|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. | 
|  | * | 
|  | * (C) Copyright 2014, 2015 Linaro Ltd. | 
|  | * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> | 
|  | * | 
|  | * CPPC describes a few methods for controlling CPU performance using | 
|  | * information from a per CPU table called CPC. This table is described in | 
|  | * the ACPI v5.0+ specification. The table consists of a list of | 
|  | * registers which may be memory mapped or hardware registers and also may | 
|  | * include some static integer values. | 
|  | * | 
|  | * CPU performance is on an abstract continuous scale as against a discretized | 
|  | * P-state scale which is tied to CPU frequency only. In brief, the basic | 
|  | * operation involves: | 
|  | * | 
|  | * - OS makes a CPU performance request. (Can provide min and max bounds) | 
|  | * | 
|  | * - Platform (such as BMC) is free to optimize request within requested bounds | 
|  | *   depending on power/thermal budgets etc. | 
|  | * | 
|  | * - Platform conveys its decision back to OS | 
|  | * | 
|  | * The communication between OS and platform occurs through another medium | 
|  | * called (PCC) Platform Communication Channel. This is a generic mailbox like | 
|  | * mechanism which includes doorbell semantics to indicate register updates. | 
|  | * See drivers/mailbox/pcc.c for details on PCC. | 
|  | * | 
|  | * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and | 
|  | * above specifications. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)	"ACPI CPPC: " fmt | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/iopoll.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/rwsem.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/units.h> | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  | #include <acpi/cppc_acpi.h> | 
|  |  | 
|  | struct cppc_pcc_data { | 
|  | struct pcc_mbox_chan *pcc_channel; | 
|  | void __iomem *pcc_comm_addr; | 
|  | bool pcc_channel_acquired; | 
|  | unsigned int deadline_us; | 
|  | unsigned int pcc_mpar, pcc_mrtt, pcc_nominal; | 
|  |  | 
|  | bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */ | 
|  | bool platform_owns_pcc;		/* Ownership of PCC subspace */ | 
|  | unsigned int pcc_write_cnt;	/* Running count of PCC write commands */ | 
|  |  | 
|  | /* | 
|  | * Lock to provide controlled access to the PCC channel. | 
|  | * | 
|  | * For performance critical usecases(currently cppc_set_perf) | 
|  | *	We need to take read_lock and check if channel belongs to OSPM | 
|  | * before reading or writing to PCC subspace | 
|  | *	We need to take write_lock before transferring the channel | 
|  | * ownership to the platform via a Doorbell | 
|  | *	This allows us to batch a number of CPPC requests if they happen | 
|  | * to originate in about the same time | 
|  | * | 
|  | * For non-performance critical usecases(init) | 
|  | *	Take write_lock for all purposes which gives exclusive access | 
|  | */ | 
|  | struct rw_semaphore pcc_lock; | 
|  |  | 
|  | /* Wait queue for CPUs whose requests were batched */ | 
|  | wait_queue_head_t pcc_write_wait_q; | 
|  | ktime_t last_cmd_cmpl_time; | 
|  | ktime_t last_mpar_reset; | 
|  | int mpar_count; | 
|  | int refcount; | 
|  | }; | 
|  |  | 
|  | /* Array to represent the PCC channel per subspace ID */ | 
|  | static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES]; | 
|  | /* The cpu_pcc_subspace_idx contains per CPU subspace ID */ | 
|  | static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx); | 
|  |  | 
|  | /* | 
|  | * The cpc_desc structure contains the ACPI register details | 
|  | * as described in the per CPU _CPC tables. The details | 
|  | * include the type of register (e.g. PCC, System IO, FFH etc.) | 
|  | * and destination addresses which lets us READ/WRITE CPU performance | 
|  | * information using the appropriate I/O methods. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); | 
|  |  | 
|  | /* pcc mapped address + header size + offset within PCC subspace */ | 
|  | #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \ | 
|  | 0x8 + (offs)) | 
|  |  | 
|  | /* Check if a CPC register is in PCC */ | 
|  | #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\ | 
|  | (cpc)->cpc_entry.reg.space_id ==	\ | 
|  | ACPI_ADR_SPACE_PLATFORM_COMM) | 
|  |  | 
|  | /* Check if a CPC register is in SystemMemory */ | 
|  | #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\ | 
|  | (cpc)->cpc_entry.reg.space_id ==	\ | 
|  | ACPI_ADR_SPACE_SYSTEM_MEMORY) | 
|  |  | 
|  | /* Check if a CPC register is in SystemIo */ | 
|  | #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\ | 
|  | (cpc)->cpc_entry.reg.space_id ==	\ | 
|  | ACPI_ADR_SPACE_SYSTEM_IO) | 
|  |  | 
|  | /* Evaluates to True if reg is a NULL register descriptor */ | 
|  | #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \ | 
|  | (reg)->address == 0 &&			\ | 
|  | (reg)->bit_width == 0 &&		\ | 
|  | (reg)->bit_offset == 0 &&		\ | 
|  | (reg)->access_width == 0) | 
|  |  | 
|  | /* Evaluates to True if an optional cpc field is supported */ | 
|  | #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\ | 
|  | !!(cpc)->cpc_entry.int_value :		\ | 
|  | !IS_NULL_REG(&(cpc)->cpc_entry.reg)) | 
|  | /* | 
|  | * Arbitrary Retries in case the remote processor is slow to respond | 
|  | * to PCC commands. Keeping it high enough to cover emulators where | 
|  | * the processors run painfully slow. | 
|  | */ | 
|  | #define NUM_RETRIES 500ULL | 
|  |  | 
|  | #define OVER_16BTS_MASK ~0xFFFFULL | 
|  |  | 
|  | #define define_one_cppc_ro(_name)		\ | 
|  | static struct kobj_attribute _name =		\ | 
|  | __ATTR(_name, 0444, show_##_name, NULL) | 
|  |  | 
|  | #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj) | 
|  |  | 
|  | #define show_cppc_data(access_fn, struct_name, member_name)		\ | 
|  | static ssize_t show_##member_name(struct kobject *kobj,		\ | 
|  | struct kobj_attribute *attr, char *buf)	\ | 
|  | {								\ | 
|  | struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\ | 
|  | struct struct_name st_name = {0};			\ | 
|  | int ret;						\ | 
|  | \ | 
|  | ret = access_fn(cpc_ptr->cpu_id, &st_name);		\ | 
|  | if (ret)						\ | 
|  | return ret;					\ | 
|  | \ | 
|  | return sysfs_emit(buf, "%llu\n",		\ | 
|  | (u64)st_name.member_name);		\ | 
|  | }								\ | 
|  | define_one_cppc_ro(member_name) | 
|  |  | 
|  | show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf); | 
|  | show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf); | 
|  | show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf); | 
|  | show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf); | 
|  | show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq); | 
|  | show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq); | 
|  |  | 
|  | show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf); | 
|  | show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time); | 
|  |  | 
|  | /* Check for valid access_width, otherwise, fallback to using bit_width */ | 
|  | #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width) | 
|  |  | 
|  | /* Shift and apply the mask for CPC reads/writes */ | 
|  | #define MASK_VAL(reg, val) ((val) >> ((reg)->bit_offset & 			\ | 
|  | GENMASK(((reg)->bit_width), 0))) | 
|  |  | 
|  | static ssize_t show_feedback_ctrs(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); | 
|  | struct cppc_perf_fb_ctrs fb_ctrs = {0}; | 
|  | int ret; | 
|  |  | 
|  | ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return sysfs_emit(buf, "ref:%llu del:%llu\n", | 
|  | fb_ctrs.reference, fb_ctrs.delivered); | 
|  | } | 
|  | define_one_cppc_ro(feedback_ctrs); | 
|  |  | 
|  | static struct attribute *cppc_attrs[] = { | 
|  | &feedback_ctrs.attr, | 
|  | &reference_perf.attr, | 
|  | &wraparound_time.attr, | 
|  | &highest_perf.attr, | 
|  | &lowest_perf.attr, | 
|  | &lowest_nonlinear_perf.attr, | 
|  | &nominal_perf.attr, | 
|  | &nominal_freq.attr, | 
|  | &lowest_freq.attr, | 
|  | NULL | 
|  | }; | 
|  | ATTRIBUTE_GROUPS(cppc); | 
|  |  | 
|  | static const struct kobj_type cppc_ktype = { | 
|  | .sysfs_ops = &kobj_sysfs_ops, | 
|  | .default_groups = cppc_groups, | 
|  | }; | 
|  |  | 
|  | static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit) | 
|  | { | 
|  | int ret, status; | 
|  | struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  | struct acpi_pcct_shared_memory __iomem *generic_comm_base = | 
|  | pcc_ss_data->pcc_comm_addr; | 
|  |  | 
|  | if (!pcc_ss_data->platform_owns_pcc) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Poll PCC status register every 3us(delay_us) for maximum of | 
|  | * deadline_us(timeout_us) until PCC command complete bit is set(cond) | 
|  | */ | 
|  | ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status, | 
|  | status & PCC_CMD_COMPLETE_MASK, 3, | 
|  | pcc_ss_data->deadline_us); | 
|  |  | 
|  | if (likely(!ret)) { | 
|  | pcc_ss_data->platform_owns_pcc = false; | 
|  | if (chk_err_bit && (status & PCC_ERROR_MASK)) | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | if (unlikely(ret)) | 
|  | pr_err("PCC check channel failed for ss: %d. ret=%d\n", | 
|  | pcc_ss_id, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function transfers the ownership of the PCC to the platform | 
|  | * So it must be called while holding write_lock(pcc_lock) | 
|  | */ | 
|  | static int send_pcc_cmd(int pcc_ss_id, u16 cmd) | 
|  | { | 
|  | int ret = -EIO, i; | 
|  | struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  | struct acpi_pcct_shared_memory __iomem *generic_comm_base = | 
|  | pcc_ss_data->pcc_comm_addr; | 
|  | unsigned int time_delta; | 
|  |  | 
|  | /* | 
|  | * For CMD_WRITE we know for a fact the caller should have checked | 
|  | * the channel before writing to PCC space | 
|  | */ | 
|  | if (cmd == CMD_READ) { | 
|  | /* | 
|  | * If there are pending cpc_writes, then we stole the channel | 
|  | * before write completion, so first send a WRITE command to | 
|  | * platform | 
|  | */ | 
|  | if (pcc_ss_data->pending_pcc_write_cmd) | 
|  | send_pcc_cmd(pcc_ss_id, CMD_WRITE); | 
|  |  | 
|  | ret = check_pcc_chan(pcc_ss_id, false); | 
|  | if (ret) | 
|  | goto end; | 
|  | } else /* CMD_WRITE */ | 
|  | pcc_ss_data->pending_pcc_write_cmd = FALSE; | 
|  |  | 
|  | /* | 
|  | * Handle the Minimum Request Turnaround Time(MRTT) | 
|  | * "The minimum amount of time that OSPM must wait after the completion | 
|  | * of a command before issuing the next command, in microseconds" | 
|  | */ | 
|  | if (pcc_ss_data->pcc_mrtt) { | 
|  | time_delta = ktime_us_delta(ktime_get(), | 
|  | pcc_ss_data->last_cmd_cmpl_time); | 
|  | if (pcc_ss_data->pcc_mrtt > time_delta) | 
|  | udelay(pcc_ss_data->pcc_mrtt - time_delta); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the non-zero Maximum Periodic Access Rate(MPAR) | 
|  | * "The maximum number of periodic requests that the subspace channel can | 
|  | * support, reported in commands per minute. 0 indicates no limitation." | 
|  | * | 
|  | * This parameter should be ideally zero or large enough so that it can | 
|  | * handle maximum number of requests that all the cores in the system can | 
|  | * collectively generate. If it is not, we will follow the spec and just | 
|  | * not send the request to the platform after hitting the MPAR limit in | 
|  | * any 60s window | 
|  | */ | 
|  | if (pcc_ss_data->pcc_mpar) { | 
|  | if (pcc_ss_data->mpar_count == 0) { | 
|  | time_delta = ktime_ms_delta(ktime_get(), | 
|  | pcc_ss_data->last_mpar_reset); | 
|  | if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) { | 
|  | pr_debug("PCC cmd for subspace %d not sent due to MPAR limit", | 
|  | pcc_ss_id); | 
|  | ret = -EIO; | 
|  | goto end; | 
|  | } | 
|  | pcc_ss_data->last_mpar_reset = ktime_get(); | 
|  | pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar; | 
|  | } | 
|  | pcc_ss_data->mpar_count--; | 
|  | } | 
|  |  | 
|  | /* Write to the shared comm region. */ | 
|  | writew_relaxed(cmd, &generic_comm_base->command); | 
|  |  | 
|  | /* Flip CMD COMPLETE bit */ | 
|  | writew_relaxed(0, &generic_comm_base->status); | 
|  |  | 
|  | pcc_ss_data->platform_owns_pcc = true; | 
|  |  | 
|  | /* Ring doorbell */ | 
|  | ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd); | 
|  | if (ret < 0) { | 
|  | pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n", | 
|  | pcc_ss_id, cmd, ret); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* wait for completion and check for PCC error bit */ | 
|  | ret = check_pcc_chan(pcc_ss_id, true); | 
|  |  | 
|  | if (pcc_ss_data->pcc_mrtt) | 
|  | pcc_ss_data->last_cmd_cmpl_time = ktime_get(); | 
|  |  | 
|  | if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq) | 
|  | mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret); | 
|  | else | 
|  | mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret); | 
|  |  | 
|  | end: | 
|  | if (cmd == CMD_WRITE) { | 
|  | if (unlikely(ret)) { | 
|  | for_each_possible_cpu(i) { | 
|  | struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i); | 
|  |  | 
|  | if (!desc) | 
|  | continue; | 
|  |  | 
|  | if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt) | 
|  | desc->write_cmd_status = ret; | 
|  | } | 
|  | } | 
|  | pcc_ss_data->pcc_write_cnt++; | 
|  | wake_up_all(&pcc_ss_data->pcc_write_wait_q); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) | 
|  | { | 
|  | if (ret < 0) | 
|  | pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", | 
|  | *(u16 *)msg, ret); | 
|  | else | 
|  | pr_debug("TX completed. CMD sent:%x, ret:%d\n", | 
|  | *(u16 *)msg, ret); | 
|  | } | 
|  |  | 
|  | static struct mbox_client cppc_mbox_cl = { | 
|  | .tx_done = cppc_chan_tx_done, | 
|  | .knows_txdone = true, | 
|  | }; | 
|  |  | 
|  | static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) | 
|  | { | 
|  | int result = -EFAULT; | 
|  | acpi_status status = AE_OK; | 
|  | struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; | 
|  | struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; | 
|  | struct acpi_buffer state = {0, NULL}; | 
|  | union acpi_object  *psd = NULL; | 
|  | struct acpi_psd_package *pdomain; | 
|  |  | 
|  | status = acpi_evaluate_object_typed(handle, "_PSD", NULL, | 
|  | &buffer, ACPI_TYPE_PACKAGE); | 
|  | if (status == AE_NOT_FOUND)	/* _PSD is optional */ | 
|  | return 0; | 
|  | if (ACPI_FAILURE(status)) | 
|  | return -ENODEV; | 
|  |  | 
|  | psd = buffer.pointer; | 
|  | if (!psd || psd->package.count != 1) { | 
|  | pr_debug("Invalid _PSD data\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | pdomain = &(cpc_ptr->domain_info); | 
|  |  | 
|  | state.length = sizeof(struct acpi_psd_package); | 
|  | state.pointer = pdomain; | 
|  |  | 
|  | status = acpi_extract_package(&(psd->package.elements[0]), | 
|  | &format, &state); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { | 
|  | pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (pdomain->revision != ACPI_PSD_REV0_REVISION) { | 
|  | pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && | 
|  | pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && | 
|  | pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { | 
|  | pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | result = 0; | 
|  | end: | 
|  | kfree(buffer.pointer); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | bool acpi_cpc_valid(void) | 
|  | { | 
|  | struct cpc_desc *cpc_ptr; | 
|  | int cpu; | 
|  |  | 
|  | if (acpi_disabled) | 
|  | return false; | 
|  |  | 
|  | for_each_present_cpu(cpu) { | 
|  | cpc_ptr = per_cpu(cpc_desc_ptr, cpu); | 
|  | if (!cpc_ptr) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(acpi_cpc_valid); | 
|  |  | 
|  | bool cppc_allow_fast_switch(void) | 
|  | { | 
|  | struct cpc_register_resource *desired_reg; | 
|  | struct cpc_desc *cpc_ptr; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | cpc_ptr = per_cpu(cpc_desc_ptr, cpu); | 
|  | desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF]; | 
|  | if (!CPC_IN_SYSTEM_MEMORY(desired_reg) && | 
|  | !CPC_IN_SYSTEM_IO(desired_reg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_allow_fast_switch); | 
|  |  | 
|  | /** | 
|  | * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu | 
|  | * @cpu: Find all CPUs that share a domain with cpu. | 
|  | * @cpu_data: Pointer to CPU specific CPPC data including PSD info. | 
|  | * | 
|  | *	Return: 0 for success or negative value for err. | 
|  | */ | 
|  | int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data) | 
|  | { | 
|  | struct cpc_desc *cpc_ptr, *match_cpc_ptr; | 
|  | struct acpi_psd_package *match_pdomain; | 
|  | struct acpi_psd_package *pdomain; | 
|  | int count_target, i; | 
|  |  | 
|  | /* | 
|  | * Now that we have _PSD data from all CPUs, let's setup P-state | 
|  | * domain info. | 
|  | */ | 
|  | cpc_ptr = per_cpu(cpc_desc_ptr, cpu); | 
|  | if (!cpc_ptr) | 
|  | return -EFAULT; | 
|  |  | 
|  | pdomain = &(cpc_ptr->domain_info); | 
|  | cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); | 
|  | if (pdomain->num_processors <= 1) | 
|  | return 0; | 
|  |  | 
|  | /* Validate the Domain info */ | 
|  | count_target = pdomain->num_processors; | 
|  | if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) | 
|  | cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL; | 
|  | else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) | 
|  | cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW; | 
|  | else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) | 
|  | cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | if (i == cpu) | 
|  | continue; | 
|  |  | 
|  | match_cpc_ptr = per_cpu(cpc_desc_ptr, i); | 
|  | if (!match_cpc_ptr) | 
|  | goto err_fault; | 
|  |  | 
|  | match_pdomain = &(match_cpc_ptr->domain_info); | 
|  | if (match_pdomain->domain != pdomain->domain) | 
|  | continue; | 
|  |  | 
|  | /* Here i and cpu are in the same domain */ | 
|  | if (match_pdomain->num_processors != count_target) | 
|  | goto err_fault; | 
|  |  | 
|  | if (pdomain->coord_type != match_pdomain->coord_type) | 
|  | goto err_fault; | 
|  |  | 
|  | cpumask_set_cpu(i, cpu_data->shared_cpu_map); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_fault: | 
|  | /* Assume no coordination on any error parsing domain info */ | 
|  | cpumask_clear(cpu_data->shared_cpu_map); | 
|  | cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); | 
|  | cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE; | 
|  |  | 
|  | return -EFAULT; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(acpi_get_psd_map); | 
|  |  | 
|  | static int register_pcc_channel(int pcc_ss_idx) | 
|  | { | 
|  | struct pcc_mbox_chan *pcc_chan; | 
|  | u64 usecs_lat; | 
|  |  | 
|  | if (pcc_ss_idx >= 0) { | 
|  | pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx); | 
|  |  | 
|  | if (IS_ERR(pcc_chan)) { | 
|  | pr_err("Failed to find PCC channel for subspace %d\n", | 
|  | pcc_ss_idx); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan; | 
|  | /* | 
|  | * cppc_ss->latency is just a Nominal value. In reality | 
|  | * the remote processor could be much slower to reply. | 
|  | * So add an arbitrary amount of wait on top of Nominal. | 
|  | */ | 
|  | usecs_lat = NUM_RETRIES * pcc_chan->latency; | 
|  | pcc_data[pcc_ss_idx]->deadline_us = usecs_lat; | 
|  | pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time; | 
|  | pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate; | 
|  | pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency; | 
|  |  | 
|  | pcc_data[pcc_ss_idx]->pcc_comm_addr = | 
|  | acpi_os_ioremap(pcc_chan->shmem_base_addr, | 
|  | pcc_chan->shmem_size); | 
|  | if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) { | 
|  | pr_err("Failed to ioremap PCC comm region mem for %d\n", | 
|  | pcc_ss_idx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Set flag so that we don't come here for each CPU. */ | 
|  | pcc_data[pcc_ss_idx]->pcc_channel_acquired = true; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpc_ffh_supported() - check if FFH reading supported | 
|  | * | 
|  | * Check if the architecture has support for functional fixed hardware | 
|  | * read/write capability. | 
|  | * | 
|  | * Return: true for supported, false for not supported | 
|  | */ | 
|  | bool __weak cpc_ffh_supported(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpc_supported_by_cpu() - check if CPPC is supported by CPU | 
|  | * | 
|  | * Check if the architectural support for CPPC is present even | 
|  | * if the _OSC hasn't prescribed it | 
|  | * | 
|  | * Return: true for supported, false for not supported | 
|  | */ | 
|  | bool __weak cpc_supported_by_cpu(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace | 
|  | * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package. | 
|  | * | 
|  | * Check and allocate the cppc_pcc_data memory. | 
|  | * In some processor configurations it is possible that same subspace | 
|  | * is shared between multiple CPUs. This is seen especially in CPUs | 
|  | * with hardware multi-threading support. | 
|  | * | 
|  | * Return: 0 for success, errno for failure | 
|  | */ | 
|  | static int pcc_data_alloc(int pcc_ss_id) | 
|  | { | 
|  | if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (pcc_data[pcc_ss_id]) { | 
|  | pcc_data[pcc_ss_id]->refcount++; | 
|  | } else { | 
|  | pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data), | 
|  | GFP_KERNEL); | 
|  | if (!pcc_data[pcc_ss_id]) | 
|  | return -ENOMEM; | 
|  | pcc_data[pcc_ss_id]->refcount++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * An example CPC table looks like the following. | 
|  | * | 
|  | *  Name (_CPC, Package() { | 
|  | *      17,							// NumEntries | 
|  | *      1,							// Revision | 
|  | *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance | 
|  | *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance | 
|  | *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance | 
|  | *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance | 
|  | *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register | 
|  | *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register | 
|  | *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)}, | 
|  | *      ... | 
|  | *      ... | 
|  | *      ... | 
|  | *  } | 
|  | * Each Register() encodes how to access that specific register. | 
|  | * e.g. a sample PCC entry has the following encoding: | 
|  | * | 
|  | *  Register ( | 
|  | *      PCC,	// AddressSpaceKeyword | 
|  | *      8,	// RegisterBitWidth | 
|  | *      8,	// RegisterBitOffset | 
|  | *      0x30,	// RegisterAddress | 
|  | *      9,	// AccessSize (subspace ID) | 
|  | *  ) | 
|  | */ | 
|  |  | 
|  | #ifndef arch_init_invariance_cppc | 
|  | static inline void arch_init_invariance_cppc(void) { } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * acpi_cppc_processor_probe - Search for per CPU _CPC objects. | 
|  | * @pr: Ptr to acpi_processor containing this CPU's logical ID. | 
|  | * | 
|  | *	Return: 0 for success or negative value for err. | 
|  | */ | 
|  | int acpi_cppc_processor_probe(struct acpi_processor *pr) | 
|  | { | 
|  | struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; | 
|  | union acpi_object *out_obj, *cpc_obj; | 
|  | struct cpc_desc *cpc_ptr; | 
|  | struct cpc_reg *gas_t; | 
|  | struct device *cpu_dev; | 
|  | acpi_handle handle = pr->handle; | 
|  | unsigned int num_ent, i, cpc_rev; | 
|  | int pcc_subspace_id = -1; | 
|  | acpi_status status; | 
|  | int ret = -ENODATA; | 
|  |  | 
|  | if (!osc_sb_cppc2_support_acked) { | 
|  | pr_debug("CPPC v2 _OSC not acked\n"); | 
|  | if (!cpc_supported_by_cpu()) | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Parse the ACPI _CPC table for this CPU. */ | 
|  | status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, | 
|  | ACPI_TYPE_PACKAGE); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | ret = -ENODEV; | 
|  | goto out_buf_free; | 
|  | } | 
|  |  | 
|  | out_obj = (union acpi_object *) output.pointer; | 
|  |  | 
|  | cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); | 
|  | if (!cpc_ptr) { | 
|  | ret = -ENOMEM; | 
|  | goto out_buf_free; | 
|  | } | 
|  |  | 
|  | /* First entry is NumEntries. */ | 
|  | cpc_obj = &out_obj->package.elements[0]; | 
|  | if (cpc_obj->type == ACPI_TYPE_INTEGER)	{ | 
|  | num_ent = cpc_obj->integer.value; | 
|  | if (num_ent <= 1) { | 
|  | pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n", | 
|  | num_ent, pr->id); | 
|  | goto out_free; | 
|  | } | 
|  | } else { | 
|  | pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n", | 
|  | cpc_obj->type, pr->id); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* Second entry should be revision. */ | 
|  | cpc_obj = &out_obj->package.elements[1]; | 
|  | if (cpc_obj->type == ACPI_TYPE_INTEGER)	{ | 
|  | cpc_rev = cpc_obj->integer.value; | 
|  | } else { | 
|  | pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n", | 
|  | cpc_obj->type, pr->id); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | if (cpc_rev < CPPC_V2_REV) { | 
|  | pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev, | 
|  | pr->id); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disregard _CPC if the number of entries in the return pachage is not | 
|  | * as expected, but support future revisions being proper supersets of | 
|  | * the v3 and only causing more entries to be returned by _CPC. | 
|  | */ | 
|  | if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) || | 
|  | (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) || | 
|  | (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) { | 
|  | pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n", | 
|  | num_ent, pr->id); | 
|  | goto out_free; | 
|  | } | 
|  | if (cpc_rev > CPPC_V3_REV) { | 
|  | num_ent = CPPC_V3_NUM_ENT; | 
|  | cpc_rev = CPPC_V3_REV; | 
|  | } | 
|  |  | 
|  | cpc_ptr->num_entries = num_ent; | 
|  | cpc_ptr->version = cpc_rev; | 
|  |  | 
|  | /* Iterate through remaining entries in _CPC */ | 
|  | for (i = 2; i < num_ent; i++) { | 
|  | cpc_obj = &out_obj->package.elements[i]; | 
|  |  | 
|  | if (cpc_obj->type == ACPI_TYPE_INTEGER)	{ | 
|  | cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; | 
|  | cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; | 
|  | } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { | 
|  | gas_t = (struct cpc_reg *) | 
|  | cpc_obj->buffer.pointer; | 
|  |  | 
|  | /* | 
|  | * The PCC Subspace index is encoded inside | 
|  | * the CPC table entries. The same PCC index | 
|  | * will be used for all the PCC entries, | 
|  | * so extract it only once. | 
|  | */ | 
|  | if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { | 
|  | if (pcc_subspace_id < 0) { | 
|  | pcc_subspace_id = gas_t->access_width; | 
|  | if (pcc_data_alloc(pcc_subspace_id)) | 
|  | goto out_free; | 
|  | } else if (pcc_subspace_id != gas_t->access_width) { | 
|  | pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n", | 
|  | pr->id); | 
|  | goto out_free; | 
|  | } | 
|  | } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { | 
|  | if (gas_t->address) { | 
|  | void __iomem *addr; | 
|  | size_t access_width; | 
|  |  | 
|  | if (!osc_cpc_flexible_adr_space_confirmed) { | 
|  | pr_debug("Flexible address space capability not supported\n"); | 
|  | if (!cpc_supported_by_cpu()) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | access_width = GET_BIT_WIDTH(gas_t) / 8; | 
|  | addr = ioremap(gas_t->address, access_width); | 
|  | if (!addr) | 
|  | goto out_free; | 
|  | cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr; | 
|  | } | 
|  | } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { | 
|  | if (gas_t->access_width < 1 || gas_t->access_width > 3) { | 
|  | /* | 
|  | * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit. | 
|  | * SystemIO doesn't implement 64-bit | 
|  | * registers. | 
|  | */ | 
|  | pr_debug("Invalid access width %d for SystemIO register in _CPC\n", | 
|  | gas_t->access_width); | 
|  | goto out_free; | 
|  | } | 
|  | if (gas_t->address & OVER_16BTS_MASK) { | 
|  | /* SystemIO registers use 16-bit integer addresses */ | 
|  | pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n", | 
|  | gas_t->address); | 
|  | goto out_free; | 
|  | } | 
|  | if (!osc_cpc_flexible_adr_space_confirmed) { | 
|  | pr_debug("Flexible address space capability not supported\n"); | 
|  | if (!cpc_supported_by_cpu()) | 
|  | goto out_free; | 
|  | } | 
|  | } else { | 
|  | if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) { | 
|  | /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */ | 
|  | pr_debug("Unsupported register type (%d) in _CPC\n", | 
|  | gas_t->space_id); | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; | 
|  | memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); | 
|  | } else { | 
|  | pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n", | 
|  | i, pr->id); | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  | per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id; | 
|  |  | 
|  | /* | 
|  | * Initialize the remaining cpc_regs as unsupported. | 
|  | * Example: In case FW exposes CPPC v2, the below loop will initialize | 
|  | * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported | 
|  | */ | 
|  | for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) { | 
|  | cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER; | 
|  | cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Store CPU Logical ID */ | 
|  | cpc_ptr->cpu_id = pr->id; | 
|  |  | 
|  | /* Parse PSD data for this CPU */ | 
|  | ret = acpi_get_psd(cpc_ptr, handle); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | /* Register PCC channel once for all PCC subspace ID. */ | 
|  | if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) { | 
|  | ret = register_pcc_channel(pcc_subspace_id); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock); | 
|  | init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q); | 
|  | } | 
|  |  | 
|  | /* Everything looks okay */ | 
|  | pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); | 
|  |  | 
|  | /* Add per logical CPU nodes for reading its feedback counters. */ | 
|  | cpu_dev = get_cpu_device(pr->id); | 
|  | if (!cpu_dev) { | 
|  | ret = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* Plug PSD data into this CPU's CPC descriptor. */ | 
|  | per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; | 
|  |  | 
|  | ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj, | 
|  | "acpi_cppc"); | 
|  | if (ret) { | 
|  | per_cpu(cpc_desc_ptr, pr->id) = NULL; | 
|  | kobject_put(&cpc_ptr->kobj); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | arch_init_invariance_cppc(); | 
|  |  | 
|  | kfree(output.pointer); | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | /* Free all the mapped sys mem areas for this CPU */ | 
|  | for (i = 2; i < cpc_ptr->num_entries; i++) { | 
|  | void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; | 
|  |  | 
|  | if (addr) | 
|  | iounmap(addr); | 
|  | } | 
|  | kfree(cpc_ptr); | 
|  |  | 
|  | out_buf_free: | 
|  | kfree(output.pointer); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); | 
|  |  | 
|  | /** | 
|  | * acpi_cppc_processor_exit - Cleanup CPC structs. | 
|  | * @pr: Ptr to acpi_processor containing this CPU's logical ID. | 
|  | * | 
|  | * Return: Void | 
|  | */ | 
|  | void acpi_cppc_processor_exit(struct acpi_processor *pr) | 
|  | { | 
|  | struct cpc_desc *cpc_ptr; | 
|  | unsigned int i; | 
|  | void __iomem *addr; | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id); | 
|  |  | 
|  | if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) { | 
|  | if (pcc_data[pcc_ss_id]->pcc_channel_acquired) { | 
|  | pcc_data[pcc_ss_id]->refcount--; | 
|  | if (!pcc_data[pcc_ss_id]->refcount) { | 
|  | pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel); | 
|  | kfree(pcc_data[pcc_ss_id]); | 
|  | pcc_data[pcc_ss_id] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); | 
|  | if (!cpc_ptr) | 
|  | return; | 
|  |  | 
|  | /* Free all the mapped sys mem areas for this CPU */ | 
|  | for (i = 2; i < cpc_ptr->num_entries; i++) { | 
|  | addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; | 
|  | if (addr) | 
|  | iounmap(addr); | 
|  | } | 
|  |  | 
|  | kobject_put(&cpc_ptr->kobj); | 
|  | kfree(cpc_ptr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); | 
|  |  | 
|  | /** | 
|  | * cpc_read_ffh() - Read FFH register | 
|  | * @cpunum:	CPU number to read | 
|  | * @reg:	cppc register information | 
|  | * @val:	place holder for return value | 
|  | * | 
|  | * Read bit_width bits from a specified address and bit_offset | 
|  | * | 
|  | * Return: 0 for success and error code | 
|  | */ | 
|  | int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val) | 
|  | { | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpc_write_ffh() - Write FFH register | 
|  | * @cpunum:	CPU number to write | 
|  | * @reg:	cppc register information | 
|  | * @val:	value to write | 
|  | * | 
|  | * Write value of bit_width bits to a specified address and bit_offset | 
|  | * | 
|  | * Return: 0 for success and error code | 
|  | */ | 
|  | int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) | 
|  | { | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since cpc_read and cpc_write are called while holding pcc_lock, it should be | 
|  | * as fast as possible. We have already mapped the PCC subspace during init, so | 
|  | * we can directly write to it. | 
|  | */ | 
|  |  | 
|  | static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val) | 
|  | { | 
|  | void __iomem *vaddr = NULL; | 
|  | int size; | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); | 
|  | struct cpc_reg *reg = ®_res->cpc_entry.reg; | 
|  |  | 
|  | if (reg_res->type == ACPI_TYPE_INTEGER) { | 
|  | *val = reg_res->cpc_entry.int_value; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *val = 0; | 
|  |  | 
|  | if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { | 
|  | u32 width = GET_BIT_WIDTH(reg); | 
|  | u32 val_u32; | 
|  | acpi_status status; | 
|  |  | 
|  | status = acpi_os_read_port((acpi_io_address)reg->address, | 
|  | &val_u32, width); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | pr_debug("Error: Failed to read SystemIO port %llx\n", | 
|  | reg->address); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | *val = val_u32; | 
|  | return 0; | 
|  | } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) | 
|  | vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); | 
|  | else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) | 
|  | vaddr = reg_res->sys_mem_vaddr; | 
|  | else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) | 
|  | return cpc_read_ffh(cpu, reg, val); | 
|  | else | 
|  | return acpi_os_read_memory((acpi_physical_address)reg->address, | 
|  | val, reg->bit_width); | 
|  |  | 
|  | size = GET_BIT_WIDTH(reg); | 
|  |  | 
|  | switch (size) { | 
|  | case 8: | 
|  | *val = readb_relaxed(vaddr); | 
|  | break; | 
|  | case 16: | 
|  | *val = readw_relaxed(vaddr); | 
|  | break; | 
|  | case 32: | 
|  | *val = readl_relaxed(vaddr); | 
|  | break; | 
|  | case 64: | 
|  | *val = readq_relaxed(vaddr); | 
|  | break; | 
|  | default: | 
|  | pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n", | 
|  | reg->bit_width, pcc_ss_id); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) | 
|  | *val = MASK_VAL(reg, *val); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val) | 
|  | { | 
|  | int ret_val = 0; | 
|  | int size; | 
|  | void __iomem *vaddr = NULL; | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); | 
|  | struct cpc_reg *reg = ®_res->cpc_entry.reg; | 
|  |  | 
|  | if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { | 
|  | u32 width = GET_BIT_WIDTH(reg); | 
|  | acpi_status status; | 
|  |  | 
|  | status = acpi_os_write_port((acpi_io_address)reg->address, | 
|  | (u32)val, width); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | pr_debug("Error: Failed to write SystemIO port %llx\n", | 
|  | reg->address); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) | 
|  | vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); | 
|  | else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) | 
|  | vaddr = reg_res->sys_mem_vaddr; | 
|  | else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) | 
|  | return cpc_write_ffh(cpu, reg, val); | 
|  | else | 
|  | return acpi_os_write_memory((acpi_physical_address)reg->address, | 
|  | val, reg->bit_width); | 
|  |  | 
|  | size = GET_BIT_WIDTH(reg); | 
|  |  | 
|  | if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) | 
|  | val = MASK_VAL(reg, val); | 
|  |  | 
|  | switch (size) { | 
|  | case 8: | 
|  | writeb_relaxed(val, vaddr); | 
|  | break; | 
|  | case 16: | 
|  | writew_relaxed(val, vaddr); | 
|  | break; | 
|  | case 32: | 
|  | writel_relaxed(val, vaddr); | 
|  | break; | 
|  | case 64: | 
|  | writeq_relaxed(val, vaddr); | 
|  | break; | 
|  | default: | 
|  | pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n", | 
|  | reg->bit_width, pcc_ss_id); | 
|  | ret_val = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf) | 
|  | { | 
|  | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); | 
|  | struct cpc_register_resource *reg; | 
|  |  | 
|  | if (!cpc_desc) { | 
|  | pr_debug("No CPC descriptor for CPU:%d\n", cpunum); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | reg = &cpc_desc->cpc_regs[reg_idx]; | 
|  |  | 
|  | if (CPC_IN_PCC(reg)) { | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); | 
|  | struct cppc_pcc_data *pcc_ss_data = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (pcc_ss_id < 0) | 
|  | return -EIO; | 
|  |  | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  |  | 
|  | down_write(&pcc_ss_data->pcc_lock); | 
|  |  | 
|  | if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) | 
|  | cpc_read(cpunum, reg, perf); | 
|  | else | 
|  | ret = -EIO; | 
|  |  | 
|  | up_write(&pcc_ss_data->pcc_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cpc_read(cpunum, reg, perf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cppc_get_desired_perf - Get the desired performance register value. | 
|  | * @cpunum: CPU from which to get desired performance. | 
|  | * @desired_perf: Return address. | 
|  | * | 
|  | * Return: 0 for success, -EIO otherwise. | 
|  | */ | 
|  | int cppc_get_desired_perf(int cpunum, u64 *desired_perf) | 
|  | { | 
|  | return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_get_desired_perf); | 
|  |  | 
|  | /** | 
|  | * cppc_get_nominal_perf - Get the nominal performance register value. | 
|  | * @cpunum: CPU from which to get nominal performance. | 
|  | * @nominal_perf: Return address. | 
|  | * | 
|  | * Return: 0 for success, -EIO otherwise. | 
|  | */ | 
|  | int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf) | 
|  | { | 
|  | return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cppc_get_highest_perf - Get the highest performance register value. | 
|  | * @cpunum: CPU from which to get highest performance. | 
|  | * @highest_perf: Return address. | 
|  | * | 
|  | * Return: 0 for success, -EIO otherwise. | 
|  | */ | 
|  | int cppc_get_highest_perf(int cpunum, u64 *highest_perf) | 
|  | { | 
|  | return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_get_highest_perf); | 
|  |  | 
|  | /** | 
|  | * cppc_get_epp_perf - Get the epp register value. | 
|  | * @cpunum: CPU from which to get epp preference value. | 
|  | * @epp_perf: Return address. | 
|  | * | 
|  | * Return: 0 for success, -EIO otherwise. | 
|  | */ | 
|  | int cppc_get_epp_perf(int cpunum, u64 *epp_perf) | 
|  | { | 
|  | return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_get_epp_perf); | 
|  |  | 
|  | /** | 
|  | * cppc_get_perf_caps - Get a CPU's performance capabilities. | 
|  | * @cpunum: CPU from which to get capabilities info. | 
|  | * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h | 
|  | * | 
|  | * Return: 0 for success with perf_caps populated else -ERRNO. | 
|  | */ | 
|  | int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) | 
|  | { | 
|  | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); | 
|  | struct cpc_register_resource *highest_reg, *lowest_reg, | 
|  | *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg, | 
|  | *low_freq_reg = NULL, *nom_freq_reg = NULL; | 
|  | u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0; | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); | 
|  | struct cppc_pcc_data *pcc_ss_data = NULL; | 
|  | int ret = 0, regs_in_pcc = 0; | 
|  |  | 
|  | if (!cpc_desc) { | 
|  | pr_debug("No CPC descriptor for CPU:%d\n", cpunum); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; | 
|  | lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; | 
|  | lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF]; | 
|  | nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; | 
|  | low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ]; | 
|  | nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ]; | 
|  | guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF]; | 
|  |  | 
|  | /* Are any of the regs PCC ?*/ | 
|  | if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) || | 
|  | CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) || | 
|  | CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) { | 
|  | if (pcc_ss_id < 0) { | 
|  | pr_debug("Invalid pcc_ss_id\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  | regs_in_pcc = 1; | 
|  | down_write(&pcc_ss_data->pcc_lock); | 
|  | /* Ring doorbell once to update PCC subspace */ | 
|  | if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { | 
|  | ret = -EIO; | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | cpc_read(cpunum, highest_reg, &high); | 
|  | perf_caps->highest_perf = high; | 
|  |  | 
|  | cpc_read(cpunum, lowest_reg, &low); | 
|  | perf_caps->lowest_perf = low; | 
|  |  | 
|  | cpc_read(cpunum, nominal_reg, &nom); | 
|  | perf_caps->nominal_perf = nom; | 
|  |  | 
|  | if (guaranteed_reg->type != ACPI_TYPE_BUFFER  || | 
|  | IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) { | 
|  | perf_caps->guaranteed_perf = 0; | 
|  | } else { | 
|  | cpc_read(cpunum, guaranteed_reg, &guaranteed); | 
|  | perf_caps->guaranteed_perf = guaranteed; | 
|  | } | 
|  |  | 
|  | cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear); | 
|  | perf_caps->lowest_nonlinear_perf = min_nonlinear; | 
|  |  | 
|  | if (!high || !low || !nom || !min_nonlinear) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | /* Read optional lowest and nominal frequencies if present */ | 
|  | if (CPC_SUPPORTED(low_freq_reg)) | 
|  | cpc_read(cpunum, low_freq_reg, &low_f); | 
|  |  | 
|  | if (CPC_SUPPORTED(nom_freq_reg)) | 
|  | cpc_read(cpunum, nom_freq_reg, &nom_f); | 
|  |  | 
|  | perf_caps->lowest_freq = low_f; | 
|  | perf_caps->nominal_freq = nom_f; | 
|  |  | 
|  |  | 
|  | out_err: | 
|  | if (regs_in_pcc) | 
|  | up_write(&pcc_ss_data->pcc_lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_get_perf_caps); | 
|  |  | 
|  | /** | 
|  | * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region. | 
|  | * | 
|  | * CPPC has flexibility about how CPU performance counters are accessed. | 
|  | * One of the choices is PCC regions, which can have a high access latency. This | 
|  | * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time. | 
|  | * | 
|  | * Return: true if any of the counters are in PCC regions, false otherwise | 
|  | */ | 
|  | bool cppc_perf_ctrs_in_pcc(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_present_cpu(cpu) { | 
|  | struct cpc_register_resource *ref_perf_reg; | 
|  | struct cpc_desc *cpc_desc; | 
|  |  | 
|  | cpc_desc = per_cpu(cpc_desc_ptr, cpu); | 
|  |  | 
|  | if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) || | 
|  | CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) || | 
|  | CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME])) | 
|  | return true; | 
|  |  | 
|  |  | 
|  | ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; | 
|  |  | 
|  | /* | 
|  | * If reference perf register is not supported then we should | 
|  | * use the nominal perf value | 
|  | */ | 
|  | if (!CPC_SUPPORTED(ref_perf_reg)) | 
|  | ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; | 
|  |  | 
|  | if (CPC_IN_PCC(ref_perf_reg)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc); | 
|  |  | 
|  | /** | 
|  | * cppc_get_perf_ctrs - Read a CPU's performance feedback counters. | 
|  | * @cpunum: CPU from which to read counters. | 
|  | * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h | 
|  | * | 
|  | * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. | 
|  | */ | 
|  | int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) | 
|  | { | 
|  | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); | 
|  | struct cpc_register_resource *delivered_reg, *reference_reg, | 
|  | *ref_perf_reg, *ctr_wrap_reg; | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); | 
|  | struct cppc_pcc_data *pcc_ss_data = NULL; | 
|  | u64 delivered, reference, ref_perf, ctr_wrap_time; | 
|  | int ret = 0, regs_in_pcc = 0; | 
|  |  | 
|  | if (!cpc_desc) { | 
|  | pr_debug("No CPC descriptor for CPU:%d\n", cpunum); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; | 
|  | reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; | 
|  | ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; | 
|  | ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME]; | 
|  |  | 
|  | /* | 
|  | * If reference perf register is not supported then we should | 
|  | * use the nominal perf value | 
|  | */ | 
|  | if (!CPC_SUPPORTED(ref_perf_reg)) | 
|  | ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; | 
|  |  | 
|  | /* Are any of the regs PCC ?*/ | 
|  | if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) || | 
|  | CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) { | 
|  | if (pcc_ss_id < 0) { | 
|  | pr_debug("Invalid pcc_ss_id\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  | down_write(&pcc_ss_data->pcc_lock); | 
|  | regs_in_pcc = 1; | 
|  | /* Ring doorbell once to update PCC subspace */ | 
|  | if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { | 
|  | ret = -EIO; | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | cpc_read(cpunum, delivered_reg, &delivered); | 
|  | cpc_read(cpunum, reference_reg, &reference); | 
|  | cpc_read(cpunum, ref_perf_reg, &ref_perf); | 
|  |  | 
|  | /* | 
|  | * Per spec, if ctr_wrap_time optional register is unsupported, then the | 
|  | * performance counters are assumed to never wrap during the lifetime of | 
|  | * platform | 
|  | */ | 
|  | ctr_wrap_time = (u64)(~((u64)0)); | 
|  | if (CPC_SUPPORTED(ctr_wrap_reg)) | 
|  | cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time); | 
|  |  | 
|  | if (!delivered || !reference ||	!ref_perf) { | 
|  | ret = -EFAULT; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | perf_fb_ctrs->delivered = delivered; | 
|  | perf_fb_ctrs->reference = reference; | 
|  | perf_fb_ctrs->reference_perf = ref_perf; | 
|  | perf_fb_ctrs->wraparound_time = ctr_wrap_time; | 
|  | out_err: | 
|  | if (regs_in_pcc) | 
|  | up_write(&pcc_ss_data->pcc_lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); | 
|  |  | 
|  | /* | 
|  | * Set Energy Performance Preference Register value through | 
|  | * Performance Controls Interface | 
|  | */ | 
|  | int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable) | 
|  | { | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); | 
|  | struct cpc_register_resource *epp_set_reg; | 
|  | struct cpc_register_resource *auto_sel_reg; | 
|  | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); | 
|  | struct cppc_pcc_data *pcc_ss_data = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (!cpc_desc) { | 
|  | pr_debug("No CPC descriptor for CPU:%d\n", cpu); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE]; | 
|  | epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF]; | 
|  |  | 
|  | if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) { | 
|  | if (pcc_ss_id < 0) { | 
|  | pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (CPC_SUPPORTED(auto_sel_reg)) { | 
|  | ret = cpc_write(cpu, auto_sel_reg, enable); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (CPC_SUPPORTED(epp_set_reg)) { | 
|  | ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  |  | 
|  | down_write(&pcc_ss_data->pcc_lock); | 
|  | /* after writing CPC, transfer the ownership of PCC to platform */ | 
|  | ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); | 
|  | up_write(&pcc_ss_data->pcc_lock); | 
|  | } else { | 
|  | ret = -ENOTSUPP; | 
|  | pr_debug("_CPC in PCC is not supported\n"); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_set_epp_perf); | 
|  |  | 
|  | /** | 
|  | * cppc_get_auto_sel_caps - Read autonomous selection register. | 
|  | * @cpunum : CPU from which to read register. | 
|  | * @perf_caps : struct where autonomous selection register value is updated. | 
|  | */ | 
|  | int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps) | 
|  | { | 
|  | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); | 
|  | struct cpc_register_resource *auto_sel_reg; | 
|  | u64  auto_sel; | 
|  |  | 
|  | if (!cpc_desc) { | 
|  | pr_debug("No CPC descriptor for CPU:%d\n", cpunum); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE]; | 
|  |  | 
|  | if (!CPC_SUPPORTED(auto_sel_reg)) | 
|  | pr_warn_once("Autonomous mode is not unsupported!\n"); | 
|  |  | 
|  | if (CPC_IN_PCC(auto_sel_reg)) { | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); | 
|  | struct cppc_pcc_data *pcc_ss_data = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (pcc_ss_id < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  |  | 
|  | down_write(&pcc_ss_data->pcc_lock); | 
|  |  | 
|  | if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) { | 
|  | cpc_read(cpunum, auto_sel_reg, &auto_sel); | 
|  | perf_caps->auto_sel = (bool)auto_sel; | 
|  | } else { | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | up_write(&pcc_ss_data->pcc_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps); | 
|  |  | 
|  | /** | 
|  | * cppc_set_auto_sel - Write autonomous selection register. | 
|  | * @cpu    : CPU to which to write register. | 
|  | * @enable : the desired value of autonomous selection resiter to be updated. | 
|  | */ | 
|  | int cppc_set_auto_sel(int cpu, bool enable) | 
|  | { | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); | 
|  | struct cpc_register_resource *auto_sel_reg; | 
|  | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); | 
|  | struct cppc_pcc_data *pcc_ss_data = NULL; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (!cpc_desc) { | 
|  | pr_debug("No CPC descriptor for CPU:%d\n", cpu); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE]; | 
|  |  | 
|  | if (CPC_IN_PCC(auto_sel_reg)) { | 
|  | if (pcc_ss_id < 0) { | 
|  | pr_debug("Invalid pcc_ss_id\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (CPC_SUPPORTED(auto_sel_reg)) { | 
|  | ret = cpc_write(cpu, auto_sel_reg, enable); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  |  | 
|  | down_write(&pcc_ss_data->pcc_lock); | 
|  | /* after writing CPC, transfer the ownership of PCC to platform */ | 
|  | ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); | 
|  | up_write(&pcc_ss_data->pcc_lock); | 
|  | } else { | 
|  | ret = -ENOTSUPP; | 
|  | pr_debug("_CPC in PCC is not supported\n"); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_set_auto_sel); | 
|  |  | 
|  | /** | 
|  | * cppc_set_enable - Set to enable CPPC on the processor by writing the | 
|  | * Continuous Performance Control package EnableRegister field. | 
|  | * @cpu: CPU for which to enable CPPC register. | 
|  | * @enable: 0 - disable, 1 - enable CPPC feature on the processor. | 
|  | * | 
|  | * Return: 0 for success, -ERRNO or -EIO otherwise. | 
|  | */ | 
|  | int cppc_set_enable(int cpu, bool enable) | 
|  | { | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); | 
|  | struct cpc_register_resource *enable_reg; | 
|  | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); | 
|  | struct cppc_pcc_data *pcc_ss_data = NULL; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (!cpc_desc) { | 
|  | pr_debug("No CPC descriptor for CPU:%d\n", cpu); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | enable_reg = &cpc_desc->cpc_regs[ENABLE]; | 
|  |  | 
|  | if (CPC_IN_PCC(enable_reg)) { | 
|  |  | 
|  | if (pcc_ss_id < 0) | 
|  | return -EIO; | 
|  |  | 
|  | ret = cpc_write(cpu, enable_reg, enable); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  |  | 
|  | down_write(&pcc_ss_data->pcc_lock); | 
|  | /* after writing CPC, transfer the ownership of PCC to platfrom */ | 
|  | ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); | 
|  | up_write(&pcc_ss_data->pcc_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return cpc_write(cpu, enable_reg, enable); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_set_enable); | 
|  |  | 
|  | /** | 
|  | * cppc_set_perf - Set a CPU's performance controls. | 
|  | * @cpu: CPU for which to set performance controls. | 
|  | * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h | 
|  | * | 
|  | * Return: 0 for success, -ERRNO otherwise. | 
|  | */ | 
|  | int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) | 
|  | { | 
|  | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); | 
|  | struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg; | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); | 
|  | struct cppc_pcc_data *pcc_ss_data = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!cpc_desc) { | 
|  | pr_debug("No CPC descriptor for CPU:%d\n", cpu); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; | 
|  | min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF]; | 
|  | max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF]; | 
|  |  | 
|  | /* | 
|  | * This is Phase-I where we want to write to CPC registers | 
|  | * -> We want all CPUs to be able to execute this phase in parallel | 
|  | * | 
|  | * Since read_lock can be acquired by multiple CPUs simultaneously we | 
|  | * achieve that goal here | 
|  | */ | 
|  | if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) { | 
|  | if (pcc_ss_id < 0) { | 
|  | pr_debug("Invalid pcc_ss_id\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  | down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */ | 
|  | if (pcc_ss_data->platform_owns_pcc) { | 
|  | ret = check_pcc_chan(pcc_ss_id, false); | 
|  | if (ret) { | 
|  | up_read(&pcc_ss_data->pcc_lock); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Update the pending_write to make sure a PCC CMD_READ will not | 
|  | * arrive and steal the channel during the switch to write lock | 
|  | */ | 
|  | pcc_ss_data->pending_pcc_write_cmd = true; | 
|  | cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt; | 
|  | cpc_desc->write_cmd_status = 0; | 
|  | } | 
|  |  | 
|  | cpc_write(cpu, desired_reg, perf_ctrls->desired_perf); | 
|  |  | 
|  | /* | 
|  | * Only write if min_perf and max_perf not zero. Some drivers pass zero | 
|  | * value to min and max perf, but they don't mean to set the zero value, | 
|  | * they just don't want to write to those registers. | 
|  | */ | 
|  | if (perf_ctrls->min_perf) | 
|  | cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf); | 
|  | if (perf_ctrls->max_perf) | 
|  | cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf); | 
|  |  | 
|  | if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) | 
|  | up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */ | 
|  | /* | 
|  | * This is Phase-II where we transfer the ownership of PCC to Platform | 
|  | * | 
|  | * Short Summary: Basically if we think of a group of cppc_set_perf | 
|  | * requests that happened in short overlapping interval. The last CPU to | 
|  | * come out of Phase-I will enter Phase-II and ring the doorbell. | 
|  | * | 
|  | * We have the following requirements for Phase-II: | 
|  | *     1. We want to execute Phase-II only when there are no CPUs | 
|  | * currently executing in Phase-I | 
|  | *     2. Once we start Phase-II we want to avoid all other CPUs from | 
|  | * entering Phase-I. | 
|  | *     3. We want only one CPU among all those who went through Phase-I | 
|  | * to run phase-II | 
|  | * | 
|  | * If write_trylock fails to get the lock and doesn't transfer the | 
|  | * PCC ownership to the platform, then one of the following will be TRUE | 
|  | *     1. There is at-least one CPU in Phase-I which will later execute | 
|  | * write_trylock, so the CPUs in Phase-I will be responsible for | 
|  | * executing the Phase-II. | 
|  | *     2. Some other CPU has beaten this CPU to successfully execute the | 
|  | * write_trylock and has already acquired the write_lock. We know for a | 
|  | * fact it (other CPU acquiring the write_lock) couldn't have happened | 
|  | * before this CPU's Phase-I as we held the read_lock. | 
|  | *     3. Some other CPU executing pcc CMD_READ has stolen the | 
|  | * down_write, in which case, send_pcc_cmd will check for pending | 
|  | * CMD_WRITE commands by checking the pending_pcc_write_cmd. | 
|  | * So this CPU can be certain that its request will be delivered | 
|  | *    So in all cases, this CPU knows that its request will be delivered | 
|  | * by another CPU and can return | 
|  | * | 
|  | * After getting the down_write we still need to check for | 
|  | * pending_pcc_write_cmd to take care of the following scenario | 
|  | *    The thread running this code could be scheduled out between | 
|  | * Phase-I and Phase-II. Before it is scheduled back on, another CPU | 
|  | * could have delivered the request to Platform by triggering the | 
|  | * doorbell and transferred the ownership of PCC to platform. So this | 
|  | * avoids triggering an unnecessary doorbell and more importantly before | 
|  | * triggering the doorbell it makes sure that the PCC channel ownership | 
|  | * is still with OSPM. | 
|  | *   pending_pcc_write_cmd can also be cleared by a different CPU, if | 
|  | * there was a pcc CMD_READ waiting on down_write and it steals the lock | 
|  | * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this | 
|  | * case during a CMD_READ and if there are pending writes it delivers | 
|  | * the write command before servicing the read command | 
|  | */ | 
|  | if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) { | 
|  | if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */ | 
|  | /* Update only if there are pending write commands */ | 
|  | if (pcc_ss_data->pending_pcc_write_cmd) | 
|  | send_pcc_cmd(pcc_ss_id, CMD_WRITE); | 
|  | up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */ | 
|  | } else | 
|  | /* Wait until pcc_write_cnt is updated by send_pcc_cmd */ | 
|  | wait_event(pcc_ss_data->pcc_write_wait_q, | 
|  | cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt); | 
|  |  | 
|  | /* send_pcc_cmd updates the status in case of failure */ | 
|  | ret = cpc_desc->write_cmd_status; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_set_perf); | 
|  |  | 
|  | /** | 
|  | * cppc_get_transition_latency - returns frequency transition latency in ns | 
|  | * @cpu_num: CPU number for per_cpu(). | 
|  | * | 
|  | * ACPI CPPC does not explicitly specify how a platform can specify the | 
|  | * transition latency for performance change requests. The closest we have | 
|  | * is the timing information from the PCCT tables which provides the info | 
|  | * on the number and frequency of PCC commands the platform can handle. | 
|  | * | 
|  | * If desired_reg is in the SystemMemory or SystemIo ACPI address space, | 
|  | * then assume there is no latency. | 
|  | */ | 
|  | unsigned int cppc_get_transition_latency(int cpu_num) | 
|  | { | 
|  | /* | 
|  | * Expected transition latency is based on the PCCT timing values | 
|  | * Below are definition from ACPI spec: | 
|  | * pcc_nominal- Expected latency to process a command, in microseconds | 
|  | * pcc_mpar   - The maximum number of periodic requests that the subspace | 
|  | *              channel can support, reported in commands per minute. 0 | 
|  | *              indicates no limitation. | 
|  | * pcc_mrtt   - The minimum amount of time that OSPM must wait after the | 
|  | *              completion of a command before issuing the next command, | 
|  | *              in microseconds. | 
|  | */ | 
|  | unsigned int latency_ns = 0; | 
|  | struct cpc_desc *cpc_desc; | 
|  | struct cpc_register_resource *desired_reg; | 
|  | int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num); | 
|  | struct cppc_pcc_data *pcc_ss_data; | 
|  |  | 
|  | cpc_desc = per_cpu(cpc_desc_ptr, cpu_num); | 
|  | if (!cpc_desc) | 
|  | return CPUFREQ_ETERNAL; | 
|  |  | 
|  | desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; | 
|  | if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg)) | 
|  | return 0; | 
|  | else if (!CPC_IN_PCC(desired_reg)) | 
|  | return CPUFREQ_ETERNAL; | 
|  |  | 
|  | if (pcc_ss_id < 0) | 
|  | return CPUFREQ_ETERNAL; | 
|  |  | 
|  | pcc_ss_data = pcc_data[pcc_ss_id]; | 
|  | if (pcc_ss_data->pcc_mpar) | 
|  | latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar); | 
|  |  | 
|  | latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000); | 
|  | latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000); | 
|  |  | 
|  | return latency_ns; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_get_transition_latency); | 
|  |  | 
|  | /* Minimum struct length needed for the DMI processor entry we want */ | 
|  | #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48 | 
|  |  | 
|  | /* Offset in the DMI processor structure for the max frequency */ | 
|  | #define DMI_PROCESSOR_MAX_SPEED		0x14 | 
|  |  | 
|  | /* Callback function used to retrieve the max frequency from DMI */ | 
|  | static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) | 
|  | { | 
|  | const u8 *dmi_data = (const u8 *)dm; | 
|  | u16 *mhz = (u16 *)private; | 
|  |  | 
|  | if (dm->type == DMI_ENTRY_PROCESSOR && | 
|  | dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { | 
|  | u16 val = (u16)get_unaligned((const u16 *) | 
|  | (dmi_data + DMI_PROCESSOR_MAX_SPEED)); | 
|  | *mhz = val > *mhz ? val : *mhz; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Look up the max frequency in DMI */ | 
|  | static u64 cppc_get_dmi_max_khz(void) | 
|  | { | 
|  | u16 mhz = 0; | 
|  |  | 
|  | dmi_walk(cppc_find_dmi_mhz, &mhz); | 
|  |  | 
|  | /* | 
|  | * Real stupid fallback value, just in case there is no | 
|  | * actual value set. | 
|  | */ | 
|  | mhz = mhz ? mhz : 1; | 
|  |  | 
|  | return KHZ_PER_MHZ * mhz; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If CPPC lowest_freq and nominal_freq registers are exposed then we can | 
|  | * use them to convert perf to freq and vice versa. The conversion is | 
|  | * extrapolated as an affine function passing by the 2 points: | 
|  | *  - (Low perf, Low freq) | 
|  | *  - (Nominal perf, Nominal freq) | 
|  | */ | 
|  | unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf) | 
|  | { | 
|  | s64 retval, offset = 0; | 
|  | static u64 max_khz; | 
|  | u64 mul, div; | 
|  |  | 
|  | if (caps->lowest_freq && caps->nominal_freq) { | 
|  | mul = caps->nominal_freq - caps->lowest_freq; | 
|  | mul *= KHZ_PER_MHZ; | 
|  | div = caps->nominal_perf - caps->lowest_perf; | 
|  | offset = caps->nominal_freq * KHZ_PER_MHZ - | 
|  | div64_u64(caps->nominal_perf * mul, div); | 
|  | } else { | 
|  | if (!max_khz) | 
|  | max_khz = cppc_get_dmi_max_khz(); | 
|  | mul = max_khz; | 
|  | div = caps->highest_perf; | 
|  | } | 
|  |  | 
|  | retval = offset + div64_u64(perf * mul, div); | 
|  | if (retval >= 0) | 
|  | return retval; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_perf_to_khz); | 
|  |  | 
|  | unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq) | 
|  | { | 
|  | s64 retval, offset = 0; | 
|  | static u64 max_khz; | 
|  | u64  mul, div; | 
|  |  | 
|  | if (caps->lowest_freq && caps->nominal_freq) { | 
|  | mul = caps->nominal_perf - caps->lowest_perf; | 
|  | div = caps->nominal_freq - caps->lowest_freq; | 
|  | /* | 
|  | * We don't need to convert to kHz for computing offset and can | 
|  | * directly use nominal_freq and lowest_freq as the div64_u64 | 
|  | * will remove the frequency unit. | 
|  | */ | 
|  | offset = caps->nominal_perf - | 
|  | div64_u64(caps->nominal_freq * mul, div); | 
|  | /* But we need it for computing the perf level. */ | 
|  | div *= KHZ_PER_MHZ; | 
|  | } else { | 
|  | if (!max_khz) | 
|  | max_khz = cppc_get_dmi_max_khz(); | 
|  | mul = caps->highest_perf; | 
|  | div = max_khz; | 
|  | } | 
|  |  | 
|  | retval = offset + div64_u64(freq * mul, div); | 
|  | if (retval >= 0) | 
|  | return retval; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cppc_khz_to_perf); |