|  | /* | 
|  | * Copyright (C) 2003 Jana Saout <jana@saout.de> | 
|  | * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> | 
|  | * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved. | 
|  | * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com> | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include <linux/completion.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/md5.h> | 
|  | #include <crypto/algapi.h> | 
|  |  | 
|  | #include <linux/device-mapper.h> | 
|  |  | 
|  | #define DM_MSG_PREFIX "crypt" | 
|  |  | 
|  | /* | 
|  | * context holding the current state of a multi-part conversion | 
|  | */ | 
|  | struct convert_context { | 
|  | struct completion restart; | 
|  | struct bio *bio_in; | 
|  | struct bio *bio_out; | 
|  | struct bvec_iter iter_in; | 
|  | struct bvec_iter iter_out; | 
|  | sector_t cc_sector; | 
|  | atomic_t cc_pending; | 
|  | struct ablkcipher_request *req; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * per bio private data | 
|  | */ | 
|  | struct dm_crypt_io { | 
|  | struct crypt_config *cc; | 
|  | struct bio *base_bio; | 
|  | struct work_struct work; | 
|  |  | 
|  | struct convert_context ctx; | 
|  |  | 
|  | atomic_t io_pending; | 
|  | int error; | 
|  | sector_t sector; | 
|  |  | 
|  | struct rb_node rb_node; | 
|  | } CRYPTO_MINALIGN_ATTR; | 
|  |  | 
|  | struct dm_crypt_request { | 
|  | struct convert_context *ctx; | 
|  | struct scatterlist sg_in; | 
|  | struct scatterlist sg_out; | 
|  | sector_t iv_sector; | 
|  | }; | 
|  |  | 
|  | struct crypt_config; | 
|  |  | 
|  | struct crypt_iv_operations { | 
|  | int (*ctr)(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts); | 
|  | void (*dtr)(struct crypt_config *cc); | 
|  | int (*init)(struct crypt_config *cc); | 
|  | int (*wipe)(struct crypt_config *cc); | 
|  | int (*generator)(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq); | 
|  | int (*post)(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq); | 
|  | }; | 
|  |  | 
|  | struct iv_essiv_private { | 
|  | struct crypto_hash *hash_tfm; | 
|  | u8 *salt; | 
|  | }; | 
|  |  | 
|  | struct iv_benbi_private { | 
|  | int shift; | 
|  | }; | 
|  |  | 
|  | #define LMK_SEED_SIZE 64 /* hash + 0 */ | 
|  | struct iv_lmk_private { | 
|  | struct crypto_shash *hash_tfm; | 
|  | u8 *seed; | 
|  | }; | 
|  |  | 
|  | #define TCW_WHITENING_SIZE 16 | 
|  | struct iv_tcw_private { | 
|  | struct crypto_shash *crc32_tfm; | 
|  | u8 *iv_seed; | 
|  | u8 *whitening; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Crypt: maps a linear range of a block device | 
|  | * and encrypts / decrypts at the same time. | 
|  | */ | 
|  | enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, | 
|  | DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD, | 
|  | DM_CRYPT_EXIT_THREAD}; | 
|  |  | 
|  | /* | 
|  | * The fields in here must be read only after initialization. | 
|  | */ | 
|  | struct crypt_config { | 
|  | struct dm_dev *dev; | 
|  | sector_t start; | 
|  |  | 
|  | /* | 
|  | * pool for per bio private data, crypto requests and | 
|  | * encryption requeusts/buffer pages | 
|  | */ | 
|  | mempool_t *req_pool; | 
|  | mempool_t *page_pool; | 
|  | struct bio_set *bs; | 
|  | struct mutex bio_alloc_lock; | 
|  |  | 
|  | struct workqueue_struct *io_queue; | 
|  | struct workqueue_struct *crypt_queue; | 
|  |  | 
|  | struct task_struct *write_thread; | 
|  | wait_queue_head_t write_thread_wait; | 
|  | struct rb_root write_tree; | 
|  |  | 
|  | char *cipher; | 
|  | char *cipher_string; | 
|  |  | 
|  | struct crypt_iv_operations *iv_gen_ops; | 
|  | union { | 
|  | struct iv_essiv_private essiv; | 
|  | struct iv_benbi_private benbi; | 
|  | struct iv_lmk_private lmk; | 
|  | struct iv_tcw_private tcw; | 
|  | } iv_gen_private; | 
|  | sector_t iv_offset; | 
|  | unsigned int iv_size; | 
|  |  | 
|  | /* ESSIV: struct crypto_cipher *essiv_tfm */ | 
|  | void *iv_private; | 
|  | struct crypto_ablkcipher **tfms; | 
|  | unsigned tfms_count; | 
|  |  | 
|  | /* | 
|  | * Layout of each crypto request: | 
|  | * | 
|  | *   struct ablkcipher_request | 
|  | *      context | 
|  | *      padding | 
|  | *   struct dm_crypt_request | 
|  | *      padding | 
|  | *   IV | 
|  | * | 
|  | * The padding is added so that dm_crypt_request and the IV are | 
|  | * correctly aligned. | 
|  | */ | 
|  | unsigned int dmreq_start; | 
|  |  | 
|  | unsigned int per_bio_data_size; | 
|  |  | 
|  | unsigned long flags; | 
|  | unsigned int key_size; | 
|  | unsigned int key_parts;      /* independent parts in key buffer */ | 
|  | unsigned int key_extra_size; /* additional keys length */ | 
|  | u8 key[0]; | 
|  | }; | 
|  |  | 
|  | #define MIN_IOS        16 | 
|  |  | 
|  | static void clone_init(struct dm_crypt_io *, struct bio *); | 
|  | static void kcryptd_queue_crypt(struct dm_crypt_io *io); | 
|  | static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq); | 
|  |  | 
|  | /* | 
|  | * Use this to access cipher attributes that are the same for each CPU. | 
|  | */ | 
|  | static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc) | 
|  | { | 
|  | return cc->tfms[0]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Different IV generation algorithms: | 
|  | * | 
|  | * plain: the initial vector is the 32-bit little-endian version of the sector | 
|  | *        number, padded with zeros if necessary. | 
|  | * | 
|  | * plain64: the initial vector is the 64-bit little-endian version of the sector | 
|  | *        number, padded with zeros if necessary. | 
|  | * | 
|  | * essiv: "encrypted sector|salt initial vector", the sector number is | 
|  | *        encrypted with the bulk cipher using a salt as key. The salt | 
|  | *        should be derived from the bulk cipher's key via hashing. | 
|  | * | 
|  | * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 | 
|  | *        (needed for LRW-32-AES and possible other narrow block modes) | 
|  | * | 
|  | * null: the initial vector is always zero.  Provides compatibility with | 
|  | *       obsolete loop_fish2 devices.  Do not use for new devices. | 
|  | * | 
|  | * lmk:  Compatible implementation of the block chaining mode used | 
|  | *       by the Loop-AES block device encryption system | 
|  | *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ | 
|  | *       It operates on full 512 byte sectors and uses CBC | 
|  | *       with an IV derived from the sector number, the data and | 
|  | *       optionally extra IV seed. | 
|  | *       This means that after decryption the first block | 
|  | *       of sector must be tweaked according to decrypted data. | 
|  | *       Loop-AES can use three encryption schemes: | 
|  | *         version 1: is plain aes-cbc mode | 
|  | *         version 2: uses 64 multikey scheme with lmk IV generator | 
|  | *         version 3: the same as version 2 with additional IV seed | 
|  | *                   (it uses 65 keys, last key is used as IV seed) | 
|  | * | 
|  | * tcw:  Compatible implementation of the block chaining mode used | 
|  | *       by the TrueCrypt device encryption system (prior to version 4.1). | 
|  | *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat | 
|  | *       It operates on full 512 byte sectors and uses CBC | 
|  | *       with an IV derived from initial key and the sector number. | 
|  | *       In addition, whitening value is applied on every sector, whitening | 
|  | *       is calculated from initial key, sector number and mixed using CRC32. | 
|  | *       Note that this encryption scheme is vulnerable to watermarking attacks | 
|  | *       and should be used for old compatible containers access only. | 
|  | * | 
|  | * plumb: unimplemented, see: | 
|  | * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 | 
|  | */ | 
|  |  | 
|  | static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  | *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Initialise ESSIV - compute salt but no local memory allocations */ | 
|  | static int crypt_iv_essiv_init(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; | 
|  | struct hash_desc desc; | 
|  | struct scatterlist sg; | 
|  | struct crypto_cipher *essiv_tfm; | 
|  | int err; | 
|  |  | 
|  | sg_init_one(&sg, cc->key, cc->key_size); | 
|  | desc.tfm = essiv->hash_tfm; | 
|  | desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  |  | 
|  | err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | essiv_tfm = cc->iv_private; | 
|  |  | 
|  | err = crypto_cipher_setkey(essiv_tfm, essiv->salt, | 
|  | crypto_hash_digestsize(essiv->hash_tfm)); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Wipe salt and reset key derived from volume key */ | 
|  | static int crypt_iv_essiv_wipe(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; | 
|  | unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm); | 
|  | struct crypto_cipher *essiv_tfm; | 
|  | int r, err = 0; | 
|  |  | 
|  | memset(essiv->salt, 0, salt_size); | 
|  |  | 
|  | essiv_tfm = cc->iv_private; | 
|  | r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size); | 
|  | if (r) | 
|  | err = r; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Set up per cpu cipher state */ | 
|  | static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc, | 
|  | struct dm_target *ti, | 
|  | u8 *salt, unsigned saltsize) | 
|  | { | 
|  | struct crypto_cipher *essiv_tfm; | 
|  | int err; | 
|  |  | 
|  | /* Setup the essiv_tfm with the given salt */ | 
|  | essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(essiv_tfm)) { | 
|  | ti->error = "Error allocating crypto tfm for ESSIV"; | 
|  | return essiv_tfm; | 
|  | } | 
|  |  | 
|  | if (crypto_cipher_blocksize(essiv_tfm) != | 
|  | crypto_ablkcipher_ivsize(any_tfm(cc))) { | 
|  | ti->error = "Block size of ESSIV cipher does " | 
|  | "not match IV size of block cipher"; | 
|  | crypto_free_cipher(essiv_tfm); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); | 
|  | if (err) { | 
|  | ti->error = "Failed to set key for ESSIV cipher"; | 
|  | crypto_free_cipher(essiv_tfm); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | return essiv_tfm; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_essiv_dtr(struct crypt_config *cc) | 
|  | { | 
|  | struct crypto_cipher *essiv_tfm; | 
|  | struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; | 
|  |  | 
|  | crypto_free_hash(essiv->hash_tfm); | 
|  | essiv->hash_tfm = NULL; | 
|  |  | 
|  | kzfree(essiv->salt); | 
|  | essiv->salt = NULL; | 
|  |  | 
|  | essiv_tfm = cc->iv_private; | 
|  |  | 
|  | if (essiv_tfm) | 
|  | crypto_free_cipher(essiv_tfm); | 
|  |  | 
|  | cc->iv_private = NULL; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | struct crypto_cipher *essiv_tfm = NULL; | 
|  | struct crypto_hash *hash_tfm = NULL; | 
|  | u8 *salt = NULL; | 
|  | int err; | 
|  |  | 
|  | if (!opts) { | 
|  | ti->error = "Digest algorithm missing for ESSIV mode"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Allocate hash algorithm */ | 
|  | hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(hash_tfm)) { | 
|  | ti->error = "Error initializing ESSIV hash"; | 
|  | err = PTR_ERR(hash_tfm); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL); | 
|  | if (!salt) { | 
|  | ti->error = "Error kmallocing salt storage in ESSIV"; | 
|  | err = -ENOMEM; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | cc->iv_gen_private.essiv.salt = salt; | 
|  | cc->iv_gen_private.essiv.hash_tfm = hash_tfm; | 
|  |  | 
|  | essiv_tfm = setup_essiv_cpu(cc, ti, salt, | 
|  | crypto_hash_digestsize(hash_tfm)); | 
|  | if (IS_ERR(essiv_tfm)) { | 
|  | crypt_iv_essiv_dtr(cc); | 
|  | return PTR_ERR(essiv_tfm); | 
|  | } | 
|  | cc->iv_private = essiv_tfm; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | if (hash_tfm && !IS_ERR(hash_tfm)) | 
|  | crypto_free_hash(hash_tfm); | 
|  | kfree(salt); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct crypto_cipher *essiv_tfm = cc->iv_private; | 
|  |  | 
|  | memset(iv, 0, cc->iv_size); | 
|  | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); | 
|  | crypto_cipher_encrypt_one(essiv_tfm, iv, iv); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc)); | 
|  | int log = ilog2(bs); | 
|  |  | 
|  | /* we need to calculate how far we must shift the sector count | 
|  | * to get the cipher block count, we use this shift in _gen */ | 
|  |  | 
|  | if (1 << log != bs) { | 
|  | ti->error = "cypher blocksize is not a power of 2"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (log > 9) { | 
|  | ti->error = "cypher blocksize is > 512"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cc->iv_gen_private.benbi.shift = 9 - log; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_benbi_dtr(struct crypt_config *cc) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | __be64 val; | 
|  |  | 
|  | memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ | 
|  |  | 
|  | val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); | 
|  | put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_lmk_dtr(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  |  | 
|  | if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) | 
|  | crypto_free_shash(lmk->hash_tfm); | 
|  | lmk->hash_tfm = NULL; | 
|  |  | 
|  | kzfree(lmk->seed); | 
|  | lmk->seed = NULL; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  |  | 
|  | lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0); | 
|  | if (IS_ERR(lmk->hash_tfm)) { | 
|  | ti->error = "Error initializing LMK hash"; | 
|  | return PTR_ERR(lmk->hash_tfm); | 
|  | } | 
|  |  | 
|  | /* No seed in LMK version 2 */ | 
|  | if (cc->key_parts == cc->tfms_count) { | 
|  | lmk->seed = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); | 
|  | if (!lmk->seed) { | 
|  | crypt_iv_lmk_dtr(cc); | 
|  | ti->error = "Error kmallocing seed storage in LMK"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_init(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | int subkey_size = cc->key_size / cc->key_parts; | 
|  |  | 
|  | /* LMK seed is on the position of LMK_KEYS + 1 key */ | 
|  | if (lmk->seed) | 
|  | memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), | 
|  | crypto_shash_digestsize(lmk->hash_tfm)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_wipe(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  |  | 
|  | if (lmk->seed) | 
|  | memset(lmk->seed, 0, LMK_SEED_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq, | 
|  | u8 *data) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); | 
|  | struct md5_state md5state; | 
|  | __le32 buf[4]; | 
|  | int i, r; | 
|  |  | 
|  | desc->tfm = lmk->hash_tfm; | 
|  | desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  |  | 
|  | r = crypto_shash_init(desc); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (lmk->seed) { | 
|  | r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* Sector is always 512B, block size 16, add data of blocks 1-31 */ | 
|  | r = crypto_shash_update(desc, data + 16, 16 * 31); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* Sector is cropped to 56 bits here */ | 
|  | buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); | 
|  | buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); | 
|  | buf[2] = cpu_to_le32(4024); | 
|  | buf[3] = 0; | 
|  | r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* No MD5 padding here */ | 
|  | r = crypto_shash_export(desc, &md5state); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | for (i = 0; i < MD5_HASH_WORDS; i++) | 
|  | __cpu_to_le32s(&md5state.hash[i]); | 
|  | memcpy(iv, &md5state.hash, cc->iv_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | u8 *src; | 
|  | int r = 0; | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
|  | src = kmap_atomic(sg_page(&dmreq->sg_in)); | 
|  | r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset); | 
|  | kunmap_atomic(src); | 
|  | } else | 
|  | memset(iv, 0, cc->iv_size); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | u8 *dst; | 
|  | int r; | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) | 
|  | return 0; | 
|  |  | 
|  | dst = kmap_atomic(sg_page(&dmreq->sg_out)); | 
|  | r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset); | 
|  |  | 
|  | /* Tweak the first block of plaintext sector */ | 
|  | if (!r) | 
|  | crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size); | 
|  |  | 
|  | kunmap_atomic(dst); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_tcw_dtr(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  |  | 
|  | kzfree(tcw->iv_seed); | 
|  | tcw->iv_seed = NULL; | 
|  | kzfree(tcw->whitening); | 
|  | tcw->whitening = NULL; | 
|  |  | 
|  | if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) | 
|  | crypto_free_shash(tcw->crc32_tfm); | 
|  | tcw->crc32_tfm = NULL; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  |  | 
|  | if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { | 
|  | ti->error = "Wrong key size for TCW"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); | 
|  | if (IS_ERR(tcw->crc32_tfm)) { | 
|  | ti->error = "Error initializing CRC32 in TCW"; | 
|  | return PTR_ERR(tcw->crc32_tfm); | 
|  | } | 
|  |  | 
|  | tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); | 
|  | tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); | 
|  | if (!tcw->iv_seed || !tcw->whitening) { | 
|  | crypt_iv_tcw_dtr(cc); | 
|  | ti->error = "Error allocating seed storage in TCW"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_init(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; | 
|  |  | 
|  | memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); | 
|  | memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], | 
|  | TCW_WHITENING_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_wipe(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  |  | 
|  | memset(tcw->iv_seed, 0, cc->iv_size); | 
|  | memset(tcw->whitening, 0, TCW_WHITENING_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_whitening(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq, | 
|  | u8 *data) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | u64 sector = cpu_to_le64((u64)dmreq->iv_sector); | 
|  | u8 buf[TCW_WHITENING_SIZE]; | 
|  | SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); | 
|  | int i, r; | 
|  |  | 
|  | /* xor whitening with sector number */ | 
|  | memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE); | 
|  | crypto_xor(buf, (u8 *)§or, 8); | 
|  | crypto_xor(&buf[8], (u8 *)§or, 8); | 
|  |  | 
|  | /* calculate crc32 for every 32bit part and xor it */ | 
|  | desc->tfm = tcw->crc32_tfm; | 
|  | desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  | for (i = 0; i < 4; i++) { | 
|  | r = crypto_shash_init(desc); | 
|  | if (r) | 
|  | goto out; | 
|  | r = crypto_shash_update(desc, &buf[i * 4], 4); | 
|  | if (r) | 
|  | goto out; | 
|  | r = crypto_shash_final(desc, &buf[i * 4]); | 
|  | if (r) | 
|  | goto out; | 
|  | } | 
|  | crypto_xor(&buf[0], &buf[12], 4); | 
|  | crypto_xor(&buf[4], &buf[8], 4); | 
|  |  | 
|  | /* apply whitening (8 bytes) to whole sector */ | 
|  | for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) | 
|  | crypto_xor(data + i * 8, buf, 8); | 
|  | out: | 
|  | memzero_explicit(buf, sizeof(buf)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | u64 sector = cpu_to_le64((u64)dmreq->iv_sector); | 
|  | u8 *src; | 
|  | int r = 0; | 
|  |  | 
|  | /* Remove whitening from ciphertext */ | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { | 
|  | src = kmap_atomic(sg_page(&dmreq->sg_in)); | 
|  | r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset); | 
|  | kunmap_atomic(src); | 
|  | } | 
|  |  | 
|  | /* Calculate IV */ | 
|  | memcpy(iv, tcw->iv_seed, cc->iv_size); | 
|  | crypto_xor(iv, (u8 *)§or, 8); | 
|  | if (cc->iv_size > 8) | 
|  | crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | u8 *dst; | 
|  | int r; | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) | 
|  | return 0; | 
|  |  | 
|  | /* Apply whitening on ciphertext */ | 
|  | dst = kmap_atomic(sg_page(&dmreq->sg_out)); | 
|  | r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset); | 
|  | kunmap_atomic(dst); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_plain_ops = { | 
|  | .generator = crypt_iv_plain_gen | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_plain64_ops = { | 
|  | .generator = crypt_iv_plain64_gen | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_essiv_ops = { | 
|  | .ctr       = crypt_iv_essiv_ctr, | 
|  | .dtr       = crypt_iv_essiv_dtr, | 
|  | .init      = crypt_iv_essiv_init, | 
|  | .wipe      = crypt_iv_essiv_wipe, | 
|  | .generator = crypt_iv_essiv_gen | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_benbi_ops = { | 
|  | .ctr	   = crypt_iv_benbi_ctr, | 
|  | .dtr	   = crypt_iv_benbi_dtr, | 
|  | .generator = crypt_iv_benbi_gen | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_null_ops = { | 
|  | .generator = crypt_iv_null_gen | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_lmk_ops = { | 
|  | .ctr	   = crypt_iv_lmk_ctr, | 
|  | .dtr	   = crypt_iv_lmk_dtr, | 
|  | .init	   = crypt_iv_lmk_init, | 
|  | .wipe	   = crypt_iv_lmk_wipe, | 
|  | .generator = crypt_iv_lmk_gen, | 
|  | .post	   = crypt_iv_lmk_post | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_tcw_ops = { | 
|  | .ctr	   = crypt_iv_tcw_ctr, | 
|  | .dtr	   = crypt_iv_tcw_dtr, | 
|  | .init	   = crypt_iv_tcw_init, | 
|  | .wipe	   = crypt_iv_tcw_wipe, | 
|  | .generator = crypt_iv_tcw_gen, | 
|  | .post	   = crypt_iv_tcw_post | 
|  | }; | 
|  |  | 
|  | static void crypt_convert_init(struct crypt_config *cc, | 
|  | struct convert_context *ctx, | 
|  | struct bio *bio_out, struct bio *bio_in, | 
|  | sector_t sector) | 
|  | { | 
|  | ctx->bio_in = bio_in; | 
|  | ctx->bio_out = bio_out; | 
|  | if (bio_in) | 
|  | ctx->iter_in = bio_in->bi_iter; | 
|  | if (bio_out) | 
|  | ctx->iter_out = bio_out->bi_iter; | 
|  | ctx->cc_sector = sector + cc->iv_offset; | 
|  | init_completion(&ctx->restart); | 
|  | } | 
|  |  | 
|  | static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, | 
|  | struct ablkcipher_request *req) | 
|  | { | 
|  | return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); | 
|  | } | 
|  |  | 
|  | static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start); | 
|  | } | 
|  |  | 
|  | static u8 *iv_of_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | return (u8 *)ALIGN((unsigned long)(dmreq + 1), | 
|  | crypto_ablkcipher_alignmask(any_tfm(cc)) + 1); | 
|  | } | 
|  |  | 
|  | static int crypt_convert_block(struct crypt_config *cc, | 
|  | struct convert_context *ctx, | 
|  | struct ablkcipher_request *req) | 
|  | { | 
|  | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); | 
|  | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); | 
|  | struct dm_crypt_request *dmreq; | 
|  | u8 *iv; | 
|  | int r; | 
|  |  | 
|  | dmreq = dmreq_of_req(cc, req); | 
|  | iv = iv_of_dmreq(cc, dmreq); | 
|  |  | 
|  | dmreq->iv_sector = ctx->cc_sector; | 
|  | dmreq->ctx = ctx; | 
|  | sg_init_table(&dmreq->sg_in, 1); | 
|  | sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT, | 
|  | bv_in.bv_offset); | 
|  |  | 
|  | sg_init_table(&dmreq->sg_out, 1); | 
|  | sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT, | 
|  | bv_out.bv_offset); | 
|  |  | 
|  | bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT); | 
|  | bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT); | 
|  |  | 
|  | if (cc->iv_gen_ops) { | 
|  | r = cc->iv_gen_ops->generator(cc, iv, dmreq); | 
|  | if (r < 0) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out, | 
|  | 1 << SECTOR_SHIFT, iv); | 
|  |  | 
|  | if (bio_data_dir(ctx->bio_in) == WRITE) | 
|  | r = crypto_ablkcipher_encrypt(req); | 
|  | else | 
|  | r = crypto_ablkcipher_decrypt(req); | 
|  |  | 
|  | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
|  | r = cc->iv_gen_ops->post(cc, iv, dmreq); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kcryptd_async_done(struct crypto_async_request *async_req, | 
|  | int error); | 
|  |  | 
|  | static void crypt_alloc_req(struct crypt_config *cc, | 
|  | struct convert_context *ctx) | 
|  | { | 
|  | unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); | 
|  |  | 
|  | if (!ctx->req) | 
|  | ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO); | 
|  |  | 
|  | ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]); | 
|  |  | 
|  | /* | 
|  | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs | 
|  | * requests if driver request queue is full. | 
|  | */ | 
|  | ablkcipher_request_set_callback(ctx->req, | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, | 
|  | kcryptd_async_done, dmreq_of_req(cc, ctx->req)); | 
|  | } | 
|  |  | 
|  | static void crypt_free_req(struct crypt_config *cc, | 
|  | struct ablkcipher_request *req, struct bio *base_bio) | 
|  | { | 
|  | struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); | 
|  |  | 
|  | if ((struct ablkcipher_request *)(io + 1) != req) | 
|  | mempool_free(req, cc->req_pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encrypt / decrypt data from one bio to another one (can be the same one) | 
|  | */ | 
|  | static int crypt_convert(struct crypt_config *cc, | 
|  | struct convert_context *ctx) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | atomic_set(&ctx->cc_pending, 1); | 
|  |  | 
|  | while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { | 
|  |  | 
|  | crypt_alloc_req(cc, ctx); | 
|  |  | 
|  | atomic_inc(&ctx->cc_pending); | 
|  |  | 
|  | r = crypt_convert_block(cc, ctx, ctx->req); | 
|  |  | 
|  | switch (r) { | 
|  | /* | 
|  | * The request was queued by a crypto driver | 
|  | * but the driver request queue is full, let's wait. | 
|  | */ | 
|  | case -EBUSY: | 
|  | wait_for_completion(&ctx->restart); | 
|  | reinit_completion(&ctx->restart); | 
|  | /* fall through */ | 
|  | /* | 
|  | * The request is queued and processed asynchronously, | 
|  | * completion function kcryptd_async_done() will be called. | 
|  | */ | 
|  | case -EINPROGRESS: | 
|  | ctx->req = NULL; | 
|  | ctx->cc_sector++; | 
|  | continue; | 
|  | /* | 
|  | * The request was already processed (synchronously). | 
|  | */ | 
|  | case 0: | 
|  | atomic_dec(&ctx->cc_pending); | 
|  | ctx->cc_sector++; | 
|  | cond_resched(); | 
|  | continue; | 
|  |  | 
|  | /* There was an error while processing the request. */ | 
|  | default: | 
|  | atomic_dec(&ctx->cc_pending); | 
|  | return r; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); | 
|  |  | 
|  | /* | 
|  | * Generate a new unfragmented bio with the given size | 
|  | * This should never violate the device limitations (but only because | 
|  | * max_segment_size is being constrained to PAGE_SIZE). | 
|  | * | 
|  | * This function may be called concurrently. If we allocate from the mempool | 
|  | * concurrently, there is a possibility of deadlock. For example, if we have | 
|  | * mempool of 256 pages, two processes, each wanting 256, pages allocate from | 
|  | * the mempool concurrently, it may deadlock in a situation where both processes | 
|  | * have allocated 128 pages and the mempool is exhausted. | 
|  | * | 
|  | * In order to avoid this scenario we allocate the pages under a mutex. | 
|  | * | 
|  | * In order to not degrade performance with excessive locking, we try | 
|  | * non-blocking allocations without a mutex first but on failure we fallback | 
|  | * to blocking allocations with a mutex. | 
|  | */ | 
|  | static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct bio *clone; | 
|  | unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; | 
|  | unsigned i, len, remaining_size; | 
|  | struct page *page; | 
|  | struct bio_vec *bvec; | 
|  |  | 
|  | retry: | 
|  | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | mutex_lock(&cc->bio_alloc_lock); | 
|  |  | 
|  | clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); | 
|  | if (!clone) | 
|  | goto return_clone; | 
|  |  | 
|  | clone_init(io, clone); | 
|  |  | 
|  | remaining_size = size; | 
|  |  | 
|  | for (i = 0; i < nr_iovecs; i++) { | 
|  | page = mempool_alloc(cc->page_pool, gfp_mask); | 
|  | if (!page) { | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  | bio_put(clone); | 
|  | gfp_mask |= __GFP_DIRECT_RECLAIM; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size; | 
|  |  | 
|  | bvec = &clone->bi_io_vec[clone->bi_vcnt++]; | 
|  | bvec->bv_page = page; | 
|  | bvec->bv_len = len; | 
|  | bvec->bv_offset = 0; | 
|  |  | 
|  | clone->bi_iter.bi_size += len; | 
|  |  | 
|  | remaining_size -= len; | 
|  | } | 
|  |  | 
|  | return_clone: | 
|  | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | mutex_unlock(&cc->bio_alloc_lock); | 
|  |  | 
|  | return clone; | 
|  | } | 
|  |  | 
|  | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) | 
|  | { | 
|  | unsigned int i; | 
|  | struct bio_vec *bv; | 
|  |  | 
|  | bio_for_each_segment_all(bv, clone, i) { | 
|  | BUG_ON(!bv->bv_page); | 
|  | mempool_free(bv->bv_page, cc->page_pool); | 
|  | bv->bv_page = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, | 
|  | struct bio *bio, sector_t sector) | 
|  | { | 
|  | io->cc = cc; | 
|  | io->base_bio = bio; | 
|  | io->sector = sector; | 
|  | io->error = 0; | 
|  | io->ctx.req = NULL; | 
|  | atomic_set(&io->io_pending, 0); | 
|  | } | 
|  |  | 
|  | static void crypt_inc_pending(struct dm_crypt_io *io) | 
|  | { | 
|  | atomic_inc(&io->io_pending); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * One of the bios was finished. Check for completion of | 
|  | * the whole request and correctly clean up the buffer. | 
|  | */ | 
|  | static void crypt_dec_pending(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct bio *base_bio = io->base_bio; | 
|  | int error = io->error; | 
|  |  | 
|  | if (!atomic_dec_and_test(&io->io_pending)) | 
|  | return; | 
|  |  | 
|  | if (io->ctx.req) | 
|  | crypt_free_req(cc, io->ctx.req, base_bio); | 
|  |  | 
|  | base_bio->bi_error = error; | 
|  | bio_endio(base_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kcryptd/kcryptd_io: | 
|  | * | 
|  | * Needed because it would be very unwise to do decryption in an | 
|  | * interrupt context. | 
|  | * | 
|  | * kcryptd performs the actual encryption or decryption. | 
|  | * | 
|  | * kcryptd_io performs the IO submission. | 
|  | * | 
|  | * They must be separated as otherwise the final stages could be | 
|  | * starved by new requests which can block in the first stages due | 
|  | * to memory allocation. | 
|  | * | 
|  | * The work is done per CPU global for all dm-crypt instances. | 
|  | * They should not depend on each other and do not block. | 
|  | */ | 
|  | static void crypt_endio(struct bio *clone) | 
|  | { | 
|  | struct dm_crypt_io *io = clone->bi_private; | 
|  | struct crypt_config *cc = io->cc; | 
|  | unsigned rw = bio_data_dir(clone); | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * free the processed pages | 
|  | */ | 
|  | if (rw == WRITE) | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  |  | 
|  | error = clone->bi_error; | 
|  | bio_put(clone); | 
|  |  | 
|  | if (rw == READ && !error) { | 
|  | kcryptd_queue_crypt(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(error)) | 
|  | io->error = error; | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void clone_init(struct dm_crypt_io *io, struct bio *clone) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  |  | 
|  | clone->bi_private = io; | 
|  | clone->bi_end_io  = crypt_endio; | 
|  | clone->bi_bdev    = cc->dev->bdev; | 
|  | clone->bi_rw      = io->base_bio->bi_rw; | 
|  | } | 
|  |  | 
|  | static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct bio *clone; | 
|  |  | 
|  | /* | 
|  | * We need the original biovec array in order to decrypt | 
|  | * the whole bio data *afterwards* -- thanks to immutable | 
|  | * biovecs we don't need to worry about the block layer | 
|  | * modifying the biovec array; so leverage bio_clone_fast(). | 
|  | */ | 
|  | clone = bio_clone_fast(io->base_bio, gfp, cc->bs); | 
|  | if (!clone) | 
|  | return 1; | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  |  | 
|  | clone_init(io, clone); | 
|  | clone->bi_iter.bi_sector = cc->start + io->sector; | 
|  |  | 
|  | generic_make_request(clone); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kcryptd_io_read_work(struct work_struct *work) | 
|  | { | 
|  | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  | if (kcryptd_io_read(io, GFP_NOIO)) | 
|  | io->error = -ENOMEM; | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_queue_read(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  |  | 
|  | INIT_WORK(&io->work, kcryptd_io_read_work); | 
|  | queue_work(cc->io_queue, &io->work); | 
|  | } | 
|  |  | 
|  | static void kcryptd_io_write(struct dm_crypt_io *io) | 
|  | { | 
|  | struct bio *clone = io->ctx.bio_out; | 
|  |  | 
|  | generic_make_request(clone); | 
|  | } | 
|  |  | 
|  | #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) | 
|  |  | 
|  | static int dmcrypt_write(void *data) | 
|  | { | 
|  | struct crypt_config *cc = data; | 
|  | struct dm_crypt_io *io; | 
|  |  | 
|  | while (1) { | 
|  | struct rb_root write_tree; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | spin_lock_irq(&cc->write_thread_wait.lock); | 
|  | continue_locked: | 
|  |  | 
|  | if (!RB_EMPTY_ROOT(&cc->write_tree)) | 
|  | goto pop_from_list; | 
|  |  | 
|  | if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) { | 
|  | spin_unlock_irq(&cc->write_thread_wait.lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | __add_wait_queue(&cc->write_thread_wait, &wait); | 
|  |  | 
|  | spin_unlock_irq(&cc->write_thread_wait.lock); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | spin_lock_irq(&cc->write_thread_wait.lock); | 
|  | __remove_wait_queue(&cc->write_thread_wait, &wait); | 
|  | goto continue_locked; | 
|  |  | 
|  | pop_from_list: | 
|  | write_tree = cc->write_tree; | 
|  | cc->write_tree = RB_ROOT; | 
|  | spin_unlock_irq(&cc->write_thread_wait.lock); | 
|  |  | 
|  | BUG_ON(rb_parent(write_tree.rb_node)); | 
|  |  | 
|  | /* | 
|  | * Note: we cannot walk the tree here with rb_next because | 
|  | * the structures may be freed when kcryptd_io_write is called. | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  | do { | 
|  | io = crypt_io_from_node(rb_first(&write_tree)); | 
|  | rb_erase(&io->rb_node, &write_tree); | 
|  | kcryptd_io_write(io); | 
|  | } while (!RB_EMPTY_ROOT(&write_tree)); | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) | 
|  | { | 
|  | struct bio *clone = io->ctx.bio_out; | 
|  | struct crypt_config *cc = io->cc; | 
|  | unsigned long flags; | 
|  | sector_t sector; | 
|  | struct rb_node **rbp, *parent; | 
|  |  | 
|  | if (unlikely(io->error < 0)) { | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  | bio_put(clone); | 
|  | crypt_dec_pending(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* crypt_convert should have filled the clone bio */ | 
|  | BUG_ON(io->ctx.iter_out.bi_size); | 
|  |  | 
|  | clone->bi_iter.bi_sector = cc->start + io->sector; | 
|  |  | 
|  | if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) { | 
|  | generic_make_request(clone); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&cc->write_thread_wait.lock, flags); | 
|  | rbp = &cc->write_tree.rb_node; | 
|  | parent = NULL; | 
|  | sector = io->sector; | 
|  | while (*rbp) { | 
|  | parent = *rbp; | 
|  | if (sector < crypt_io_from_node(parent)->sector) | 
|  | rbp = &(*rbp)->rb_left; | 
|  | else | 
|  | rbp = &(*rbp)->rb_right; | 
|  | } | 
|  | rb_link_node(&io->rb_node, parent, rbp); | 
|  | rb_insert_color(&io->rb_node, &cc->write_tree); | 
|  |  | 
|  | wake_up_locked(&cc->write_thread_wait); | 
|  | spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct bio *clone; | 
|  | int crypt_finished; | 
|  | sector_t sector = io->sector; | 
|  | int r; | 
|  |  | 
|  | /* | 
|  | * Prevent io from disappearing until this function completes. | 
|  | */ | 
|  | crypt_inc_pending(io); | 
|  | crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); | 
|  |  | 
|  | clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); | 
|  | if (unlikely(!clone)) { | 
|  | io->error = -EIO; | 
|  | goto dec; | 
|  | } | 
|  |  | 
|  | io->ctx.bio_out = clone; | 
|  | io->ctx.iter_out = clone->bi_iter; | 
|  |  | 
|  | sector += bio_sectors(clone); | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  | r = crypt_convert(cc, &io->ctx); | 
|  | if (r) | 
|  | io->error = -EIO; | 
|  | crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending); | 
|  |  | 
|  | /* Encryption was already finished, submit io now */ | 
|  | if (crypt_finished) { | 
|  | kcryptd_crypt_write_io_submit(io, 0); | 
|  | io->sector = sector; | 
|  | } | 
|  |  | 
|  | dec: | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_read_done(struct dm_crypt_io *io) | 
|  | { | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | int r = 0; | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  |  | 
|  | crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, | 
|  | io->sector); | 
|  |  | 
|  | r = crypt_convert(cc, &io->ctx); | 
|  | if (r < 0) | 
|  | io->error = -EIO; | 
|  |  | 
|  | if (atomic_dec_and_test(&io->ctx.cc_pending)) | 
|  | kcryptd_crypt_read_done(io); | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_async_done(struct crypto_async_request *async_req, | 
|  | int error) | 
|  | { | 
|  | struct dm_crypt_request *dmreq = async_req->data; | 
|  | struct convert_context *ctx = dmreq->ctx; | 
|  | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); | 
|  | struct crypt_config *cc = io->cc; | 
|  |  | 
|  | /* | 
|  | * A request from crypto driver backlog is going to be processed now, | 
|  | * finish the completion and continue in crypt_convert(). | 
|  | * (Callback will be called for the second time for this request.) | 
|  | */ | 
|  | if (error == -EINPROGRESS) { | 
|  | complete(&ctx->restart); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
|  | error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq); | 
|  |  | 
|  | if (error < 0) | 
|  | io->error = -EIO; | 
|  |  | 
|  | crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); | 
|  |  | 
|  | if (!atomic_dec_and_test(&ctx->cc_pending)) | 
|  | return; | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) | 
|  | kcryptd_crypt_read_done(io); | 
|  | else | 
|  | kcryptd_crypt_write_io_submit(io, 1); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt(struct work_struct *work) | 
|  | { | 
|  | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) | 
|  | kcryptd_crypt_read_convert(io); | 
|  | else | 
|  | kcryptd_crypt_write_convert(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_queue_crypt(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  |  | 
|  | INIT_WORK(&io->work, kcryptd_crypt); | 
|  | queue_work(cc->crypt_queue, &io->work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode key from its hex representation | 
|  | */ | 
|  | static int crypt_decode_key(u8 *key, char *hex, unsigned int size) | 
|  | { | 
|  | char buffer[3]; | 
|  | unsigned int i; | 
|  |  | 
|  | buffer[2] = '\0'; | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | buffer[0] = *hex++; | 
|  | buffer[1] = *hex++; | 
|  |  | 
|  | if (kstrtou8(buffer, 16, &key[i])) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (*hex != '\0') | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_free_tfms(struct crypt_config *cc) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | if (!cc->tfms) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < cc->tfms_count; i++) | 
|  | if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) { | 
|  | crypto_free_ablkcipher(cc->tfms[i]); | 
|  | cc->tfms[i] = NULL; | 
|  | } | 
|  |  | 
|  | kfree(cc->tfms); | 
|  | cc->tfms = NULL; | 
|  | } | 
|  |  | 
|  | static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) | 
|  | { | 
|  | unsigned i; | 
|  | int err; | 
|  |  | 
|  | cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *), | 
|  | GFP_KERNEL); | 
|  | if (!cc->tfms) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < cc->tfms_count; i++) { | 
|  | cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0); | 
|  | if (IS_ERR(cc->tfms[i])) { | 
|  | err = PTR_ERR(cc->tfms[i]); | 
|  | crypt_free_tfms(cc); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_setkey_allcpus(struct crypt_config *cc) | 
|  | { | 
|  | unsigned subkey_size; | 
|  | int err = 0, i, r; | 
|  |  | 
|  | /* Ignore extra keys (which are used for IV etc) */ | 
|  | subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); | 
|  |  | 
|  | for (i = 0; i < cc->tfms_count; i++) { | 
|  | r = crypto_ablkcipher_setkey(cc->tfms[i], | 
|  | cc->key + (i * subkey_size), | 
|  | subkey_size); | 
|  | if (r) | 
|  | err = r; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int crypt_set_key(struct crypt_config *cc, char *key) | 
|  | { | 
|  | int r = -EINVAL; | 
|  | int key_string_len = strlen(key); | 
|  |  | 
|  | /* The key size may not be changed. */ | 
|  | if (cc->key_size != (key_string_len >> 1)) | 
|  | goto out; | 
|  |  | 
|  | /* Hyphen (which gives a key_size of zero) means there is no key. */ | 
|  | if (!cc->key_size && strcmp(key, "-")) | 
|  | goto out; | 
|  |  | 
|  | if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0) | 
|  | goto out; | 
|  |  | 
|  | set_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  |  | 
|  | r = crypt_setkey_allcpus(cc); | 
|  |  | 
|  | out: | 
|  | /* Hex key string not needed after here, so wipe it. */ | 
|  | memset(key, '0', key_string_len); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int crypt_wipe_key(struct crypt_config *cc) | 
|  | { | 
|  | clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | memset(&cc->key, 0, cc->key_size * sizeof(u8)); | 
|  |  | 
|  | return crypt_setkey_allcpus(cc); | 
|  | } | 
|  |  | 
|  | static void crypt_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | ti->private = NULL; | 
|  |  | 
|  | if (!cc) | 
|  | return; | 
|  |  | 
|  | if (cc->write_thread) { | 
|  | spin_lock_irq(&cc->write_thread_wait.lock); | 
|  | set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags); | 
|  | wake_up_locked(&cc->write_thread_wait); | 
|  | spin_unlock_irq(&cc->write_thread_wait.lock); | 
|  | kthread_stop(cc->write_thread); | 
|  | } | 
|  |  | 
|  | if (cc->io_queue) | 
|  | destroy_workqueue(cc->io_queue); | 
|  | if (cc->crypt_queue) | 
|  | destroy_workqueue(cc->crypt_queue); | 
|  |  | 
|  | crypt_free_tfms(cc); | 
|  |  | 
|  | if (cc->bs) | 
|  | bioset_free(cc->bs); | 
|  |  | 
|  | mempool_destroy(cc->page_pool); | 
|  | mempool_destroy(cc->req_pool); | 
|  |  | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) | 
|  | cc->iv_gen_ops->dtr(cc); | 
|  |  | 
|  | if (cc->dev) | 
|  | dm_put_device(ti, cc->dev); | 
|  |  | 
|  | kzfree(cc->cipher); | 
|  | kzfree(cc->cipher_string); | 
|  |  | 
|  | /* Must zero key material before freeing */ | 
|  | kzfree(cc); | 
|  | } | 
|  |  | 
|  | static int crypt_ctr_cipher(struct dm_target *ti, | 
|  | char *cipher_in, char *key) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount; | 
|  | char *cipher_api = NULL; | 
|  | int ret = -EINVAL; | 
|  | char dummy; | 
|  |  | 
|  | /* Convert to crypto api definition? */ | 
|  | if (strchr(cipher_in, '(')) { | 
|  | ti->error = "Bad cipher specification"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); | 
|  | if (!cc->cipher_string) | 
|  | goto bad_mem; | 
|  |  | 
|  | /* | 
|  | * Legacy dm-crypt cipher specification | 
|  | * cipher[:keycount]-mode-iv:ivopts | 
|  | */ | 
|  | tmp = cipher_in; | 
|  | keycount = strsep(&tmp, "-"); | 
|  | cipher = strsep(&keycount, ":"); | 
|  |  | 
|  | if (!keycount) | 
|  | cc->tfms_count = 1; | 
|  | else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || | 
|  | !is_power_of_2(cc->tfms_count)) { | 
|  | ti->error = "Bad cipher key count specification"; | 
|  | return -EINVAL; | 
|  | } | 
|  | cc->key_parts = cc->tfms_count; | 
|  | cc->key_extra_size = 0; | 
|  |  | 
|  | cc->cipher = kstrdup(cipher, GFP_KERNEL); | 
|  | if (!cc->cipher) | 
|  | goto bad_mem; | 
|  |  | 
|  | chainmode = strsep(&tmp, "-"); | 
|  | ivopts = strsep(&tmp, "-"); | 
|  | ivmode = strsep(&ivopts, ":"); | 
|  |  | 
|  | if (tmp) | 
|  | DMWARN("Ignoring unexpected additional cipher options"); | 
|  |  | 
|  | /* | 
|  | * For compatibility with the original dm-crypt mapping format, if | 
|  | * only the cipher name is supplied, use cbc-plain. | 
|  | */ | 
|  | if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) { | 
|  | chainmode = "cbc"; | 
|  | ivmode = "plain"; | 
|  | } | 
|  |  | 
|  | if (strcmp(chainmode, "ecb") && !ivmode) { | 
|  | ti->error = "IV mechanism required"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); | 
|  | if (!cipher_api) | 
|  | goto bad_mem; | 
|  |  | 
|  | ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, | 
|  | "%s(%s)", chainmode, cipher); | 
|  | if (ret < 0) { | 
|  | kfree(cipher_api); | 
|  | goto bad_mem; | 
|  | } | 
|  |  | 
|  | /* Allocate cipher */ | 
|  | ret = crypt_alloc_tfms(cc, cipher_api); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error allocating crypto tfm"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | /* Initialize IV */ | 
|  | cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc)); | 
|  | if (cc->iv_size) | 
|  | /* at least a 64 bit sector number should fit in our buffer */ | 
|  | cc->iv_size = max(cc->iv_size, | 
|  | (unsigned int)(sizeof(u64) / sizeof(u8))); | 
|  | else if (ivmode) { | 
|  | DMWARN("Selected cipher does not support IVs"); | 
|  | ivmode = NULL; | 
|  | } | 
|  |  | 
|  | /* Choose ivmode, see comments at iv code. */ | 
|  | if (ivmode == NULL) | 
|  | cc->iv_gen_ops = NULL; | 
|  | else if (strcmp(ivmode, "plain") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_plain_ops; | 
|  | else if (strcmp(ivmode, "plain64") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_plain64_ops; | 
|  | else if (strcmp(ivmode, "essiv") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_essiv_ops; | 
|  | else if (strcmp(ivmode, "benbi") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_benbi_ops; | 
|  | else if (strcmp(ivmode, "null") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_null_ops; | 
|  | else if (strcmp(ivmode, "lmk") == 0) { | 
|  | cc->iv_gen_ops = &crypt_iv_lmk_ops; | 
|  | /* | 
|  | * Version 2 and 3 is recognised according | 
|  | * to length of provided multi-key string. | 
|  | * If present (version 3), last key is used as IV seed. | 
|  | * All keys (including IV seed) are always the same size. | 
|  | */ | 
|  | if (cc->key_size % cc->key_parts) { | 
|  | cc->key_parts++; | 
|  | cc->key_extra_size = cc->key_size / cc->key_parts; | 
|  | } | 
|  | } else if (strcmp(ivmode, "tcw") == 0) { | 
|  | cc->iv_gen_ops = &crypt_iv_tcw_ops; | 
|  | cc->key_parts += 2; /* IV + whitening */ | 
|  | cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | ti->error = "Invalid IV mode"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | /* Initialize and set key */ | 
|  | ret = crypt_set_key(cc, key); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error decoding and setting key"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | /* Allocate IV */ | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { | 
|  | ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error creating IV"; | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize IV (set keys for ESSIV etc) */ | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->init) { | 
|  | ret = cc->iv_gen_ops->init(cc); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error initialising IV"; | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | bad: | 
|  | kfree(cipher_api); | 
|  | return ret; | 
|  |  | 
|  | bad_mem: | 
|  | ti->error = "Cannot allocate cipher strings"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct an encryption mapping: | 
|  | * <cipher> <key> <iv_offset> <dev_path> <start> | 
|  | */ | 
|  | static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
|  | { | 
|  | struct crypt_config *cc; | 
|  | unsigned int key_size, opt_params; | 
|  | unsigned long long tmpll; | 
|  | int ret; | 
|  | size_t iv_size_padding; | 
|  | struct dm_arg_set as; | 
|  | const char *opt_string; | 
|  | char dummy; | 
|  |  | 
|  | static struct dm_arg _args[] = { | 
|  | {0, 3, "Invalid number of feature args"}, | 
|  | }; | 
|  |  | 
|  | if (argc < 5) { | 
|  | ti->error = "Not enough arguments"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | key_size = strlen(argv[1]) >> 1; | 
|  |  | 
|  | cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); | 
|  | if (!cc) { | 
|  | ti->error = "Cannot allocate encryption context"; | 
|  | return -ENOMEM; | 
|  | } | 
|  | cc->key_size = key_size; | 
|  |  | 
|  | ti->private = cc; | 
|  | ret = crypt_ctr_cipher(ti, argv[0], argv[1]); | 
|  | if (ret < 0) | 
|  | goto bad; | 
|  |  | 
|  | cc->dmreq_start = sizeof(struct ablkcipher_request); | 
|  | cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc)); | 
|  | cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); | 
|  |  | 
|  | if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) { | 
|  | /* Allocate the padding exactly */ | 
|  | iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) | 
|  | & crypto_ablkcipher_alignmask(any_tfm(cc)); | 
|  | } else { | 
|  | /* | 
|  | * If the cipher requires greater alignment than kmalloc | 
|  | * alignment, we don't know the exact position of the | 
|  | * initialization vector. We must assume worst case. | 
|  | */ | 
|  | iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc)); | 
|  | } | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + | 
|  | sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size); | 
|  | if (!cc->req_pool) { | 
|  | ti->error = "Cannot allocate crypt request mempool"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | cc->per_bio_data_size = ti->per_bio_data_size = | 
|  | ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + | 
|  | sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size, | 
|  | ARCH_KMALLOC_MINALIGN); | 
|  |  | 
|  | cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0); | 
|  | if (!cc->page_pool) { | 
|  | ti->error = "Cannot allocate page mempool"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | cc->bs = bioset_create(MIN_IOS, 0); | 
|  | if (!cc->bs) { | 
|  | ti->error = "Cannot allocate crypt bioset"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | mutex_init(&cc->bio_alloc_lock); | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) { | 
|  | ti->error = "Invalid iv_offset sector"; | 
|  | goto bad; | 
|  | } | 
|  | cc->iv_offset = tmpll; | 
|  |  | 
|  | ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); | 
|  | if (ret) { | 
|  | ti->error = "Device lookup failed"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { | 
|  | ti->error = "Invalid device sector"; | 
|  | goto bad; | 
|  | } | 
|  | cc->start = tmpll; | 
|  |  | 
|  | argv += 5; | 
|  | argc -= 5; | 
|  |  | 
|  | /* Optional parameters */ | 
|  | if (argc) { | 
|  | as.argc = argc; | 
|  | as.argv = argv; | 
|  |  | 
|  | ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); | 
|  | if (ret) | 
|  | goto bad; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | while (opt_params--) { | 
|  | opt_string = dm_shift_arg(&as); | 
|  | if (!opt_string) { | 
|  | ti->error = "Not enough feature arguments"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (!strcasecmp(opt_string, "allow_discards")) | 
|  | ti->num_discard_bios = 1; | 
|  |  | 
|  | else if (!strcasecmp(opt_string, "same_cpu_crypt")) | 
|  | set_bit(DM_CRYPT_SAME_CPU, &cc->flags); | 
|  |  | 
|  | else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) | 
|  | set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); | 
|  |  | 
|  | else { | 
|  | ti->error = "Invalid feature arguments"; | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1); | 
|  | if (!cc->io_queue) { | 
|  | ti->error = "Couldn't create kcryptd io queue"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) | 
|  | cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); | 
|  | else | 
|  | cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, | 
|  | num_online_cpus()); | 
|  | if (!cc->crypt_queue) { | 
|  | ti->error = "Couldn't create kcryptd queue"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | init_waitqueue_head(&cc->write_thread_wait); | 
|  | cc->write_tree = RB_ROOT; | 
|  |  | 
|  | cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write"); | 
|  | if (IS_ERR(cc->write_thread)) { | 
|  | ret = PTR_ERR(cc->write_thread); | 
|  | cc->write_thread = NULL; | 
|  | ti->error = "Couldn't spawn write thread"; | 
|  | goto bad; | 
|  | } | 
|  | wake_up_process(cc->write_thread); | 
|  |  | 
|  | ti->num_flush_bios = 1; | 
|  | ti->discard_zeroes_data_unsupported = true; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | crypt_dtr(ti); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int crypt_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | struct dm_crypt_io *io; | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | /* | 
|  | * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues. | 
|  | * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight | 
|  | * - for REQ_DISCARD caller must use flush if IO ordering matters | 
|  | */ | 
|  | if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) { | 
|  | bio->bi_bdev = cc->dev->bdev; | 
|  | if (bio_sectors(bio)) | 
|  | bio->bi_iter.bi_sector = cc->start + | 
|  | dm_target_offset(ti, bio->bi_iter.bi_sector); | 
|  | return DM_MAPIO_REMAPPED; | 
|  | } | 
|  |  | 
|  | io = dm_per_bio_data(bio, cc->per_bio_data_size); | 
|  | crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); | 
|  | io->ctx.req = (struct ablkcipher_request *)(io + 1); | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) { | 
|  | if (kcryptd_io_read(io, GFP_NOWAIT)) | 
|  | kcryptd_queue_read(io); | 
|  | } else | 
|  | kcryptd_queue_crypt(io); | 
|  |  | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | static void crypt_status(struct dm_target *ti, status_type_t type, | 
|  | unsigned status_flags, char *result, unsigned maxlen) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | unsigned i, sz = 0; | 
|  | int num_feature_args = 0; | 
|  |  | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | result[0] = '\0'; | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | DMEMIT("%s ", cc->cipher_string); | 
|  |  | 
|  | if (cc->key_size > 0) | 
|  | for (i = 0; i < cc->key_size; i++) | 
|  | DMEMIT("%02x", cc->key[i]); | 
|  | else | 
|  | DMEMIT("-"); | 
|  |  | 
|  | DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, | 
|  | cc->dev->name, (unsigned long long)cc->start); | 
|  |  | 
|  | num_feature_args += !!ti->num_discard_bios; | 
|  | num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); | 
|  | num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); | 
|  | if (num_feature_args) { | 
|  | DMEMIT(" %d", num_feature_args); | 
|  | if (ti->num_discard_bios) | 
|  | DMEMIT(" allow_discards"); | 
|  | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) | 
|  | DMEMIT(" same_cpu_crypt"); | 
|  | if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) | 
|  | DMEMIT(" submit_from_crypt_cpus"); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void crypt_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | set_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
|  | } | 
|  |  | 
|  | static int crypt_preresume(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { | 
|  | DMERR("aborting resume - crypt key is not set."); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_resume(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
|  | } | 
|  |  | 
|  | /* Message interface | 
|  | *	key set <key> | 
|  | *	key wipe | 
|  | */ | 
|  | static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (argc < 2) | 
|  | goto error; | 
|  |  | 
|  | if (!strcasecmp(argv[0], "key")) { | 
|  | if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { | 
|  | DMWARN("not suspended during key manipulation."); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (argc == 3 && !strcasecmp(argv[1], "set")) { | 
|  | ret = crypt_set_key(cc, argv[2]); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->init) | 
|  | ret = cc->iv_gen_ops->init(cc); | 
|  | return ret; | 
|  | } | 
|  | if (argc == 2 && !strcasecmp(argv[1], "wipe")) { | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { | 
|  | ret = cc->iv_gen_ops->wipe(cc); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return crypt_wipe_key(cc); | 
|  | } | 
|  | } | 
|  |  | 
|  | error: | 
|  | DMWARN("unrecognised message received."); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int crypt_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | return fn(ti, cc->dev, cc->start, ti->len, data); | 
|  | } | 
|  |  | 
|  | static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | { | 
|  | /* | 
|  | * Unfortunate constraint that is required to avoid the potential | 
|  | * for exceeding underlying device's max_segments limits -- due to | 
|  | * crypt_alloc_buffer() possibly allocating pages for the encryption | 
|  | * bio that are not as physically contiguous as the original bio. | 
|  | */ | 
|  | limits->max_segment_size = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | static struct target_type crypt_target = { | 
|  | .name   = "crypt", | 
|  | .version = {1, 14, 1}, | 
|  | .module = THIS_MODULE, | 
|  | .ctr    = crypt_ctr, | 
|  | .dtr    = crypt_dtr, | 
|  | .map    = crypt_map, | 
|  | .status = crypt_status, | 
|  | .postsuspend = crypt_postsuspend, | 
|  | .preresume = crypt_preresume, | 
|  | .resume = crypt_resume, | 
|  | .message = crypt_message, | 
|  | .iterate_devices = crypt_iterate_devices, | 
|  | .io_hints = crypt_io_hints, | 
|  | }; | 
|  |  | 
|  | static int __init dm_crypt_init(void) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = dm_register_target(&crypt_target); | 
|  | if (r < 0) | 
|  | DMERR("register failed %d", r); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __exit dm_crypt_exit(void) | 
|  | { | 
|  | dm_unregister_target(&crypt_target); | 
|  | } | 
|  |  | 
|  | module_init(dm_crypt_init); | 
|  | module_exit(dm_crypt_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Jana Saout <jana@saout.de>"); | 
|  | MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); | 
|  | MODULE_LICENSE("GPL"); |