
{ CCI_REG8(0x3503), 0x07 },
{ CCI_REG8(0x3509), 0x10 },
{ CCI_REG8(0x3600), 0x83 },
{ CCI_REG8(0x3601), 0x21 },
{ CCI_REG8(0x3602), 0xf1 },
{ CCI_REG8(0x360a), 0x18 },
{ CCI_REG8(0x360e), 0xb3 },
{ CCI_REG8(0x3613), 0x20 },
{ CCI_REG8(0x366a), 0x78 },
{ CCI_REG8(0x3706), 0x63 },
{ CCI_REG8(0x3713), 0x00 },
{ CCI_REG8(0x3716), 0xb0 },
{ CCI_REG8(0x37a1), 0x38 },
{ CCI_REG8(0x3800), 0x00 },
{ CCI_REG8(0x3801), 0x04 },
{ CCI_REG8(0x3802), 0x00 },
{ CCI_REG8(0x3803), 0x04 },
{ CCI_REG8(0x3804), 0x02 },
{ CCI_REG8(0x3805), 0x8b },
{ CCI_REG8(0x3806), 0x01 },
{ CCI_REG8(0x3807), 0xeb },
{ CCI_REG8(0x3808), 0x02 }, /* output width */
{ CCI_REG8(0x3809), 0x80 },
{ CCI_REG8(0x380a), 0x01 }, /* output height */
{ CCI_REG8(0x380b), 0xe0 },
{ CCI_REG8(0x380c), 0x03 }, /* horizontal timing size */
{ CCI_REG8(0x380d), 0x18 },
{ CCI_REG8(0x380e), 0x02 }, /* vertical timing size */
{ CCI_REG8(0x380f), 0x38 },
{ CCI_REG8(0x3811), 0x04 },
{ CCI_REG8(0x3813), 0x04 },
{ CCI_REG8(0x3814), 0x11 },
{ CCI_REG8(0x3815), 0x11 },
{ CCI_REG8(0x3820), 0x00 },
{ CCI_REG8(0x3821), 0x00 },
{ CCI_REG8(0x3823), 0x04 },
{ CCI_REG8(0x382a), 0x00 },
{ CCI_REG8(0x382b), 0x03 },
{ CCI_REG8(0x3840), 0x00 },
{ CCI_REG8(0x389e), 0x00 },
{ CCI_REG8(0x3c05), 0x08 },
{ CCI_REG8(0x3c26), 0x02 },
{ CCI_REG8(0x3c27), 0xc0 },
{ CCI_REG8(0x3c28), 0x00 },
{ CCI_REG8(0x3c29), 0x40 },
{ CCI_REG8(0x3c2c), 0x00 },
{ CCI_REG8(0x3c2d), 0x50 },
{ CCI_REG8(0x3c2e), 0x02 },
{ CCI_REG8(0x3c2f), 0x66 },
{ CCI_REG8(0x3c33), 0x08 },
{ CCI_REG8(0x3c35), 0x00 },
{ CCI_REG8(0x3c36), 0x00 },
{ CCI_REG8(0x3c37), 0x00 },
{ CCI_REG8(0x3f52), 0x9b },
{ CCI_REG8(0x4001), 0x42 },
{ CCI_REG8(0x4004), 0x08 },
{ CCI_REG8(0x4005), 0x00 },
{ CCI_REG8(0x4007), 0x28 },
{ CCI_REG8(0x4009), 0x40 },
{ CCI_REG8(0x4307), 0x30 },
{ CCI_REG8(0x4500), 0x80 },
{ CCI_REG8(0x4501), 0x02 },
{ CCI_REG8(0x4502), 0x47 },
{ CCI_REG8(0x4504), 0x7f },
{ CCI_REG8(0x4601), 0x48 },
{ CCI_REG8(0x4800), 0x64 },
{ CCI_REG8(0x4801), 0x0f },
{ CCI_REG8(0x4806), 0x2f },
{ CCI_REG8(0x4819), 0xaa },
{ CCI_REG8(0x4823), 0x3e },
{ CCI_REG8(0x5000), 0x85 },
{ CCI_REG8(0x5e00), 0x0c },
{ CCI_REG8(0x3899), 0x09 },
{ CCI_REG8(0x4f00), 0x64 },
{ CCI_REG8(0x4f02), 0x0a },
{ CCI_REG8(0x4f05), 0x0e },
{ CCI_REG8(0x4f06), 0x11 },
{ CCI_REG8(0x4f08), 0x0b },
{ CCI_REG8(0x4f0a), 0xc4 },
{ CCI_REG8(0x4f20), 0x1f },
{ CCI_REG8(0x4f25), 0x10 },
{ CCI_REG8(0x3016), 0x10 },
{ CCI_REG8(0x3017), 0x00 },
{ CCI_REG8(0x3018), 0x00 },
{ CCI_REG8(0x3019), 0x00 },
{ CCI_REG8(0x301a), 0x00 },
{ CCI_REG8(0x301b), 0x00 },
{ CCI_REG8(0x301c), 0x72 },
{ CCI_REG8(0x3037), 0x40 },
{ CCI_REG8(0x4f2c), 0x00 },
{ CCI_REG8(0x4f21), 0x00 },
{ CCI_REG8(0x4f23), 0x00 },
{ CCI_REG8(0x4f2a), 0x00 },
{ CCI_REG8(0x3665), 0xe7 },
{ CCI_REG8(0x3668), 0x48 },
{ CCI_REG8(0x3671), 0x3c },
{ CCI_REG8(0x389a), 0x02 },
{ CCI_REG8(0x389b), 0x00 },
{ CCI_REG8(0x303c), 0xa0 },
{ CCI_REG8(0x300f), 0xf0 },
{ CCI_REG8(0x304b), 0x0f },
{ CCI_REG8(0x3662), 0x24 },
{ CCI_REG8(0x3006), 0x40 },
{ CCI_REG8(0x4f26), 0x45 },
{ CCI_REG8(0x3607), 0x34 },
{ CCI_REG8(0x3608), 0x01 },
{ CCI_REG8(0x360a), 0x0c },
{ CCI_REG8(0x360b), 0x86 },
{ CCI_REG8(0x360c), 0xcc },
{ CCI_REG8(0x3013), 0x00 },
{ CCI_REG8(0x3083), 0x02 },
{ CCI_REG8(0x3084), 0x12 },
{ CCI_REG8(0x4601), 0x38 },
{ CCI_REG8(0x366f), 0x3a },
{ CCI_REG8(0x3713), 0x19 },
{ CCI_REG8(0x37a2), 0x00 },
{ CCI_REG8(0x3f43), 0x27 },
{ CCI_REG8(0x3f45), 0x27 },
{ CCI_REG8(0x3f47), 0x32 },
{ CCI_REG8(0x3f49), 0x3e },
{ CCI_REG8(0x3f4b), 0x20 },
{ CCI_REG8(0x3f4d), 0x30 },
{ CCI_REG8(0x4300), 0x3f },
{ CCI_REG8(0x4009), 0x10 },
{ CCI_REG8(0x3f02), 0x68 },
{ CCI_REG8(0x3700), 0x8c },
{ CCI_REG8(0x370b), 0x7e },
{ CCI_REG8(0x3f47), 0x35 },
};
static const struct og0ve1b_mode supported_modes[] = {
{
.width = 640,
.height = 480,
.hts = 792,
.vts = 568,
.bpp = 8,
.reg_list = {
.regs = og0ve1b_640x480_120fps_mode,
.num_regs = ARRAY_SIZE(og0ve1b_640x480_120fps_mode),
},
},
};
static int og0ve1b_enable_test_pattern(struct og0ve1b *og0ve1b, u32 pattern)
{
u64 val = og0ve1b->pre_isp;
if (pattern)
val |= OG0VE1B_TEST_PATTERN_ENABLE;
else
val &= ~OG0VE1B_TEST_PATTERN_ENABLE;
return cci_write(og0ve1b->regmap, OG0VE1B_REG_PRE_ISP, val, NULL);
}
static int og0ve1b_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct og0ve1b *og0ve1b = container_of(ctrl->handler, struct og0ve1b,
ctrl_handler);
int ret;
/* V4L2 controls are applied, when sensor is powered up for streaming */
if (!pm_runtime_get_if_active(og0ve1b->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_ANALOGUE_GAIN:
ret = cci_write(og0ve1b->regmap, OG0VE1B_REG_ANALOGUE_GAIN,
ctrl->val, NULL);
break;
case V4L2_CID_EXPOSURE:
ret = cci_write(og0ve1b->regmap, OG0VE1B_REG_EXPOSURE,
ctrl->val << 4, NULL);
break;
case V4L2_CID_TEST_PATTERN:
ret = og0ve1b_enable_test_pattern(og0ve1b, ctrl->val);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_put(og0ve1b->dev);
return ret;
}
static const struct v4l2_ctrl_ops og0ve1b_ctrl_ops = {
.s_ctrl = og0ve1b_set_ctrl,
};
static int og0ve1b_init_controls(struct og0ve1b *og0ve1b)
{
struct v4l2_ctrl_handler *ctrl_hdlr = &og0ve1b->ctrl_handler;
const struct og0ve1b_mode *mode = &supported_modes[0];
struct v4l2_fwnode_device_properties props;
s64 exposure_max, pixel_rate, h_blank;
struct v4l2_ctrl *ctrl;
int ret;
v4l2_ctrl_handler_init(ctrl_hdlr, 9);
ctrl = v4l2_ctrl_new_int_menu(ctrl_hdlr, &og0ve1b_ctrl_ops,
V4L2_CID_LINK_FREQ,
ARRAY_SIZE(og0ve1b_link_freq_menu) - 1,
0, og0ve1b_link_freq_menu);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
pixel_rate = og0ve1b_link_freq_menu[0] / mode->bpp;
v4l2_ctrl_new_std(ctrl_hdlr, &og0ve1b_ctrl_ops, V4L2_CID_PIXEL_RATE,
0, pixel_rate, 1, pixel_rate);
h_blank = mode->hts - mode->width;
ctrl = v4l2_ctrl_new_std(ctrl_hdlr, &og0ve1b_ctrl_ops, V4L2_CID_HBLANK,
h_blank, h_blank, 1, h_blank);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
ctrl = v4l2_ctrl_new_std(ctrl_hdlr, &og0ve1b_ctrl_ops, V4L2_CID_VBLANK,
mode->vts - mode->height,
mode->vts - mode->height, 1,
mode->vts - mode->height);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(ctrl_hdlr, &og0ve1b_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
OG0VE1B_ANALOGUE_GAIN_MIN, OG0VE1B_ANALOGUE_GAIN_MAX,
OG0VE1B_ANALOGUE_GAIN_STEP,
OG0VE1B_ANALOGUE_GAIN_DEFAULT);
exposure_max = (mode->vts - OG0VE1B_EXPOSURE_MAX_MARGIN);
v4l2_ctrl_new_std(ctrl_hdlr, &og0ve1b_ctrl_ops,
V4L2_CID_EXPOSURE,
OG0VE1B_EXPOSURE_MIN, exposure_max,
OG0VE1B_EXPOSURE_STEP,
OG0VE1B_EXPOSURE_DEFAULT);
v4l2_ctrl_new_std_menu_items(ctrl_hdlr, &og0ve1b_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(og0ve1b_test_pattern_menu) - 1,
0, 0, og0ve1b_test_pattern_menu);
if (ctrl_hdlr->error)
return ctrl_hdlr->error;
ret = v4l2_fwnode_device_parse(og0ve1b->dev, &props);
if (ret)
goto error_free_hdlr;
ret = v4l2_ctrl_new_fwnode_properties(ctrl_hdlr, &og0ve1b_ctrl_ops,
&props);
if (ret)
goto error_free_hdlr;
og0ve1b->sd.ctrl_handler = ctrl_hdlr;
return 0;
error_free_hdlr:
v4l2_ctrl_handler_free(ctrl_hdlr);
return ret;
}
static void og0ve1b_update_pad_format(const struct og0ve1b_mode *mode,
struct v4l2_mbus_framefmt *fmt)
{
fmt->code = MEDIA_BUS_FMT_Y8_1X8;
fmt->width = mode->width;
fmt->height = mode->height;
fmt->field = V4L2_FIELD_NONE;
fmt->colorspace = V4L2_COLORSPACE_RAW;
fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
fmt->xfer_func = V4L2_XFER_FUNC_NONE;
}
static int og0ve1b_enable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state, u32 pad,
u64 streams_mask)
{
const struct og0ve1b_reg_list *reg_list = &supported_modes[0].reg_list;
struct og0ve1b *og0ve1b = to_og0ve1b(sd);
int ret;
ret = pm_runtime_resume_and_get(og0ve1b->dev);
if (ret)
return ret;
/* Skip a step of explicit entering into the standby mode */
ret = cci_write(og0ve1b->regmap, OG0VE1B_REG_SOFTWARE_RST,
OG0VE1B_SOFTWARE_RST, NULL);
if (ret) {
dev_err(og0ve1b->dev, "failed to software reset: %d\n", ret);
goto error;
}
ret = cci_multi_reg_write(og0ve1b->regmap, reg_list->regs,
reg_list->num_regs, NULL);
if (ret) {
dev_err(og0ve1b->dev, "failed to set mode: %d\n", ret);
goto error;
}
ret = __v4l2_ctrl_handler_setup(og0ve1b->sd.ctrl_handler);
if (ret)
goto error;
ret = cci_write(og0ve1b->regmap, OG0VE1B_REG_MODE_SELECT,
OG0VE1B_MODE_STREAMING, NULL);
if (ret) {
dev_err(og0ve1b->dev, "failed to start streaming: %d\n", ret);
goto error;
}
return 0;
error:
pm_runtime_put_autosuspend(og0ve1b->dev);
return ret;
}
static int og0ve1b_disable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state, u32 pad,
u64 streams_mask)
{
struct og0ve1b *og0ve1b = to_og0ve1b(sd);
int ret;
ret = cci_write(og0ve1b->regmap, OG0VE1B_REG_MODE_SELECT,
OG0VE1B_MODE_STANDBY, NULL);
if (ret)
dev_err(og0ve1b->dev, "failed to stop streaming: %d\n", ret);
pm_runtime_put_autosuspend(og0ve1b->dev);
return ret;
}
static int og0ve1b_set_pad_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *format;
const struct og0ve1b_mode *mode;
format = v4l2_subdev_state_get_format(state, 0);
mode = v4l2_find_nearest_size(supported_modes,
ARRAY_SIZE(supported_modes),
width, height,
fmt->format.width,
fmt->format.height);
og0ve1b_update_pad_format(mode, &fmt->format);
*format = fmt->format;
return 0;
}
static int og0ve1b_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index > 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_Y8_1X8;
return 0;
}
static int og0ve1b_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_Y8_1X8)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = fse->min_width;
fse->min_height = supported_modes[fse->index].height;
fse->max_height = fse->min_height;
return 0;
}
static int og0ve1b_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct v4l2_subdev_format fmt = {
.which = V4L2_SUBDEV_FORMAT_TRY,
.pad = 0,
.format = {
.code = MEDIA_BUS_FMT_Y8_1X8,
.width = supported_modes[0].width,
.height = supported_modes[0].height,
},
};
og0ve1b_set_pad_format(sd, state, &fmt);
return 0;
}
static const struct v4l2_subdev_video_ops og0ve1b_video_ops = {
.s_stream = v4l2_subdev_s_stream_helper,
};
static const struct v4l2_subdev_pad_ops og0ve1b_pad_ops = {
.set_fmt = og0ve1b_set_pad_format,
.get_fmt = v4l2_subdev_get_fmt,
.enum_mbus_code = og0ve1b_enum_mbus_code,
.enum_frame_size = og0ve1b_enum_frame_size,
.enable_streams = og0ve1b_enable_streams,
.disable_streams = og0ve1b_disable_streams,
};
static const struct v4l2_subdev_ops og0ve1b_subdev_ops = {
.video = &og0ve1b_video_ops,
.pad = &og0ve1b_pad_ops,
};
static const struct v4l2_subdev_internal_ops og0ve1b_internal_ops = {
.init_state = og0ve1b_init_state,
};
static const struct media_entity_operations og0ve1b_subdev_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static int og0ve1b_identify_sensor(struct og0ve1b *og0ve1b)
{
u64 val;
int ret;
ret = cci_read(og0ve1b->regmap, OG0VE1B_REG_CHIP_ID, &val, NULL);
if (ret) {
dev_err(og0ve1b->dev, "failed to read chip id: %d\n", ret);
return ret;
}
if (val != OG0VE1B_CHIP_ID) {
dev_err(og0ve1b->dev, "chip id mismatch: %x!=%llx\n",
OG0VE1B_CHIP_ID, val);
return -ENODEV;
}
ret = cci_read(og0ve1b->regmap, OG0VE1B_REG_PRE_ISP,
&og0ve1b->pre_isp, NULL);
if (ret)
dev_err(og0ve1b->dev, "failed to read pre_isp: %d\n", ret);
return ret;
}
static int og0ve1b_check_hwcfg(struct og0ve1b *og0ve1b)
{
struct fwnode_handle *fwnode = dev_fwnode(og0ve1b->dev), *ep;
struct v4l2_fwnode_endpoint bus_cfg = {
.bus_type = V4L2_MBUS_CSI2_DPHY,
};
unsigned long freq_bitmap;
int ret;
if (!fwnode)
return -ENODEV;
ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
if (!ep)
return -EINVAL;
ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
fwnode_handle_put(ep);
if (ret)
return ret;
ret = v4l2_link_freq_to_bitmap(og0ve1b->dev,
bus_cfg.link_frequencies,
bus_cfg.nr_of_link_frequencies,
og0ve1b_link_freq_menu,
ARRAY_SIZE(og0ve1b_link_freq_menu),
&freq_bitmap);
v4l2_fwnode_endpoint_free(&bus_cfg);
return ret;
}
static int og0ve1b_power_on(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct og0ve1b *og0ve1b = to_og0ve1b(sd);
int ret;
ret = regulator_bulk_enable(OG0VE1B_NUM_SUPPLIES, og0ve1b->supplies);
if (ret)
return ret;
gpiod_set_value_cansleep(og0ve1b->reset_gpio, 0);
usleep_range(10 * USEC_PER_MSEC, 15 * USEC_PER_MSEC);
ret = clk_prepare_enable(og0ve1b->xvclk);
if (ret)
goto reset_gpio;
return 0;
reset_gpio:
gpiod_set_value_cansleep(og0ve1b->reset_gpio, 1);
regulator_bulk_disable(OG0VE1B_NUM_SUPPLIES, og0ve1b->supplies);
return ret;
}
static int og0ve1b_power_off(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct og0ve1b *og0ve1b = to_og0ve1b(sd);
clk_disable_unprepare(og0ve1b->xvclk);
gpiod_set_value_cansleep(og0ve1b->reset_gpio, 1);
regulator_bulk_disable(OG0VE1B_NUM_SUPPLIES, og0ve1b->supplies);
return 0;
}
static int og0ve1b_probe(struct i2c_client *client)
{
struct og0ve1b *og0ve1b;
unsigned long freq;
unsigned int i;
int ret;
og0ve1b = devm_kzalloc(&client->dev, sizeof(*og0ve1b), GFP_KERNEL);
if (!og0ve1b)
return -ENOMEM;
og0ve1b->dev = &client->dev;
v4l2_i2c_subdev_init(&og0ve1b->sd, client, &og0ve1b_subdev_ops);
og0ve1b->regmap = devm_cci_regmap_init_i2c(client, 16);
if (IS_ERR(og0ve1b->regmap))
return dev_err_probe(og0ve1b->dev, PTR_ERR(og0ve1b->regmap),
"failed to init CCI\n");
og0ve1b->xvclk = devm_v4l2_sensor_clk_get(og0ve1b->dev, NULL);
if (IS_ERR(og0ve1b->xvclk))
return dev_err_probe(og0ve1b->dev, PTR_ERR(og0ve1b->xvclk),
"failed to get XVCLK clock\n");
freq = clk_get_rate(og0ve1b->xvclk);
if (freq && freq != OG0VE1B_MCLK_FREQ_24MHZ)
return dev_err_probe(og0ve1b->dev, -EINVAL,
"XVCLK clock frequency %lu is not supported\n",
freq);
ret = og0ve1b_check_hwcfg(og0ve1b);
if (ret)
return dev_err_probe(og0ve1b->dev, ret,
"failed to check HW configuration\n");
og0ve1b->reset_gpio = devm_gpiod_get_optional(og0ve1b->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(og0ve1b->reset_gpio))
return dev_err_probe(og0ve1b->dev, PTR_ERR(og0ve1b->reset_gpio),
"cannot get reset GPIO\n");
for (i = 0; i < OG0VE1B_NUM_SUPPLIES; i++)
og0ve1b->supplies[i].supply = og0ve1b_supply_names[i];
ret = devm_regulator_bulk_get(og0ve1b->dev, OG0VE1B_NUM_SUPPLIES,
og0ve1b->supplies);
if (ret)
return dev_err_probe(og0ve1b->dev, ret,
"failed to get supply regulators\n");
/* The sensor must be powered on to read the CHIP_ID register */
ret = og0ve1b_power_on(og0ve1b->dev);
if (ret)
return ret;
ret = og0ve1b_identify_sensor(og0ve1b);
if (ret) {
dev_err_probe(og0ve1b->dev, ret, "failed to find sensor\n");
goto power_off;
}
ret = og0ve1b_init_controls(og0ve1b);
if (ret) {
dev_err_probe(og0ve1b->dev, ret, "failed to init controls\n");
goto power_off;
}
og0ve1b->sd.state_lock = og0ve1b->ctrl_handler.lock;
og0ve1b->sd.internal_ops = &og0ve1b_internal_ops;
og0ve1b->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
og0ve1b->sd.entity.ops = &og0ve1b_subdev_entity_ops;
og0ve1b->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
og0ve1b->pad.flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&og0ve1b->sd.entity, 1, &og0ve1b->pad);
if (ret) {
dev_err_probe(og0ve1b->dev, ret,
"failed to init media entity pads\n");
goto v4l2_ctrl_handler_free;
}
ret = v4l2_subdev_init_finalize(&og0ve1b->sd);
if (ret < 0) {
dev_err_probe(og0ve1b->dev, ret,
"failed to init media entity pads\n");
goto media_entity_cleanup;
}
pm_runtime_set_active(og0ve1b->dev);
pm_runtime_enable(og0ve1b->dev);
ret = v4l2_async_register_subdev_sensor(&og0ve1b->sd);
if (ret < 0) {
dev_err_probe(og0ve1b->dev, ret,
"failed to register V4L2 subdev\n");
goto subdev_cleanup;
}
/* Enable runtime PM and turn off the device */
pm_runtime_idle(og0ve1b->dev);
pm_runtime_set_autosuspend_delay(og0ve1b->dev, 1000);
pm_runtime_use_autosuspend(og0ve1b->dev);
return 0;
subdev_cleanup:
v4l2_subdev_cleanup(&og0ve1b->sd);
pm_runtime_disable(og0ve1b->dev);
pm_runtime_set_suspended(og0ve1b->dev);
media_entity_cleanup:
media_entity_cleanup(&og0ve1b->sd.entity);
v4l2_ctrl_handler_free:
v4l2_ctrl_handler_free(og0ve1b->sd.ctrl_handler);
power_off:
og0ve1b_power_off(og0ve1b->dev);
return ret;
}
static void og0ve1b_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct og0ve1b *og0ve1b = to_og0ve1b(sd);
v4l2_async_unregister_subdev(sd);
v4l2_subdev_cleanup(sd);
media_entity_cleanup(&sd->entity);
v4l2_ctrl_handler_free(sd->ctrl_handler);
pm_runtime_disable(og0ve1b->dev);
if (!pm_runtime_status_suspended(og0ve1b->dev)) {
og0ve1b_power_off(og0ve1b->dev);
pm_runtime_set_suspended(og0ve1b->dev);
}
}
static const struct dev_pm_ops og0ve1b_pm_ops = {
SET_RUNTIME_PM_OPS(og0ve1b_power_off, og0ve1b_power_on, NULL)
};
static const struct of_device_id og0ve1b_of_match[] = {
{ .compatible = "ovti,og0ve1b" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, og0ve1b_of_match);
static struct i2c_driver og0ve1b_i2c_driver = {
.driver = {
.name = "og0ve1b",
.pm = &og0ve1b_pm_ops,
.of_match_table = og0ve1b_of_match,
},
.probe = og0ve1b_probe,
.remove = og0ve1b_remove,
};
module_i2c_driver(og0ve1b_i2c_driver);
MODULE_AUTHOR("Vladimir Zapolskiy <vladimir.zapolskiy@linaro.org>");
MODULE_DESCRIPTION("OmniVision OG0VE1B sensor driver");
MODULE_LICENSE("GPL");