|  | // SPDX-License-Identifier: Apache-2.0 OR MIT | 
|  |  | 
|  | //! The `Box<T>` type for heap allocation. | 
|  | //! | 
|  | //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of | 
|  | //! heap allocation in Rust. Boxes provide ownership for this allocation, and | 
|  | //! drop their contents when they go out of scope. Boxes also ensure that they | 
|  | //! never allocate more than `isize::MAX` bytes. | 
|  | //! | 
|  | //! # Examples | 
|  | //! | 
|  | //! Move a value from the stack to the heap by creating a [`Box`]: | 
|  | //! | 
|  | //! ``` | 
|  | //! let val: u8 = 5; | 
|  | //! let boxed: Box<u8> = Box::new(val); | 
|  | //! ``` | 
|  | //! | 
|  | //! Move a value from a [`Box`] back to the stack by [dereferencing]: | 
|  | //! | 
|  | //! ``` | 
|  | //! let boxed: Box<u8> = Box::new(5); | 
|  | //! let val: u8 = *boxed; | 
|  | //! ``` | 
|  | //! | 
|  | //! Creating a recursive data structure: | 
|  | //! | 
|  | //! ``` | 
|  | //! #[derive(Debug)] | 
|  | //! enum List<T> { | 
|  | //!     Cons(T, Box<List<T>>), | 
|  | //!     Nil, | 
|  | //! } | 
|  | //! | 
|  | //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); | 
|  | //! println!("{list:?}"); | 
|  | //! ``` | 
|  | //! | 
|  | //! This will print `Cons(1, Cons(2, Nil))`. | 
|  | //! | 
|  | //! Recursive structures must be boxed, because if the definition of `Cons` | 
|  | //! looked like this: | 
|  | //! | 
|  | //! ```compile_fail,E0072 | 
|  | //! # enum List<T> { | 
|  | //! Cons(T, List<T>), | 
|  | //! # } | 
|  | //! ``` | 
|  | //! | 
|  | //! It wouldn't work. This is because the size of a `List` depends on how many | 
|  | //! elements are in the list, and so we don't know how much memory to allocate | 
|  | //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how | 
|  | //! big `Cons` needs to be. | 
|  | //! | 
|  | //! # Memory layout | 
|  | //! | 
|  | //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for | 
|  | //! its allocation. It is valid to convert both ways between a [`Box`] and a | 
|  | //! raw pointer allocated with the [`Global`] allocator, given that the | 
|  | //! [`Layout`] used with the allocator is correct for the type. More precisely, | 
|  | //! a `value: *mut T` that has been allocated with the [`Global`] allocator | 
|  | //! with `Layout::for_value(&*value)` may be converted into a box using | 
|  | //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut | 
|  | //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the | 
|  | //! [`Global`] allocator with [`Layout::for_value(&*value)`]. | 
|  | //! | 
|  | //! For zero-sized values, the `Box` pointer still has to be [valid] for reads | 
|  | //! and writes and sufficiently aligned. In particular, casting any aligned | 
|  | //! non-zero integer literal to a raw pointer produces a valid pointer, but a | 
|  | //! pointer pointing into previously allocated memory that since got freed is | 
|  | //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot | 
|  | //! be used is to use [`ptr::NonNull::dangling`]. | 
|  | //! | 
|  | //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented | 
|  | //! as a single pointer and is also ABI-compatible with C pointers | 
|  | //! (i.e. the C type `T*`). This means that if you have extern "C" | 
|  | //! Rust functions that will be called from C, you can define those | 
|  | //! Rust functions using `Box<T>` types, and use `T*` as corresponding | 
|  | //! type on the C side. As an example, consider this C header which | 
|  | //! declares functions that create and destroy some kind of `Foo` | 
|  | //! value: | 
|  | //! | 
|  | //! ```c | 
|  | //! /* C header */ | 
|  | //! | 
|  | //! /* Returns ownership to the caller */ | 
|  | //! struct Foo* foo_new(void); | 
|  | //! | 
|  | //! /* Takes ownership from the caller; no-op when invoked with null */ | 
|  | //! void foo_delete(struct Foo*); | 
|  | //! ``` | 
|  | //! | 
|  | //! These two functions might be implemented in Rust as follows. Here, the | 
|  | //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures | 
|  | //! the ownership constraints. Note also that the nullable argument to | 
|  | //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` | 
|  | //! cannot be null. | 
|  | //! | 
|  | //! ``` | 
|  | //! #[repr(C)] | 
|  | //! pub struct Foo; | 
|  | //! | 
|  | //! #[no_mangle] | 
|  | //! pub extern "C" fn foo_new() -> Box<Foo> { | 
|  | //!     Box::new(Foo) | 
|  | //! } | 
|  | //! | 
|  | //! #[no_mangle] | 
|  | //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} | 
|  | //! ``` | 
|  | //! | 
|  | //! Even though `Box<T>` has the same representation and C ABI as a C pointer, | 
|  | //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` | 
|  | //! and expect things to work. `Box<T>` values will always be fully aligned, | 
|  | //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to | 
|  | //! free the value with the global allocator. In general, the best practice | 
|  | //! is to only use `Box<T>` for pointers that originated from the global | 
|  | //! allocator. | 
|  | //! | 
|  | //! **Important.** At least at present, you should avoid using | 
|  | //! `Box<T>` types for functions that are defined in C but invoked | 
|  | //! from Rust. In those cases, you should directly mirror the C types | 
|  | //! as closely as possible. Using types like `Box<T>` where the C | 
|  | //! definition is just using `T*` can lead to undefined behavior, as | 
|  | //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. | 
|  | //! | 
|  | //! # Considerations for unsafe code | 
|  | //! | 
|  | //! **Warning: This section is not normative and is subject to change, possibly | 
|  | //! being relaxed in the future! It is a simplified summary of the rules | 
|  | //! currently implemented in the compiler.** | 
|  | //! | 
|  | //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` | 
|  | //! asserts uniqueness over its content. Using raw pointers derived from a box | 
|  | //! after that box has been mutated through, moved or borrowed as `&mut T` | 
|  | //! is not allowed. For more guidance on working with box from unsafe code, see | 
|  | //! [rust-lang/unsafe-code-guidelines#326][ucg#326]. | 
|  | //! | 
|  | //! | 
|  | //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 | 
|  | //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 | 
|  | //! [dereferencing]: core::ops::Deref | 
|  | //! [`Box::<T>::from_raw(value)`]: Box::from_raw | 
|  | //! [`Global`]: crate::alloc::Global | 
|  | //! [`Layout`]: crate::alloc::Layout | 
|  | //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value | 
|  | //! [valid]: ptr#safety | 
|  |  | 
|  | #![stable(feature = "rust1", since = "1.0.0")] | 
|  |  | 
|  | use core::any::Any; | 
|  | use core::async_iter::AsyncIterator; | 
|  | use core::borrow; | 
|  | use core::cmp::Ordering; | 
|  | use core::error::Error; | 
|  | use core::fmt; | 
|  | use core::future::Future; | 
|  | use core::hash::{Hash, Hasher}; | 
|  | use core::iter::FusedIterator; | 
|  | use core::marker::Tuple; | 
|  | use core::marker::Unsize; | 
|  | use core::mem; | 
|  | use core::ops::{ | 
|  | CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver, | 
|  | }; | 
|  | use core::pin::Pin; | 
|  | use core::ptr::{self, Unique}; | 
|  | use core::task::{Context, Poll}; | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw}; | 
|  | use crate::alloc::{AllocError, Allocator, Global, Layout}; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use crate::borrow::Cow; | 
|  | use crate::raw_vec::RawVec; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use crate::str::from_boxed_utf8_unchecked; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use crate::string::String; | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | use crate::vec::Vec; | 
|  |  | 
|  | #[cfg(not(no_thin))] | 
|  | #[unstable(feature = "thin_box", issue = "92791")] | 
|  | pub use thin::ThinBox; | 
|  |  | 
|  | #[cfg(not(no_thin))] | 
|  | mod thin; | 
|  |  | 
|  | /// A pointer type that uniquely owns a heap allocation of type `T`. | 
|  | /// | 
|  | /// See the [module-level documentation](../../std/boxed/index.html) for more. | 
|  | #[lang = "owned_box"] | 
|  | #[fundamental] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | // The declaration of the `Box` struct must be kept in sync with the | 
|  | // `alloc::alloc::box_free` function or ICEs will happen. See the comment | 
|  | // on `box_free` for more details. | 
|  | pub struct Box< | 
|  | T: ?Sized, | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, | 
|  | >(Unique<T>, A); | 
|  |  | 
|  | impl<T> Box<T> { | 
|  | /// Allocates memory on the heap and then places `x` into it. | 
|  | /// | 
|  | /// This doesn't actually allocate if `T` is zero-sized. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let five = Box::new(5); | 
|  | /// ``` | 
|  | #[cfg(all(not(no_global_oom_handling)))] | 
|  | #[inline(always)] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | #[must_use] | 
|  | #[rustc_diagnostic_item = "box_new"] | 
|  | pub fn new(x: T) -> Self { | 
|  | #[rustc_box] | 
|  | Box::new(x) | 
|  | } | 
|  |  | 
|  | /// Constructs a new box with uninitialized contents. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(new_uninit)] | 
|  | /// | 
|  | /// let mut five = Box::<u32>::new_uninit(); | 
|  | /// | 
|  | /// let five = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     five.as_mut_ptr().write(5); | 
|  | /// | 
|  | ///     five.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*five, 5) | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[must_use] | 
|  | #[inline] | 
|  | pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { | 
|  | Self::new_uninit_in(Global) | 
|  | } | 
|  |  | 
|  | /// Constructs a new `Box` with uninitialized contents, with the memory | 
|  | /// being filled with `0` bytes. | 
|  | /// | 
|  | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage | 
|  | /// of this method. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(new_uninit)] | 
|  | /// | 
|  | /// let zero = Box::<u32>::new_zeroed(); | 
|  | /// let zero = unsafe { zero.assume_init() }; | 
|  | /// | 
|  | /// assert_eq!(*zero, 0) | 
|  | /// ``` | 
|  | /// | 
|  | /// [zeroed]: mem::MaybeUninit::zeroed | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[inline] | 
|  | #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[must_use] | 
|  | pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { | 
|  | Self::new_zeroed_in(Global) | 
|  | } | 
|  |  | 
|  | /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then | 
|  | /// `x` will be pinned in memory and unable to be moved. | 
|  | /// | 
|  | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` | 
|  | /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using | 
|  | /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to | 
|  | /// construct a (pinned) `Box` in a different way than with [`Box::new`]. | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "pin", since = "1.33.0")] | 
|  | #[must_use] | 
|  | #[inline(always)] | 
|  | pub fn pin(x: T) -> Pin<Box<T>> { | 
|  | Box::new(x).into() | 
|  | } | 
|  |  | 
|  | /// Allocates memory on the heap then places `x` into it, | 
|  | /// returning an error if the allocation fails | 
|  | /// | 
|  | /// This doesn't actually allocate if `T` is zero-sized. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api)] | 
|  | /// | 
|  | /// let five = Box::try_new(5)?; | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[inline] | 
|  | pub fn try_new(x: T) -> Result<Self, AllocError> { | 
|  | Self::try_new_in(x, Global) | 
|  | } | 
|  |  | 
|  | /// Constructs a new box with uninitialized contents on the heap, | 
|  | /// returning an error if the allocation fails | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// let mut five = Box::<u32>::try_new_uninit()?; | 
|  | /// | 
|  | /// let five = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     five.as_mut_ptr().write(5); | 
|  | /// | 
|  | ///     five.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*five, 5); | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | // #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[inline] | 
|  | pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { | 
|  | Box::try_new_uninit_in(Global) | 
|  | } | 
|  |  | 
|  | /// Constructs a new `Box` with uninitialized contents, with the memory | 
|  | /// being filled with `0` bytes on the heap | 
|  | /// | 
|  | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage | 
|  | /// of this method. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// let zero = Box::<u32>::try_new_zeroed()?; | 
|  | /// let zero = unsafe { zero.assume_init() }; | 
|  | /// | 
|  | /// assert_eq!(*zero, 0); | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | /// | 
|  | /// [zeroed]: mem::MaybeUninit::zeroed | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | // #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[inline] | 
|  | pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { | 
|  | Box::try_new_zeroed_in(Global) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T, A: Allocator> Box<T, A> { | 
|  | /// Allocates memory in the given allocator then places `x` into it. | 
|  | /// | 
|  | /// This doesn't actually allocate if `T` is zero-sized. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let five = Box::new_in(5, System); | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[must_use] | 
|  | #[inline] | 
|  | pub fn new_in(x: T, alloc: A) -> Self | 
|  | where | 
|  | A: Allocator, | 
|  | { | 
|  | let mut boxed = Self::new_uninit_in(alloc); | 
|  | unsafe { | 
|  | boxed.as_mut_ptr().write(x); | 
|  | boxed.assume_init() | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Allocates memory in the given allocator then places `x` into it, | 
|  | /// returning an error if the allocation fails | 
|  | /// | 
|  | /// This doesn't actually allocate if `T` is zero-sized. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let five = Box::try_new_in(5, System)?; | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[inline] | 
|  | pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> | 
|  | where | 
|  | A: Allocator, | 
|  | { | 
|  | let mut boxed = Self::try_new_uninit_in(alloc)?; | 
|  | unsafe { | 
|  | boxed.as_mut_ptr().write(x); | 
|  | Ok(boxed.assume_init()) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Constructs a new box with uninitialized contents in the provided allocator. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let mut five = Box::<u32, _>::new_uninit_in(System); | 
|  | /// | 
|  | /// let five = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     five.as_mut_ptr().write(5); | 
|  | /// | 
|  | ///     five.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*five, 5) | 
|  | /// ``` | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[must_use] | 
|  | // #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> | 
|  | where | 
|  | A: Allocator, | 
|  | { | 
|  | let layout = Layout::new::<mem::MaybeUninit<T>>(); | 
|  | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. | 
|  | // That would make code size bigger. | 
|  | match Box::try_new_uninit_in(alloc) { | 
|  | Ok(m) => m, | 
|  | Err(_) => handle_alloc_error(layout), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Constructs a new box with uninitialized contents in the provided allocator, | 
|  | /// returning an error if the allocation fails | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; | 
|  | /// | 
|  | /// let five = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     five.as_mut_ptr().write(5); | 
|  | /// | 
|  | ///     five.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*five, 5); | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | // #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> | 
|  | where | 
|  | A: Allocator, | 
|  | { | 
|  | let layout = Layout::new::<mem::MaybeUninit<T>>(); | 
|  | let ptr = alloc.allocate(layout)?.cast(); | 
|  | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } | 
|  | } | 
|  |  | 
|  | /// Constructs a new `Box` with uninitialized contents, with the memory | 
|  | /// being filled with `0` bytes in the provided allocator. | 
|  | /// | 
|  | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage | 
|  | /// of this method. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let zero = Box::<u32, _>::new_zeroed_in(System); | 
|  | /// let zero = unsafe { zero.assume_init() }; | 
|  | /// | 
|  | /// assert_eq!(*zero, 0) | 
|  | /// ``` | 
|  | /// | 
|  | /// [zeroed]: mem::MaybeUninit::zeroed | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | // #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[must_use] | 
|  | pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> | 
|  | where | 
|  | A: Allocator, | 
|  | { | 
|  | let layout = Layout::new::<mem::MaybeUninit<T>>(); | 
|  | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. | 
|  | // That would make code size bigger. | 
|  | match Box::try_new_zeroed_in(alloc) { | 
|  | Ok(m) => m, | 
|  | Err(_) => handle_alloc_error(layout), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Constructs a new `Box` with uninitialized contents, with the memory | 
|  | /// being filled with `0` bytes in the provided allocator, | 
|  | /// returning an error if the allocation fails, | 
|  | /// | 
|  | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage | 
|  | /// of this method. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; | 
|  | /// let zero = unsafe { zero.assume_init() }; | 
|  | /// | 
|  | /// assert_eq!(*zero, 0); | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | /// | 
|  | /// [zeroed]: mem::MaybeUninit::zeroed | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | // #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> | 
|  | where | 
|  | A: Allocator, | 
|  | { | 
|  | let layout = Layout::new::<mem::MaybeUninit<T>>(); | 
|  | let ptr = alloc.allocate_zeroed(layout)?.cast(); | 
|  | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } | 
|  | } | 
|  |  | 
|  | /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then | 
|  | /// `x` will be pinned in memory and unable to be moved. | 
|  | /// | 
|  | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` | 
|  | /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using | 
|  | /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to | 
|  | /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[must_use] | 
|  | #[inline(always)] | 
|  | pub fn pin_in(x: T, alloc: A) -> Pin<Self> | 
|  | where | 
|  | A: 'static + Allocator, | 
|  | { | 
|  | Self::into_pin(Self::new_in(x, alloc)) | 
|  | } | 
|  |  | 
|  | /// Converts a `Box<T>` into a `Box<[T]>` | 
|  | /// | 
|  | /// This conversion does not allocate on the heap and happens in place. | 
|  | #[unstable(feature = "box_into_boxed_slice", issue = "71582")] | 
|  | pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { | 
|  | let (raw, alloc) = Box::into_raw_with_allocator(boxed); | 
|  | unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } | 
|  | } | 
|  |  | 
|  | /// Consumes the `Box`, returning the wrapped value. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(box_into_inner)] | 
|  | /// | 
|  | /// let c = Box::new(5); | 
|  | /// | 
|  | /// assert_eq!(Box::into_inner(c), 5); | 
|  | /// ``` | 
|  | #[unstable(feature = "box_into_inner", issue = "80437")] | 
|  | #[inline] | 
|  | pub fn into_inner(boxed: Self) -> T { | 
|  | *boxed | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T> Box<[T]> { | 
|  | /// Constructs a new boxed slice with uninitialized contents. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(new_uninit)] | 
|  | /// | 
|  | /// let mut values = Box::<[u32]>::new_uninit_slice(3); | 
|  | /// | 
|  | /// let values = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     values[0].as_mut_ptr().write(1); | 
|  | ///     values[1].as_mut_ptr().write(2); | 
|  | ///     values[2].as_mut_ptr().write(3); | 
|  | /// | 
|  | ///     values.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*values, [1, 2, 3]) | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[must_use] | 
|  | pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { | 
|  | unsafe { RawVec::with_capacity(len).into_box(len) } | 
|  | } | 
|  |  | 
|  | /// Constructs a new boxed slice with uninitialized contents, with the memory | 
|  | /// being filled with `0` bytes. | 
|  | /// | 
|  | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage | 
|  | /// of this method. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(new_uninit)] | 
|  | /// | 
|  | /// let values = Box::<[u32]>::new_zeroed_slice(3); | 
|  | /// let values = unsafe { values.assume_init() }; | 
|  | /// | 
|  | /// assert_eq!(*values, [0, 0, 0]) | 
|  | /// ``` | 
|  | /// | 
|  | /// [zeroed]: mem::MaybeUninit::zeroed | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[must_use] | 
|  | pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { | 
|  | unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } | 
|  | } | 
|  |  | 
|  | /// Constructs a new boxed slice with uninitialized contents. Returns an error if | 
|  | /// the allocation fails | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; | 
|  | /// let values = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     values[0].as_mut_ptr().write(1); | 
|  | ///     values[1].as_mut_ptr().write(2); | 
|  | ///     values[2].as_mut_ptr().write(3); | 
|  | ///     values.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*values, [1, 2, 3]); | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[inline] | 
|  | pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { | 
|  | unsafe { | 
|  | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { | 
|  | Ok(l) => l, | 
|  | Err(_) => return Err(AllocError), | 
|  | }; | 
|  | let ptr = Global.allocate(layout)?; | 
|  | Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Constructs a new boxed slice with uninitialized contents, with the memory | 
|  | /// being filled with `0` bytes. Returns an error if the allocation fails | 
|  | /// | 
|  | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage | 
|  | /// of this method. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; | 
|  | /// let values = unsafe { values.assume_init() }; | 
|  | /// | 
|  | /// assert_eq!(*values, [0, 0, 0]); | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | /// | 
|  | /// [zeroed]: mem::MaybeUninit::zeroed | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[inline] | 
|  | pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { | 
|  | unsafe { | 
|  | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { | 
|  | Ok(l) => l, | 
|  | Err(_) => return Err(AllocError), | 
|  | }; | 
|  | let ptr = Global.allocate_zeroed(layout)?; | 
|  | Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T, A: Allocator> Box<[T], A> { | 
|  | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); | 
|  | /// | 
|  | /// let values = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     values[0].as_mut_ptr().write(1); | 
|  | ///     values[1].as_mut_ptr().write(2); | 
|  | ///     values[2].as_mut_ptr().write(3); | 
|  | /// | 
|  | ///     values.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*values, [1, 2, 3]) | 
|  | /// ``` | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | // #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[must_use] | 
|  | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { | 
|  | unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } | 
|  | } | 
|  |  | 
|  | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, | 
|  | /// with the memory being filled with `0` bytes. | 
|  | /// | 
|  | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage | 
|  | /// of this method. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, new_uninit)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); | 
|  | /// let values = unsafe { values.assume_init() }; | 
|  | /// | 
|  | /// assert_eq!(*values, [0, 0, 0]) | 
|  | /// ``` | 
|  | /// | 
|  | /// [zeroed]: mem::MaybeUninit::zeroed | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | // #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[must_use] | 
|  | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { | 
|  | unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { | 
|  | /// Converts to `Box<T, A>`. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// As with [`MaybeUninit::assume_init`], | 
|  | /// it is up to the caller to guarantee that the value | 
|  | /// really is in an initialized state. | 
|  | /// Calling this when the content is not yet fully initialized | 
|  | /// causes immediate undefined behavior. | 
|  | /// | 
|  | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(new_uninit)] | 
|  | /// | 
|  | /// let mut five = Box::<u32>::new_uninit(); | 
|  | /// | 
|  | /// let five: Box<u32> = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     five.as_mut_ptr().write(5); | 
|  | /// | 
|  | ///     five.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*five, 5) | 
|  | /// ``` | 
|  | #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[inline] | 
|  | pub unsafe fn assume_init(self) -> Box<T, A> { | 
|  | let (raw, alloc) = Box::into_raw_with_allocator(self); | 
|  | unsafe { Box::from_raw_in(raw as *mut T, alloc) } | 
|  | } | 
|  |  | 
|  | /// Writes the value and converts to `Box<T, A>`. | 
|  | /// | 
|  | /// This method converts the box similarly to [`Box::assume_init`] but | 
|  | /// writes `value` into it before conversion thus guaranteeing safety. | 
|  | /// In some scenarios use of this method may improve performance because | 
|  | /// the compiler may be able to optimize copying from stack. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(new_uninit)] | 
|  | /// | 
|  | /// let big_box = Box::<[usize; 1024]>::new_uninit(); | 
|  | /// | 
|  | /// let mut array = [0; 1024]; | 
|  | /// for (i, place) in array.iter_mut().enumerate() { | 
|  | ///     *place = i; | 
|  | /// } | 
|  | /// | 
|  | /// // The optimizer may be able to elide this copy, so previous code writes | 
|  | /// // to heap directly. | 
|  | /// let big_box = Box::write(big_box, array); | 
|  | /// | 
|  | /// for (i, x) in big_box.iter().enumerate() { | 
|  | ///     assert_eq!(*x, i); | 
|  | /// } | 
|  | /// ``` | 
|  | #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[inline] | 
|  | pub fn write(mut boxed: Self, value: T) -> Box<T, A> { | 
|  | unsafe { | 
|  | (*boxed).write(value); | 
|  | boxed.assume_init() | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { | 
|  | /// Converts to `Box<[T], A>`. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// As with [`MaybeUninit::assume_init`], | 
|  | /// it is up to the caller to guarantee that the values | 
|  | /// really are in an initialized state. | 
|  | /// Calling this when the content is not yet fully initialized | 
|  | /// causes immediate undefined behavior. | 
|  | /// | 
|  | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(new_uninit)] | 
|  | /// | 
|  | /// let mut values = Box::<[u32]>::new_uninit_slice(3); | 
|  | /// | 
|  | /// let values = unsafe { | 
|  | ///     // Deferred initialization: | 
|  | ///     values[0].as_mut_ptr().write(1); | 
|  | ///     values[1].as_mut_ptr().write(2); | 
|  | ///     values[2].as_mut_ptr().write(3); | 
|  | /// | 
|  | ///     values.assume_init() | 
|  | /// }; | 
|  | /// | 
|  | /// assert_eq!(*values, [1, 2, 3]) | 
|  | /// ``` | 
|  | #[unstable(feature = "new_uninit", issue = "63291")] | 
|  | #[inline] | 
|  | pub unsafe fn assume_init(self) -> Box<[T], A> { | 
|  | let (raw, alloc) = Box::into_raw_with_allocator(self); | 
|  | unsafe { Box::from_raw_in(raw as *mut [T], alloc) } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T: ?Sized> Box<T> { | 
|  | /// Constructs a box from a raw pointer. | 
|  | /// | 
|  | /// After calling this function, the raw pointer is owned by the | 
|  | /// resulting `Box`. Specifically, the `Box` destructor will call | 
|  | /// the destructor of `T` and free the allocated memory. For this | 
|  | /// to be safe, the memory must have been allocated in accordance | 
|  | /// with the [memory layout] used by `Box` . | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// This function is unsafe because improper use may lead to | 
|  | /// memory problems. For example, a double-free may occur if the | 
|  | /// function is called twice on the same raw pointer. | 
|  | /// | 
|  | /// The safety conditions are described in the [memory layout] section. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// Recreate a `Box` which was previously converted to a raw pointer | 
|  | /// using [`Box::into_raw`]: | 
|  | /// ``` | 
|  | /// let x = Box::new(5); | 
|  | /// let ptr = Box::into_raw(x); | 
|  | /// let x = unsafe { Box::from_raw(ptr) }; | 
|  | /// ``` | 
|  | /// Manually create a `Box` from scratch by using the global allocator: | 
|  | /// ``` | 
|  | /// use std::alloc::{alloc, Layout}; | 
|  | /// | 
|  | /// unsafe { | 
|  | ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32; | 
|  | ///     // In general .write is required to avoid attempting to destruct | 
|  | ///     // the (uninitialized) previous contents of `ptr`, though for this | 
|  | ///     // simple example `*ptr = 5` would have worked as well. | 
|  | ///     ptr.write(5); | 
|  | ///     let x = Box::from_raw(ptr); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// [memory layout]: self#memory-layout | 
|  | /// [`Layout`]: crate::Layout | 
|  | #[stable(feature = "box_raw", since = "1.4.0")] | 
|  | #[inline] | 
|  | #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"] | 
|  | pub unsafe fn from_raw(raw: *mut T) -> Self { | 
|  | unsafe { Self::from_raw_in(raw, Global) } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<T: ?Sized, A: Allocator> Box<T, A> { | 
|  | /// Constructs a box from a raw pointer in the given allocator. | 
|  | /// | 
|  | /// After calling this function, the raw pointer is owned by the | 
|  | /// resulting `Box`. Specifically, the `Box` destructor will call | 
|  | /// the destructor of `T` and free the allocated memory. For this | 
|  | /// to be safe, the memory must have been allocated in accordance | 
|  | /// with the [memory layout] used by `Box` . | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// This function is unsafe because improper use may lead to | 
|  | /// memory problems. For example, a double-free may occur if the | 
|  | /// function is called twice on the same raw pointer. | 
|  | /// | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// Recreate a `Box` which was previously converted to a raw pointer | 
|  | /// using [`Box::into_raw_with_allocator`]: | 
|  | /// ``` | 
|  | /// #![feature(allocator_api)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let x = Box::new_in(5, System); | 
|  | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); | 
|  | /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; | 
|  | /// ``` | 
|  | /// Manually create a `Box` from scratch by using the system allocator: | 
|  | /// ``` | 
|  | /// #![feature(allocator_api, slice_ptr_get)] | 
|  | /// | 
|  | /// use std::alloc::{Allocator, Layout, System}; | 
|  | /// | 
|  | /// unsafe { | 
|  | ///     let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; | 
|  | ///     // In general .write is required to avoid attempting to destruct | 
|  | ///     // the (uninitialized) previous contents of `ptr`, though for this | 
|  | ///     // simple example `*ptr = 5` would have worked as well. | 
|  | ///     ptr.write(5); | 
|  | ///     let x = Box::from_raw_in(ptr, System); | 
|  | /// } | 
|  | /// # Ok::<(), std::alloc::AllocError>(()) | 
|  | /// ``` | 
|  | /// | 
|  | /// [memory layout]: self#memory-layout | 
|  | /// [`Layout`]: crate::Layout | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[rustc_const_unstable(feature = "const_box", issue = "92521")] | 
|  | #[inline] | 
|  | pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { | 
|  | Box(unsafe { Unique::new_unchecked(raw) }, alloc) | 
|  | } | 
|  |  | 
|  | /// Consumes the `Box`, returning a wrapped raw pointer. | 
|  | /// | 
|  | /// The pointer will be properly aligned and non-null. | 
|  | /// | 
|  | /// After calling this function, the caller is responsible for the | 
|  | /// memory previously managed by the `Box`. In particular, the | 
|  | /// caller should properly destroy `T` and release the memory, taking | 
|  | /// into account the [memory layout] used by `Box`. The easiest way to | 
|  | /// do this is to convert the raw pointer back into a `Box` with the | 
|  | /// [`Box::from_raw`] function, allowing the `Box` destructor to perform | 
|  | /// the cleanup. | 
|  | /// | 
|  | /// Note: this is an associated function, which means that you have | 
|  | /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This | 
|  | /// is so that there is no conflict with a method on the inner type. | 
|  | /// | 
|  | /// # Examples | 
|  | /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] | 
|  | /// for automatic cleanup: | 
|  | /// ``` | 
|  | /// let x = Box::new(String::from("Hello")); | 
|  | /// let ptr = Box::into_raw(x); | 
|  | /// let x = unsafe { Box::from_raw(ptr) }; | 
|  | /// ``` | 
|  | /// Manual cleanup by explicitly running the destructor and deallocating | 
|  | /// the memory: | 
|  | /// ``` | 
|  | /// use std::alloc::{dealloc, Layout}; | 
|  | /// use std::ptr; | 
|  | /// | 
|  | /// let x = Box::new(String::from("Hello")); | 
|  | /// let p = Box::into_raw(x); | 
|  | /// unsafe { | 
|  | ///     ptr::drop_in_place(p); | 
|  | ///     dealloc(p as *mut u8, Layout::new::<String>()); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// [memory layout]: self#memory-layout | 
|  | #[stable(feature = "box_raw", since = "1.4.0")] | 
|  | #[inline] | 
|  | pub fn into_raw(b: Self) -> *mut T { | 
|  | Self::into_raw_with_allocator(b).0 | 
|  | } | 
|  |  | 
|  | /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. | 
|  | /// | 
|  | /// The pointer will be properly aligned and non-null. | 
|  | /// | 
|  | /// After calling this function, the caller is responsible for the | 
|  | /// memory previously managed by the `Box`. In particular, the | 
|  | /// caller should properly destroy `T` and release the memory, taking | 
|  | /// into account the [memory layout] used by `Box`. The easiest way to | 
|  | /// do this is to convert the raw pointer back into a `Box` with the | 
|  | /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform | 
|  | /// the cleanup. | 
|  | /// | 
|  | /// Note: this is an associated function, which means that you have | 
|  | /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This | 
|  | /// is so that there is no conflict with a method on the inner type. | 
|  | /// | 
|  | /// # Examples | 
|  | /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] | 
|  | /// for automatic cleanup: | 
|  | /// ``` | 
|  | /// #![feature(allocator_api)] | 
|  | /// | 
|  | /// use std::alloc::System; | 
|  | /// | 
|  | /// let x = Box::new_in(String::from("Hello"), System); | 
|  | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); | 
|  | /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; | 
|  | /// ``` | 
|  | /// Manual cleanup by explicitly running the destructor and deallocating | 
|  | /// the memory: | 
|  | /// ``` | 
|  | /// #![feature(allocator_api)] | 
|  | /// | 
|  | /// use std::alloc::{Allocator, Layout, System}; | 
|  | /// use std::ptr::{self, NonNull}; | 
|  | /// | 
|  | /// let x = Box::new_in(String::from("Hello"), System); | 
|  | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); | 
|  | /// unsafe { | 
|  | ///     ptr::drop_in_place(ptr); | 
|  | ///     let non_null = NonNull::new_unchecked(ptr); | 
|  | ///     alloc.deallocate(non_null.cast(), Layout::new::<String>()); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// [memory layout]: self#memory-layout | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[inline] | 
|  | pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { | 
|  | let (leaked, alloc) = Box::into_unique(b); | 
|  | (leaked.as_ptr(), alloc) | 
|  | } | 
|  |  | 
|  | #[unstable( | 
|  | feature = "ptr_internals", | 
|  | issue = "none", | 
|  | reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" | 
|  | )] | 
|  | #[inline] | 
|  | #[doc(hidden)] | 
|  | pub fn into_unique(b: Self) -> (Unique<T>, A) { | 
|  | // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a | 
|  | // raw pointer for the type system. Turning it directly into a raw pointer would not be | 
|  | // recognized as "releasing" the unique pointer to permit aliased raw accesses, | 
|  | // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer | 
|  | // behaves correctly. | 
|  | let alloc = unsafe { ptr::read(&b.1) }; | 
|  | (Unique::from(Box::leak(b)), alloc) | 
|  | } | 
|  |  | 
|  | /// Returns a reference to the underlying allocator. | 
|  | /// | 
|  | /// Note: this is an associated function, which means that you have | 
|  | /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This | 
|  | /// is so that there is no conflict with a method on the inner type. | 
|  | #[unstable(feature = "allocator_api", issue = "32838")] | 
|  | #[rustc_const_unstable(feature = "const_box", issue = "92521")] | 
|  | #[inline] | 
|  | pub const fn allocator(b: &Self) -> &A { | 
|  | &b.1 | 
|  | } | 
|  |  | 
|  | /// Consumes and leaks the `Box`, returning a mutable reference, | 
|  | /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime | 
|  | /// `'a`. If the type has only static references, or none at all, then this | 
|  | /// may be chosen to be `'static`. | 
|  | /// | 
|  | /// This function is mainly useful for data that lives for the remainder of | 
|  | /// the program's life. Dropping the returned reference will cause a memory | 
|  | /// leak. If this is not acceptable, the reference should first be wrapped | 
|  | /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can | 
|  | /// then be dropped which will properly destroy `T` and release the | 
|  | /// allocated memory. | 
|  | /// | 
|  | /// Note: this is an associated function, which means that you have | 
|  | /// to call it as `Box::leak(b)` instead of `b.leak()`. This | 
|  | /// is so that there is no conflict with a method on the inner type. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// Simple usage: | 
|  | /// | 
|  | /// ``` | 
|  | /// let x = Box::new(41); | 
|  | /// let static_ref: &'static mut usize = Box::leak(x); | 
|  | /// *static_ref += 1; | 
|  | /// assert_eq!(*static_ref, 42); | 
|  | /// ``` | 
|  | /// | 
|  | /// Unsized data: | 
|  | /// | 
|  | /// ``` | 
|  | /// let x = vec![1, 2, 3].into_boxed_slice(); | 
|  | /// let static_ref = Box::leak(x); | 
|  | /// static_ref[0] = 4; | 
|  | /// assert_eq!(*static_ref, [4, 2, 3]); | 
|  | /// ``` | 
|  | #[stable(feature = "box_leak", since = "1.26.0")] | 
|  | #[inline] | 
|  | pub fn leak<'a>(b: Self) -> &'a mut T | 
|  | where | 
|  | A: 'a, | 
|  | { | 
|  | unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } | 
|  | } | 
|  |  | 
|  | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then | 
|  | /// `*boxed` will be pinned in memory and unable to be moved. | 
|  | /// | 
|  | /// This conversion does not allocate on the heap and happens in place. | 
|  | /// | 
|  | /// This is also available via [`From`]. | 
|  | /// | 
|  | /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> | 
|  | /// can also be written more concisely using <code>[Box::pin]\(x)</code>. | 
|  | /// This `into_pin` method is useful if you already have a `Box<T>`, or you are | 
|  | /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. | 
|  | /// | 
|  | /// # Notes | 
|  | /// | 
|  | /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, | 
|  | /// as it'll introduce an ambiguity when calling `Pin::from`. | 
|  | /// A demonstration of such a poor impl is shown below. | 
|  | /// | 
|  | /// ```compile_fail | 
|  | /// # use std::pin::Pin; | 
|  | /// struct Foo; // A type defined in this crate. | 
|  | /// impl From<Box<()>> for Pin<Foo> { | 
|  | ///     fn from(_: Box<()>) -> Pin<Foo> { | 
|  | ///         Pin::new(Foo) | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// let foo = Box::new(()); | 
|  | /// let bar = Pin::from(foo); | 
|  | /// ``` | 
|  | #[stable(feature = "box_into_pin", since = "1.63.0")] | 
|  | #[rustc_const_unstable(feature = "const_box", issue = "92521")] | 
|  | pub const fn into_pin(boxed: Self) -> Pin<Self> | 
|  | where | 
|  | A: 'static, | 
|  | { | 
|  | // It's not possible to move or replace the insides of a `Pin<Box<T>>` | 
|  | // when `T: !Unpin`, so it's safe to pin it directly without any | 
|  | // additional requirements. | 
|  | unsafe { Pin::new_unchecked(boxed) } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> { | 
|  | fn drop(&mut self) { | 
|  | // FIXME: Do nothing, drop is currently performed by compiler. | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: Default> Default for Box<T> { | 
|  | /// Creates a `Box<T>`, with the `Default` value for T. | 
|  | #[inline] | 
|  | fn default() -> Self { | 
|  | Box::new(T::default()) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T> Default for Box<[T]> { | 
|  | #[inline] | 
|  | fn default() -> Self { | 
|  | let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); | 
|  | Box(ptr, Global) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "default_box_extra", since = "1.17.0")] | 
|  | impl Default for Box<str> { | 
|  | #[inline] | 
|  | fn default() -> Self { | 
|  | // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. | 
|  | let ptr: Unique<str> = unsafe { | 
|  | let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); | 
|  | Unique::new_unchecked(bytes.as_ptr() as *mut str) | 
|  | }; | 
|  | Box(ptr, Global) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { | 
|  | /// Returns a new box with a `clone()` of this box's contents. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let x = Box::new(5); | 
|  | /// let y = x.clone(); | 
|  | /// | 
|  | /// // The value is the same | 
|  | /// assert_eq!(x, y); | 
|  | /// | 
|  | /// // But they are unique objects | 
|  | /// assert_ne!(&*x as *const i32, &*y as *const i32); | 
|  | /// ``` | 
|  | #[inline] | 
|  | fn clone(&self) -> Self { | 
|  | // Pre-allocate memory to allow writing the cloned value directly. | 
|  | let mut boxed = Self::new_uninit_in(self.1.clone()); | 
|  | unsafe { | 
|  | (**self).write_clone_into_raw(boxed.as_mut_ptr()); | 
|  | boxed.assume_init() | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Copies `source`'s contents into `self` without creating a new allocation. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// let x = Box::new(5); | 
|  | /// let mut y = Box::new(10); | 
|  | /// let yp: *const i32 = &*y; | 
|  | /// | 
|  | /// y.clone_from(&x); | 
|  | /// | 
|  | /// // The value is the same | 
|  | /// assert_eq!(x, y); | 
|  | /// | 
|  | /// // And no allocation occurred | 
|  | /// assert_eq!(yp, &*y); | 
|  | /// ``` | 
|  | #[inline] | 
|  | fn clone_from(&mut self, source: &Self) { | 
|  | (**self).clone_from(&(**source)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "box_slice_clone", since = "1.3.0")] | 
|  | impl Clone for Box<str> { | 
|  | fn clone(&self) -> Self { | 
|  | // this makes a copy of the data | 
|  | let buf: Box<[u8]> = self.as_bytes().into(); | 
|  | unsafe { from_boxed_utf8_unchecked(buf) } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { | 
|  | #[inline] | 
|  | fn eq(&self, other: &Self) -> bool { | 
|  | PartialEq::eq(&**self, &**other) | 
|  | } | 
|  | #[inline] | 
|  | fn ne(&self, other: &Self) -> bool { | 
|  | PartialEq::ne(&**self, &**other) | 
|  | } | 
|  | } | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { | 
|  | #[inline] | 
|  | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { | 
|  | PartialOrd::partial_cmp(&**self, &**other) | 
|  | } | 
|  | #[inline] | 
|  | fn lt(&self, other: &Self) -> bool { | 
|  | PartialOrd::lt(&**self, &**other) | 
|  | } | 
|  | #[inline] | 
|  | fn le(&self, other: &Self) -> bool { | 
|  | PartialOrd::le(&**self, &**other) | 
|  | } | 
|  | #[inline] | 
|  | fn ge(&self, other: &Self) -> bool { | 
|  | PartialOrd::ge(&**self, &**other) | 
|  | } | 
|  | #[inline] | 
|  | fn gt(&self, other: &Self) -> bool { | 
|  | PartialOrd::gt(&**self, &**other) | 
|  | } | 
|  | } | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { | 
|  | #[inline] | 
|  | fn cmp(&self, other: &Self) -> Ordering { | 
|  | Ord::cmp(&**self, &**other) | 
|  | } | 
|  | } | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { | 
|  | fn hash<H: Hasher>(&self, state: &mut H) { | 
|  | (**self).hash(state); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "indirect_hasher_impl", since = "1.22.0")] | 
|  | impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { | 
|  | fn finish(&self) -> u64 { | 
|  | (**self).finish() | 
|  | } | 
|  | fn write(&mut self, bytes: &[u8]) { | 
|  | (**self).write(bytes) | 
|  | } | 
|  | fn write_u8(&mut self, i: u8) { | 
|  | (**self).write_u8(i) | 
|  | } | 
|  | fn write_u16(&mut self, i: u16) { | 
|  | (**self).write_u16(i) | 
|  | } | 
|  | fn write_u32(&mut self, i: u32) { | 
|  | (**self).write_u32(i) | 
|  | } | 
|  | fn write_u64(&mut self, i: u64) { | 
|  | (**self).write_u64(i) | 
|  | } | 
|  | fn write_u128(&mut self, i: u128) { | 
|  | (**self).write_u128(i) | 
|  | } | 
|  | fn write_usize(&mut self, i: usize) { | 
|  | (**self).write_usize(i) | 
|  | } | 
|  | fn write_i8(&mut self, i: i8) { | 
|  | (**self).write_i8(i) | 
|  | } | 
|  | fn write_i16(&mut self, i: i16) { | 
|  | (**self).write_i16(i) | 
|  | } | 
|  | fn write_i32(&mut self, i: i32) { | 
|  | (**self).write_i32(i) | 
|  | } | 
|  | fn write_i64(&mut self, i: i64) { | 
|  | (**self).write_i64(i) | 
|  | } | 
|  | fn write_i128(&mut self, i: i128) { | 
|  | (**self).write_i128(i) | 
|  | } | 
|  | fn write_isize(&mut self, i: isize) { | 
|  | (**self).write_isize(i) | 
|  | } | 
|  | fn write_length_prefix(&mut self, len: usize) { | 
|  | (**self).write_length_prefix(len) | 
|  | } | 
|  | fn write_str(&mut self, s: &str) { | 
|  | (**self).write_str(s) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "from_for_ptrs", since = "1.6.0")] | 
|  | impl<T> From<T> for Box<T> { | 
|  | /// Converts a `T` into a `Box<T>` | 
|  | /// | 
|  | /// The conversion allocates on the heap and moves `t` | 
|  | /// from the stack into it. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// let x = 5; | 
|  | /// let boxed = Box::new(5); | 
|  | /// | 
|  | /// assert_eq!(Box::from(x), boxed); | 
|  | /// ``` | 
|  | fn from(t: T) -> Self { | 
|  | Box::new(t) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "pin", since = "1.33.0")] | 
|  | impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>> | 
|  | where | 
|  | A: 'static, | 
|  | { | 
|  | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then | 
|  | /// `*boxed` will be pinned in memory and unable to be moved. | 
|  | /// | 
|  | /// This conversion does not allocate on the heap and happens in place. | 
|  | /// | 
|  | /// This is also available via [`Box::into_pin`]. | 
|  | /// | 
|  | /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code> | 
|  | /// can also be written more concisely using <code>[Box::pin]\(x)</code>. | 
|  | /// This `From` implementation is useful if you already have a `Box<T>`, or you are | 
|  | /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. | 
|  | fn from(boxed: Box<T, A>) -> Self { | 
|  | Box::into_pin(boxed) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Specialization trait used for `From<&[T]>`. | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | trait BoxFromSlice<T> { | 
|  | fn from_slice(slice: &[T]) -> Self; | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | impl<T: Clone> BoxFromSlice<T> for Box<[T]> { | 
|  | #[inline] | 
|  | default fn from_slice(slice: &[T]) -> Self { | 
|  | slice.to_vec().into_boxed_slice() | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | impl<T: Copy> BoxFromSlice<T> for Box<[T]> { | 
|  | #[inline] | 
|  | fn from_slice(slice: &[T]) -> Self { | 
|  | let len = slice.len(); | 
|  | let buf = RawVec::with_capacity(len); | 
|  | unsafe { | 
|  | ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); | 
|  | buf.into_box(slice.len()).assume_init() | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "box_from_slice", since = "1.17.0")] | 
|  | impl<T: Clone> From<&[T]> for Box<[T]> { | 
|  | /// Converts a `&[T]` into a `Box<[T]>` | 
|  | /// | 
|  | /// This conversion allocates on the heap | 
|  | /// and performs a copy of `slice` and its contents. | 
|  | /// | 
|  | /// # Examples | 
|  | /// ```rust | 
|  | /// // create a &[u8] which will be used to create a Box<[u8]> | 
|  | /// let slice: &[u8] = &[104, 101, 108, 108, 111]; | 
|  | /// let boxed_slice: Box<[u8]> = Box::from(slice); | 
|  | /// | 
|  | /// println!("{boxed_slice:?}"); | 
|  | /// ``` | 
|  | #[inline] | 
|  | fn from(slice: &[T]) -> Box<[T]> { | 
|  | <Self as BoxFromSlice<T>>::from_slice(slice) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "box_from_cow", since = "1.45.0")] | 
|  | impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> { | 
|  | /// Converts a `Cow<'_, [T]>` into a `Box<[T]>` | 
|  | /// | 
|  | /// When `cow` is the `Cow::Borrowed` variant, this | 
|  | /// conversion allocates on the heap and copies the | 
|  | /// underlying slice. Otherwise, it will try to reuse the owned | 
|  | /// `Vec`'s allocation. | 
|  | #[inline] | 
|  | fn from(cow: Cow<'_, [T]>) -> Box<[T]> { | 
|  | match cow { | 
|  | Cow::Borrowed(slice) => Box::from(slice), | 
|  | Cow::Owned(slice) => Box::from(slice), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "box_from_slice", since = "1.17.0")] | 
|  | impl From<&str> for Box<str> { | 
|  | /// Converts a `&str` into a `Box<str>` | 
|  | /// | 
|  | /// This conversion allocates on the heap | 
|  | /// and performs a copy of `s`. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// let boxed: Box<str> = Box::from("hello"); | 
|  | /// println!("{boxed}"); | 
|  | /// ``` | 
|  | #[inline] | 
|  | fn from(s: &str) -> Box<str> { | 
|  | unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "box_from_cow", since = "1.45.0")] | 
|  | impl From<Cow<'_, str>> for Box<str> { | 
|  | /// Converts a `Cow<'_, str>` into a `Box<str>` | 
|  | /// | 
|  | /// When `cow` is the `Cow::Borrowed` variant, this | 
|  | /// conversion allocates on the heap and copies the | 
|  | /// underlying `str`. Otherwise, it will try to reuse the owned | 
|  | /// `String`'s allocation. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// use std::borrow::Cow; | 
|  | /// | 
|  | /// let unboxed = Cow::Borrowed("hello"); | 
|  | /// let boxed: Box<str> = Box::from(unboxed); | 
|  | /// println!("{boxed}"); | 
|  | /// ``` | 
|  | /// | 
|  | /// ```rust | 
|  | /// # use std::borrow::Cow; | 
|  | /// let unboxed = Cow::Owned("hello".to_string()); | 
|  | /// let boxed: Box<str> = Box::from(unboxed); | 
|  | /// println!("{boxed}"); | 
|  | /// ``` | 
|  | #[inline] | 
|  | fn from(cow: Cow<'_, str>) -> Box<str> { | 
|  | match cow { | 
|  | Cow::Borrowed(s) => Box::from(s), | 
|  | Cow::Owned(s) => Box::from(s), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "boxed_str_conv", since = "1.19.0")] | 
|  | impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> { | 
|  | /// Converts a `Box<str>` into a `Box<[u8]>` | 
|  | /// | 
|  | /// This conversion does not allocate on the heap and happens in place. | 
|  | /// | 
|  | /// # Examples | 
|  | /// ```rust | 
|  | /// // create a Box<str> which will be used to create a Box<[u8]> | 
|  | /// let boxed: Box<str> = Box::from("hello"); | 
|  | /// let boxed_str: Box<[u8]> = Box::from(boxed); | 
|  | /// | 
|  | /// // create a &[u8] which will be used to create a Box<[u8]> | 
|  | /// let slice: &[u8] = &[104, 101, 108, 108, 111]; | 
|  | /// let boxed_slice = Box::from(slice); | 
|  | /// | 
|  | /// assert_eq!(boxed_slice, boxed_str); | 
|  | /// ``` | 
|  | #[inline] | 
|  | fn from(s: Box<str, A>) -> Self { | 
|  | let (raw, alloc) = Box::into_raw_with_allocator(s); | 
|  | unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "box_from_array", since = "1.45.0")] | 
|  | impl<T, const N: usize> From<[T; N]> for Box<[T]> { | 
|  | /// Converts a `[T; N]` into a `Box<[T]>` | 
|  | /// | 
|  | /// This conversion moves the array to newly heap-allocated memory. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ```rust | 
|  | /// let boxed: Box<[u8]> = Box::from([4, 2]); | 
|  | /// println!("{boxed:?}"); | 
|  | /// ``` | 
|  | fn from(array: [T; N]) -> Box<[T]> { | 
|  | Box::new(array) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Casts a boxed slice to a boxed array. | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// `boxed_slice.len()` must be exactly `N`. | 
|  | unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>( | 
|  | boxed_slice: Box<[T], A>, | 
|  | ) -> Box<[T; N], A> { | 
|  | debug_assert_eq!(boxed_slice.len(), N); | 
|  |  | 
|  | let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice); | 
|  | // SAFETY: Pointer and allocator came from an existing box, | 
|  | // and our safety condition requires that the length is exactly `N` | 
|  | unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "boxed_slice_try_from", since = "1.43.0")] | 
|  | impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> { | 
|  | type Error = Box<[T]>; | 
|  |  | 
|  | /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. | 
|  | /// | 
|  | /// The conversion occurs in-place and does not require a | 
|  | /// new memory allocation. | 
|  | /// | 
|  | /// # Errors | 
|  | /// | 
|  | /// Returns the old `Box<[T]>` in the `Err` variant if | 
|  | /// `boxed_slice.len()` does not equal `N`. | 
|  | fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> { | 
|  | if boxed_slice.len() == N { | 
|  | Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) | 
|  | } else { | 
|  | Err(boxed_slice) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")] | 
|  | impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> { | 
|  | type Error = Vec<T>; | 
|  |  | 
|  | /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`. | 
|  | /// | 
|  | /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`, | 
|  | /// but will require a reallocation otherwise. | 
|  | /// | 
|  | /// # Errors | 
|  | /// | 
|  | /// Returns the original `Vec<T>` in the `Err` variant if | 
|  | /// `boxed_slice.len()` does not equal `N`. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// This can be used with [`vec!`] to create an array on the heap: | 
|  | /// | 
|  | /// ``` | 
|  | /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap(); | 
|  | /// assert_eq!(state.len(), 100); | 
|  | /// ``` | 
|  | fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> { | 
|  | if vec.len() == N { | 
|  | let boxed_slice = vec.into_boxed_slice(); | 
|  | Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) }) | 
|  | } else { | 
|  | Err(vec) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<A: Allocator> Box<dyn Any, A> { | 
|  | /// Attempt to downcast the box to a concrete type. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::any::Any; | 
|  | /// | 
|  | /// fn print_if_string(value: Box<dyn Any>) { | 
|  | ///     if let Ok(string) = value.downcast::<String>() { | 
|  | ///         println!("String ({}): {}", string.len(), string); | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// let my_string = "Hello World".to_string(); | 
|  | /// print_if_string(Box::new(my_string)); | 
|  | /// print_if_string(Box::new(0i8)); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { | 
|  | if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } | 
|  | } | 
|  |  | 
|  | /// Downcasts the box to a concrete type. | 
|  | /// | 
|  | /// For a safe alternative see [`downcast`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(downcast_unchecked)] | 
|  | /// | 
|  | /// use std::any::Any; | 
|  | /// | 
|  | /// let x: Box<dyn Any> = Box::new(1_usize); | 
|  | /// | 
|  | /// unsafe { | 
|  | ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// The contained value must be of type `T`. Calling this method | 
|  | /// with the incorrect type is *undefined behavior*. | 
|  | /// | 
|  | /// [`downcast`]: Self::downcast | 
|  | #[inline] | 
|  | #[unstable(feature = "downcast_unchecked", issue = "90850")] | 
|  | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { | 
|  | debug_assert!(self.is::<T>()); | 
|  | unsafe { | 
|  | let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); | 
|  | Box::from_raw_in(raw as *mut T, alloc) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<A: Allocator> Box<dyn Any + Send, A> { | 
|  | /// Attempt to downcast the box to a concrete type. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::any::Any; | 
|  | /// | 
|  | /// fn print_if_string(value: Box<dyn Any + Send>) { | 
|  | ///     if let Ok(string) = value.downcast::<String>() { | 
|  | ///         println!("String ({}): {}", string.len(), string); | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// let my_string = "Hello World".to_string(); | 
|  | /// print_if_string(Box::new(my_string)); | 
|  | /// print_if_string(Box::new(0i8)); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { | 
|  | if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } | 
|  | } | 
|  |  | 
|  | /// Downcasts the box to a concrete type. | 
|  | /// | 
|  | /// For a safe alternative see [`downcast`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(downcast_unchecked)] | 
|  | /// | 
|  | /// use std::any::Any; | 
|  | /// | 
|  | /// let x: Box<dyn Any + Send> = Box::new(1_usize); | 
|  | /// | 
|  | /// unsafe { | 
|  | ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// The contained value must be of type `T`. Calling this method | 
|  | /// with the incorrect type is *undefined behavior*. | 
|  | /// | 
|  | /// [`downcast`]: Self::downcast | 
|  | #[inline] | 
|  | #[unstable(feature = "downcast_unchecked", issue = "90850")] | 
|  | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { | 
|  | debug_assert!(self.is::<T>()); | 
|  | unsafe { | 
|  | let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); | 
|  | Box::from_raw_in(raw as *mut T, alloc) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<A: Allocator> Box<dyn Any + Send + Sync, A> { | 
|  | /// Attempt to downcast the box to a concrete type. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::any::Any; | 
|  | /// | 
|  | /// fn print_if_string(value: Box<dyn Any + Send + Sync>) { | 
|  | ///     if let Ok(string) = value.downcast::<String>() { | 
|  | ///         println!("String ({}): {}", string.len(), string); | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// let my_string = "Hello World".to_string(); | 
|  | /// print_if_string(Box::new(my_string)); | 
|  | /// print_if_string(Box::new(0i8)); | 
|  | /// ``` | 
|  | #[inline] | 
|  | #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")] | 
|  | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> { | 
|  | if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) } | 
|  | } | 
|  |  | 
|  | /// Downcasts the box to a concrete type. | 
|  | /// | 
|  | /// For a safe alternative see [`downcast`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// #![feature(downcast_unchecked)] | 
|  | /// | 
|  | /// use std::any::Any; | 
|  | /// | 
|  | /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize); | 
|  | /// | 
|  | /// unsafe { | 
|  | ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// # Safety | 
|  | /// | 
|  | /// The contained value must be of type `T`. Calling this method | 
|  | /// with the incorrect type is *undefined behavior*. | 
|  | /// | 
|  | /// [`downcast`]: Self::downcast | 
|  | #[inline] | 
|  | #[unstable(feature = "downcast_unchecked", issue = "90850")] | 
|  | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> { | 
|  | debug_assert!(self.is::<T>()); | 
|  | unsafe { | 
|  | let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = | 
|  | Box::into_raw_with_allocator(self); | 
|  | Box::from_raw_in(raw as *mut T, alloc) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | fmt::Display::fmt(&**self, f) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | fmt::Debug::fmt(&**self, f) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | // It's not possible to extract the inner Uniq directly from the Box, | 
|  | // instead we cast it to a *const which aliases the Unique | 
|  | let ptr: *const T = &**self; | 
|  | fmt::Pointer::fmt(&ptr, f) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { | 
|  | type Target = T; | 
|  |  | 
|  | fn deref(&self) -> &T { | 
|  | &**self | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { | 
|  | fn deref_mut(&mut self) -> &mut T { | 
|  | &mut **self | 
|  | } | 
|  | } | 
|  |  | 
|  | #[unstable(feature = "receiver_trait", issue = "none")] | 
|  | impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {} | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> { | 
|  | type Item = I::Item; | 
|  | fn next(&mut self) -> Option<I::Item> { | 
|  | (**self).next() | 
|  | } | 
|  | fn size_hint(&self) -> (usize, Option<usize>) { | 
|  | (**self).size_hint() | 
|  | } | 
|  | fn nth(&mut self, n: usize) -> Option<I::Item> { | 
|  | (**self).nth(n) | 
|  | } | 
|  | fn last(self) -> Option<I::Item> { | 
|  | BoxIter::last(self) | 
|  | } | 
|  | } | 
|  |  | 
|  | trait BoxIter { | 
|  | type Item; | 
|  | fn last(self) -> Option<Self::Item>; | 
|  | } | 
|  |  | 
|  | impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> { | 
|  | type Item = I::Item; | 
|  | default fn last(self) -> Option<I::Item> { | 
|  | #[inline] | 
|  | fn some<T>(_: Option<T>, x: T) -> Option<T> { | 
|  | Some(x) | 
|  | } | 
|  |  | 
|  | self.fold(None, some) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Specialization for sized `I`s that uses `I`s implementation of `last()` | 
|  | /// instead of the default. | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> { | 
|  | fn last(self) -> Option<I::Item> { | 
|  | (*self).last() | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> { | 
|  | fn next_back(&mut self) -> Option<I::Item> { | 
|  | (**self).next_back() | 
|  | } | 
|  | fn nth_back(&mut self, n: usize) -> Option<I::Item> { | 
|  | (**self).nth_back(n) | 
|  | } | 
|  | } | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> { | 
|  | fn len(&self) -> usize { | 
|  | (**self).len() | 
|  | } | 
|  | fn is_empty(&self) -> bool { | 
|  | (**self).is_empty() | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "fused", since = "1.26.0")] | 
|  | impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {} | 
|  |  | 
|  | #[stable(feature = "boxed_closure_impls", since = "1.35.0")] | 
|  | impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { | 
|  | type Output = <F as FnOnce<Args>>::Output; | 
|  |  | 
|  | extern "rust-call" fn call_once(self, args: Args) -> Self::Output { | 
|  | <F as FnOnce<Args>>::call_once(*self, args) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "boxed_closure_impls", since = "1.35.0")] | 
|  | impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { | 
|  | extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { | 
|  | <F as FnMut<Args>>::call_mut(self, args) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "boxed_closure_impls", since = "1.35.0")] | 
|  | impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { | 
|  | extern "rust-call" fn call(&self, args: Args) -> Self::Output { | 
|  | <F as Fn<Args>>::call(self, args) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[unstable(feature = "coerce_unsized", issue = "18598")] | 
|  | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} | 
|  |  | 
|  | #[unstable(feature = "dispatch_from_dyn", issue = "none")] | 
|  | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] | 
|  | impl<I> FromIterator<I> for Box<[I]> { | 
|  | fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self { | 
|  | iter.into_iter().collect::<Vec<_>>().into_boxed_slice() | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "box_slice_clone", since = "1.3.0")] | 
|  | impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { | 
|  | fn clone(&self) -> Self { | 
|  | let alloc = Box::allocator(self).clone(); | 
|  | self.to_vec_in(alloc).into_boxed_slice() | 
|  | } | 
|  |  | 
|  | fn clone_from(&mut self, other: &Self) { | 
|  | if self.len() == other.len() { | 
|  | self.clone_from_slice(&other); | 
|  | } else { | 
|  | *self = other.clone(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "box_borrow", since = "1.1.0")] | 
|  | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> { | 
|  | fn borrow(&self) -> &T { | 
|  | &**self | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "box_borrow", since = "1.1.0")] | 
|  | impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> { | 
|  | fn borrow_mut(&mut self) -> &mut T { | 
|  | &mut **self | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] | 
|  | impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { | 
|  | fn as_ref(&self) -> &T { | 
|  | &**self | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] | 
|  | impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { | 
|  | fn as_mut(&mut self) -> &mut T { | 
|  | &mut **self | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Nota bene | 
|  | * | 
|  | *  We could have chosen not to add this impl, and instead have written a | 
|  | *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, | 
|  | *  because Box<T> implements Unpin even when T does not, as a result of | 
|  | *  this impl. | 
|  | * | 
|  | *  We chose this API instead of the alternative for a few reasons: | 
|  | *      - Logically, it is helpful to understand pinning in regard to the | 
|  | *        memory region being pointed to. For this reason none of the | 
|  | *        standard library pointer types support projecting through a pin | 
|  | *        (Box<T> is the only pointer type in std for which this would be | 
|  | *        safe.) | 
|  | *      - It is in practice very useful to have Box<T> be unconditionally | 
|  | *        Unpin because of trait objects, for which the structural auto | 
|  | *        trait functionality does not apply (e.g., Box<dyn Foo> would | 
|  | *        otherwise not be Unpin). | 
|  | * | 
|  | *  Another type with the same semantics as Box but only a conditional | 
|  | *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and | 
|  | *  could have a method to project a Pin<T> from it. | 
|  | */ | 
|  | #[stable(feature = "pin", since = "1.33.0")] | 
|  | impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {} | 
|  |  | 
|  | #[unstable(feature = "generator_trait", issue = "43122")] | 
|  | impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A> | 
|  | where | 
|  | A: 'static, | 
|  | { | 
|  | type Yield = G::Yield; | 
|  | type Return = G::Return; | 
|  |  | 
|  | fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { | 
|  | G::resume(Pin::new(&mut *self), arg) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[unstable(feature = "generator_trait", issue = "43122")] | 
|  | impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>> | 
|  | where | 
|  | A: 'static, | 
|  | { | 
|  | type Yield = G::Yield; | 
|  | type Return = G::Return; | 
|  |  | 
|  | fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { | 
|  | G::resume((*self).as_mut(), arg) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "futures_api", since = "1.36.0")] | 
|  | impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> | 
|  | where | 
|  | A: 'static, | 
|  | { | 
|  | type Output = F::Output; | 
|  |  | 
|  | fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { | 
|  | F::poll(Pin::new(&mut *self), cx) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[unstable(feature = "async_iterator", issue = "79024")] | 
|  | impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> { | 
|  | type Item = S::Item; | 
|  |  | 
|  | fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { | 
|  | Pin::new(&mut **self).poll_next(cx) | 
|  | } | 
|  |  | 
|  | fn size_hint(&self) -> (usize, Option<usize>) { | 
|  | (**self).size_hint() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl dyn Error { | 
|  | #[inline] | 
|  | #[stable(feature = "error_downcast", since = "1.3.0")] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | /// Attempts to downcast the box to a concrete type. | 
|  | pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> { | 
|  | if self.is::<T>() { | 
|  | unsafe { | 
|  | let raw: *mut dyn Error = Box::into_raw(self); | 
|  | Ok(Box::from_raw(raw as *mut T)) | 
|  | } | 
|  | } else { | 
|  | Err(self) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl dyn Error + Send { | 
|  | #[inline] | 
|  | #[stable(feature = "error_downcast", since = "1.3.0")] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | /// Attempts to downcast the box to a concrete type. | 
|  | pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> { | 
|  | let err: Box<dyn Error> = self; | 
|  | <dyn Error>::downcast(err).map_err(|s| unsafe { | 
|  | // Reapply the `Send` marker. | 
|  | mem::transmute::<Box<dyn Error>, Box<dyn Error + Send>>(s) | 
|  | }) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl dyn Error + Send + Sync { | 
|  | #[inline] | 
|  | #[stable(feature = "error_downcast", since = "1.3.0")] | 
|  | #[rustc_allow_incoherent_impl] | 
|  | /// Attempts to downcast the box to a concrete type. | 
|  | pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> { | 
|  | let err: Box<dyn Error> = self; | 
|  | <dyn Error>::downcast(err).map_err(|s| unsafe { | 
|  | // Reapply the `Send + Sync` marker. | 
|  | mem::transmute::<Box<dyn Error>, Box<dyn Error + Send + Sync>>(s) | 
|  | }) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> { | 
|  | /// Converts a type of [`Error`] into a box of dyn [`Error`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::error::Error; | 
|  | /// use std::fmt; | 
|  | /// use std::mem; | 
|  | /// | 
|  | /// #[derive(Debug)] | 
|  | /// struct AnError; | 
|  | /// | 
|  | /// impl fmt::Display for AnError { | 
|  | ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | ///         write!(f, "An error") | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// impl Error for AnError {} | 
|  | /// | 
|  | /// let an_error = AnError; | 
|  | /// assert!(0 == mem::size_of_val(&an_error)); | 
|  | /// let a_boxed_error = Box::<dyn Error>::from(an_error); | 
|  | /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) | 
|  | /// ``` | 
|  | fn from(err: E) -> Box<dyn Error + 'a> { | 
|  | Box::new(err) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> { | 
|  | /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of | 
|  | /// dyn [`Error`] + [`Send`] + [`Sync`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::error::Error; | 
|  | /// use std::fmt; | 
|  | /// use std::mem; | 
|  | /// | 
|  | /// #[derive(Debug)] | 
|  | /// struct AnError; | 
|  | /// | 
|  | /// impl fmt::Display for AnError { | 
|  | ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | ///         write!(f, "An error") | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// impl Error for AnError {} | 
|  | /// | 
|  | /// unsafe impl Send for AnError {} | 
|  | /// | 
|  | /// unsafe impl Sync for AnError {} | 
|  | /// | 
|  | /// let an_error = AnError; | 
|  | /// assert!(0 == mem::size_of_val(&an_error)); | 
|  | /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error); | 
|  | /// assert!( | 
|  | ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) | 
|  | /// ``` | 
|  | fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> { | 
|  | Box::new(err) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl From<String> for Box<dyn Error + Send + Sync> { | 
|  | /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::error::Error; | 
|  | /// use std::mem; | 
|  | /// | 
|  | /// let a_string_error = "a string error".to_string(); | 
|  | /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error); | 
|  | /// assert!( | 
|  | ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) | 
|  | /// ``` | 
|  | #[inline] | 
|  | fn from(err: String) -> Box<dyn Error + Send + Sync> { | 
|  | struct StringError(String); | 
|  |  | 
|  | impl Error for StringError { | 
|  | #[allow(deprecated)] | 
|  | fn description(&self) -> &str { | 
|  | &self.0 | 
|  | } | 
|  | } | 
|  |  | 
|  | impl fmt::Display for StringError { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | fmt::Display::fmt(&self.0, f) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Purposefully skip printing "StringError(..)" | 
|  | impl fmt::Debug for StringError { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | fmt::Debug::fmt(&self.0, f) | 
|  | } | 
|  | } | 
|  |  | 
|  | Box::new(StringError(err)) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "string_box_error", since = "1.6.0")] | 
|  | impl From<String> for Box<dyn Error> { | 
|  | /// Converts a [`String`] into a box of dyn [`Error`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::error::Error; | 
|  | /// use std::mem; | 
|  | /// | 
|  | /// let a_string_error = "a string error".to_string(); | 
|  | /// let a_boxed_error = Box::<dyn Error>::from(a_string_error); | 
|  | /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) | 
|  | /// ``` | 
|  | fn from(str_err: String) -> Box<dyn Error> { | 
|  | let err1: Box<dyn Error + Send + Sync> = From::from(str_err); | 
|  | let err2: Box<dyn Error> = err1; | 
|  | err2 | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "rust1", since = "1.0.0")] | 
|  | impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> { | 
|  | /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. | 
|  | /// | 
|  | /// [`str`]: prim@str | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::error::Error; | 
|  | /// use std::mem; | 
|  | /// | 
|  | /// let a_str_error = "a str error"; | 
|  | /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error); | 
|  | /// assert!( | 
|  | ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) | 
|  | /// ``` | 
|  | #[inline] | 
|  | fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> { | 
|  | From::from(String::from(err)) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "string_box_error", since = "1.6.0")] | 
|  | impl From<&str> for Box<dyn Error> { | 
|  | /// Converts a [`str`] into a box of dyn [`Error`]. | 
|  | /// | 
|  | /// [`str`]: prim@str | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::error::Error; | 
|  | /// use std::mem; | 
|  | /// | 
|  | /// let a_str_error = "a str error"; | 
|  | /// let a_boxed_error = Box::<dyn Error>::from(a_str_error); | 
|  | /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) | 
|  | /// ``` | 
|  | fn from(err: &str) -> Box<dyn Error> { | 
|  | From::from(String::from(err)) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "cow_box_error", since = "1.22.0")] | 
|  | impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> { | 
|  | /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::error::Error; | 
|  | /// use std::mem; | 
|  | /// use std::borrow::Cow; | 
|  | /// | 
|  | /// let a_cow_str_error = Cow::from("a str error"); | 
|  | /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error); | 
|  | /// assert!( | 
|  | ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error)) | 
|  | /// ``` | 
|  | fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> { | 
|  | From::from(String::from(err)) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(not(no_global_oom_handling))] | 
|  | #[stable(feature = "cow_box_error", since = "1.22.0")] | 
|  | impl<'a> From<Cow<'a, str>> for Box<dyn Error> { | 
|  | /// Converts a [`Cow`] into a box of dyn [`Error`]. | 
|  | /// | 
|  | /// # Examples | 
|  | /// | 
|  | /// ``` | 
|  | /// use std::error::Error; | 
|  | /// use std::mem; | 
|  | /// use std::borrow::Cow; | 
|  | /// | 
|  | /// let a_cow_str_error = Cow::from("a str error"); | 
|  | /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error); | 
|  | /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error)) | 
|  | /// ``` | 
|  | fn from(err: Cow<'a, str>) -> Box<dyn Error> { | 
|  | From::from(String::from(err)) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[stable(feature = "box_error", since = "1.8.0")] | 
|  | impl<T: core::error::Error> core::error::Error for Box<T> { | 
|  | #[allow(deprecated, deprecated_in_future)] | 
|  | fn description(&self) -> &str { | 
|  | core::error::Error::description(&**self) | 
|  | } | 
|  |  | 
|  | #[allow(deprecated)] | 
|  | fn cause(&self) -> Option<&dyn core::error::Error> { | 
|  | core::error::Error::cause(&**self) | 
|  | } | 
|  |  | 
|  | fn source(&self) -> Option<&(dyn core::error::Error + 'static)> { | 
|  | core::error::Error::source(&**self) | 
|  | } | 
|  | } |