blob: 0d60918a9b1905d20b7fa938655285962811dec0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Support for mt9m114 Camera Sensor.
*
* Copyright (c) 2010 Intel Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/acpi.h>
#include "../include/linux/atomisp_gmin_platform.h"
#include <media/v4l2-device.h>
#include "mt9m114.h"
#define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
/*
* TODO: use debug parameter to actually define when debug messages should
* be printed.
*/
static int debug;
static int aaalock;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");
static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
static int mt9m114_wait_state(struct i2c_client *client, int timeout);
static int
mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
{
int err;
struct i2c_msg msg[2];
unsigned char data[4];
if (!client->adapter) {
v4l2_err(client, "%s error, no client->adapter\n", __func__);
return -ENODEV;
}
if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
&& data_length != MISENSOR_32BIT) {
v4l2_err(client, "%s error, invalid data length\n", __func__);
return -EINVAL;
}
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = MSG_LEN_OFFSET;
msg[0].buf = data;
/* high byte goes out first */
data[0] = (u16)(reg >> 8);
data[1] = (u16)(reg & 0xff);
msg[1].addr = client->addr;
msg[1].len = data_length;
msg[1].flags = I2C_M_RD;
msg[1].buf = data;
err = i2c_transfer(client->adapter, msg, 2);
if (err >= 0) {
*val = 0;
/* high byte comes first */
if (data_length == MISENSOR_8BIT)
*val = data[0];
else if (data_length == MISENSOR_16BIT)
*val = data[1] + (data[0] << 8);
else
*val = data[3] + (data[2] << 8) +
(data[1] << 16) + (data[0] << 24);
return 0;
}
dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
return err;
}
static int
mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
{
int num_msg;
struct i2c_msg msg;
unsigned char data[6] = {0};
__be16 *wreg;
int retry = 0;
if (!client->adapter) {
v4l2_err(client, "%s error, no client->adapter\n", __func__);
return -ENODEV;
}
if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
&& data_length != MISENSOR_32BIT) {
v4l2_err(client, "%s error, invalid data_length\n", __func__);
return -EINVAL;
}
memset(&msg, 0, sizeof(msg));
again:
msg.addr = client->addr;
msg.flags = 0;
msg.len = 2 + data_length;
msg.buf = data;
/* high byte goes out first */
wreg = (void *)data;
*wreg = cpu_to_be16(reg);
if (data_length == MISENSOR_8BIT) {
data[2] = (u8)(val);
} else if (data_length == MISENSOR_16BIT) {
u16 *wdata = (void *)&data[2];
*wdata = be16_to_cpu(*(__be16 *)&data[2]);
} else {
/* MISENSOR_32BIT */
u32 *wdata = (void *)&data[2];
*wdata = be32_to_cpu(*(__be32 *)&data[2]);
}
num_msg = i2c_transfer(client->adapter, &msg, 1);
/*
* HACK: Need some delay here for Rev 2 sensors otherwise some
* registers do not seem to load correctly.
*/
mdelay(1);
if (num_msg >= 0)
return 0;
dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
val, reg, num_msg);
if (retry <= I2C_RETRY_COUNT) {
dev_dbg(&client->dev, "retrying... %d", retry);
retry++;
msleep(20);
goto again;
}
return num_msg;
}
/**
* misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
* device
* @client: i2c driver client structure
* @data_length: 8/16/32-bits length
* @reg: register address
* @mask: masked out bits
* @set: bits set
*
* Read/modify/write a value to a register in the sensor device.
* Returns zero if successful, or non-zero otherwise.
*/
static int
misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
u32 mask, u32 set)
{
int err;
u32 val;
/* Exit when no mask */
if (mask == 0)
return 0;
/* @mask must not exceed data length */
switch (data_length) {
case MISENSOR_8BIT:
if (mask & ~0xff)
return -EINVAL;
break;
case MISENSOR_16BIT:
if (mask & ~0xffff)
return -EINVAL;
break;
case MISENSOR_32BIT:
break;
default:
/* Wrong @data_length */
return -EINVAL;
}
err = mt9m114_read_reg(client, data_length, reg, &val);
if (err) {
v4l2_err(client, "misensor_rmw_reg error exit, read failed\n");
return -EINVAL;
}
val &= ~mask;
/*
* Perform the OR function if the @set exists.
* Shift @set value to target bit location. @set should set only
* bits included in @mask.
*
* REVISIT: This function expects @set to be non-shifted. Its shift
* value is then defined to be equal to mask's LSB position.
* How about to inform values in their right offset position and avoid
* this unneeded shift operation?
*/
set <<= ffs(mask) - 1;
val |= set & mask;
err = mt9m114_write_reg(client, data_length, reg, val);
if (err) {
v4l2_err(client, "misensor_rmw_reg error exit, write failed\n");
return -EINVAL;
}
return 0;
}
static int __mt9m114_flush_reg_array(struct i2c_client *client,
struct mt9m114_write_ctrl *ctrl)
{
struct i2c_msg msg;
const int num_msg = 1;
int ret;
int retry = 0;
__be16 *data16 = (void *)&ctrl->buffer.addr;
if (ctrl->index == 0)
return 0;
again:
msg.addr = client->addr;
msg.flags = 0;
msg.len = 2 + ctrl->index;
*data16 = cpu_to_be16(ctrl->buffer.addr);
msg.buf = (u8 *)&ctrl->buffer;
ret = i2c_transfer(client->adapter, &msg, num_msg);
if (ret != num_msg) {
if (++retry <= I2C_RETRY_COUNT) {
dev_dbg(&client->dev, "retrying... %d\n", retry);
msleep(20);
goto again;
}
dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
return -EIO;
}
ctrl->index = 0;
/*
* REVISIT: Previously we had a delay after writing data to sensor.
* But it was removed as our tests have shown it is not necessary
* anymore.
*/
return 0;
}
static int __mt9m114_buf_reg_array(struct i2c_client *client,
struct mt9m114_write_ctrl *ctrl,
const struct misensor_reg *next)
{
__be16 *data16;
__be32 *data32;
int err;
/* Insufficient buffer? Let's flush and get more free space. */
if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
err = __mt9m114_flush_reg_array(client, ctrl);
if (err)
return err;
}
switch (next->length) {
case MISENSOR_8BIT:
ctrl->buffer.data[ctrl->index] = (u8)next->val;
break;
case MISENSOR_16BIT:
data16 = (__be16 *)&ctrl->buffer.data[ctrl->index];
*data16 = cpu_to_be16((u16)next->val);
break;
case MISENSOR_32BIT:
data32 = (__be32 *)&ctrl->buffer.data[ctrl->index];
*data32 = cpu_to_be32(next->val);
break;
default:
return -EINVAL;
}
/* When first item is added, we need to store its starting address */
if (ctrl->index == 0)
ctrl->buffer.addr = next->reg;
ctrl->index += next->length;
return 0;
}
static int
__mt9m114_write_reg_is_consecutive(struct i2c_client *client,
struct mt9m114_write_ctrl *ctrl,
const struct misensor_reg *next)
{
if (ctrl->index == 0)
return 1;
return ctrl->buffer.addr + ctrl->index == next->reg;
}
/*
* mt9m114_write_reg_array - Initializes a list of mt9m114 registers
* @client: i2c driver client structure
* @reglist: list of registers to be written
* @poll: completion polling requirement
* This function initializes a list of registers. When consecutive addresses
* are found in a row on the list, this function creates a buffer and sends
* consecutive data in a single i2c_transfer().
*
* __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
* __mt9m114_write_reg_is_consecutive() are internal functions to
* mt9m114_write_reg_array() and should be not used anywhere else.
*
*/
static int mt9m114_write_reg_array(struct i2c_client *client,
const struct misensor_reg *reglist,
int poll)
{
const struct misensor_reg *next = reglist;
struct mt9m114_write_ctrl ctrl;
int err;
if (poll == PRE_POLLING) {
err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
if (err)
return err;
}
ctrl.index = 0;
for (; next->length != MISENSOR_TOK_TERM; next++) {
switch (next->length & MISENSOR_TOK_MASK) {
case MISENSOR_TOK_DELAY:
err = __mt9m114_flush_reg_array(client, &ctrl);
if (err)
return err;
msleep(next->val);
break;
case MISENSOR_TOK_RMW:
err = __mt9m114_flush_reg_array(client, &ctrl);
err |= misensor_rmw_reg(client,
next->length &
~MISENSOR_TOK_RMW,
next->reg, next->val,
next->val2);
if (err) {
dev_err(&client->dev, "%s read err. aborted\n",
__func__);
return -EINVAL;
}
break;
default:
/*
* If next address is not consecutive, data needs to be
* flushed before proceed.
*/
if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
next)) {
err = __mt9m114_flush_reg_array(client, &ctrl);
if (err)
return err;
}
err = __mt9m114_buf_reg_array(client, &ctrl, next);
if (err) {
v4l2_err(client, "%s: write error, aborted\n",
__func__);
return err;
}
break;
}
}
err = __mt9m114_flush_reg_array(client, &ctrl);
if (err)
return err;
if (poll == POST_POLLING)
return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
return 0;
}
static int mt9m114_wait_state(struct i2c_client *client, int timeout)
{
int ret;
unsigned int val;
while (timeout-- > 0) {
ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
if (ret)
return ret;
if ((val & 0x2) == 0)
return 0;
msleep(20);
}
return -EINVAL;
}
static int mt9m114_set_suspend(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return mt9m114_write_reg_array(client,
mt9m114_standby_reg, POST_POLLING);
}
static int mt9m114_init_common(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
}
static int power_ctrl(struct v4l2_subdev *sd, bool flag)
{
int ret;
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
if (!dev || !dev->platform_data)
return -ENODEV;
if (flag) {
ret = dev->platform_data->v2p8_ctrl(sd, 1);
if (ret == 0) {
ret = dev->platform_data->v1p8_ctrl(sd, 1);
if (ret)
ret = dev->platform_data->v2p8_ctrl(sd, 0);
}
} else {
ret = dev->platform_data->v2p8_ctrl(sd, 0);
ret = dev->platform_data->v1p8_ctrl(sd, 0);
}
return ret;
}
static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
{
int ret;
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
if (!dev || !dev->platform_data)
return -ENODEV;
/* Note: current modules wire only one GPIO signal (RESET#),
* but the schematic wires up two to the connector. BIOS
* versions have been unfortunately inconsistent with which
* ACPI index RESET# is on, so hit both */
if (flag) {
ret = dev->platform_data->gpio0_ctrl(sd, 0);
ret = dev->platform_data->gpio1_ctrl(sd, 0);
msleep(60);
ret |= dev->platform_data->gpio0_ctrl(sd, 1);
ret |= dev->platform_data->gpio1_ctrl(sd, 1);
} else {
ret = dev->platform_data->gpio0_ctrl(sd, 0);
ret = dev->platform_data->gpio1_ctrl(sd, 0);
}
return ret;
}
static int power_up(struct v4l2_subdev *sd)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
if (!dev->platform_data) {
dev_err(&client->dev, "no camera_sensor_platform_data");
return -ENODEV;
}
/* power control */
ret = power_ctrl(sd, 1);
if (ret)
goto fail_power;
/* flis clock control */
ret = dev->platform_data->flisclk_ctrl(sd, 1);
if (ret)
goto fail_clk;
/* gpio ctrl */
ret = gpio_ctrl(sd, 1);
if (ret)
dev_err(&client->dev, "gpio failed 1\n");
/*
* according to DS, 44ms is needed between power up and first i2c
* commend
*/
msleep(50);
return 0;
fail_clk:
dev->platform_data->flisclk_ctrl(sd, 0);
fail_power:
power_ctrl(sd, 0);
dev_err(&client->dev, "sensor power-up failed\n");
return ret;
}
static int power_down(struct v4l2_subdev *sd)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
if (!dev->platform_data) {
dev_err(&client->dev, "no camera_sensor_platform_data");
return -ENODEV;
}
ret = dev->platform_data->flisclk_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "flisclk failed\n");
/* gpio ctrl */
ret = gpio_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "gpio failed 1\n");
/* power control */
ret = power_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "vprog failed.\n");
/*according to DS, 20ms is needed after power down*/
msleep(20);
return ret;
}
static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
{
if (power == 0)
return power_down(sd);
else {
if (power_up(sd))
return -EINVAL;
return mt9m114_init_common(sd);
}
}
/*
* distance - calculate the distance
* @res: resolution
* @w: width
* @h: height
*
* Get the gap between resolution and w/h.
* res->width/height smaller than w/h wouldn't be considered.
* Returns the value of gap or -1 if fail.
*/
#define LARGEST_ALLOWED_RATIO_MISMATCH 600
static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
{
unsigned int w_ratio;
unsigned int h_ratio;
int match;
if (w == 0)
return -1;
w_ratio = (res->width << 13) / w;
if (h == 0)
return -1;
h_ratio = (res->height << 13) / h;
if (h_ratio == 0)
return -1;
match = abs(((w_ratio << 13) / h_ratio) - 8192);
if ((w_ratio < 8192) || (h_ratio < 8192) ||
(match > LARGEST_ALLOWED_RATIO_MISMATCH))
return -1;
return w_ratio + h_ratio;
}
/* Return the nearest higher resolution index */
static int nearest_resolution_index(int w, int h)
{
int i;
int idx = -1;
int dist;
int min_dist = INT_MAX;
const struct mt9m114_res_struct *tmp_res = NULL;
for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
tmp_res = &mt9m114_res[i];
dist = distance(tmp_res, w, h);
if (dist == -1)
continue;
if (dist < min_dist) {
min_dist = dist;
idx = i;
}
}
return idx;
}
static int mt9m114_try_res(u32 *w, u32 *h)
{
int idx = 0;
if ((*w > MT9M114_RES_960P_SIZE_H)
|| (*h > MT9M114_RES_960P_SIZE_V)) {
*w = MT9M114_RES_960P_SIZE_H;
*h = MT9M114_RES_960P_SIZE_V;
} else {
idx = nearest_resolution_index(*w, *h);
/*
* nearest_resolution_index() doesn't return smaller
* resolutions. If it fails, it means the requested
* resolution is higher than wecan support. Fallback
* to highest possible resolution in this case.
*/
if (idx == -1)
idx = ARRAY_SIZE(mt9m114_res) - 1;
*w = mt9m114_res[idx].width;
*h = mt9m114_res[idx].height;
}
return 0;
}
static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
{
int index;
for (index = 0; index < N_RES; index++) {
if ((mt9m114_res[index].width == w) &&
(mt9m114_res[index].height == h))
break;
}
/* No mode found */
if (index >= N_RES)
return NULL;
return &mt9m114_res[index];
}
static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
unsigned short hsize;
unsigned short vsize;
switch (dev->res) {
case MT9M114_RES_736P:
hsize = MT9M114_RES_736P_SIZE_H;
vsize = MT9M114_RES_736P_SIZE_V;
break;
case MT9M114_RES_864P:
hsize = MT9M114_RES_864P_SIZE_H;
vsize = MT9M114_RES_864P_SIZE_V;
break;
case MT9M114_RES_960P:
hsize = MT9M114_RES_960P_SIZE_H;
vsize = MT9M114_RES_960P_SIZE_V;
break;
default:
v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
dev->res);
return -EINVAL;
}
if (h_size)
*h_size = hsize;
if (v_size)
*v_size = vsize;
return 0;
}
static int mt9m114_get_intg_factor(struct i2c_client *client,
struct camera_mipi_info *info,
const struct mt9m114_res_struct *res)
{
struct atomisp_sensor_mode_data *buf = &info->data;
u32 reg_val;
int ret;
if (!info)
return -EINVAL;
ret = mt9m114_read_reg(client, MISENSOR_32BIT,
REG_PIXEL_CLK, &reg_val);
if (ret)
return ret;
buf->vt_pix_clk_freq_mhz = reg_val;
/* get integration time */
buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
buf->coarse_integration_time_max_margin =
MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
buf->fine_integration_time_max_margin =
MT9M114_FINE_INTG_TIME_MAX_MARGIN;
buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
buf->frame_length_lines = res->lines_per_frame;
buf->line_length_pck = res->pixels_per_line;
buf->read_mode = res->bin_mode;
/* get the cropping and output resolution to ISP for this mode. */
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_H_START, &reg_val);
if (ret)
return ret;
buf->crop_horizontal_start = reg_val;
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_V_START, &reg_val);
if (ret)
return ret;
buf->crop_vertical_start = reg_val;
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_H_END, &reg_val);
if (ret)
return ret;
buf->crop_horizontal_end = reg_val;
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_V_END, &reg_val);
if (ret)
return ret;
buf->crop_vertical_end = reg_val;
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_WIDTH, &reg_val);
if (ret)
return ret;
buf->output_width = reg_val;
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_HEIGHT, &reg_val);
if (ret)
return ret;
buf->output_height = reg_val;
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_TIMING_HTS, &reg_val);
if (ret)
return ret;
buf->line_length_pck = reg_val;
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_TIMING_VTS, &reg_val);
if (ret)
return ret;
buf->frame_length_lines = reg_val;
buf->binning_factor_x = res->bin_factor_x ?
res->bin_factor_x : 1;
buf->binning_factor_y = res->bin_factor_y ?
res->bin_factor_y : 1;
return 0;
}
static int mt9m114_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *fmt = &format->format;
int width, height;
int ret;
if (format->pad)
return -EINVAL;
fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
ret = mt9m114_res2size(sd, &width, &height);
if (ret)
return ret;
fmt->width = width;
fmt->height = height;
return 0;
}
static int mt9m114_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *fmt = &format->format;
struct i2c_client *c = v4l2_get_subdevdata(sd);
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct mt9m114_res_struct *res_index;
u32 width = fmt->width;
u32 height = fmt->height;
struct camera_mipi_info *mt9m114_info = NULL;
int ret;
if (format->pad)
return -EINVAL;
dev->streamon = 0;
dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
mt9m114_info = v4l2_get_subdev_hostdata(sd);
if (!mt9m114_info)
return -EINVAL;
mt9m114_try_res(&width, &height);
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
cfg->try_fmt = *fmt;
return 0;
}
res_index = mt9m114_to_res(width, height);
/* Sanity check */
if (unlikely(!res_index)) {
WARN_ON(1);
return -EINVAL;
}
switch (res_index->res) {
case MT9M114_RES_736P:
ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
break;
case MT9M114_RES_864P:
ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
break;
case MT9M114_RES_960P:
ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
/* set sensor read_mode to Normal */
ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
break;
default:
v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
return -EINVAL;
}
if (ret)
return -EINVAL;
ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
if (ret < 0)
return ret;
if (mt9m114_set_suspend(sd))
return -EINVAL;
if (dev->res != res_index->res) {
int index;
/* Switch to different size */
if (width <= 640) {
dev->nctx = 0x00; /* Set for context A */
} else {
/*
* Context B is used for resolutions larger than 640x480
* Using YUV for Context B.
*/
dev->nctx = 0x01; /* set for context B */
}
/*
* Marked current sensor res as being "used"
*
* REVISIT: We don't need to use an "used" field on each mode
* list entry to know which mode is selected. If this
* information is really necessary, how about to use a single
* variable on sensor dev struct?
*/
for (index = 0; index < N_RES; index++) {
if ((width == mt9m114_res[index].width) &&
(height == mt9m114_res[index].height)) {
mt9m114_res[index].used = true;
continue;
}
mt9m114_res[index].used = false;
}
}
ret = mt9m114_get_intg_factor(c, mt9m114_info,
&mt9m114_res[res_index->res]);
if (ret) {
dev_err(&c->dev, "failed to get integration_factor\n");
return -EINVAL;
}
/*
* mt9m114 - we don't poll for context switch
* because it does not happen with streaming disabled.
*/
dev->res = res_index->res;
fmt->width = width;
fmt->height = height;
fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
return 0;
}
/* TODO: Update to SOC functions, remove exposure and gain */
static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
{
*val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
return 0;
}
static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
{
/*const f number for mt9m114*/
*val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
return 0;
}
static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
{
*val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
(MT9M114_F_NUMBER_DEM << 16) |
(MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
return 0;
}
/* Horizontal flip the image. */
static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
int ret;
u32 data;
ret = mt9m114_read_reg(c, MISENSOR_16BIT,
(u32)MISENSOR_READ_MODE, &data);
if (ret)
return ret;
*val = !!(data & MISENSOR_HFLIP_MASK);
return 0;
}
static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
int ret;
u32 data;
ret = mt9m114_read_reg(c, MISENSOR_16BIT,
(u32)MISENSOR_READ_MODE, &data);
if (ret)
return ret;
*val = !!(data & MISENSOR_VFLIP_MASK);
return 0;
}
static long mt9m114_s_exposure(struct v4l2_subdev *sd,
struct atomisp_exposure *exposure)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
int ret = 0;
unsigned int coarse_integration = 0;
unsigned int FLines = 0;
unsigned int FrameLengthLines = 0; /* ExposureTime.FrameLengthLines; */
unsigned int AnalogGain, DigitalGain;
u32 AnalogGainToWrite = 0;
dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
exposure->integration_time[0], exposure->gain[0],
exposure->gain[1]);
coarse_integration = exposure->integration_time[0];
/* fine_integration = ExposureTime.FineIntegrationTime; */
/* FrameLengthLines = ExposureTime.FrameLengthLines; */
FLines = mt9m114_res[dev->res].lines_per_frame;
AnalogGain = exposure->gain[0];
DigitalGain = exposure->gain[1];
if (!dev->streamon) {
/*Save the first exposure values while stream is off*/
dev->first_exp = coarse_integration;
dev->first_gain = AnalogGain;
dev->first_diggain = DigitalGain;
}
/* DigitalGain = 0x400 * (((u16) DigitalGain) >> 8) +
((unsigned int)(0x400 * (((u16) DigitalGain) & 0xFF)) >>8); */
/* set frame length */
if (FLines < coarse_integration + 6)
FLines = coarse_integration + 6;
if (FLines < FrameLengthLines)
FLines = FrameLengthLines;
ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, FLines);
if (ret) {
v4l2_err(client, "%s: fail to set FLines\n", __func__);
return -EINVAL;
}
/* set coarse integration */
/* 3A provide real exposure time.
should not translate to any value here. */
ret = mt9m114_write_reg(client, MISENSOR_16BIT,
REG_EXPO_COARSE, (u16)(coarse_integration));
if (ret) {
v4l2_err(client, "%s: fail to set exposure time\n", __func__);
return -EINVAL;
}
/*
// set analog/digital gain
switch(AnalogGain)
{
case 0:
AnalogGainToWrite = 0x0;
break;
case 1:
AnalogGainToWrite = 0x20;
break;
case 2:
AnalogGainToWrite = 0x60;
break;
case 4:
AnalogGainToWrite = 0xA0;
break;
case 8:
AnalogGainToWrite = 0xE0;
break;
default:
AnalogGainToWrite = 0x20;
break;
}
*/
if (DigitalGain >= 16 || DigitalGain <= 1)
DigitalGain = 1;
/* AnalogGainToWrite =
(u16)((DigitalGain << 12) | AnalogGainToWrite); */
AnalogGainToWrite = (u16)((DigitalGain << 12) | (u16)AnalogGain);
ret = mt9m114_write_reg(client, MISENSOR_16BIT,
REG_GAIN, AnalogGainToWrite);
if (ret) {
v4l2_err(client, "%s: fail to set AnalogGainToWrite\n",
__func__);
return -EINVAL;
}
return ret;
}
static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
switch (cmd) {
case ATOMISP_IOC_S_EXPOSURE:
return mt9m114_s_exposure(sd, arg);
default:
return -EINVAL;
}
return 0;
}
/* This returns the exposure time being used. This should only be used
for filling in EXIF data, not for actual image processing. */
static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
u32 coarse;
int ret;
/* the fine integration time is currently not calculated */
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_EXPO_COARSE, &coarse);
if (ret)
return ret;
*value = coarse;
return 0;
}
/*
* This function will return the sensor supported max exposure zone number.
* the sensor which supports max exposure zone number is 1.
*/
static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
{
*val = 1;
return 0;
}
/*
* set exposure metering, average/center_weighted/spot/matrix.
*/
static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
switch (val) {
case V4L2_EXPOSURE_METERING_SPOT:
ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
NO_POLLING);
if (ret) {
dev_err(&client->dev, "write exp_average reg err.\n");
return ret;
}
break;
case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
default:
ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
NO_POLLING);
if (ret) {
dev_err(&client->dev, "write exp_default reg err");
return ret;
}
}
return 0;
}
/*
* This function is for touch exposure feature.
*/
static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct misensor_reg exp_reg;
int width, height;
int grid_width, grid_height;
int grid_left, grid_top, grid_right, grid_bottom;
int win_left, win_top, win_right, win_bottom;
int i, j;
int ret;
if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return -EINVAL;
grid_left = sel->r.left;
grid_top = sel->r.top;
grid_right = sel->r.left + sel->r.width - 1;
grid_bottom = sel->r.top + sel->r.height - 1;
ret = mt9m114_res2size(sd, &width, &height);
if (ret)
return ret;
grid_width = width / 5;
grid_height = height / 5;
if (grid_width && grid_height) {
win_left = grid_left / grid_width;
win_top = grid_top / grid_height;
win_right = grid_right / grid_width;
win_bottom = grid_bottom / grid_height;
} else {
dev_err(&client->dev, "Incorrect exp grid.\n");
return -EINVAL;
}
win_left = clamp_t(int, win_left, 0, 4);
win_top = clamp_t(int, win_top, 0, 4);
win_right = clamp_t(int, win_right, 0, 4);
win_bottom = clamp_t(int, win_bottom, 0, 4);
ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
if (ret) {
dev_err(&client->dev, "write exp_average reg err.\n");
return ret;
}
for (i = win_top; i <= win_bottom; i++) {
for (j = win_left; j <= win_right; j++) {
exp_reg = mt9m114_exp_win[i][j];
ret = mt9m114_write_reg(client, exp_reg.length,
exp_reg.reg, exp_reg.val);
if (ret) {
dev_err(&client->dev, "write exp_reg err.\n");
return ret;
}
}
}
return 0;
}
static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
*val = mt9m114_res[dev->res].bin_factor_x;
return 0;
}
static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
*val = mt9m114_res[dev->res].bin_factor_y;
return 0;
}
static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
s32 luma = 0x37;
int err;
/* EV value only support -2 to 2
* 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
*/
if (val < -2 || val > 2)
return -EINVAL;
luma += 0x10 * val;
dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
if (err) {
dev_err(&c->dev, "%s logic addr access error\n", __func__);
return err;
}
err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
if (err) {
dev_err(&c->dev, "%s write target_average_luma failed\n",
__func__);
return err;
}
udelay(10);
return 0;
}
static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
int err;
u32 luma;
err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
if (err) {
dev_err(&c->dev, "%s logic addr access error\n", __func__);
return err;
}
err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
if (err) {
dev_err(&c->dev, "%s read target_average_luma failed\n",
__func__);
return err;
}
luma -= 0x17;
luma /= 0x10;
*val = (s32)luma - 2;
dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
return 0;
}
/* Fake interface
* mt9m114 now can not support 3a_lock
*/
static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
{
aaalock = val;
return 0;
}
static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
{
if (aaalock)
return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
| V4L2_LOCK_FOCUS;
return 0;
}
static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m114_device *dev =
container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
int ret = 0;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
__func__, ctrl->val);
ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
break;
case V4L2_CID_HFLIP:
dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
__func__, ctrl->val);
ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
break;
case V4L2_CID_EXPOSURE_METERING:
ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
break;
case V4L2_CID_EXPOSURE:
ret = mt9m114_s_ev(&dev->sd, ctrl->val);
break;
case V4L2_CID_3A_LOCK:
ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m114_device *dev =
container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
int ret = 0;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
break;
case V4L2_CID_HFLIP:
ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
break;
case V4L2_CID_FOCAL_ABSOLUTE:
ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
break;
case V4L2_CID_FNUMBER_ABSOLUTE:
ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
break;
case V4L2_CID_FNUMBER_RANGE:
ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
break;
case V4L2_CID_EXPOSURE_ABSOLUTE:
ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
break;
case V4L2_CID_EXPOSURE_ZONE_NUM:
ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
break;
case V4L2_CID_BIN_FACTOR_HORZ:
ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
break;
case V4L2_CID_BIN_FACTOR_VERT:
ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
break;
case V4L2_CID_EXPOSURE:
ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
break;
case V4L2_CID_3A_LOCK:
ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
break;
default:
ret = -EINVAL;
}
return ret;
}
static const struct v4l2_ctrl_ops ctrl_ops = {
.s_ctrl = mt9m114_s_ctrl,
.g_volatile_ctrl = mt9m114_g_volatile_ctrl
};
static struct v4l2_ctrl_config mt9m114_controls[] = {
{
.ops = &ctrl_ops,
.id = V4L2_CID_VFLIP,
.name = "Image v-Flip",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 1,
.step = 1,
.def = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_HFLIP,
.name = "Image h-Flip",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 1,
.step = 1,
.def = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_FOCAL_ABSOLUTE,
.name = "focal length",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = MT9M114_FOCAL_LENGTH_DEFAULT,
.max = MT9M114_FOCAL_LENGTH_DEFAULT,
.step = 1,
.def = MT9M114_FOCAL_LENGTH_DEFAULT,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_FNUMBER_ABSOLUTE,
.name = "f-number",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = MT9M114_F_NUMBER_DEFAULT,
.max = MT9M114_F_NUMBER_DEFAULT,
.step = 1,
.def = MT9M114_F_NUMBER_DEFAULT,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_FNUMBER_RANGE,
.name = "f-number range",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = MT9M114_F_NUMBER_RANGE,
.max = MT9M114_F_NUMBER_RANGE,
.step = 1,
.def = MT9M114_F_NUMBER_RANGE,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE_ABSOLUTE,
.name = "exposure",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 0xffff,
.step = 1,
.def = 0,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE_ZONE_NUM,
.name = "one-time exposure zone number",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 0xffff,
.step = 1,
.def = 0,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE_METERING,
.name = "metering",
.type = V4L2_CTRL_TYPE_MENU,
.min = 0,
.max = 3,
.step = 0,
.def = 1,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_BIN_FACTOR_HORZ,
.name = "horizontal binning factor",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = MT9M114_BIN_FACTOR_MAX,
.step = 1,
.def = 0,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_BIN_FACTOR_VERT,
.name = "vertical binning factor",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = MT9M114_BIN_FACTOR_MAX,
.step = 1,
.def = 0,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE,
.name = "exposure biasx",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = -2,
.max = 2,
.step = 1,
.def = 0,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_3A_LOCK,
.name = "3a lock",
.type = V4L2_CTRL_TYPE_BITMASK,
.min = 0,
.max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
.step = 1,
.def = 0,
.flags = 0,
},
};
static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
u32 retvalue;
if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "%s: i2c error", __func__);
return -ENODEV;
}
mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
dev->real_model_id = retvalue;
if (retvalue != MT9M114_MOD_ID) {
dev_err(&client->dev, "%s: failed: client->addr = %x\n",
__func__, client->addr);
return -ENODEV;
}
return 0;
}
static int
mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
if (!platform_data)
return -ENODEV;
dev->platform_data =
(struct camera_sensor_platform_data *)platform_data;
ret = power_up(sd);
if (ret) {
v4l2_err(client, "mt9m114 power-up err");
return ret;
}
/* config & detect sensor */
ret = mt9m114_detect(dev, client);
if (ret) {
v4l2_err(client, "mt9m114_detect err s_config.\n");
goto fail_detect;
}
ret = dev->platform_data->csi_cfg(sd, 1);
if (ret)
goto fail_csi_cfg;
ret = mt9m114_set_suspend(sd);
if (ret) {
v4l2_err(client, "mt9m114 suspend err");
return ret;
}
ret = power_down(sd);
if (ret) {
v4l2_err(client, "mt9m114 power down err");
return ret;
}
return ret;
fail_csi_cfg:
dev->platform_data->csi_cfg(sd, 0);
fail_detect:
power_down(sd);
dev_err(&client->dev, "sensor power-gating failed\n");
return ret;
}
/* Horizontal flip the image. */
static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
int err;
/* set for direct mode */
err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
if (value) {
/* enable H flip ctx A */
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
/* ctx B */
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
dev->bpat = MT9M114_BPAT_GRGRBGBG;
} else {
/* disable H flip ctx A */
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
/* ctx B */
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
dev->bpat = MT9M114_BPAT_BGBGGRGR;
}
err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
udelay(10);
return !!err;
}
/* Vertically flip the image */
static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
int err;
/* set for direct mode */
err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
if (value >= 1) {
/* enable H flip - ctx A */
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
/* ctx B */
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
} else {
/* disable H flip - ctx A */
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
/* ctx B */
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
}
err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
udelay(10);
return !!err;
}
static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *interval)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
interval->interval.numerator = 1;
interval->interval.denominator = mt9m114_res[dev->res].fps;
return 0;
}
static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
{
int ret;
struct i2c_client *c = v4l2_get_subdevdata(sd);
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct atomisp_exposure exposure;
if (enable) {
ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
POST_POLLING);
if (ret < 0)
return ret;
if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
exposure.integration_time[0] = dev->first_exp;
exposure.gain[0] = dev->first_gain;
exposure.gain[1] = dev->first_diggain;
mt9m114_s_exposure(sd, &exposure);
}
dev->streamon = 1;
} else {
dev->streamon = 0;
ret = mt9m114_set_suspend(sd);
}
return ret;
}
static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
return 0;
}
static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
unsigned int index = fse->index;
if (index >= N_RES)
return -EINVAL;
fse->min_width = mt9m114_res[index].width;
fse->min_height = mt9m114_res[index].height;
fse->max_width = mt9m114_res[index].width;
fse->max_height = mt9m114_res[index].height;
return 0;
}
static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
{
int index;
struct mt9m114_device *snr = to_mt9m114_sensor(sd);
if (!frames)
return -EINVAL;
for (index = 0; index < N_RES; index++) {
if (mt9m114_res[index].res == snr->res)
break;
}
if (index >= N_RES)
return -EINVAL;
*frames = mt9m114_res[index].skip_frames;
return 0;
}
static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
.s_stream = mt9m114_s_stream,
.g_frame_interval = mt9m114_g_frame_interval,
};
static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
.g_skip_frames = mt9m114_g_skip_frames,
};
static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
.s_power = mt9m114_s_power,
.ioctl = mt9m114_ioctl,
};
/* REVISIT: Do we need pad operations? */
static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
.enum_mbus_code = mt9m114_enum_mbus_code,
.enum_frame_size = mt9m114_enum_frame_size,
.get_fmt = mt9m114_get_fmt,
.set_fmt = mt9m114_set_fmt,
.set_selection = mt9m114_s_exposure_selection,
};
static const struct v4l2_subdev_ops mt9m114_ops = {
.core = &mt9m114_core_ops,
.video = &mt9m114_video_ops,
.pad = &mt9m114_pad_ops,
.sensor = &mt9m114_sensor_ops,
};
static int mt9m114_remove(struct i2c_client *client)
{
struct mt9m114_device *dev;
struct v4l2_subdev *sd = i2c_get_clientdata(client);
dev = container_of(sd, struct mt9m114_device, sd);
dev->platform_data->csi_cfg(sd, 0);
v4l2_device_unregister_subdev(sd);
media_entity_cleanup(&dev->sd.entity);
v4l2_ctrl_handler_free(&dev->ctrl_handler);
kfree(dev);
return 0;
}
static int mt9m114_probe(struct i2c_client *client)
{
struct mt9m114_device *dev;
int ret = 0;
unsigned int i;
void *pdata;
/* Setup sensor configuration structure */
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
pdata = gmin_camera_platform_data(&dev->sd,
ATOMISP_INPUT_FORMAT_RAW_10,
atomisp_bayer_order_grbg);
if (pdata)
ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
if (!pdata || ret) {
v4l2_device_unregister_subdev(&dev->sd);
kfree(dev);
return ret;
}
ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
if (ret) {
v4l2_device_unregister_subdev(&dev->sd);
kfree(dev);
/* Coverity CID 298095 - return on error */
return ret;
}
/*TODO add format code here*/
dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
dev->pad.flags = MEDIA_PAD_FL_SOURCE;
dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret =
v4l2_ctrl_handler_init(&dev->ctrl_handler,
ARRAY_SIZE(mt9m114_controls));
if (ret) {
mt9m114_remove(client);
return ret;
}
for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
NULL);
if (dev->ctrl_handler.error) {
mt9m114_remove(client);
return dev->ctrl_handler.error;
}
/* Use same lock for controls as for everything else. */
dev->ctrl_handler.lock = &dev->input_lock;
dev->sd.ctrl_handler = &dev->ctrl_handler;
/* REVISIT: Do we need media controller? */
ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
if (ret) {
mt9m114_remove(client);
return ret;
}
return 0;
}
static const struct acpi_device_id mt9m114_acpi_match[] = {
{ "INT33F0" },
{ "CRMT1040" },
{},
};
MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
static struct i2c_driver mt9m114_driver = {
.driver = {
.name = "mt9m114",
.acpi_match_table = mt9m114_acpi_match,
},
.probe_new = mt9m114_probe,
.remove = mt9m114_remove,
};
module_i2c_driver(mt9m114_driver);
MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
MODULE_LICENSE("GPL");