blob: 28bde13003b74427fb6e72c7b8dc5dbe57ba9404 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* cros_ec_sensors_core - Common function for Chrome OS EC sensor driver.
*
* Copyright (C) 2016 Google, Inc
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/iio/buffer.h>
#include <linux/iio/common/cros_ec_sensors_core.h>
#include <linux/iio/iio.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/platform_data/cros_ec_commands.h>
#include <linux/platform_data/cros_ec_proto.h>
#include <linux/platform_data/cros_ec_sensorhub.h>
#include <linux/platform_device.h>
/*
* Hard coded to the first device to support sensor fifo. The EC has a 2048
* byte fifo and will trigger an interrupt when fifo is 2/3 full.
*/
#define CROS_EC_FIFO_SIZE (2048 * 2 / 3)
static char *cros_ec_loc[] = {
[MOTIONSENSE_LOC_BASE] = "base",
[MOTIONSENSE_LOC_LID] = "lid",
[MOTIONSENSE_LOC_MAX] = "unknown",
};
static int cros_ec_get_host_cmd_version_mask(struct cros_ec_device *ec_dev,
u16 cmd_offset, u16 cmd, u32 *mask)
{
int ret;
struct {
struct cros_ec_command msg;
union {
struct ec_params_get_cmd_versions params;
struct ec_response_get_cmd_versions resp;
};
} __packed buf = {
.msg = {
.command = EC_CMD_GET_CMD_VERSIONS + cmd_offset,
.insize = sizeof(struct ec_response_get_cmd_versions),
.outsize = sizeof(struct ec_params_get_cmd_versions)
},
.params = {.cmd = cmd}
};
ret = cros_ec_cmd_xfer_status(ec_dev, &buf.msg);
if (ret >= 0)
*mask = buf.resp.version_mask;
return ret;
}
static void get_default_min_max_freq(enum motionsensor_type type,
u32 *min_freq,
u32 *max_freq,
u32 *max_fifo_events)
{
/*
* We don't know fifo size, set to size previously used by older
* hardware.
*/
*max_fifo_events = CROS_EC_FIFO_SIZE;
switch (type) {
case MOTIONSENSE_TYPE_ACCEL:
*min_freq = 12500;
*max_freq = 100000;
break;
case MOTIONSENSE_TYPE_GYRO:
*min_freq = 25000;
*max_freq = 100000;
break;
case MOTIONSENSE_TYPE_MAG:
*min_freq = 5000;
*max_freq = 25000;
break;
case MOTIONSENSE_TYPE_PROX:
case MOTIONSENSE_TYPE_LIGHT:
*min_freq = 100;
*max_freq = 50000;
break;
case MOTIONSENSE_TYPE_BARO:
*min_freq = 250;
*max_freq = 20000;
break;
case MOTIONSENSE_TYPE_ACTIVITY:
default:
*min_freq = 0;
*max_freq = 0;
break;
}
}
static int cros_ec_sensor_set_ec_rate(struct cros_ec_sensors_core_state *st,
int rate)
{
int ret;
if (rate > U16_MAX)
rate = U16_MAX;
mutex_lock(&st->cmd_lock);
st->param.cmd = MOTIONSENSE_CMD_EC_RATE;
st->param.ec_rate.data = rate;
ret = cros_ec_motion_send_host_cmd(st, 0);
mutex_unlock(&st->cmd_lock);
return ret;
}
static ssize_t cros_ec_sensor_set_report_latency(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
int integer, fract, ret;
int latency;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
if (ret)
return ret;
/* EC rate is in ms. */
latency = integer * 1000 + fract / 1000;
ret = cros_ec_sensor_set_ec_rate(st, latency);
if (ret < 0)
return ret;
return len;
}
static ssize_t cros_ec_sensor_get_report_latency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
int latency, ret;
mutex_lock(&st->cmd_lock);
st->param.cmd = MOTIONSENSE_CMD_EC_RATE;
st->param.ec_rate.data = EC_MOTION_SENSE_NO_VALUE;
ret = cros_ec_motion_send_host_cmd(st, 0);
latency = st->resp->ec_rate.ret;
mutex_unlock(&st->cmd_lock);
if (ret < 0)
return ret;
return sprintf(buf, "%d.%06u\n",
latency / 1000,
(latency % 1000) * 1000);
}
static IIO_DEVICE_ATTR(hwfifo_timeout, 0644,
cros_ec_sensor_get_report_latency,
cros_ec_sensor_set_report_latency, 0);
static ssize_t hwfifo_watermark_max_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
return sprintf(buf, "%d\n", st->fifo_max_event_count);
}
static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
static const struct attribute *cros_ec_sensor_fifo_attributes[] = {
&iio_dev_attr_hwfifo_timeout.dev_attr.attr,
&iio_dev_attr_hwfifo_watermark_max.dev_attr.attr,
NULL,
};
int cros_ec_sensors_push_data(struct iio_dev *indio_dev,
s16 *data,
s64 timestamp)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
s16 *out;
s64 delta;
unsigned int i;
/*
* Ignore samples if the buffer is not set: it is needed if the ODR is
* set but the buffer is not enabled yet.
*/
if (!iio_buffer_enabled(indio_dev))
return 0;
out = (s16 *)st->samples;
for_each_set_bit(i,
indio_dev->active_scan_mask,
indio_dev->masklength) {
*out = data[i];
out++;
}
if (iio_device_get_clock(indio_dev) != CLOCK_BOOTTIME)
delta = iio_get_time_ns(indio_dev) - cros_ec_get_time_ns();
else
delta = 0;
iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
timestamp + delta);
return 0;
}
EXPORT_SYMBOL_GPL(cros_ec_sensors_push_data);
static void cros_ec_sensors_core_clean(void *arg)
{
struct platform_device *pdev = (struct platform_device *)arg;
struct cros_ec_sensorhub *sensor_hub =
dev_get_drvdata(pdev->dev.parent);
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
u8 sensor_num = st->param.info.sensor_num;
cros_ec_sensorhub_unregister_push_data(sensor_hub, sensor_num);
}
/**
* cros_ec_sensors_core_init() - basic initialization of the core structure
* @pdev: platform device created for the sensors
* @indio_dev: iio device structure of the device
* @physical_device: true if the device refers to a physical device
* @trigger_capture: function pointer to call buffer is triggered,
* for backward compatibility.
* @push_data: function to call when cros_ec_sensorhub receives
* a sample for that sensor.
*
* Return: 0 on success, -errno on failure.
*/
int cros_ec_sensors_core_init(struct platform_device *pdev,
struct iio_dev *indio_dev,
bool physical_device,
cros_ec_sensors_capture_t trigger_capture,
cros_ec_sensorhub_push_data_cb_t push_data)
{
struct device *dev = &pdev->dev;
struct cros_ec_sensors_core_state *state = iio_priv(indio_dev);
struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent);
struct cros_ec_dev *ec = sensor_hub->ec;
struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev);
u32 ver_mask, temp;
int frequencies[ARRAY_SIZE(state->frequencies) / 2] = { 0 };
int ret, i;
platform_set_drvdata(pdev, indio_dev);
state->ec = ec->ec_dev;
state->msg = devm_kzalloc(&pdev->dev,
max((u16)sizeof(struct ec_params_motion_sense),
state->ec->max_response), GFP_KERNEL);
if (!state->msg)
return -ENOMEM;
state->resp = (struct ec_response_motion_sense *)state->msg->data;
mutex_init(&state->cmd_lock);
ret = cros_ec_get_host_cmd_version_mask(state->ec,
ec->cmd_offset,
EC_CMD_MOTION_SENSE_CMD,
&ver_mask);
if (ret < 0)
return ret;
/* Set up the host command structure. */
state->msg->version = fls(ver_mask) - 1;
state->msg->command = EC_CMD_MOTION_SENSE_CMD + ec->cmd_offset;
state->msg->outsize = sizeof(struct ec_params_motion_sense);
indio_dev->name = pdev->name;
if (physical_device) {
state->param.cmd = MOTIONSENSE_CMD_INFO;
state->param.info.sensor_num = sensor_platform->sensor_num;
ret = cros_ec_motion_send_host_cmd(state, 0);
if (ret) {
dev_warn(dev, "Can not access sensor info\n");
return ret;
}
state->type = state->resp->info.type;
state->loc = state->resp->info.location;
/* Set sign vector, only used for backward compatibility. */
memset(state->sign, 1, CROS_EC_SENSOR_MAX_AXIS);
for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++)
state->calib[i].scale = MOTION_SENSE_DEFAULT_SCALE;
/* 0 is a correct value used to stop the device */
if (state->msg->version < 3) {
get_default_min_max_freq(state->resp->info.type,
&frequencies[1],
&frequencies[2],
&state->fifo_max_event_count);
} else {
if (state->resp->info_3.max_frequency == 0) {
get_default_min_max_freq(state->resp->info.type,
&frequencies[1],
&frequencies[2],
&temp);
} else {
frequencies[1] = state->resp->info_3.min_frequency;
frequencies[2] = state->resp->info_3.max_frequency;
}
state->fifo_max_event_count = state->resp->info_3.fifo_max_event_count;
}
for (i = 0; i < ARRAY_SIZE(frequencies); i++) {
state->frequencies[2 * i] = frequencies[i] / 1000;
state->frequencies[2 * i + 1] =
(frequencies[i] % 1000) * 1000;
}
if (cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO)) {
/*
* Create a software buffer, feed by the EC FIFO.
* We can not use trigger here, as events are generated
* as soon as sample_frequency is set.
*/
ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev,
INDIO_BUFFER_SOFTWARE, NULL,
cros_ec_sensor_fifo_attributes);
if (ret)
return ret;
ret = cros_ec_sensorhub_register_push_data(
sensor_hub, sensor_platform->sensor_num,
indio_dev, push_data);
if (ret)
return ret;
ret = devm_add_action_or_reset(
dev, cros_ec_sensors_core_clean, pdev);
if (ret)
return ret;
/* Timestamp coming from FIFO are in ns since boot. */
ret = iio_device_set_clock(indio_dev, CLOCK_BOOTTIME);
if (ret)
return ret;
} else {
/*
* The only way to get samples in buffer is to set a
* software trigger (systrig, hrtimer).
*/
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
NULL, trigger_capture, NULL);
if (ret)
return ret;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(cros_ec_sensors_core_init);
/**
* cros_ec_motion_send_host_cmd() - send motion sense host command
* @state: pointer to state information for device
* @opt_length: optional length to reduce the response size, useful on the data
* path. Otherwise, the maximal allowed response size is used
*
* When called, the sub-command is assumed to be set in param->cmd.
*
* Return: 0 on success, -errno on failure.
*/
int cros_ec_motion_send_host_cmd(struct cros_ec_sensors_core_state *state,
u16 opt_length)
{
int ret;
if (opt_length)
state->msg->insize = min(opt_length, state->ec->max_response);
else
state->msg->insize = state->ec->max_response;
memcpy(state->msg->data, &state->param, sizeof(state->param));
ret = cros_ec_cmd_xfer_status(state->ec, state->msg);
if (ret < 0)
return ret;
if (ret &&
state->resp != (struct ec_response_motion_sense *)state->msg->data)
memcpy(state->resp, state->msg->data, ret);
return 0;
}
EXPORT_SYMBOL_GPL(cros_ec_motion_send_host_cmd);
static ssize_t cros_ec_sensors_calibrate(struct iio_dev *indio_dev,
uintptr_t private, const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
int ret, i;
bool calibrate;
ret = strtobool(buf, &calibrate);
if (ret < 0)
return ret;
if (!calibrate)
return -EINVAL;
mutex_lock(&st->cmd_lock);
st->param.cmd = MOTIONSENSE_CMD_PERFORM_CALIB;
ret = cros_ec_motion_send_host_cmd(st, 0);
if (ret != 0) {
dev_warn(&indio_dev->dev, "Unable to calibrate sensor\n");
} else {
/* Save values */
for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++)
st->calib[i].offset = st->resp->perform_calib.offset[i];
}
mutex_unlock(&st->cmd_lock);
return ret ? ret : len;
}
static ssize_t cros_ec_sensors_id(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan, char *buf)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
return snprintf(buf, PAGE_SIZE, "%d\n", st->param.info.sensor_num);
}
static ssize_t cros_ec_sensors_loc(struct iio_dev *indio_dev,
uintptr_t private, const struct iio_chan_spec *chan,
char *buf)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
return snprintf(buf, PAGE_SIZE, "%s\n", cros_ec_loc[st->loc]);
}
const struct iio_chan_spec_ext_info cros_ec_sensors_ext_info[] = {
{
.name = "calibrate",
.shared = IIO_SHARED_BY_ALL,
.write = cros_ec_sensors_calibrate
},
{
.name = "id",
.shared = IIO_SHARED_BY_ALL,
.read = cros_ec_sensors_id
},
{
.name = "location",
.shared = IIO_SHARED_BY_ALL,
.read = cros_ec_sensors_loc
},
{ },
};
EXPORT_SYMBOL_GPL(cros_ec_sensors_ext_info);
/**
* cros_ec_sensors_idx_to_reg - convert index into offset in shared memory
* @st: pointer to state information for device
* @idx: sensor index (should be element of enum sensor_index)
*
* Return: address to read at
*/
static unsigned int cros_ec_sensors_idx_to_reg(
struct cros_ec_sensors_core_state *st,
unsigned int idx)
{
/*
* When using LPC interface, only space for 2 Accel and one Gyro.
* First halfword of MOTIONSENSE_TYPE_ACCEL is used by angle.
*/
if (st->type == MOTIONSENSE_TYPE_ACCEL)
return EC_MEMMAP_ACC_DATA + sizeof(u16) *
(1 + idx + st->param.info.sensor_num *
CROS_EC_SENSOR_MAX_AXIS);
return EC_MEMMAP_GYRO_DATA + sizeof(u16) * idx;
}
static int cros_ec_sensors_cmd_read_u8(struct cros_ec_device *ec,
unsigned int offset, u8 *dest)
{
return ec->cmd_readmem(ec, offset, 1, dest);
}
static int cros_ec_sensors_cmd_read_u16(struct cros_ec_device *ec,
unsigned int offset, u16 *dest)
{
__le16 tmp;
int ret = ec->cmd_readmem(ec, offset, 2, &tmp);
if (ret >= 0)
*dest = le16_to_cpu(tmp);
return ret;
}
/**
* cros_ec_sensors_read_until_not_busy() - read until is not busy
*
* @st: pointer to state information for device
*
* Read from EC status byte until it reads not busy.
* Return: 8-bit status if ok, -errno on failure.
*/
static int cros_ec_sensors_read_until_not_busy(
struct cros_ec_sensors_core_state *st)
{
struct cros_ec_device *ec = st->ec;
u8 status;
int ret, attempts = 0;
ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status);
if (ret < 0)
return ret;
while (status & EC_MEMMAP_ACC_STATUS_BUSY_BIT) {
/* Give up after enough attempts, return error. */
if (attempts++ >= 50)
return -EIO;
/* Small delay every so often. */
if (attempts % 5 == 0)
msleep(25);
ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS,
&status);
if (ret < 0)
return ret;
}
return status;
}
/**
* cros_ec_sensors_read_data_unsafe() - read acceleration data from EC shared memory
* @indio_dev: pointer to IIO device
* @scan_mask: bitmap of the sensor indices to scan
* @data: location to store data
*
* This is the unsafe function for reading the EC data. It does not guarantee
* that the EC will not modify the data as it is being read in.
*
* Return: 0 on success, -errno on failure.
*/
static int cros_ec_sensors_read_data_unsafe(struct iio_dev *indio_dev,
unsigned long scan_mask, s16 *data)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
struct cros_ec_device *ec = st->ec;
unsigned int i;
int ret;
/* Read all sensors enabled in scan_mask. Each value is 2 bytes. */
for_each_set_bit(i, &scan_mask, indio_dev->masklength) {
ret = cros_ec_sensors_cmd_read_u16(ec,
cros_ec_sensors_idx_to_reg(st, i),
data);
if (ret < 0)
return ret;
*data *= st->sign[i];
data++;
}
return 0;
}
/**
* cros_ec_sensors_read_lpc() - read acceleration data from EC shared memory.
* @indio_dev: pointer to IIO device.
* @scan_mask: bitmap of the sensor indices to scan.
* @data: location to store data.
*
* Note: this is the safe function for reading the EC data. It guarantees
* that the data sampled was not modified by the EC while being read.
*
* Return: 0 on success, -errno on failure.
*/
int cros_ec_sensors_read_lpc(struct iio_dev *indio_dev,
unsigned long scan_mask, s16 *data)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
struct cros_ec_device *ec = st->ec;
u8 samp_id = 0xff, status = 0;
int ret, attempts = 0;
/*
* Continually read all data from EC until the status byte after
* all reads reflects that the EC is not busy and the sample id
* matches the sample id from before all reads. This guarantees
* that data read in was not modified by the EC while reading.
*/
while ((status & (EC_MEMMAP_ACC_STATUS_BUSY_BIT |
EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK)) != samp_id) {
/* If we have tried to read too many times, return error. */
if (attempts++ >= 5)
return -EIO;
/* Read status byte until EC is not busy. */
ret = cros_ec_sensors_read_until_not_busy(st);
if (ret < 0)
return ret;
/*
* Store the current sample id so that we can compare to the
* sample id after reading the data.
*/
samp_id = ret & EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
/* Read all EC data, format it, and store it into data. */
ret = cros_ec_sensors_read_data_unsafe(indio_dev, scan_mask,
data);
if (ret < 0)
return ret;
/* Read status byte. */
ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS,
&status);
if (ret < 0)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(cros_ec_sensors_read_lpc);
/**
* cros_ec_sensors_read_cmd() - retrieve data using the EC command protocol
* @indio_dev: pointer to IIO device
* @scan_mask: bitmap of the sensor indices to scan
* @data: location to store data
*
* Return: 0 on success, -errno on failure.
*/
int cros_ec_sensors_read_cmd(struct iio_dev *indio_dev,
unsigned long scan_mask, s16 *data)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
int ret;
unsigned int i;
/* Read all sensor data through a command. */
st->param.cmd = MOTIONSENSE_CMD_DATA;
ret = cros_ec_motion_send_host_cmd(st, sizeof(st->resp->data));
if (ret != 0) {
dev_warn(&indio_dev->dev, "Unable to read sensor data\n");
return ret;
}
for_each_set_bit(i, &scan_mask, indio_dev->masklength) {
*data = st->resp->data.data[i];
data++;
}
return 0;
}
EXPORT_SYMBOL_GPL(cros_ec_sensors_read_cmd);
/**
* cros_ec_sensors_capture() - the trigger handler function
* @irq: the interrupt number.
* @p: a pointer to the poll function.
*
* On a trigger event occurring, if the pollfunc is attached then this
* handler is called as a threaded interrupt (and hence may sleep). It
* is responsible for grabbing data from the device and pushing it into
* the associated buffer.
*
* Return: IRQ_HANDLED
*/
irqreturn_t cros_ec_sensors_capture(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->cmd_lock);
/* Clear capture data. */
memset(st->samples, 0, indio_dev->scan_bytes);
/* Read data based on which channels are enabled in scan mask. */
ret = st->read_ec_sensors_data(indio_dev,
*(indio_dev->active_scan_mask),
(s16 *)st->samples);
if (ret < 0)
goto done;
iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
iio_get_time_ns(indio_dev));
done:
/*
* Tell the core we are done with this trigger and ready for the
* next one.
*/
iio_trigger_notify_done(indio_dev->trig);
mutex_unlock(&st->cmd_lock);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(cros_ec_sensors_capture);
/**
* cros_ec_sensors_core_read() - function to request a value from the sensor
* @st: pointer to state information for device
* @chan: channel specification structure table
* @val: will contain one element making up the returned value
* @val2: will contain another element making up the returned value
* @mask: specifies which values to be requested
*
* Return: the type of value returned by the device
*/
int cros_ec_sensors_core_read(struct cros_ec_sensors_core_state *st,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
int ret, frequency;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
st->param.sensor_odr.data =
EC_MOTION_SENSE_NO_VALUE;
ret = cros_ec_motion_send_host_cmd(st, 0);
if (ret)
break;
frequency = st->resp->sensor_odr.ret;
*val = frequency / 1000;
*val2 = (frequency % 1000) * 1000;
ret = IIO_VAL_INT_PLUS_MICRO;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read);
/**
* cros_ec_sensors_core_read_avail() - get available values
* @indio_dev: pointer to state information for device
* @chan: channel specification structure table
* @vals: list of available values
* @type: type of data returned
* @length: number of data returned in the array
* @mask: specifies which values to be requested
*
* Return: an error code, IIO_AVAIL_RANGE or IIO_AVAIL_LIST
*/
int cros_ec_sensors_core_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals,
int *type,
int *length,
long mask)
{
struct cros_ec_sensors_core_state *state = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*length = ARRAY_SIZE(state->frequencies);
*vals = (const int *)&state->frequencies;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read_avail);
/**
* cros_ec_sensors_core_write() - function to write a value to the sensor
* @st: pointer to state information for device
* @chan: channel specification structure table
* @val: first part of value to write
* @val2: second part of value to write
* @mask: specifies which values to write
*
* Return: the type of value returned by the device
*/
int cros_ec_sensors_core_write(struct cros_ec_sensors_core_state *st,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
int ret, frequency;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
frequency = val * 1000 + val2 / 1000;
st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
st->param.sensor_odr.data = frequency;
/* Always roundup, so caller gets at least what it asks for. */
st->param.sensor_odr.roundup = 1;
ret = cros_ec_motion_send_host_cmd(st, 0);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(cros_ec_sensors_core_write);
static int __maybe_unused cros_ec_sensors_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
int ret = 0;
if (st->range_updated) {
mutex_lock(&st->cmd_lock);
st->param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE;
st->param.sensor_range.data = st->curr_range;
st->param.sensor_range.roundup = 1;
ret = cros_ec_motion_send_host_cmd(st, 0);
mutex_unlock(&st->cmd_lock);
}
return ret;
}
SIMPLE_DEV_PM_OPS(cros_ec_sensors_pm_ops, NULL, cros_ec_sensors_resume);
EXPORT_SYMBOL_GPL(cros_ec_sensors_pm_ops);
MODULE_DESCRIPTION("ChromeOS EC sensor hub core functions");
MODULE_LICENSE("GPL v2");