|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | // SPI init/core code | 
|  | // | 
|  | // Copyright (C) 2005 David Brownell | 
|  | // Copyright (C) 2008 Secret Lab Technologies Ltd. | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/clk/clk-conf.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/gpio/consumer.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/mod_devicetable.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/platform_data/x86/apple.h> | 
|  | #include <linux/pm_domain.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/property.h> | 
|  | #include <linux/ptp_clock_kernel.h> | 
|  | #include <linux/sched/rt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/spi-mem.h> | 
|  | #include <uapi/linux/sched/types.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/spi.h> | 
|  | EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); | 
|  | EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); | 
|  |  | 
|  | #include "internals.h" | 
|  |  | 
|  | static DEFINE_IDR(spi_master_idr); | 
|  |  | 
|  | static void spidev_release(struct device *dev) | 
|  | { | 
|  | struct spi_device	*spi = to_spi_device(dev); | 
|  |  | 
|  | spi_controller_put(spi->controller); | 
|  | kfree(spi->driver_override); | 
|  | free_percpu(spi->pcpu_statistics); | 
|  | kfree(spi); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | modalias_show(struct device *dev, struct device_attribute *a, char *buf) | 
|  | { | 
|  | const struct spi_device	*spi = to_spi_device(dev); | 
|  | int len; | 
|  |  | 
|  | len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); | 
|  | if (len != -ENODEV) | 
|  | return len; | 
|  |  | 
|  | return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); | 
|  | } | 
|  | static DEVICE_ATTR_RO(modalias); | 
|  |  | 
|  | static ssize_t driver_override_store(struct device *dev, | 
|  | struct device_attribute *a, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct spi_device *spi = to_spi_device(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = driver_set_override(dev, &spi->driver_override, buf, count); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t driver_override_show(struct device *dev, | 
|  | struct device_attribute *a, char *buf) | 
|  | { | 
|  | const struct spi_device *spi = to_spi_device(dev); | 
|  | ssize_t len; | 
|  |  | 
|  | device_lock(dev); | 
|  | len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); | 
|  | device_unlock(dev); | 
|  | return len; | 
|  | } | 
|  | static DEVICE_ATTR_RW(driver_override); | 
|  |  | 
|  | static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) | 
|  | { | 
|  | struct spi_statistics __percpu *pcpu_stats; | 
|  |  | 
|  | if (dev) | 
|  | pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); | 
|  | else | 
|  | pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); | 
|  |  | 
|  | if (pcpu_stats) { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct spi_statistics *stat; | 
|  |  | 
|  | stat = per_cpu_ptr(pcpu_stats, cpu); | 
|  | u64_stats_init(&stat->syncp); | 
|  | } | 
|  | } | 
|  | return pcpu_stats; | 
|  | } | 
|  |  | 
|  | static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, | 
|  | char *buf, size_t offset) | 
|  | { | 
|  | u64 val = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | const struct spi_statistics *pcpu_stats; | 
|  | u64_stats_t *field; | 
|  | unsigned int start; | 
|  | u64 inc; | 
|  |  | 
|  | pcpu_stats = per_cpu_ptr(stat, i); | 
|  | field = (void *)pcpu_stats + offset; | 
|  | do { | 
|  | start = u64_stats_fetch_begin(&pcpu_stats->syncp); | 
|  | inc = u64_stats_read(field); | 
|  | } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); | 
|  | val += inc; | 
|  | } | 
|  | return sysfs_emit(buf, "%llu\n", val); | 
|  | } | 
|  |  | 
|  | #define SPI_STATISTICS_ATTRS(field, file)				\ | 
|  | static ssize_t spi_controller_##field##_show(struct device *dev,	\ | 
|  | struct device_attribute *attr, \ | 
|  | char *buf)			\ | 
|  | {									\ | 
|  | struct spi_controller *ctlr = container_of(dev,			\ | 
|  | struct spi_controller, dev);	\ | 
|  | return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ | 
|  | }									\ | 
|  | static struct device_attribute dev_attr_spi_controller_##field = {	\ | 
|  | .attr = { .name = file, .mode = 0444 },				\ | 
|  | .show = spi_controller_##field##_show,				\ | 
|  | };									\ | 
|  | static ssize_t spi_device_##field##_show(struct device *dev,		\ | 
|  | struct device_attribute *attr,	\ | 
|  | char *buf)			\ | 
|  | {									\ | 
|  | struct spi_device *spi = to_spi_device(dev);			\ | 
|  | return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ | 
|  | }									\ | 
|  | static struct device_attribute dev_attr_spi_device_##field = {		\ | 
|  | .attr = { .name = file, .mode = 0444 },				\ | 
|  | .show = spi_device_##field##_show,				\ | 
|  | } | 
|  |  | 
|  | #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\ | 
|  | static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ | 
|  | char *buf)			\ | 
|  | {									\ | 
|  | return spi_emit_pcpu_stats(stat, buf,				\ | 
|  | offsetof(struct spi_statistics, field));	\ | 
|  | }									\ | 
|  | SPI_STATISTICS_ATTRS(name, file) | 
|  |  | 
|  | #define SPI_STATISTICS_SHOW(field)					\ | 
|  | SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\ | 
|  | field) | 
|  |  | 
|  | SPI_STATISTICS_SHOW(messages); | 
|  | SPI_STATISTICS_SHOW(transfers); | 
|  | SPI_STATISTICS_SHOW(errors); | 
|  | SPI_STATISTICS_SHOW(timedout); | 
|  |  | 
|  | SPI_STATISTICS_SHOW(spi_sync); | 
|  | SPI_STATISTICS_SHOW(spi_sync_immediate); | 
|  | SPI_STATISTICS_SHOW(spi_async); | 
|  |  | 
|  | SPI_STATISTICS_SHOW(bytes); | 
|  | SPI_STATISTICS_SHOW(bytes_rx); | 
|  | SPI_STATISTICS_SHOW(bytes_tx); | 
|  |  | 
|  | #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\ | 
|  | SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\ | 
|  | "transfer_bytes_histo_" number,	\ | 
|  | transfer_bytes_histo[index]) | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); | 
|  | SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); | 
|  |  | 
|  | SPI_STATISTICS_SHOW(transfers_split_maxsize); | 
|  |  | 
|  | static struct attribute *spi_dev_attrs[] = { | 
|  | &dev_attr_modalias.attr, | 
|  | &dev_attr_driver_override.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group spi_dev_group = { | 
|  | .attrs  = spi_dev_attrs, | 
|  | }; | 
|  |  | 
|  | static struct attribute *spi_device_statistics_attrs[] = { | 
|  | &dev_attr_spi_device_messages.attr, | 
|  | &dev_attr_spi_device_transfers.attr, | 
|  | &dev_attr_spi_device_errors.attr, | 
|  | &dev_attr_spi_device_timedout.attr, | 
|  | &dev_attr_spi_device_spi_sync.attr, | 
|  | &dev_attr_spi_device_spi_sync_immediate.attr, | 
|  | &dev_attr_spi_device_spi_async.attr, | 
|  | &dev_attr_spi_device_bytes.attr, | 
|  | &dev_attr_spi_device_bytes_rx.attr, | 
|  | &dev_attr_spi_device_bytes_tx.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo0.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo1.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo2.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo3.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo4.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo5.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo6.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo7.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo8.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo9.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo10.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo11.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo12.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo13.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo14.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo15.attr, | 
|  | &dev_attr_spi_device_transfer_bytes_histo16.attr, | 
|  | &dev_attr_spi_device_transfers_split_maxsize.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group spi_device_statistics_group = { | 
|  | .name  = "statistics", | 
|  | .attrs  = spi_device_statistics_attrs, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *spi_dev_groups[] = { | 
|  | &spi_dev_group, | 
|  | &spi_device_statistics_group, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute *spi_controller_statistics_attrs[] = { | 
|  | &dev_attr_spi_controller_messages.attr, | 
|  | &dev_attr_spi_controller_transfers.attr, | 
|  | &dev_attr_spi_controller_errors.attr, | 
|  | &dev_attr_spi_controller_timedout.attr, | 
|  | &dev_attr_spi_controller_spi_sync.attr, | 
|  | &dev_attr_spi_controller_spi_sync_immediate.attr, | 
|  | &dev_attr_spi_controller_spi_async.attr, | 
|  | &dev_attr_spi_controller_bytes.attr, | 
|  | &dev_attr_spi_controller_bytes_rx.attr, | 
|  | &dev_attr_spi_controller_bytes_tx.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo0.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo1.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo2.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo3.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo4.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo5.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo6.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo7.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo8.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo9.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo10.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo11.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo12.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo13.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo14.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo15.attr, | 
|  | &dev_attr_spi_controller_transfer_bytes_histo16.attr, | 
|  | &dev_attr_spi_controller_transfers_split_maxsize.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group spi_controller_statistics_group = { | 
|  | .name  = "statistics", | 
|  | .attrs  = spi_controller_statistics_attrs, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *spi_master_groups[] = { | 
|  | &spi_controller_statistics_group, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, | 
|  | struct spi_transfer *xfer, | 
|  | struct spi_controller *ctlr) | 
|  | { | 
|  | int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; | 
|  | struct spi_statistics *stats; | 
|  |  | 
|  | if (l2len < 0) | 
|  | l2len = 0; | 
|  |  | 
|  | get_cpu(); | 
|  | stats = this_cpu_ptr(pcpu_stats); | 
|  | u64_stats_update_begin(&stats->syncp); | 
|  |  | 
|  | u64_stats_inc(&stats->transfers); | 
|  | u64_stats_inc(&stats->transfer_bytes_histo[l2len]); | 
|  |  | 
|  | u64_stats_add(&stats->bytes, xfer->len); | 
|  | if ((xfer->tx_buf) && | 
|  | (xfer->tx_buf != ctlr->dummy_tx)) | 
|  | u64_stats_add(&stats->bytes_tx, xfer->len); | 
|  | if ((xfer->rx_buf) && | 
|  | (xfer->rx_buf != ctlr->dummy_rx)) | 
|  | u64_stats_add(&stats->bytes_rx, xfer->len); | 
|  |  | 
|  | u64_stats_update_end(&stats->syncp); | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * modalias support makes "modprobe $MODALIAS" new-style hotplug work, | 
|  | * and the sysfs version makes coldplug work too. | 
|  | */ | 
|  | static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) | 
|  | { | 
|  | while (id->name[0]) { | 
|  | if (!strcmp(name, id->name)) | 
|  | return id; | 
|  | id++; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) | 
|  | { | 
|  | const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); | 
|  |  | 
|  | return spi_match_id(sdrv->id_table, sdev->modalias); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_get_device_id); | 
|  |  | 
|  | const void *spi_get_device_match_data(const struct spi_device *sdev) | 
|  | { | 
|  | const void *match; | 
|  |  | 
|  | match = device_get_match_data(&sdev->dev); | 
|  | if (match) | 
|  | return match; | 
|  |  | 
|  | return (const void *)spi_get_device_id(sdev)->driver_data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_get_device_match_data); | 
|  |  | 
|  | static int spi_match_device(struct device *dev, struct device_driver *drv) | 
|  | { | 
|  | const struct spi_device	*spi = to_spi_device(dev); | 
|  | const struct spi_driver	*sdrv = to_spi_driver(drv); | 
|  |  | 
|  | /* Check override first, and if set, only use the named driver */ | 
|  | if (spi->driver_override) | 
|  | return strcmp(spi->driver_override, drv->name) == 0; | 
|  |  | 
|  | /* Attempt an OF style match */ | 
|  | if (of_driver_match_device(dev, drv)) | 
|  | return 1; | 
|  |  | 
|  | /* Then try ACPI */ | 
|  | if (acpi_driver_match_device(dev, drv)) | 
|  | return 1; | 
|  |  | 
|  | if (sdrv->id_table) | 
|  | return !!spi_match_id(sdrv->id_table, spi->modalias); | 
|  |  | 
|  | return strcmp(spi->modalias, drv->name) == 0; | 
|  | } | 
|  |  | 
|  | static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) | 
|  | { | 
|  | const struct spi_device		*spi = to_spi_device(dev); | 
|  | int rc; | 
|  |  | 
|  | rc = acpi_device_uevent_modalias(dev, env); | 
|  | if (rc != -ENODEV) | 
|  | return rc; | 
|  |  | 
|  | return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); | 
|  | } | 
|  |  | 
|  | static int spi_probe(struct device *dev) | 
|  | { | 
|  | const struct spi_driver		*sdrv = to_spi_driver(dev->driver); | 
|  | struct spi_device		*spi = to_spi_device(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = of_clk_set_defaults(dev->of_node, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (dev->of_node) { | 
|  | spi->irq = of_irq_get(dev->of_node, 0); | 
|  | if (spi->irq == -EPROBE_DEFER) | 
|  | return -EPROBE_DEFER; | 
|  | if (spi->irq < 0) | 
|  | spi->irq = 0; | 
|  | } | 
|  |  | 
|  | ret = dev_pm_domain_attach(dev, true); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (sdrv->probe) { | 
|  | ret = sdrv->probe(spi); | 
|  | if (ret) | 
|  | dev_pm_domain_detach(dev, true); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void spi_remove(struct device *dev) | 
|  | { | 
|  | const struct spi_driver		*sdrv = to_spi_driver(dev->driver); | 
|  |  | 
|  | if (sdrv->remove) | 
|  | sdrv->remove(to_spi_device(dev)); | 
|  |  | 
|  | dev_pm_domain_detach(dev, true); | 
|  | } | 
|  |  | 
|  | static void spi_shutdown(struct device *dev) | 
|  | { | 
|  | if (dev->driver) { | 
|  | const struct spi_driver	*sdrv = to_spi_driver(dev->driver); | 
|  |  | 
|  | if (sdrv->shutdown) | 
|  | sdrv->shutdown(to_spi_device(dev)); | 
|  | } | 
|  | } | 
|  |  | 
|  | const struct bus_type spi_bus_type = { | 
|  | .name		= "spi", | 
|  | .dev_groups	= spi_dev_groups, | 
|  | .match		= spi_match_device, | 
|  | .uevent		= spi_uevent, | 
|  | .probe		= spi_probe, | 
|  | .remove		= spi_remove, | 
|  | .shutdown	= spi_shutdown, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(spi_bus_type); | 
|  |  | 
|  | /** | 
|  | * __spi_register_driver - register a SPI driver | 
|  | * @owner: owner module of the driver to register | 
|  | * @sdrv: the driver to register | 
|  | * Context: can sleep | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) | 
|  | { | 
|  | sdrv->driver.owner = owner; | 
|  | sdrv->driver.bus = &spi_bus_type; | 
|  |  | 
|  | /* | 
|  | * For Really Good Reasons we use spi: modaliases not of: | 
|  | * modaliases for DT so module autoloading won't work if we | 
|  | * don't have a spi_device_id as well as a compatible string. | 
|  | */ | 
|  | if (sdrv->driver.of_match_table) { | 
|  | const struct of_device_id *of_id; | 
|  |  | 
|  | for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; | 
|  | of_id++) { | 
|  | const char *of_name; | 
|  |  | 
|  | /* Strip off any vendor prefix */ | 
|  | of_name = strnchr(of_id->compatible, | 
|  | sizeof(of_id->compatible), ','); | 
|  | if (of_name) | 
|  | of_name++; | 
|  | else | 
|  | of_name = of_id->compatible; | 
|  |  | 
|  | if (sdrv->id_table) { | 
|  | const struct spi_device_id *spi_id; | 
|  |  | 
|  | spi_id = spi_match_id(sdrv->id_table, of_name); | 
|  | if (spi_id) | 
|  | continue; | 
|  | } else { | 
|  | if (strcmp(sdrv->driver.name, of_name) == 0) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pr_warn("SPI driver %s has no spi_device_id for %s\n", | 
|  | sdrv->driver.name, of_id->compatible); | 
|  | } | 
|  | } | 
|  |  | 
|  | return driver_register(&sdrv->driver); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__spi_register_driver); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * SPI devices should normally not be created by SPI device drivers; that | 
|  | * would make them board-specific.  Similarly with SPI controller drivers. | 
|  | * Device registration normally goes into like arch/.../mach.../board-YYY.c | 
|  | * with other readonly (flashable) information about mainboard devices. | 
|  | */ | 
|  |  | 
|  | struct boardinfo { | 
|  | struct list_head	list; | 
|  | struct spi_board_info	board_info; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(board_list); | 
|  | static LIST_HEAD(spi_controller_list); | 
|  |  | 
|  | /* | 
|  | * Used to protect add/del operation for board_info list and | 
|  | * spi_controller list, and their matching process also used | 
|  | * to protect object of type struct idr. | 
|  | */ | 
|  | static DEFINE_MUTEX(board_lock); | 
|  |  | 
|  | /** | 
|  | * spi_alloc_device - Allocate a new SPI device | 
|  | * @ctlr: Controller to which device is connected | 
|  | * Context: can sleep | 
|  | * | 
|  | * Allows a driver to allocate and initialize a spi_device without | 
|  | * registering it immediately.  This allows a driver to directly | 
|  | * fill the spi_device with device parameters before calling | 
|  | * spi_add_device() on it. | 
|  | * | 
|  | * Caller is responsible to call spi_add_device() on the returned | 
|  | * spi_device structure to add it to the SPI controller.  If the caller | 
|  | * needs to discard the spi_device without adding it, then it should | 
|  | * call spi_dev_put() on it. | 
|  | * | 
|  | * Return: a pointer to the new device, or NULL. | 
|  | */ | 
|  | struct spi_device *spi_alloc_device(struct spi_controller *ctlr) | 
|  | { | 
|  | struct spi_device	*spi; | 
|  |  | 
|  | if (!spi_controller_get(ctlr)) | 
|  | return NULL; | 
|  |  | 
|  | spi = kzalloc(sizeof(*spi), GFP_KERNEL); | 
|  | if (!spi) { | 
|  | spi_controller_put(ctlr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); | 
|  | if (!spi->pcpu_statistics) { | 
|  | kfree(spi); | 
|  | spi_controller_put(ctlr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | spi->controller = ctlr; | 
|  | spi->dev.parent = &ctlr->dev; | 
|  | spi->dev.bus = &spi_bus_type; | 
|  | spi->dev.release = spidev_release; | 
|  | spi->mode = ctlr->buswidth_override_bits; | 
|  |  | 
|  | device_initialize(&spi->dev); | 
|  | return spi; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_alloc_device); | 
|  |  | 
|  | static void spi_dev_set_name(struct spi_device *spi) | 
|  | { | 
|  | struct acpi_device *adev = ACPI_COMPANION(&spi->dev); | 
|  |  | 
|  | if (adev) { | 
|  | dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), | 
|  | spi_get_chipselect(spi, 0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Zero(0) is a valid physical CS value and can be located at any | 
|  | * logical CS in the spi->chip_select[]. If all the physical CS | 
|  | * are initialized to 0 then It would be difficult to differentiate | 
|  | * between a valid physical CS 0 & an unused logical CS whose physical | 
|  | * CS can be 0. As a solution to this issue initialize all the CS to -1. | 
|  | * Now all the unused logical CS will have -1 physical CS value & can be | 
|  | * ignored while performing physical CS validity checks. | 
|  | */ | 
|  | #define SPI_INVALID_CS		((s8)-1) | 
|  |  | 
|  | static inline bool is_valid_cs(s8 chip_select) | 
|  | { | 
|  | return chip_select != SPI_INVALID_CS; | 
|  | } | 
|  |  | 
|  | static inline int spi_dev_check_cs(struct device *dev, | 
|  | struct spi_device *spi, u8 idx, | 
|  | struct spi_device *new_spi, u8 new_idx) | 
|  | { | 
|  | u8 cs, cs_new; | 
|  | u8 idx_new; | 
|  |  | 
|  | cs = spi_get_chipselect(spi, idx); | 
|  | for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { | 
|  | cs_new = spi_get_chipselect(new_spi, idx_new); | 
|  | if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { | 
|  | dev_err(dev, "chipselect %u already in use\n", cs_new); | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spi_dev_check(struct device *dev, void *data) | 
|  | { | 
|  | struct spi_device *spi = to_spi_device(dev); | 
|  | struct spi_device *new_spi = data; | 
|  | int status, idx; | 
|  |  | 
|  | if (spi->controller == new_spi->controller) { | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { | 
|  | status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); | 
|  | if (status) | 
|  | return status; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spi_cleanup(struct spi_device *spi) | 
|  | { | 
|  | if (spi->controller->cleanup) | 
|  | spi->controller->cleanup(spi); | 
|  | } | 
|  |  | 
|  | static int __spi_add_device(struct spi_device *spi) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  | struct device *dev = ctlr->dev.parent; | 
|  | int status, idx; | 
|  | u8 cs; | 
|  |  | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { | 
|  | /* Chipselects are numbered 0..max; validate. */ | 
|  | cs = spi_get_chipselect(spi, idx); | 
|  | if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { | 
|  | dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), | 
|  | ctlr->num_chipselect); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that multiple logical CS doesn't map to the same physical CS. | 
|  | * For example, spi->chip_select[0] != spi->chip_select[1] and so on. | 
|  | */ | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { | 
|  | status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); | 
|  | if (status) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Set the bus ID string */ | 
|  | spi_dev_set_name(spi); | 
|  |  | 
|  | /* | 
|  | * We need to make sure there's no other device with this | 
|  | * chipselect **BEFORE** we call setup(), else we'll trash | 
|  | * its configuration. | 
|  | */ | 
|  | status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | /* Controller may unregister concurrently */ | 
|  | if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && | 
|  | !device_is_registered(&ctlr->dev)) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (ctlr->cs_gpiods) { | 
|  | u8 cs; | 
|  |  | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { | 
|  | cs = spi_get_chipselect(spi, idx); | 
|  | if (is_valid_cs(cs)) | 
|  | spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drivers may modify this initial i/o setup, but will | 
|  | * normally rely on the device being setup.  Devices | 
|  | * using SPI_CS_HIGH can't coexist well otherwise... | 
|  | */ | 
|  | status = spi_setup(spi); | 
|  | if (status < 0) { | 
|  | dev_err(dev, "can't setup %s, status %d\n", | 
|  | dev_name(&spi->dev), status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Device may be bound to an active driver when this returns */ | 
|  | status = device_add(&spi->dev); | 
|  | if (status < 0) { | 
|  | dev_err(dev, "can't add %s, status %d\n", | 
|  | dev_name(&spi->dev), status); | 
|  | spi_cleanup(spi); | 
|  | } else { | 
|  | dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_add_device - Add spi_device allocated with spi_alloc_device | 
|  | * @spi: spi_device to register | 
|  | * | 
|  | * Companion function to spi_alloc_device.  Devices allocated with | 
|  | * spi_alloc_device can be added onto the SPI bus with this function. | 
|  | * | 
|  | * Return: 0 on success; negative errno on failure | 
|  | */ | 
|  | int spi_add_device(struct spi_device *spi) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  | int status; | 
|  |  | 
|  | /* Set the bus ID string */ | 
|  | spi_dev_set_name(spi); | 
|  |  | 
|  | mutex_lock(&ctlr->add_lock); | 
|  | status = __spi_add_device(spi); | 
|  | mutex_unlock(&ctlr->add_lock); | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_add_device); | 
|  |  | 
|  | static void spi_set_all_cs_unused(struct spi_device *spi) | 
|  | { | 
|  | u8 idx; | 
|  |  | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) | 
|  | spi_set_chipselect(spi, idx, SPI_INVALID_CS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_new_device - instantiate one new SPI device | 
|  | * @ctlr: Controller to which device is connected | 
|  | * @chip: Describes the SPI device | 
|  | * Context: can sleep | 
|  | * | 
|  | * On typical mainboards, this is purely internal; and it's not needed | 
|  | * after board init creates the hard-wired devices.  Some development | 
|  | * platforms may not be able to use spi_register_board_info though, and | 
|  | * this is exported so that for example a USB or parport based adapter | 
|  | * driver could add devices (which it would learn about out-of-band). | 
|  | * | 
|  | * Return: the new device, or NULL. | 
|  | */ | 
|  | struct spi_device *spi_new_device(struct spi_controller *ctlr, | 
|  | struct spi_board_info *chip) | 
|  | { | 
|  | struct spi_device	*proxy; | 
|  | int			status; | 
|  |  | 
|  | /* | 
|  | * NOTE:  caller did any chip->bus_num checks necessary. | 
|  | * | 
|  | * Also, unless we change the return value convention to use | 
|  | * error-or-pointer (not NULL-or-pointer), troubleshootability | 
|  | * suggests syslogged diagnostics are best here (ugh). | 
|  | */ | 
|  |  | 
|  | proxy = spi_alloc_device(ctlr); | 
|  | if (!proxy) | 
|  | return NULL; | 
|  |  | 
|  | WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); | 
|  |  | 
|  | /* Use provided chip-select for proxy device */ | 
|  | spi_set_all_cs_unused(proxy); | 
|  | spi_set_chipselect(proxy, 0, chip->chip_select); | 
|  |  | 
|  | proxy->max_speed_hz = chip->max_speed_hz; | 
|  | proxy->mode = chip->mode; | 
|  | proxy->irq = chip->irq; | 
|  | strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); | 
|  | proxy->dev.platform_data = (void *) chip->platform_data; | 
|  | proxy->controller_data = chip->controller_data; | 
|  | proxy->controller_state = NULL; | 
|  | /* | 
|  | * spi->chip_select[i] gives the corresponding physical CS for logical CS i | 
|  | * logical CS number is represented by setting the ith bit in spi->cs_index_mask | 
|  | * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and | 
|  | * spi->chip_select[0] will give the physical CS. | 
|  | * By default spi->chip_select[0] will hold the physical CS number so, set | 
|  | * spi->cs_index_mask as 0x01. | 
|  | */ | 
|  | proxy->cs_index_mask = 0x01; | 
|  |  | 
|  | if (chip->swnode) { | 
|  | status = device_add_software_node(&proxy->dev, chip->swnode); | 
|  | if (status) { | 
|  | dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", | 
|  | chip->modalias, status); | 
|  | goto err_dev_put; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = spi_add_device(proxy); | 
|  | if (status < 0) | 
|  | goto err_dev_put; | 
|  |  | 
|  | return proxy; | 
|  |  | 
|  | err_dev_put: | 
|  | device_remove_software_node(&proxy->dev); | 
|  | spi_dev_put(proxy); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_new_device); | 
|  |  | 
|  | /** | 
|  | * spi_unregister_device - unregister a single SPI device | 
|  | * @spi: spi_device to unregister | 
|  | * | 
|  | * Start making the passed SPI device vanish. Normally this would be handled | 
|  | * by spi_unregister_controller(). | 
|  | */ | 
|  | void spi_unregister_device(struct spi_device *spi) | 
|  | { | 
|  | if (!spi) | 
|  | return; | 
|  |  | 
|  | if (spi->dev.of_node) { | 
|  | of_node_clear_flag(spi->dev.of_node, OF_POPULATED); | 
|  | of_node_put(spi->dev.of_node); | 
|  | } | 
|  | if (ACPI_COMPANION(&spi->dev)) | 
|  | acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); | 
|  | device_remove_software_node(&spi->dev); | 
|  | device_del(&spi->dev); | 
|  | spi_cleanup(spi); | 
|  | put_device(&spi->dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_unregister_device); | 
|  |  | 
|  | static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, | 
|  | struct spi_board_info *bi) | 
|  | { | 
|  | struct spi_device *dev; | 
|  |  | 
|  | if (ctlr->bus_num != bi->bus_num) | 
|  | return; | 
|  |  | 
|  | dev = spi_new_device(ctlr, bi); | 
|  | if (!dev) | 
|  | dev_err(ctlr->dev.parent, "can't create new device for %s\n", | 
|  | bi->modalias); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_register_board_info - register SPI devices for a given board | 
|  | * @info: array of chip descriptors | 
|  | * @n: how many descriptors are provided | 
|  | * Context: can sleep | 
|  | * | 
|  | * Board-specific early init code calls this (probably during arch_initcall) | 
|  | * with segments of the SPI device table.  Any device nodes are created later, | 
|  | * after the relevant parent SPI controller (bus_num) is defined.  We keep | 
|  | * this table of devices forever, so that reloading a controller driver will | 
|  | * not make Linux forget about these hard-wired devices. | 
|  | * | 
|  | * Other code can also call this, e.g. a particular add-on board might provide | 
|  | * SPI devices through its expansion connector, so code initializing that board | 
|  | * would naturally declare its SPI devices. | 
|  | * | 
|  | * The board info passed can safely be __initdata ... but be careful of | 
|  | * any embedded pointers (platform_data, etc), they're copied as-is. | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_register_board_info(struct spi_board_info const *info, unsigned n) | 
|  | { | 
|  | struct boardinfo *bi; | 
|  | int i; | 
|  |  | 
|  | if (!n) | 
|  | return 0; | 
|  |  | 
|  | bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); | 
|  | if (!bi) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < n; i++, bi++, info++) { | 
|  | struct spi_controller *ctlr; | 
|  |  | 
|  | memcpy(&bi->board_info, info, sizeof(*info)); | 
|  |  | 
|  | mutex_lock(&board_lock); | 
|  | list_add_tail(&bi->list, &board_list); | 
|  | list_for_each_entry(ctlr, &spi_controller_list, list) | 
|  | spi_match_controller_to_boardinfo(ctlr, | 
|  | &bi->board_info); | 
|  | mutex_unlock(&board_lock); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Core methods for SPI resource management */ | 
|  |  | 
|  | /** | 
|  | * spi_res_alloc - allocate a spi resource that is life-cycle managed | 
|  | *                 during the processing of a spi_message while using | 
|  | *                 spi_transfer_one | 
|  | * @spi:     the SPI device for which we allocate memory | 
|  | * @release: the release code to execute for this resource | 
|  | * @size:    size to alloc and return | 
|  | * @gfp:     GFP allocation flags | 
|  | * | 
|  | * Return: the pointer to the allocated data | 
|  | * | 
|  | * This may get enhanced in the future to allocate from a memory pool | 
|  | * of the @spi_device or @spi_controller to avoid repeated allocations. | 
|  | */ | 
|  | static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, | 
|  | size_t size, gfp_t gfp) | 
|  | { | 
|  | struct spi_res *sres; | 
|  |  | 
|  | sres = kzalloc(sizeof(*sres) + size, gfp); | 
|  | if (!sres) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&sres->entry); | 
|  | sres->release = release; | 
|  |  | 
|  | return sres->data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_res_free - free an SPI resource | 
|  | * @res: pointer to the custom data of a resource | 
|  | */ | 
|  | static void spi_res_free(void *res) | 
|  | { | 
|  | struct spi_res *sres = container_of(res, struct spi_res, data); | 
|  |  | 
|  | if (!res) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!list_empty(&sres->entry)); | 
|  | kfree(sres); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_res_add - add a spi_res to the spi_message | 
|  | * @message: the SPI message | 
|  | * @res:     the spi_resource | 
|  | */ | 
|  | static void spi_res_add(struct spi_message *message, void *res) | 
|  | { | 
|  | struct spi_res *sres = container_of(res, struct spi_res, data); | 
|  |  | 
|  | WARN_ON(!list_empty(&sres->entry)); | 
|  | list_add_tail(&sres->entry, &message->resources); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_res_release - release all SPI resources for this message | 
|  | * @ctlr:  the @spi_controller | 
|  | * @message: the @spi_message | 
|  | */ | 
|  | static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) | 
|  | { | 
|  | struct spi_res *res, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { | 
|  | if (res->release) | 
|  | res->release(ctlr, message, res->data); | 
|  |  | 
|  | list_del(&res->entry); | 
|  |  | 
|  | kfree(res); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  | static inline bool spi_is_last_cs(struct spi_device *spi) | 
|  | { | 
|  | u8 idx; | 
|  | bool last = false; | 
|  |  | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { | 
|  | if (spi->cs_index_mask & BIT(idx)) { | 
|  | if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) | 
|  | last = true; | 
|  | } | 
|  | } | 
|  | return last; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void spi_set_cs(struct spi_device *spi, bool enable, bool force) | 
|  | { | 
|  | bool activate = enable; | 
|  | u8 idx; | 
|  |  | 
|  | /* | 
|  | * Avoid calling into the driver (or doing delays) if the chip select | 
|  | * isn't actually changing from the last time this was called. | 
|  | */ | 
|  | if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && | 
|  | spi_is_last_cs(spi)) || | 
|  | (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && | 
|  | !spi_is_last_cs(spi))) && | 
|  | (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) | 
|  | return; | 
|  |  | 
|  | trace_spi_set_cs(spi, activate); | 
|  |  | 
|  | spi->controller->last_cs_index_mask = spi->cs_index_mask; | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) | 
|  | spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; | 
|  | spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; | 
|  |  | 
|  | if (spi->mode & SPI_CS_HIGH) | 
|  | enable = !enable; | 
|  |  | 
|  | /* | 
|  | * Handle chip select delays for GPIO based CS or controllers without | 
|  | * programmable chip select timing. | 
|  | */ | 
|  | if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) | 
|  | spi_delay_exec(&spi->cs_hold, NULL); | 
|  |  | 
|  | if (spi_is_csgpiod(spi)) { | 
|  | if (!(spi->mode & SPI_NO_CS)) { | 
|  | /* | 
|  | * Historically ACPI has no means of the GPIO polarity and | 
|  | * thus the SPISerialBus() resource defines it on the per-chip | 
|  | * basis. In order to avoid a chain of negations, the GPIO | 
|  | * polarity is considered being Active High. Even for the cases | 
|  | * when _DSD() is involved (in the updated versions of ACPI) | 
|  | * the GPIO CS polarity must be defined Active High to avoid | 
|  | * ambiguity. That's why we use enable, that takes SPI_CS_HIGH | 
|  | * into account. | 
|  | */ | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { | 
|  | if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) { | 
|  | if (has_acpi_companion(&spi->dev)) | 
|  | gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), | 
|  | !enable); | 
|  | else | 
|  | /* Polarity handled by GPIO library */ | 
|  | gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), | 
|  | activate); | 
|  |  | 
|  | if (activate) | 
|  | spi_delay_exec(&spi->cs_setup, NULL); | 
|  | else | 
|  | spi_delay_exec(&spi->cs_inactive, NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Some SPI masters need both GPIO CS & slave_select */ | 
|  | if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && | 
|  | spi->controller->set_cs) | 
|  | spi->controller->set_cs(spi, !enable); | 
|  | } else if (spi->controller->set_cs) { | 
|  | spi->controller->set_cs(spi, !enable); | 
|  | } | 
|  |  | 
|  | if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { | 
|  | if (activate) | 
|  | spi_delay_exec(&spi->cs_setup, NULL); | 
|  | else | 
|  | spi_delay_exec(&spi->cs_inactive, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAS_DMA | 
|  | static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, | 
|  | struct sg_table *sgt, void *buf, size_t len, | 
|  | enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | const bool vmalloced_buf = is_vmalloc_addr(buf); | 
|  | unsigned int max_seg_size = dma_get_max_seg_size(dev); | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && | 
|  | (unsigned long)buf < (PKMAP_BASE + | 
|  | (LAST_PKMAP * PAGE_SIZE))); | 
|  | #else | 
|  | const bool kmap_buf = false; | 
|  | #endif | 
|  | int desc_len; | 
|  | int sgs; | 
|  | struct page *vm_page; | 
|  | struct scatterlist *sg; | 
|  | void *sg_buf; | 
|  | size_t min; | 
|  | int i, ret; | 
|  |  | 
|  | if (vmalloced_buf || kmap_buf) { | 
|  | desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); | 
|  | sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); | 
|  | } else if (virt_addr_valid(buf)) { | 
|  | desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); | 
|  | sgs = DIV_ROUND_UP(len, desc_len); | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | sg = &sgt->sgl[0]; | 
|  | for (i = 0; i < sgs; i++) { | 
|  |  | 
|  | if (vmalloced_buf || kmap_buf) { | 
|  | /* | 
|  | * Next scatterlist entry size is the minimum between | 
|  | * the desc_len and the remaining buffer length that | 
|  | * fits in a page. | 
|  | */ | 
|  | min = min_t(size_t, desc_len, | 
|  | min_t(size_t, len, | 
|  | PAGE_SIZE - offset_in_page(buf))); | 
|  | if (vmalloced_buf) | 
|  | vm_page = vmalloc_to_page(buf); | 
|  | else | 
|  | vm_page = kmap_to_page(buf); | 
|  | if (!vm_page) { | 
|  | sg_free_table(sgt); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sg_set_page(sg, vm_page, | 
|  | min, offset_in_page(buf)); | 
|  | } else { | 
|  | min = min_t(size_t, len, desc_len); | 
|  | sg_buf = buf; | 
|  | sg_set_buf(sg, sg_buf, min); | 
|  | } | 
|  |  | 
|  | buf += min; | 
|  | len -= min; | 
|  | sg = sg_next(sg); | 
|  | } | 
|  |  | 
|  | ret = dma_map_sgtable(dev, sgt, dir, attrs); | 
|  | if (ret < 0) { | 
|  | sg_free_table(sgt); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int spi_map_buf(struct spi_controller *ctlr, struct device *dev, | 
|  | struct sg_table *sgt, void *buf, size_t len, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); | 
|  | } | 
|  |  | 
|  | static void spi_unmap_buf_attrs(struct spi_controller *ctlr, | 
|  | struct device *dev, struct sg_table *sgt, | 
|  | enum dma_data_direction dir, | 
|  | unsigned long attrs) | 
|  | { | 
|  | if (sgt->orig_nents) { | 
|  | dma_unmap_sgtable(dev, sgt, dir, attrs); | 
|  | sg_free_table(sgt); | 
|  | sgt->orig_nents = 0; | 
|  | sgt->nents = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, | 
|  | struct sg_table *sgt, enum dma_data_direction dir) | 
|  | { | 
|  | spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); | 
|  | } | 
|  |  | 
|  | static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) | 
|  | { | 
|  | struct device *tx_dev, *rx_dev; | 
|  | struct spi_transfer *xfer; | 
|  | int ret; | 
|  |  | 
|  | if (!ctlr->can_dma) | 
|  | return 0; | 
|  |  | 
|  | if (ctlr->dma_tx) | 
|  | tx_dev = ctlr->dma_tx->device->dev; | 
|  | else if (ctlr->dma_map_dev) | 
|  | tx_dev = ctlr->dma_map_dev; | 
|  | else | 
|  | tx_dev = ctlr->dev.parent; | 
|  |  | 
|  | if (ctlr->dma_rx) | 
|  | rx_dev = ctlr->dma_rx->device->dev; | 
|  | else if (ctlr->dma_map_dev) | 
|  | rx_dev = ctlr->dma_map_dev; | 
|  | else | 
|  | rx_dev = ctlr->dev.parent; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | /* The sync is done before each transfer. */ | 
|  | unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; | 
|  |  | 
|  | if (!ctlr->can_dma(ctlr, msg->spi, xfer)) | 
|  | continue; | 
|  |  | 
|  | if (xfer->tx_buf != NULL) { | 
|  | ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, | 
|  | (void *)xfer->tx_buf, | 
|  | xfer->len, DMA_TO_DEVICE, | 
|  | attrs); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (xfer->rx_buf != NULL) { | 
|  | ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, | 
|  | xfer->rx_buf, xfer->len, | 
|  | DMA_FROM_DEVICE, attrs); | 
|  | if (ret != 0) { | 
|  | spi_unmap_buf_attrs(ctlr, tx_dev, | 
|  | &xfer->tx_sg, DMA_TO_DEVICE, | 
|  | attrs); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ctlr->cur_rx_dma_dev = rx_dev; | 
|  | ctlr->cur_tx_dma_dev = tx_dev; | 
|  | ctlr->cur_msg_mapped = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) | 
|  | { | 
|  | struct device *rx_dev = ctlr->cur_rx_dma_dev; | 
|  | struct device *tx_dev = ctlr->cur_tx_dma_dev; | 
|  | struct spi_transfer *xfer; | 
|  |  | 
|  | if (!ctlr->cur_msg_mapped || !ctlr->can_dma) | 
|  | return 0; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | /* The sync has already been done after each transfer. */ | 
|  | unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; | 
|  |  | 
|  | if (!ctlr->can_dma(ctlr, msg->spi, xfer)) | 
|  | continue; | 
|  |  | 
|  | spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, | 
|  | DMA_FROM_DEVICE, attrs); | 
|  | spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, | 
|  | DMA_TO_DEVICE, attrs); | 
|  | } | 
|  |  | 
|  | ctlr->cur_msg_mapped = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spi_dma_sync_for_device(struct spi_controller *ctlr, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct device *rx_dev = ctlr->cur_rx_dma_dev; | 
|  | struct device *tx_dev = ctlr->cur_tx_dma_dev; | 
|  |  | 
|  | if (!ctlr->cur_msg_mapped) | 
|  | return; | 
|  |  | 
|  | if (xfer->tx_sg.orig_nents) | 
|  | dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); | 
|  | if (xfer->rx_sg.orig_nents) | 
|  | dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct device *rx_dev = ctlr->cur_rx_dma_dev; | 
|  | struct device *tx_dev = ctlr->cur_tx_dma_dev; | 
|  |  | 
|  | if (!ctlr->cur_msg_mapped) | 
|  | return; | 
|  |  | 
|  | if (xfer->rx_sg.orig_nents) | 
|  | dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); | 
|  | if (xfer->tx_sg.orig_nents) | 
|  | dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); | 
|  | } | 
|  | #else /* !CONFIG_HAS_DMA */ | 
|  | static inline int __spi_map_msg(struct spi_controller *ctlr, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int __spi_unmap_msg(struct spi_controller *ctlr, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spi_dma_sync_for_device(struct spi_controller *ctrl, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | } | 
|  | #endif /* !CONFIG_HAS_DMA */ | 
|  |  | 
|  | static inline int spi_unmap_msg(struct spi_controller *ctlr, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | /* | 
|  | * Restore the original value of tx_buf or rx_buf if they are | 
|  | * NULL. | 
|  | */ | 
|  | if (xfer->tx_buf == ctlr->dummy_tx) | 
|  | xfer->tx_buf = NULL; | 
|  | if (xfer->rx_buf == ctlr->dummy_rx) | 
|  | xfer->rx_buf = NULL; | 
|  | } | 
|  |  | 
|  | return __spi_unmap_msg(ctlr, msg); | 
|  | } | 
|  |  | 
|  | static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | void *tmp; | 
|  | unsigned int max_tx, max_rx; | 
|  |  | 
|  | if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) | 
|  | && !(msg->spi->mode & SPI_3WIRE)) { | 
|  | max_tx = 0; | 
|  | max_rx = 0; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && | 
|  | !xfer->tx_buf) | 
|  | max_tx = max(xfer->len, max_tx); | 
|  | if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && | 
|  | !xfer->rx_buf) | 
|  | max_rx = max(xfer->len, max_rx); | 
|  | } | 
|  |  | 
|  | if (max_tx) { | 
|  | tmp = krealloc(ctlr->dummy_tx, max_tx, | 
|  | GFP_KERNEL | GFP_DMA | __GFP_ZERO); | 
|  | if (!tmp) | 
|  | return -ENOMEM; | 
|  | ctlr->dummy_tx = tmp; | 
|  | } | 
|  |  | 
|  | if (max_rx) { | 
|  | tmp = krealloc(ctlr->dummy_rx, max_rx, | 
|  | GFP_KERNEL | GFP_DMA); | 
|  | if (!tmp) | 
|  | return -ENOMEM; | 
|  | ctlr->dummy_rx = tmp; | 
|  | } | 
|  |  | 
|  | if (max_tx || max_rx) { | 
|  | list_for_each_entry(xfer, &msg->transfers, | 
|  | transfer_list) { | 
|  | if (!xfer->len) | 
|  | continue; | 
|  | if (!xfer->tx_buf) | 
|  | xfer->tx_buf = ctlr->dummy_tx; | 
|  | if (!xfer->rx_buf) | 
|  | xfer->rx_buf = ctlr->dummy_rx; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return __spi_map_msg(ctlr, msg); | 
|  | } | 
|  |  | 
|  | static int spi_transfer_wait(struct spi_controller *ctlr, | 
|  | struct spi_message *msg, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; | 
|  | struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; | 
|  | u32 speed_hz = xfer->speed_hz; | 
|  | unsigned long long ms; | 
|  |  | 
|  | if (spi_controller_is_slave(ctlr)) { | 
|  | if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { | 
|  | dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); | 
|  | return -EINTR; | 
|  | } | 
|  | } else { | 
|  | if (!speed_hz) | 
|  | speed_hz = 100000; | 
|  |  | 
|  | /* | 
|  | * For each byte we wait for 8 cycles of the SPI clock. | 
|  | * Since speed is defined in Hz and we want milliseconds, | 
|  | * use respective multiplier, but before the division, | 
|  | * otherwise we may get 0 for short transfers. | 
|  | */ | 
|  | ms = 8LL * MSEC_PER_SEC * xfer->len; | 
|  | do_div(ms, speed_hz); | 
|  |  | 
|  | /* | 
|  | * Increase it twice and add 200 ms tolerance, use | 
|  | * predefined maximum in case of overflow. | 
|  | */ | 
|  | ms += ms + 200; | 
|  | if (ms > UINT_MAX) | 
|  | ms = UINT_MAX; | 
|  |  | 
|  | ms = wait_for_completion_timeout(&ctlr->xfer_completion, | 
|  | msecs_to_jiffies(ms)); | 
|  |  | 
|  | if (ms == 0) { | 
|  | SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); | 
|  | SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); | 
|  | dev_err(&msg->spi->dev, | 
|  | "SPI transfer timed out\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | if (xfer->error & SPI_TRANS_FAIL_IO) | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void _spi_transfer_delay_ns(u32 ns) | 
|  | { | 
|  | if (!ns) | 
|  | return; | 
|  | if (ns <= NSEC_PER_USEC) { | 
|  | ndelay(ns); | 
|  | } else { | 
|  | u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); | 
|  |  | 
|  | if (us <= 10) | 
|  | udelay(us); | 
|  | else | 
|  | usleep_range(us, us + DIV_ROUND_UP(us, 10)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) | 
|  | { | 
|  | u32 delay = _delay->value; | 
|  | u32 unit = _delay->unit; | 
|  | u32 hz; | 
|  |  | 
|  | if (!delay) | 
|  | return 0; | 
|  |  | 
|  | switch (unit) { | 
|  | case SPI_DELAY_UNIT_USECS: | 
|  | delay *= NSEC_PER_USEC; | 
|  | break; | 
|  | case SPI_DELAY_UNIT_NSECS: | 
|  | /* Nothing to do here */ | 
|  | break; | 
|  | case SPI_DELAY_UNIT_SCK: | 
|  | /* Clock cycles need to be obtained from spi_transfer */ | 
|  | if (!xfer) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * If there is unknown effective speed, approximate it | 
|  | * by underestimating with half of the requested Hz. | 
|  | */ | 
|  | hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; | 
|  | if (!hz) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Convert delay to nanoseconds */ | 
|  | delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return delay; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_delay_to_ns); | 
|  |  | 
|  | int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) | 
|  | { | 
|  | int delay; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | if (!_delay) | 
|  | return -EINVAL; | 
|  |  | 
|  | delay = spi_delay_to_ns(_delay, xfer); | 
|  | if (delay < 0) | 
|  | return delay; | 
|  |  | 
|  | _spi_transfer_delay_ns(delay); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_delay_exec); | 
|  |  | 
|  | static void _spi_transfer_cs_change_delay(struct spi_message *msg, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | u32 default_delay_ns = 10 * NSEC_PER_USEC; | 
|  | u32 delay = xfer->cs_change_delay.value; | 
|  | u32 unit = xfer->cs_change_delay.unit; | 
|  | int ret; | 
|  |  | 
|  | /* Return early on "fast" mode - for everything but USECS */ | 
|  | if (!delay) { | 
|  | if (unit == SPI_DELAY_UNIT_USECS) | 
|  | _spi_transfer_delay_ns(default_delay_ns); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = spi_delay_exec(&xfer->cs_change_delay, xfer); | 
|  | if (ret) { | 
|  | dev_err_once(&msg->spi->dev, | 
|  | "Use of unsupported delay unit %i, using default of %luus\n", | 
|  | unit, default_delay_ns / NSEC_PER_USEC); | 
|  | _spi_transfer_delay_ns(default_delay_ns); | 
|  | } | 
|  | } | 
|  |  | 
|  | void spi_transfer_cs_change_delay_exec(struct spi_message *msg, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | _spi_transfer_cs_change_delay(msg, xfer); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); | 
|  |  | 
|  | /* | 
|  | * spi_transfer_one_message - Default implementation of transfer_one_message() | 
|  | * | 
|  | * This is a standard implementation of transfer_one_message() for | 
|  | * drivers which implement a transfer_one() operation.  It provides | 
|  | * standard handling of delays and chip select management. | 
|  | */ | 
|  | static int spi_transfer_one_message(struct spi_controller *ctlr, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | bool keep_cs = false; | 
|  | int ret = 0; | 
|  | struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; | 
|  | struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; | 
|  |  | 
|  | xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); | 
|  | spi_set_cs(msg->spi, !xfer->cs_off, false); | 
|  |  | 
|  | SPI_STATISTICS_INCREMENT_FIELD(statm, messages); | 
|  | SPI_STATISTICS_INCREMENT_FIELD(stats, messages); | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | trace_spi_transfer_start(msg, xfer); | 
|  |  | 
|  | spi_statistics_add_transfer_stats(statm, xfer, ctlr); | 
|  | spi_statistics_add_transfer_stats(stats, xfer, ctlr); | 
|  |  | 
|  | if (!ctlr->ptp_sts_supported) { | 
|  | xfer->ptp_sts_word_pre = 0; | 
|  | ptp_read_system_prets(xfer->ptp_sts); | 
|  | } | 
|  |  | 
|  | if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { | 
|  | reinit_completion(&ctlr->xfer_completion); | 
|  |  | 
|  | fallback_pio: | 
|  | spi_dma_sync_for_device(ctlr, xfer); | 
|  | ret = ctlr->transfer_one(ctlr, msg->spi, xfer); | 
|  | if (ret < 0) { | 
|  | spi_dma_sync_for_cpu(ctlr, xfer); | 
|  |  | 
|  | if (ctlr->cur_msg_mapped && | 
|  | (xfer->error & SPI_TRANS_FAIL_NO_START)) { | 
|  | __spi_unmap_msg(ctlr, msg); | 
|  | ctlr->fallback = true; | 
|  | xfer->error &= ~SPI_TRANS_FAIL_NO_START; | 
|  | goto fallback_pio; | 
|  | } | 
|  |  | 
|  | SPI_STATISTICS_INCREMENT_FIELD(statm, | 
|  | errors); | 
|  | SPI_STATISTICS_INCREMENT_FIELD(stats, | 
|  | errors); | 
|  | dev_err(&msg->spi->dev, | 
|  | "SPI transfer failed: %d\n", ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = spi_transfer_wait(ctlr, msg, xfer); | 
|  | if (ret < 0) | 
|  | msg->status = ret; | 
|  | } | 
|  |  | 
|  | spi_dma_sync_for_cpu(ctlr, xfer); | 
|  | } else { | 
|  | if (xfer->len) | 
|  | dev_err(&msg->spi->dev, | 
|  | "Bufferless transfer has length %u\n", | 
|  | xfer->len); | 
|  | } | 
|  |  | 
|  | if (!ctlr->ptp_sts_supported) { | 
|  | ptp_read_system_postts(xfer->ptp_sts); | 
|  | xfer->ptp_sts_word_post = xfer->len; | 
|  | } | 
|  |  | 
|  | trace_spi_transfer_stop(msg, xfer); | 
|  |  | 
|  | if (msg->status != -EINPROGRESS) | 
|  | goto out; | 
|  |  | 
|  | spi_transfer_delay_exec(xfer); | 
|  |  | 
|  | if (xfer->cs_change) { | 
|  | if (list_is_last(&xfer->transfer_list, | 
|  | &msg->transfers)) { | 
|  | keep_cs = true; | 
|  | } else { | 
|  | if (!xfer->cs_off) | 
|  | spi_set_cs(msg->spi, false, false); | 
|  | _spi_transfer_cs_change_delay(msg, xfer); | 
|  | if (!list_next_entry(xfer, transfer_list)->cs_off) | 
|  | spi_set_cs(msg->spi, true, false); | 
|  | } | 
|  | } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && | 
|  | xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { | 
|  | spi_set_cs(msg->spi, xfer->cs_off, false); | 
|  | } | 
|  |  | 
|  | msg->actual_length += xfer->len; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (ret != 0 || !keep_cs) | 
|  | spi_set_cs(msg->spi, false, false); | 
|  |  | 
|  | if (msg->status == -EINPROGRESS) | 
|  | msg->status = ret; | 
|  |  | 
|  | if (msg->status && ctlr->handle_err) | 
|  | ctlr->handle_err(ctlr, msg); | 
|  |  | 
|  | spi_finalize_current_message(ctlr); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_finalize_current_transfer - report completion of a transfer | 
|  | * @ctlr: the controller reporting completion | 
|  | * | 
|  | * Called by SPI drivers using the core transfer_one_message() | 
|  | * implementation to notify it that the current interrupt driven | 
|  | * transfer has finished and the next one may be scheduled. | 
|  | */ | 
|  | void spi_finalize_current_transfer(struct spi_controller *ctlr) | 
|  | { | 
|  | complete(&ctlr->xfer_completion); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); | 
|  |  | 
|  | static void spi_idle_runtime_pm(struct spi_controller *ctlr) | 
|  | { | 
|  | if (ctlr->auto_runtime_pm) { | 
|  | pm_runtime_mark_last_busy(ctlr->dev.parent); | 
|  | pm_runtime_put_autosuspend(ctlr->dev.parent); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __spi_pump_transfer_message(struct spi_controller *ctlr, | 
|  | struct spi_message *msg, bool was_busy) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | int ret; | 
|  |  | 
|  | if (!was_busy && ctlr->auto_runtime_pm) { | 
|  | ret = pm_runtime_get_sync(ctlr->dev.parent); | 
|  | if (ret < 0) { | 
|  | pm_runtime_put_noidle(ctlr->dev.parent); | 
|  | dev_err(&ctlr->dev, "Failed to power device: %d\n", | 
|  | ret); | 
|  |  | 
|  | msg->status = ret; | 
|  | spi_finalize_current_message(ctlr); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!was_busy) | 
|  | trace_spi_controller_busy(ctlr); | 
|  |  | 
|  | if (!was_busy && ctlr->prepare_transfer_hardware) { | 
|  | ret = ctlr->prepare_transfer_hardware(ctlr); | 
|  | if (ret) { | 
|  | dev_err(&ctlr->dev, | 
|  | "failed to prepare transfer hardware: %d\n", | 
|  | ret); | 
|  |  | 
|  | if (ctlr->auto_runtime_pm) | 
|  | pm_runtime_put(ctlr->dev.parent); | 
|  |  | 
|  | msg->status = ret; | 
|  | spi_finalize_current_message(ctlr); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_spi_message_start(msg); | 
|  |  | 
|  | if (ctlr->prepare_message) { | 
|  | ret = ctlr->prepare_message(ctlr, msg); | 
|  | if (ret) { | 
|  | dev_err(&ctlr->dev, "failed to prepare message: %d\n", | 
|  | ret); | 
|  | msg->status = ret; | 
|  | spi_finalize_current_message(ctlr); | 
|  | return ret; | 
|  | } | 
|  | msg->prepared = true; | 
|  | } | 
|  |  | 
|  | ret = spi_map_msg(ctlr, msg); | 
|  | if (ret) { | 
|  | msg->status = ret; | 
|  | spi_finalize_current_message(ctlr); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | xfer->ptp_sts_word_pre = 0; | 
|  | ptp_read_system_prets(xfer->ptp_sts); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drivers implementation of transfer_one_message() must arrange for | 
|  | * spi_finalize_current_message() to get called. Most drivers will do | 
|  | * this in the calling context, but some don't. For those cases, a | 
|  | * completion is used to guarantee that this function does not return | 
|  | * until spi_finalize_current_message() is done accessing | 
|  | * ctlr->cur_msg. | 
|  | * Use of the following two flags enable to opportunistically skip the | 
|  | * use of the completion since its use involves expensive spin locks. | 
|  | * In case of a race with the context that calls | 
|  | * spi_finalize_current_message() the completion will always be used, | 
|  | * due to strict ordering of these flags using barriers. | 
|  | */ | 
|  | WRITE_ONCE(ctlr->cur_msg_incomplete, true); | 
|  | WRITE_ONCE(ctlr->cur_msg_need_completion, false); | 
|  | reinit_completion(&ctlr->cur_msg_completion); | 
|  | smp_wmb(); /* Make these available to spi_finalize_current_message() */ | 
|  |  | 
|  | ret = ctlr->transfer_one_message(ctlr, msg); | 
|  | if (ret) { | 
|  | dev_err(&ctlr->dev, | 
|  | "failed to transfer one message from queue\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | WRITE_ONCE(ctlr->cur_msg_need_completion, true); | 
|  | smp_mb(); /* See spi_finalize_current_message()... */ | 
|  | if (READ_ONCE(ctlr->cur_msg_incomplete)) | 
|  | wait_for_completion(&ctlr->cur_msg_completion); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __spi_pump_messages - function which processes SPI message queue | 
|  | * @ctlr: controller to process queue for | 
|  | * @in_kthread: true if we are in the context of the message pump thread | 
|  | * | 
|  | * This function checks if there is any SPI message in the queue that | 
|  | * needs processing and if so call out to the driver to initialize hardware | 
|  | * and transfer each message. | 
|  | * | 
|  | * Note that it is called both from the kthread itself and also from | 
|  | * inside spi_sync(); the queue extraction handling at the top of the | 
|  | * function should deal with this safely. | 
|  | */ | 
|  | static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) | 
|  | { | 
|  | struct spi_message *msg; | 
|  | bool was_busy = false; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | /* Take the I/O mutex */ | 
|  | mutex_lock(&ctlr->io_mutex); | 
|  |  | 
|  | /* Lock queue */ | 
|  | spin_lock_irqsave(&ctlr->queue_lock, flags); | 
|  |  | 
|  | /* Make sure we are not already running a message */ | 
|  | if (ctlr->cur_msg) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Check if the queue is idle */ | 
|  | if (list_empty(&ctlr->queue) || !ctlr->running) { | 
|  | if (!ctlr->busy) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Defer any non-atomic teardown to the thread */ | 
|  | if (!in_kthread) { | 
|  | if (!ctlr->dummy_rx && !ctlr->dummy_tx && | 
|  | !ctlr->unprepare_transfer_hardware) { | 
|  | spi_idle_runtime_pm(ctlr); | 
|  | ctlr->busy = false; | 
|  | ctlr->queue_empty = true; | 
|  | trace_spi_controller_idle(ctlr); | 
|  | } else { | 
|  | kthread_queue_work(ctlr->kworker, | 
|  | &ctlr->pump_messages); | 
|  | } | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ctlr->busy = false; | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  |  | 
|  | kfree(ctlr->dummy_rx); | 
|  | ctlr->dummy_rx = NULL; | 
|  | kfree(ctlr->dummy_tx); | 
|  | ctlr->dummy_tx = NULL; | 
|  | if (ctlr->unprepare_transfer_hardware && | 
|  | ctlr->unprepare_transfer_hardware(ctlr)) | 
|  | dev_err(&ctlr->dev, | 
|  | "failed to unprepare transfer hardware\n"); | 
|  | spi_idle_runtime_pm(ctlr); | 
|  | trace_spi_controller_idle(ctlr); | 
|  |  | 
|  | spin_lock_irqsave(&ctlr->queue_lock, flags); | 
|  | ctlr->queue_empty = true; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Extract head of queue */ | 
|  | msg = list_first_entry(&ctlr->queue, struct spi_message, queue); | 
|  | ctlr->cur_msg = msg; | 
|  |  | 
|  | list_del_init(&msg->queue); | 
|  | if (ctlr->busy) | 
|  | was_busy = true; | 
|  | else | 
|  | ctlr->busy = true; | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  |  | 
|  | ret = __spi_pump_transfer_message(ctlr, msg, was_busy); | 
|  | kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); | 
|  |  | 
|  | ctlr->cur_msg = NULL; | 
|  | ctlr->fallback = false; | 
|  |  | 
|  | mutex_unlock(&ctlr->io_mutex); | 
|  |  | 
|  | /* Prod the scheduler in case transfer_one() was busy waiting */ | 
|  | if (!ret) | 
|  | cond_resched(); | 
|  | return; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  | mutex_unlock(&ctlr->io_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_pump_messages - kthread work function which processes spi message queue | 
|  | * @work: pointer to kthread work struct contained in the controller struct | 
|  | */ | 
|  | static void spi_pump_messages(struct kthread_work *work) | 
|  | { | 
|  | struct spi_controller *ctlr = | 
|  | container_of(work, struct spi_controller, pump_messages); | 
|  |  | 
|  | __spi_pump_messages(ctlr, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp | 
|  | * @ctlr: Pointer to the spi_controller structure of the driver | 
|  | * @xfer: Pointer to the transfer being timestamped | 
|  | * @progress: How many words (not bytes) have been transferred so far | 
|  | * @irqs_off: If true, will disable IRQs and preemption for the duration of the | 
|  | *	      transfer, for less jitter in time measurement. Only compatible | 
|  | *	      with PIO drivers. If true, must follow up with | 
|  | *	      spi_take_timestamp_post or otherwise system will crash. | 
|  | *	      WARNING: for fully predictable results, the CPU frequency must | 
|  | *	      also be under control (governor). | 
|  | * | 
|  | * This is a helper for drivers to collect the beginning of the TX timestamp | 
|  | * for the requested byte from the SPI transfer. The frequency with which this | 
|  | * function must be called (once per word, once for the whole transfer, once | 
|  | * per batch of words etc) is arbitrary as long as the @tx buffer offset is | 
|  | * greater than or equal to the requested byte at the time of the call. The | 
|  | * timestamp is only taken once, at the first such call. It is assumed that | 
|  | * the driver advances its @tx buffer pointer monotonically. | 
|  | */ | 
|  | void spi_take_timestamp_pre(struct spi_controller *ctlr, | 
|  | struct spi_transfer *xfer, | 
|  | size_t progress, bool irqs_off) | 
|  | { | 
|  | if (!xfer->ptp_sts) | 
|  | return; | 
|  |  | 
|  | if (xfer->timestamped) | 
|  | return; | 
|  |  | 
|  | if (progress > xfer->ptp_sts_word_pre) | 
|  | return; | 
|  |  | 
|  | /* Capture the resolution of the timestamp */ | 
|  | xfer->ptp_sts_word_pre = progress; | 
|  |  | 
|  | if (irqs_off) { | 
|  | local_irq_save(ctlr->irq_flags); | 
|  | preempt_disable(); | 
|  | } | 
|  |  | 
|  | ptp_read_system_prets(xfer->ptp_sts); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); | 
|  |  | 
|  | /** | 
|  | * spi_take_timestamp_post - helper to collect the end of the TX timestamp | 
|  | * @ctlr: Pointer to the spi_controller structure of the driver | 
|  | * @xfer: Pointer to the transfer being timestamped | 
|  | * @progress: How many words (not bytes) have been transferred so far | 
|  | * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. | 
|  | * | 
|  | * This is a helper for drivers to collect the end of the TX timestamp for | 
|  | * the requested byte from the SPI transfer. Can be called with an arbitrary | 
|  | * frequency: only the first call where @tx exceeds or is equal to the | 
|  | * requested word will be timestamped. | 
|  | */ | 
|  | void spi_take_timestamp_post(struct spi_controller *ctlr, | 
|  | struct spi_transfer *xfer, | 
|  | size_t progress, bool irqs_off) | 
|  | { | 
|  | if (!xfer->ptp_sts) | 
|  | return; | 
|  |  | 
|  | if (xfer->timestamped) | 
|  | return; | 
|  |  | 
|  | if (progress < xfer->ptp_sts_word_post) | 
|  | return; | 
|  |  | 
|  | ptp_read_system_postts(xfer->ptp_sts); | 
|  |  | 
|  | if (irqs_off) { | 
|  | local_irq_restore(ctlr->irq_flags); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* Capture the resolution of the timestamp */ | 
|  | xfer->ptp_sts_word_post = progress; | 
|  |  | 
|  | xfer->timestamped = 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_take_timestamp_post); | 
|  |  | 
|  | /** | 
|  | * spi_set_thread_rt - set the controller to pump at realtime priority | 
|  | * @ctlr: controller to boost priority of | 
|  | * | 
|  | * This can be called because the controller requested realtime priority | 
|  | * (by setting the ->rt value before calling spi_register_controller()) or | 
|  | * because a device on the bus said that its transfers needed realtime | 
|  | * priority. | 
|  | * | 
|  | * NOTE: at the moment if any device on a bus says it needs realtime then | 
|  | * the thread will be at realtime priority for all transfers on that | 
|  | * controller.  If this eventually becomes a problem we may see if we can | 
|  | * find a way to boost the priority only temporarily during relevant | 
|  | * transfers. | 
|  | */ | 
|  | static void spi_set_thread_rt(struct spi_controller *ctlr) | 
|  | { | 
|  | dev_info(&ctlr->dev, | 
|  | "will run message pump with realtime priority\n"); | 
|  | sched_set_fifo(ctlr->kworker->task); | 
|  | } | 
|  |  | 
|  | static int spi_init_queue(struct spi_controller *ctlr) | 
|  | { | 
|  | ctlr->running = false; | 
|  | ctlr->busy = false; | 
|  | ctlr->queue_empty = true; | 
|  |  | 
|  | ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); | 
|  | if (IS_ERR(ctlr->kworker)) { | 
|  | dev_err(&ctlr->dev, "failed to create message pump kworker\n"); | 
|  | return PTR_ERR(ctlr->kworker); | 
|  | } | 
|  |  | 
|  | kthread_init_work(&ctlr->pump_messages, spi_pump_messages); | 
|  |  | 
|  | /* | 
|  | * Controller config will indicate if this controller should run the | 
|  | * message pump with high (realtime) priority to reduce the transfer | 
|  | * latency on the bus by minimising the delay between a transfer | 
|  | * request and the scheduling of the message pump thread. Without this | 
|  | * setting the message pump thread will remain at default priority. | 
|  | */ | 
|  | if (ctlr->rt) | 
|  | spi_set_thread_rt(ctlr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_get_next_queued_message() - called by driver to check for queued | 
|  | * messages | 
|  | * @ctlr: the controller to check for queued messages | 
|  | * | 
|  | * If there are more messages in the queue, the next message is returned from | 
|  | * this call. | 
|  | * | 
|  | * Return: the next message in the queue, else NULL if the queue is empty. | 
|  | */ | 
|  | struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) | 
|  | { | 
|  | struct spi_message *next; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Get a pointer to the next message, if any */ | 
|  | spin_lock_irqsave(&ctlr->queue_lock, flags); | 
|  | next = list_first_entry_or_null(&ctlr->queue, struct spi_message, | 
|  | queue); | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  |  | 
|  | return next; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_get_next_queued_message); | 
|  |  | 
|  | /* | 
|  | * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() | 
|  | *                            and spi_maybe_unoptimize_message() | 
|  | * @msg: the message to unoptimize | 
|  | * | 
|  | * Peripheral drivers should use spi_unoptimize_message() and callers inside | 
|  | * core should use spi_maybe_unoptimize_message() rather than calling this | 
|  | * function directly. | 
|  | * | 
|  | * It is not valid to call this on a message that is not currently optimized. | 
|  | */ | 
|  | static void __spi_unoptimize_message(struct spi_message *msg) | 
|  | { | 
|  | struct spi_controller *ctlr = msg->spi->controller; | 
|  |  | 
|  | if (ctlr->unoptimize_message) | 
|  | ctlr->unoptimize_message(msg); | 
|  |  | 
|  | spi_res_release(ctlr, msg); | 
|  |  | 
|  | msg->optimized = false; | 
|  | msg->opt_state = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral | 
|  | * @msg: the message to unoptimize | 
|  | * | 
|  | * This function is used to unoptimize a message if and only if it was | 
|  | * optimized by the core (via spi_maybe_optimize_message()). | 
|  | */ | 
|  | static void spi_maybe_unoptimize_message(struct spi_message *msg) | 
|  | { | 
|  | if (!msg->pre_optimized && msg->optimized) | 
|  | __spi_unoptimize_message(msg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_finalize_current_message() - the current message is complete | 
|  | * @ctlr: the controller to return the message to | 
|  | * | 
|  | * Called by the driver to notify the core that the message in the front of the | 
|  | * queue is complete and can be removed from the queue. | 
|  | */ | 
|  | void spi_finalize_current_message(struct spi_controller *ctlr) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | struct spi_message *mesg; | 
|  | int ret; | 
|  |  | 
|  | mesg = ctlr->cur_msg; | 
|  |  | 
|  | if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { | 
|  | list_for_each_entry(xfer, &mesg->transfers, transfer_list) { | 
|  | ptp_read_system_postts(xfer->ptp_sts); | 
|  | xfer->ptp_sts_word_post = xfer->len; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(ctlr->ptp_sts_supported)) | 
|  | list_for_each_entry(xfer, &mesg->transfers, transfer_list) | 
|  | WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); | 
|  |  | 
|  | spi_unmap_msg(ctlr, mesg); | 
|  |  | 
|  | if (mesg->prepared && ctlr->unprepare_message) { | 
|  | ret = ctlr->unprepare_message(ctlr, mesg); | 
|  | if (ret) { | 
|  | dev_err(&ctlr->dev, "failed to unprepare message: %d\n", | 
|  | ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | mesg->prepared = false; | 
|  |  | 
|  | spi_maybe_unoptimize_message(mesg); | 
|  |  | 
|  | WRITE_ONCE(ctlr->cur_msg_incomplete, false); | 
|  | smp_mb(); /* See __spi_pump_transfer_message()... */ | 
|  | if (READ_ONCE(ctlr->cur_msg_need_completion)) | 
|  | complete(&ctlr->cur_msg_completion); | 
|  |  | 
|  | trace_spi_message_done(mesg); | 
|  |  | 
|  | mesg->state = NULL; | 
|  | if (mesg->complete) | 
|  | mesg->complete(mesg->context); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_finalize_current_message); | 
|  |  | 
|  | static int spi_start_queue(struct spi_controller *ctlr) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ctlr->queue_lock, flags); | 
|  |  | 
|  | if (ctlr->running || ctlr->busy) { | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | ctlr->running = true; | 
|  | ctlr->cur_msg = NULL; | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  |  | 
|  | kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spi_stop_queue(struct spi_controller *ctlr) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned limit = 500; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_irqsave(&ctlr->queue_lock, flags); | 
|  |  | 
|  | /* | 
|  | * This is a bit lame, but is optimized for the common execution path. | 
|  | * A wait_queue on the ctlr->busy could be used, but then the common | 
|  | * execution path (pump_messages) would be required to call wake_up or | 
|  | * friends on every SPI message. Do this instead. | 
|  | */ | 
|  | while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  | usleep_range(10000, 11000); | 
|  | spin_lock_irqsave(&ctlr->queue_lock, flags); | 
|  | } | 
|  |  | 
|  | if (!list_empty(&ctlr->queue) || ctlr->busy) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | ctlr->running = false; | 
|  |  | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spi_destroy_queue(struct spi_controller *ctlr) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = spi_stop_queue(ctlr); | 
|  |  | 
|  | /* | 
|  | * kthread_flush_worker will block until all work is done. | 
|  | * If the reason that stop_queue timed out is that the work will never | 
|  | * finish, then it does no good to call flush/stop thread, so | 
|  | * return anyway. | 
|  | */ | 
|  | if (ret) { | 
|  | dev_err(&ctlr->dev, "problem destroying queue\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | kthread_destroy_worker(ctlr->kworker); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __spi_queued_transfer(struct spi_device *spi, | 
|  | struct spi_message *msg, | 
|  | bool need_pump) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ctlr->queue_lock, flags); | 
|  |  | 
|  | if (!ctlr->running) { | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  | return -ESHUTDOWN; | 
|  | } | 
|  | msg->actual_length = 0; | 
|  | msg->status = -EINPROGRESS; | 
|  |  | 
|  | list_add_tail(&msg->queue, &ctlr->queue); | 
|  | ctlr->queue_empty = false; | 
|  | if (!ctlr->busy && need_pump) | 
|  | kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); | 
|  |  | 
|  | spin_unlock_irqrestore(&ctlr->queue_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_queued_transfer - transfer function for queued transfers | 
|  | * @spi: SPI device which is requesting transfer | 
|  | * @msg: SPI message which is to handled is queued to driver queue | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) | 
|  | { | 
|  | return __spi_queued_transfer(spi, msg, true); | 
|  | } | 
|  |  | 
|  | static int spi_controller_initialize_queue(struct spi_controller *ctlr) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ctlr->transfer = spi_queued_transfer; | 
|  | if (!ctlr->transfer_one_message) | 
|  | ctlr->transfer_one_message = spi_transfer_one_message; | 
|  |  | 
|  | /* Initialize and start queue */ | 
|  | ret = spi_init_queue(ctlr); | 
|  | if (ret) { | 
|  | dev_err(&ctlr->dev, "problem initializing queue\n"); | 
|  | goto err_init_queue; | 
|  | } | 
|  | ctlr->queued = true; | 
|  | ret = spi_start_queue(ctlr); | 
|  | if (ret) { | 
|  | dev_err(&ctlr->dev, "problem starting queue\n"); | 
|  | goto err_start_queue; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_start_queue: | 
|  | spi_destroy_queue(ctlr); | 
|  | err_init_queue: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_flush_queue - Send all pending messages in the queue from the callers' | 
|  | *		     context | 
|  | * @ctlr: controller to process queue for | 
|  | * | 
|  | * This should be used when one wants to ensure all pending messages have been | 
|  | * sent before doing something. Is used by the spi-mem code to make sure SPI | 
|  | * memory operations do not preempt regular SPI transfers that have been queued | 
|  | * before the spi-mem operation. | 
|  | */ | 
|  | void spi_flush_queue(struct spi_controller *ctlr) | 
|  | { | 
|  | if (ctlr->transfer == spi_queued_transfer) | 
|  | __spi_pump_messages(ctlr, false); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | #if defined(CONFIG_OF) | 
|  | static void of_spi_parse_dt_cs_delay(struct device_node *nc, | 
|  | struct spi_delay *delay, const char *prop) | 
|  | { | 
|  | u32 value; | 
|  |  | 
|  | if (!of_property_read_u32(nc, prop, &value)) { | 
|  | if (value > U16_MAX) { | 
|  | delay->value = DIV_ROUND_UP(value, 1000); | 
|  | delay->unit = SPI_DELAY_UNIT_USECS; | 
|  | } else { | 
|  | delay->value = value; | 
|  | delay->unit = SPI_DELAY_UNIT_NSECS; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, | 
|  | struct device_node *nc) | 
|  | { | 
|  | u32 value, cs[SPI_CS_CNT_MAX]; | 
|  | int rc, idx; | 
|  |  | 
|  | /* Mode (clock phase/polarity/etc.) */ | 
|  | if (of_property_read_bool(nc, "spi-cpha")) | 
|  | spi->mode |= SPI_CPHA; | 
|  | if (of_property_read_bool(nc, "spi-cpol")) | 
|  | spi->mode |= SPI_CPOL; | 
|  | if (of_property_read_bool(nc, "spi-3wire")) | 
|  | spi->mode |= SPI_3WIRE; | 
|  | if (of_property_read_bool(nc, "spi-lsb-first")) | 
|  | spi->mode |= SPI_LSB_FIRST; | 
|  | if (of_property_read_bool(nc, "spi-cs-high")) | 
|  | spi->mode |= SPI_CS_HIGH; | 
|  |  | 
|  | /* Device DUAL/QUAD mode */ | 
|  | if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { | 
|  | switch (value) { | 
|  | case 0: | 
|  | spi->mode |= SPI_NO_TX; | 
|  | break; | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | spi->mode |= SPI_TX_DUAL; | 
|  | break; | 
|  | case 4: | 
|  | spi->mode |= SPI_TX_QUAD; | 
|  | break; | 
|  | case 8: | 
|  | spi->mode |= SPI_TX_OCTAL; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&ctlr->dev, | 
|  | "spi-tx-bus-width %d not supported\n", | 
|  | value); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { | 
|  | switch (value) { | 
|  | case 0: | 
|  | spi->mode |= SPI_NO_RX; | 
|  | break; | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | spi->mode |= SPI_RX_DUAL; | 
|  | break; | 
|  | case 4: | 
|  | spi->mode |= SPI_RX_QUAD; | 
|  | break; | 
|  | case 8: | 
|  | spi->mode |= SPI_RX_OCTAL; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&ctlr->dev, | 
|  | "spi-rx-bus-width %d not supported\n", | 
|  | value); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (spi_controller_is_slave(ctlr)) { | 
|  | if (!of_node_name_eq(nc, "slave")) { | 
|  | dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", | 
|  | nc); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { | 
|  | dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spi_set_all_cs_unused(spi); | 
|  |  | 
|  | /* Device address */ | 
|  | rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, | 
|  | SPI_CS_CNT_MAX); | 
|  | if (rc < 0) { | 
|  | dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", | 
|  | nc, rc); | 
|  | return rc; | 
|  | } | 
|  | if (rc > ctlr->num_chipselect) { | 
|  | dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", | 
|  | nc, rc); | 
|  | return rc; | 
|  | } | 
|  | if ((of_property_read_bool(nc, "parallel-memories")) && | 
|  | (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { | 
|  | dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | for (idx = 0; idx < rc; idx++) | 
|  | spi_set_chipselect(spi, idx, cs[idx]); | 
|  |  | 
|  | /* | 
|  | * By default spi->chip_select[0] will hold the physical CS number, | 
|  | * so set bit 0 in spi->cs_index_mask. | 
|  | */ | 
|  | spi->cs_index_mask = BIT(0); | 
|  |  | 
|  | /* Device speed */ | 
|  | if (!of_property_read_u32(nc, "spi-max-frequency", &value)) | 
|  | spi->max_speed_hz = value; | 
|  |  | 
|  | /* Device CS delays */ | 
|  | of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); | 
|  | of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); | 
|  | of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct spi_device * | 
|  | of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) | 
|  | { | 
|  | struct spi_device *spi; | 
|  | int rc; | 
|  |  | 
|  | /* Alloc an spi_device */ | 
|  | spi = spi_alloc_device(ctlr); | 
|  | if (!spi) { | 
|  | dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); | 
|  | rc = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* Select device driver */ | 
|  | rc = of_alias_from_compatible(nc, spi->modalias, | 
|  | sizeof(spi->modalias)); | 
|  | if (rc < 0) { | 
|  | dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | rc = of_spi_parse_dt(ctlr, spi, nc); | 
|  | if (rc) | 
|  | goto err_out; | 
|  |  | 
|  | /* Store a pointer to the node in the device structure */ | 
|  | of_node_get(nc); | 
|  |  | 
|  | device_set_node(&spi->dev, of_fwnode_handle(nc)); | 
|  |  | 
|  | /* Register the new device */ | 
|  | rc = spi_add_device(spi); | 
|  | if (rc) { | 
|  | dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); | 
|  | goto err_of_node_put; | 
|  | } | 
|  |  | 
|  | return spi; | 
|  |  | 
|  | err_of_node_put: | 
|  | of_node_put(nc); | 
|  | err_out: | 
|  | spi_dev_put(spi); | 
|  | return ERR_PTR(rc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * of_register_spi_devices() - Register child devices onto the SPI bus | 
|  | * @ctlr:	Pointer to spi_controller device | 
|  | * | 
|  | * Registers an spi_device for each child node of controller node which | 
|  | * represents a valid SPI slave. | 
|  | */ | 
|  | static void of_register_spi_devices(struct spi_controller *ctlr) | 
|  | { | 
|  | struct spi_device *spi; | 
|  | struct device_node *nc; | 
|  |  | 
|  | for_each_available_child_of_node(ctlr->dev.of_node, nc) { | 
|  | if (of_node_test_and_set_flag(nc, OF_POPULATED)) | 
|  | continue; | 
|  | spi = of_register_spi_device(ctlr, nc); | 
|  | if (IS_ERR(spi)) { | 
|  | dev_warn(&ctlr->dev, | 
|  | "Failed to create SPI device for %pOF\n", nc); | 
|  | of_node_clear_flag(nc, OF_POPULATED); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void of_register_spi_devices(struct spi_controller *ctlr) { } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * spi_new_ancillary_device() - Register ancillary SPI device | 
|  | * @spi:         Pointer to the main SPI device registering the ancillary device | 
|  | * @chip_select: Chip Select of the ancillary device | 
|  | * | 
|  | * Register an ancillary SPI device; for example some chips have a chip-select | 
|  | * for normal device usage and another one for setup/firmware upload. | 
|  | * | 
|  | * This may only be called from main SPI device's probe routine. | 
|  | * | 
|  | * Return: 0 on success; negative errno on failure | 
|  | */ | 
|  | struct spi_device *spi_new_ancillary_device(struct spi_device *spi, | 
|  | u8 chip_select) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  | struct spi_device *ancillary; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Alloc an spi_device */ | 
|  | ancillary = spi_alloc_device(ctlr); | 
|  | if (!ancillary) { | 
|  | rc = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); | 
|  |  | 
|  | /* Use provided chip-select for ancillary device */ | 
|  | spi_set_all_cs_unused(ancillary); | 
|  | spi_set_chipselect(ancillary, 0, chip_select); | 
|  |  | 
|  | /* Take over SPI mode/speed from SPI main device */ | 
|  | ancillary->max_speed_hz = spi->max_speed_hz; | 
|  | ancillary->mode = spi->mode; | 
|  | /* | 
|  | * By default spi->chip_select[0] will hold the physical CS number, | 
|  | * so set bit 0 in spi->cs_index_mask. | 
|  | */ | 
|  | ancillary->cs_index_mask = BIT(0); | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&ctlr->add_lock)); | 
|  |  | 
|  | /* Register the new device */ | 
|  | rc = __spi_add_device(ancillary); | 
|  | if (rc) { | 
|  | dev_err(&spi->dev, "failed to register ancillary device\n"); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | return ancillary; | 
|  |  | 
|  | err_out: | 
|  | spi_dev_put(ancillary); | 
|  | return ERR_PTR(rc); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_new_ancillary_device); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | struct acpi_spi_lookup { | 
|  | struct spi_controller 	*ctlr; | 
|  | u32			max_speed_hz; | 
|  | u32			mode; | 
|  | int			irq; | 
|  | u8			bits_per_word; | 
|  | u8			chip_select; | 
|  | int			n; | 
|  | int			index; | 
|  | }; | 
|  |  | 
|  | static int acpi_spi_count(struct acpi_resource *ares, void *data) | 
|  | { | 
|  | struct acpi_resource_spi_serialbus *sb; | 
|  | int *count = data; | 
|  |  | 
|  | if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) | 
|  | return 1; | 
|  |  | 
|  | sb = &ares->data.spi_serial_bus; | 
|  | if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) | 
|  | return 1; | 
|  |  | 
|  | *count = *count + 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * acpi_spi_count_resources - Count the number of SpiSerialBus resources | 
|  | * @adev:	ACPI device | 
|  | * | 
|  | * Return: the number of SpiSerialBus resources in the ACPI-device's | 
|  | * resource-list; or a negative error code. | 
|  | */ | 
|  | int acpi_spi_count_resources(struct acpi_device *adev) | 
|  | { | 
|  | LIST_HEAD(r); | 
|  | int count = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | acpi_dev_free_resource_list(&r); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(acpi_spi_count_resources); | 
|  |  | 
|  | static void acpi_spi_parse_apple_properties(struct acpi_device *dev, | 
|  | struct acpi_spi_lookup *lookup) | 
|  | { | 
|  | const union acpi_object *obj; | 
|  |  | 
|  | if (!x86_apple_machine) | 
|  | return; | 
|  |  | 
|  | if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) | 
|  | && obj->buffer.length >= 4) | 
|  | lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; | 
|  |  | 
|  | if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) | 
|  | && obj->buffer.length == 8) | 
|  | lookup->bits_per_word = *(u64 *)obj->buffer.pointer; | 
|  |  | 
|  | if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) | 
|  | && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) | 
|  | lookup->mode |= SPI_LSB_FIRST; | 
|  |  | 
|  | if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) | 
|  | && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer) | 
|  | lookup->mode |= SPI_CPOL; | 
|  |  | 
|  | if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) | 
|  | && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer) | 
|  | lookup->mode |= SPI_CPHA; | 
|  | } | 
|  |  | 
|  | static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) | 
|  | { | 
|  | struct acpi_spi_lookup *lookup = data; | 
|  | struct spi_controller *ctlr = lookup->ctlr; | 
|  |  | 
|  | if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { | 
|  | struct acpi_resource_spi_serialbus *sb; | 
|  | acpi_handle parent_handle; | 
|  | acpi_status status; | 
|  |  | 
|  | sb = &ares->data.spi_serial_bus; | 
|  | if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { | 
|  |  | 
|  | if (lookup->index != -1 && lookup->n++ != lookup->index) | 
|  | return 1; | 
|  |  | 
|  | status = acpi_get_handle(NULL, | 
|  | sb->resource_source.string_ptr, | 
|  | &parent_handle); | 
|  |  | 
|  | if (ACPI_FAILURE(status)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (ctlr) { | 
|  | if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) | 
|  | return -ENODEV; | 
|  | } else { | 
|  | struct acpi_device *adev; | 
|  |  | 
|  | adev = acpi_fetch_acpi_dev(parent_handle); | 
|  | if (!adev) | 
|  | return -ENODEV; | 
|  |  | 
|  | ctlr = acpi_spi_find_controller_by_adev(adev); | 
|  | if (!ctlr) | 
|  | return -EPROBE_DEFER; | 
|  |  | 
|  | lookup->ctlr = ctlr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ACPI DeviceSelection numbering is handled by the | 
|  | * host controller driver in Windows and can vary | 
|  | * from driver to driver. In Linux we always expect | 
|  | * 0 .. max - 1 so we need to ask the driver to | 
|  | * translate between the two schemes. | 
|  | */ | 
|  | if (ctlr->fw_translate_cs) { | 
|  | int cs = ctlr->fw_translate_cs(ctlr, | 
|  | sb->device_selection); | 
|  | if (cs < 0) | 
|  | return cs; | 
|  | lookup->chip_select = cs; | 
|  | } else { | 
|  | lookup->chip_select = sb->device_selection; | 
|  | } | 
|  |  | 
|  | lookup->max_speed_hz = sb->connection_speed; | 
|  | lookup->bits_per_word = sb->data_bit_length; | 
|  |  | 
|  | if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) | 
|  | lookup->mode |= SPI_CPHA; | 
|  | if (sb->clock_polarity == ACPI_SPI_START_HIGH) | 
|  | lookup->mode |= SPI_CPOL; | 
|  | if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) | 
|  | lookup->mode |= SPI_CS_HIGH; | 
|  | } | 
|  | } else if (lookup->irq < 0) { | 
|  | struct resource r; | 
|  |  | 
|  | if (acpi_dev_resource_interrupt(ares, 0, &r)) | 
|  | lookup->irq = r.start; | 
|  | } | 
|  |  | 
|  | /* Always tell the ACPI core to skip this resource */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information | 
|  | * @ctlr: controller to which the spi device belongs | 
|  | * @adev: ACPI Device for the spi device | 
|  | * @index: Index of the spi resource inside the ACPI Node | 
|  | * | 
|  | * This should be used to allocate a new SPI device from and ACPI Device node. | 
|  | * The caller is responsible for calling spi_add_device to register the SPI device. | 
|  | * | 
|  | * If ctlr is set to NULL, the Controller for the SPI device will be looked up | 
|  | * using the resource. | 
|  | * If index is set to -1, index is not used. | 
|  | * Note: If index is -1, ctlr must be set. | 
|  | * | 
|  | * Return: a pointer to the new device, or ERR_PTR on error. | 
|  | */ | 
|  | struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, | 
|  | struct acpi_device *adev, | 
|  | int index) | 
|  | { | 
|  | acpi_handle parent_handle = NULL; | 
|  | struct list_head resource_list; | 
|  | struct acpi_spi_lookup lookup = {}; | 
|  | struct spi_device *spi; | 
|  | int ret; | 
|  |  | 
|  | if (!ctlr && index == -1) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | lookup.ctlr		= ctlr; | 
|  | lookup.irq		= -1; | 
|  | lookup.index		= index; | 
|  | lookup.n		= 0; | 
|  |  | 
|  | INIT_LIST_HEAD(&resource_list); | 
|  | ret = acpi_dev_get_resources(adev, &resource_list, | 
|  | acpi_spi_add_resource, &lookup); | 
|  | acpi_dev_free_resource_list(&resource_list); | 
|  |  | 
|  | if (ret < 0) | 
|  | /* Found SPI in _CRS but it points to another controller */ | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | if (!lookup.max_speed_hz && | 
|  | ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && | 
|  | ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { | 
|  | /* Apple does not use _CRS but nested devices for SPI slaves */ | 
|  | acpi_spi_parse_apple_properties(adev, &lookup); | 
|  | } | 
|  |  | 
|  | if (!lookup.max_speed_hz) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | spi = spi_alloc_device(lookup.ctlr); | 
|  | if (!spi) { | 
|  | dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", | 
|  | dev_name(&adev->dev)); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | spi_set_all_cs_unused(spi); | 
|  | spi_set_chipselect(spi, 0, lookup.chip_select); | 
|  |  | 
|  | ACPI_COMPANION_SET(&spi->dev, adev); | 
|  | spi->max_speed_hz	= lookup.max_speed_hz; | 
|  | spi->mode		|= lookup.mode; | 
|  | spi->irq		= lookup.irq; | 
|  | spi->bits_per_word	= lookup.bits_per_word; | 
|  | /* | 
|  | * By default spi->chip_select[0] will hold the physical CS number, | 
|  | * so set bit 0 in spi->cs_index_mask. | 
|  | */ | 
|  | spi->cs_index_mask	= BIT(0); | 
|  |  | 
|  | return spi; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); | 
|  |  | 
|  | static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, | 
|  | struct acpi_device *adev) | 
|  | { | 
|  | struct spi_device *spi; | 
|  |  | 
|  | if (acpi_bus_get_status(adev) || !adev->status.present || | 
|  | acpi_device_enumerated(adev)) | 
|  | return AE_OK; | 
|  |  | 
|  | spi = acpi_spi_device_alloc(ctlr, adev, -1); | 
|  | if (IS_ERR(spi)) { | 
|  | if (PTR_ERR(spi) == -ENOMEM) | 
|  | return AE_NO_MEMORY; | 
|  | else | 
|  | return AE_OK; | 
|  | } | 
|  |  | 
|  | acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, | 
|  | sizeof(spi->modalias)); | 
|  |  | 
|  | if (spi->irq < 0) | 
|  | spi->irq = acpi_dev_gpio_irq_get(adev, 0); | 
|  |  | 
|  | acpi_device_set_enumerated(adev); | 
|  |  | 
|  | adev->power.flags.ignore_parent = true; | 
|  | if (spi_add_device(spi)) { | 
|  | adev->power.flags.ignore_parent = false; | 
|  | dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", | 
|  | dev_name(&adev->dev)); | 
|  | spi_dev_put(spi); | 
|  | } | 
|  |  | 
|  | return AE_OK; | 
|  | } | 
|  |  | 
|  | static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, | 
|  | void *data, void **return_value) | 
|  | { | 
|  | struct acpi_device *adev = acpi_fetch_acpi_dev(handle); | 
|  | struct spi_controller *ctlr = data; | 
|  |  | 
|  | if (!adev) | 
|  | return AE_OK; | 
|  |  | 
|  | return acpi_register_spi_device(ctlr, adev); | 
|  | } | 
|  |  | 
|  | #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32 | 
|  |  | 
|  | static void acpi_register_spi_devices(struct spi_controller *ctlr) | 
|  | { | 
|  | acpi_status status; | 
|  | acpi_handle handle; | 
|  |  | 
|  | handle = ACPI_HANDLE(ctlr->dev.parent); | 
|  | if (!handle) | 
|  | return; | 
|  |  | 
|  | status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, | 
|  | SPI_ACPI_ENUMERATE_MAX_DEPTH, | 
|  | acpi_spi_add_device, NULL, ctlr, NULL); | 
|  | if (ACPI_FAILURE(status)) | 
|  | dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); | 
|  | } | 
|  | #else | 
|  | static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | static void spi_controller_release(struct device *dev) | 
|  | { | 
|  | struct spi_controller *ctlr; | 
|  |  | 
|  | ctlr = container_of(dev, struct spi_controller, dev); | 
|  | kfree(ctlr); | 
|  | } | 
|  |  | 
|  | static struct class spi_master_class = { | 
|  | .name		= "spi_master", | 
|  | .dev_release	= spi_controller_release, | 
|  | .dev_groups	= spi_master_groups, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SPI_SLAVE | 
|  | /** | 
|  | * spi_slave_abort - abort the ongoing transfer request on an SPI slave | 
|  | *		     controller | 
|  | * @spi: device used for the current transfer | 
|  | */ | 
|  | int spi_slave_abort(struct spi_device *spi) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  |  | 
|  | if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) | 
|  | return ctlr->slave_abort(ctlr); | 
|  |  | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_slave_abort); | 
|  |  | 
|  | int spi_target_abort(struct spi_device *spi) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  |  | 
|  | if (spi_controller_is_target(ctlr) && ctlr->target_abort) | 
|  | return ctlr->target_abort(ctlr); | 
|  |  | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_target_abort); | 
|  |  | 
|  | static ssize_t slave_show(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct spi_controller *ctlr = container_of(dev, struct spi_controller, | 
|  | dev); | 
|  | struct device *child; | 
|  |  | 
|  | child = device_find_any_child(&ctlr->dev); | 
|  | return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); | 
|  | } | 
|  |  | 
|  | static ssize_t slave_store(struct device *dev, struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct spi_controller *ctlr = container_of(dev, struct spi_controller, | 
|  | dev); | 
|  | struct spi_device *spi; | 
|  | struct device *child; | 
|  | char name[32]; | 
|  | int rc; | 
|  |  | 
|  | rc = sscanf(buf, "%31s", name); | 
|  | if (rc != 1 || !name[0]) | 
|  | return -EINVAL; | 
|  |  | 
|  | child = device_find_any_child(&ctlr->dev); | 
|  | if (child) { | 
|  | /* Remove registered slave */ | 
|  | device_unregister(child); | 
|  | put_device(child); | 
|  | } | 
|  |  | 
|  | if (strcmp(name, "(null)")) { | 
|  | /* Register new slave */ | 
|  | spi = spi_alloc_device(ctlr); | 
|  | if (!spi) | 
|  | return -ENOMEM; | 
|  |  | 
|  | strscpy(spi->modalias, name, sizeof(spi->modalias)); | 
|  |  | 
|  | rc = spi_add_device(spi); | 
|  | if (rc) { | 
|  | spi_dev_put(spi); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR_RW(slave); | 
|  |  | 
|  | static struct attribute *spi_slave_attrs[] = { | 
|  | &dev_attr_slave.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group spi_slave_group = { | 
|  | .attrs = spi_slave_attrs, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *spi_slave_groups[] = { | 
|  | &spi_controller_statistics_group, | 
|  | &spi_slave_group, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct class spi_slave_class = { | 
|  | .name		= "spi_slave", | 
|  | .dev_release	= spi_controller_release, | 
|  | .dev_groups	= spi_slave_groups, | 
|  | }; | 
|  | #else | 
|  | extern struct class spi_slave_class;	/* dummy */ | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * __spi_alloc_controller - allocate an SPI master or slave controller | 
|  | * @dev: the controller, possibly using the platform_bus | 
|  | * @size: how much zeroed driver-private data to allocate; the pointer to this | 
|  | *	memory is in the driver_data field of the returned device, accessible | 
|  | *	with spi_controller_get_devdata(); the memory is cacheline aligned; | 
|  | *	drivers granting DMA access to portions of their private data need to | 
|  | *	round up @size using ALIGN(size, dma_get_cache_alignment()). | 
|  | * @slave: flag indicating whether to allocate an SPI master (false) or SPI | 
|  | *	slave (true) controller | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call is used only by SPI controller drivers, which are the | 
|  | * only ones directly touching chip registers.  It's how they allocate | 
|  | * an spi_controller structure, prior to calling spi_register_controller(). | 
|  | * | 
|  | * This must be called from context that can sleep. | 
|  | * | 
|  | * The caller is responsible for assigning the bus number and initializing the | 
|  | * controller's methods before calling spi_register_controller(); and (after | 
|  | * errors adding the device) calling spi_controller_put() to prevent a memory | 
|  | * leak. | 
|  | * | 
|  | * Return: the SPI controller structure on success, else NULL. | 
|  | */ | 
|  | struct spi_controller *__spi_alloc_controller(struct device *dev, | 
|  | unsigned int size, bool slave) | 
|  | { | 
|  | struct spi_controller	*ctlr; | 
|  | size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); | 
|  |  | 
|  | if (!dev) | 
|  | return NULL; | 
|  |  | 
|  | ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); | 
|  | if (!ctlr) | 
|  | return NULL; | 
|  |  | 
|  | device_initialize(&ctlr->dev); | 
|  | INIT_LIST_HEAD(&ctlr->queue); | 
|  | spin_lock_init(&ctlr->queue_lock); | 
|  | spin_lock_init(&ctlr->bus_lock_spinlock); | 
|  | mutex_init(&ctlr->bus_lock_mutex); | 
|  | mutex_init(&ctlr->io_mutex); | 
|  | mutex_init(&ctlr->add_lock); | 
|  | ctlr->bus_num = -1; | 
|  | ctlr->num_chipselect = 1; | 
|  | ctlr->slave = slave; | 
|  | if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) | 
|  | ctlr->dev.class = &spi_slave_class; | 
|  | else | 
|  | ctlr->dev.class = &spi_master_class; | 
|  | ctlr->dev.parent = dev; | 
|  | pm_suspend_ignore_children(&ctlr->dev, true); | 
|  | spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); | 
|  |  | 
|  | return ctlr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__spi_alloc_controller); | 
|  |  | 
|  | static void devm_spi_release_controller(struct device *dev, void *ctlr) | 
|  | { | 
|  | spi_controller_put(*(struct spi_controller **)ctlr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() | 
|  | * @dev: physical device of SPI controller | 
|  | * @size: how much zeroed driver-private data to allocate | 
|  | * @slave: whether to allocate an SPI master (false) or SPI slave (true) | 
|  | * Context: can sleep | 
|  | * | 
|  | * Allocate an SPI controller and automatically release a reference on it | 
|  | * when @dev is unbound from its driver.  Drivers are thus relieved from | 
|  | * having to call spi_controller_put(). | 
|  | * | 
|  | * The arguments to this function are identical to __spi_alloc_controller(). | 
|  | * | 
|  | * Return: the SPI controller structure on success, else NULL. | 
|  | */ | 
|  | struct spi_controller *__devm_spi_alloc_controller(struct device *dev, | 
|  | unsigned int size, | 
|  | bool slave) | 
|  | { | 
|  | struct spi_controller **ptr, *ctlr; | 
|  |  | 
|  | ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), | 
|  | GFP_KERNEL); | 
|  | if (!ptr) | 
|  | return NULL; | 
|  |  | 
|  | ctlr = __spi_alloc_controller(dev, size, slave); | 
|  | if (ctlr) { | 
|  | ctlr->devm_allocated = true; | 
|  | *ptr = ctlr; | 
|  | devres_add(dev, ptr); | 
|  | } else { | 
|  | devres_free(ptr); | 
|  | } | 
|  |  | 
|  | return ctlr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); | 
|  |  | 
|  | /** | 
|  | * spi_get_gpio_descs() - grab chip select GPIOs for the master | 
|  | * @ctlr: The SPI master to grab GPIO descriptors for | 
|  | */ | 
|  | static int spi_get_gpio_descs(struct spi_controller *ctlr) | 
|  | { | 
|  | int nb, i; | 
|  | struct gpio_desc **cs; | 
|  | struct device *dev = &ctlr->dev; | 
|  | unsigned long native_cs_mask = 0; | 
|  | unsigned int num_cs_gpios = 0; | 
|  |  | 
|  | nb = gpiod_count(dev, "cs"); | 
|  | if (nb < 0) { | 
|  | /* No GPIOs at all is fine, else return the error */ | 
|  | if (nb == -ENOENT) | 
|  | return 0; | 
|  | return nb; | 
|  | } | 
|  |  | 
|  | ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); | 
|  |  | 
|  | cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), | 
|  | GFP_KERNEL); | 
|  | if (!cs) | 
|  | return -ENOMEM; | 
|  | ctlr->cs_gpiods = cs; | 
|  |  | 
|  | for (i = 0; i < nb; i++) { | 
|  | /* | 
|  | * Most chipselects are active low, the inverted | 
|  | * semantics are handled by special quirks in gpiolib, | 
|  | * so initializing them GPIOD_OUT_LOW here means | 
|  | * "unasserted", in most cases this will drive the physical | 
|  | * line high. | 
|  | */ | 
|  | cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, | 
|  | GPIOD_OUT_LOW); | 
|  | if (IS_ERR(cs[i])) | 
|  | return PTR_ERR(cs[i]); | 
|  |  | 
|  | if (cs[i]) { | 
|  | /* | 
|  | * If we find a CS GPIO, name it after the device and | 
|  | * chip select line. | 
|  | */ | 
|  | char *gpioname; | 
|  |  | 
|  | gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", | 
|  | dev_name(dev), i); | 
|  | if (!gpioname) | 
|  | return -ENOMEM; | 
|  | gpiod_set_consumer_name(cs[i], gpioname); | 
|  | num_cs_gpios++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { | 
|  | dev_err(dev, "Invalid native chip select %d\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | native_cs_mask |= BIT(i); | 
|  | } | 
|  |  | 
|  | ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; | 
|  |  | 
|  | if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && | 
|  | ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { | 
|  | dev_err(dev, "No unused native chip select available\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spi_controller_check_ops(struct spi_controller *ctlr) | 
|  | { | 
|  | /* | 
|  | * The controller may implement only the high-level SPI-memory like | 
|  | * operations if it does not support regular SPI transfers, and this is | 
|  | * valid use case. | 
|  | * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least | 
|  | * one of the ->transfer_xxx() method be implemented. | 
|  | */ | 
|  | if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { | 
|  | if (!ctlr->transfer && !ctlr->transfer_one && | 
|  | !ctlr->transfer_one_message) { | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocate dynamic bus number using Linux idr */ | 
|  | static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) | 
|  | { | 
|  | int id; | 
|  |  | 
|  | mutex_lock(&board_lock); | 
|  | id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); | 
|  | mutex_unlock(&board_lock); | 
|  | if (WARN(id < 0, "couldn't get idr")) | 
|  | return id == -ENOSPC ? -EBUSY : id; | 
|  | ctlr->bus_num = id; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_register_controller - register SPI master or slave controller | 
|  | * @ctlr: initialized master, originally from spi_alloc_master() or | 
|  | *	spi_alloc_slave() | 
|  | * Context: can sleep | 
|  | * | 
|  | * SPI controllers connect to their drivers using some non-SPI bus, | 
|  | * such as the platform bus.  The final stage of probe() in that code | 
|  | * includes calling spi_register_controller() to hook up to this SPI bus glue. | 
|  | * | 
|  | * SPI controllers use board specific (often SOC specific) bus numbers, | 
|  | * and board-specific addressing for SPI devices combines those numbers | 
|  | * with chip select numbers.  Since SPI does not directly support dynamic | 
|  | * device identification, boards need configuration tables telling which | 
|  | * chip is at which address. | 
|  | * | 
|  | * This must be called from context that can sleep.  It returns zero on | 
|  | * success, else a negative error code (dropping the controller's refcount). | 
|  | * After a successful return, the caller is responsible for calling | 
|  | * spi_unregister_controller(). | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_register_controller(struct spi_controller *ctlr) | 
|  | { | 
|  | struct device		*dev = ctlr->dev.parent; | 
|  | struct boardinfo	*bi; | 
|  | int			first_dynamic; | 
|  | int			status; | 
|  | int			idx; | 
|  |  | 
|  | if (!dev) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* | 
|  | * Make sure all necessary hooks are implemented before registering | 
|  | * the SPI controller. | 
|  | */ | 
|  | status = spi_controller_check_ops(ctlr); | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | if (ctlr->bus_num < 0) | 
|  | ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); | 
|  | if (ctlr->bus_num >= 0) { | 
|  | /* Devices with a fixed bus num must check-in with the num */ | 
|  | status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); | 
|  | if (status) | 
|  | return status; | 
|  | } | 
|  | if (ctlr->bus_num < 0) { | 
|  | first_dynamic = of_alias_get_highest_id("spi"); | 
|  | if (first_dynamic < 0) | 
|  | first_dynamic = 0; | 
|  | else | 
|  | first_dynamic++; | 
|  |  | 
|  | status = spi_controller_id_alloc(ctlr, first_dynamic, 0); | 
|  | if (status) | 
|  | return status; | 
|  | } | 
|  | ctlr->bus_lock_flag = 0; | 
|  | init_completion(&ctlr->xfer_completion); | 
|  | init_completion(&ctlr->cur_msg_completion); | 
|  | if (!ctlr->max_dma_len) | 
|  | ctlr->max_dma_len = INT_MAX; | 
|  |  | 
|  | /* | 
|  | * Register the device, then userspace will see it. | 
|  | * Registration fails if the bus ID is in use. | 
|  | */ | 
|  | dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); | 
|  |  | 
|  | if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { | 
|  | status = spi_get_gpio_descs(ctlr); | 
|  | if (status) | 
|  | goto free_bus_id; | 
|  | /* | 
|  | * A controller using GPIO descriptors always | 
|  | * supports SPI_CS_HIGH if need be. | 
|  | */ | 
|  | ctlr->mode_bits |= SPI_CS_HIGH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even if it's just one always-selected device, there must | 
|  | * be at least one chipselect. | 
|  | */ | 
|  | if (!ctlr->num_chipselect) { | 
|  | status = -EINVAL; | 
|  | goto free_bus_id; | 
|  | } | 
|  |  | 
|  | /* Setting last_cs to SPI_INVALID_CS means no chip selected */ | 
|  | for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) | 
|  | ctlr->last_cs[idx] = SPI_INVALID_CS; | 
|  |  | 
|  | status = device_add(&ctlr->dev); | 
|  | if (status < 0) | 
|  | goto free_bus_id; | 
|  | dev_dbg(dev, "registered %s %s\n", | 
|  | spi_controller_is_slave(ctlr) ? "slave" : "master", | 
|  | dev_name(&ctlr->dev)); | 
|  |  | 
|  | /* | 
|  | * If we're using a queued driver, start the queue. Note that we don't | 
|  | * need the queueing logic if the driver is only supporting high-level | 
|  | * memory operations. | 
|  | */ | 
|  | if (ctlr->transfer) { | 
|  | dev_info(dev, "controller is unqueued, this is deprecated\n"); | 
|  | } else if (ctlr->transfer_one || ctlr->transfer_one_message) { | 
|  | status = spi_controller_initialize_queue(ctlr); | 
|  | if (status) { | 
|  | device_del(&ctlr->dev); | 
|  | goto free_bus_id; | 
|  | } | 
|  | } | 
|  | /* Add statistics */ | 
|  | ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); | 
|  | if (!ctlr->pcpu_statistics) { | 
|  | dev_err(dev, "Error allocating per-cpu statistics\n"); | 
|  | status = -ENOMEM; | 
|  | goto destroy_queue; | 
|  | } | 
|  |  | 
|  | mutex_lock(&board_lock); | 
|  | list_add_tail(&ctlr->list, &spi_controller_list); | 
|  | list_for_each_entry(bi, &board_list, list) | 
|  | spi_match_controller_to_boardinfo(ctlr, &bi->board_info); | 
|  | mutex_unlock(&board_lock); | 
|  |  | 
|  | /* Register devices from the device tree and ACPI */ | 
|  | of_register_spi_devices(ctlr); | 
|  | acpi_register_spi_devices(ctlr); | 
|  | return status; | 
|  |  | 
|  | destroy_queue: | 
|  | spi_destroy_queue(ctlr); | 
|  | free_bus_id: | 
|  | mutex_lock(&board_lock); | 
|  | idr_remove(&spi_master_idr, ctlr->bus_num); | 
|  | mutex_unlock(&board_lock); | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_register_controller); | 
|  |  | 
|  | static void devm_spi_unregister(struct device *dev, void *res) | 
|  | { | 
|  | spi_unregister_controller(*(struct spi_controller **)res); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * devm_spi_register_controller - register managed SPI master or slave | 
|  | *	controller | 
|  | * @dev:    device managing SPI controller | 
|  | * @ctlr: initialized controller, originally from spi_alloc_master() or | 
|  | *	spi_alloc_slave() | 
|  | * Context: can sleep | 
|  | * | 
|  | * Register a SPI device as with spi_register_controller() which will | 
|  | * automatically be unregistered and freed. | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int devm_spi_register_controller(struct device *dev, | 
|  | struct spi_controller *ctlr) | 
|  | { | 
|  | struct spi_controller **ptr; | 
|  | int ret; | 
|  |  | 
|  | ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); | 
|  | if (!ptr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = spi_register_controller(ctlr); | 
|  | if (!ret) { | 
|  | *ptr = ctlr; | 
|  | devres_add(dev, ptr); | 
|  | } else { | 
|  | devres_free(ptr); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(devm_spi_register_controller); | 
|  |  | 
|  | static int __unregister(struct device *dev, void *null) | 
|  | { | 
|  | spi_unregister_device(to_spi_device(dev)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_unregister_controller - unregister SPI master or slave controller | 
|  | * @ctlr: the controller being unregistered | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call is used only by SPI controller drivers, which are the | 
|  | * only ones directly touching chip registers. | 
|  | * | 
|  | * This must be called from context that can sleep. | 
|  | * | 
|  | * Note that this function also drops a reference to the controller. | 
|  | */ | 
|  | void spi_unregister_controller(struct spi_controller *ctlr) | 
|  | { | 
|  | struct spi_controller *found; | 
|  | int id = ctlr->bus_num; | 
|  |  | 
|  | /* Prevent addition of new devices, unregister existing ones */ | 
|  | if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) | 
|  | mutex_lock(&ctlr->add_lock); | 
|  |  | 
|  | device_for_each_child(&ctlr->dev, NULL, __unregister); | 
|  |  | 
|  | /* First make sure that this controller was ever added */ | 
|  | mutex_lock(&board_lock); | 
|  | found = idr_find(&spi_master_idr, id); | 
|  | mutex_unlock(&board_lock); | 
|  | if (ctlr->queued) { | 
|  | if (spi_destroy_queue(ctlr)) | 
|  | dev_err(&ctlr->dev, "queue remove failed\n"); | 
|  | } | 
|  | mutex_lock(&board_lock); | 
|  | list_del(&ctlr->list); | 
|  | mutex_unlock(&board_lock); | 
|  |  | 
|  | device_del(&ctlr->dev); | 
|  |  | 
|  | /* Free bus id */ | 
|  | mutex_lock(&board_lock); | 
|  | if (found == ctlr) | 
|  | idr_remove(&spi_master_idr, id); | 
|  | mutex_unlock(&board_lock); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) | 
|  | mutex_unlock(&ctlr->add_lock); | 
|  |  | 
|  | /* | 
|  | * Release the last reference on the controller if its driver | 
|  | * has not yet been converted to devm_spi_alloc_master/slave(). | 
|  | */ | 
|  | if (!ctlr->devm_allocated) | 
|  | put_device(&ctlr->dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_unregister_controller); | 
|  |  | 
|  | static inline int __spi_check_suspended(const struct spi_controller *ctlr) | 
|  | { | 
|  | return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; | 
|  | } | 
|  |  | 
|  | static inline void __spi_mark_suspended(struct spi_controller *ctlr) | 
|  | { | 
|  | mutex_lock(&ctlr->bus_lock_mutex); | 
|  | ctlr->flags |= SPI_CONTROLLER_SUSPENDED; | 
|  | mutex_unlock(&ctlr->bus_lock_mutex); | 
|  | } | 
|  |  | 
|  | static inline void __spi_mark_resumed(struct spi_controller *ctlr) | 
|  | { | 
|  | mutex_lock(&ctlr->bus_lock_mutex); | 
|  | ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; | 
|  | mutex_unlock(&ctlr->bus_lock_mutex); | 
|  | } | 
|  |  | 
|  | int spi_controller_suspend(struct spi_controller *ctlr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* Basically no-ops for non-queued controllers */ | 
|  | if (ctlr->queued) { | 
|  | ret = spi_stop_queue(ctlr); | 
|  | if (ret) | 
|  | dev_err(&ctlr->dev, "queue stop failed\n"); | 
|  | } | 
|  |  | 
|  | __spi_mark_suspended(ctlr); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_controller_suspend); | 
|  |  | 
|  | int spi_controller_resume(struct spi_controller *ctlr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | __spi_mark_resumed(ctlr); | 
|  |  | 
|  | if (ctlr->queued) { | 
|  | ret = spi_start_queue(ctlr); | 
|  | if (ret) | 
|  | dev_err(&ctlr->dev, "queue restart failed\n"); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_controller_resume); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Core methods for spi_message alterations */ | 
|  |  | 
|  | static void __spi_replace_transfers_release(struct spi_controller *ctlr, | 
|  | struct spi_message *msg, | 
|  | void *res) | 
|  | { | 
|  | struct spi_replaced_transfers *rxfer = res; | 
|  | size_t i; | 
|  |  | 
|  | /* Call extra callback if requested */ | 
|  | if (rxfer->release) | 
|  | rxfer->release(ctlr, msg, res); | 
|  |  | 
|  | /* Insert replaced transfers back into the message */ | 
|  | list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); | 
|  |  | 
|  | /* Remove the formerly inserted entries */ | 
|  | for (i = 0; i < rxfer->inserted; i++) | 
|  | list_del(&rxfer->inserted_transfers[i].transfer_list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_replace_transfers - replace transfers with several transfers | 
|  | *                         and register change with spi_message.resources | 
|  | * @msg:           the spi_message we work upon | 
|  | * @xfer_first:    the first spi_transfer we want to replace | 
|  | * @remove:        number of transfers to remove | 
|  | * @insert:        the number of transfers we want to insert instead | 
|  | * @release:       extra release code necessary in some circumstances | 
|  | * @extradatasize: extra data to allocate (with alignment guarantees | 
|  | *                 of struct @spi_transfer) | 
|  | * @gfp:           gfp flags | 
|  | * | 
|  | * Returns: pointer to @spi_replaced_transfers, | 
|  | *          PTR_ERR(...) in case of errors. | 
|  | */ | 
|  | static struct spi_replaced_transfers *spi_replace_transfers( | 
|  | struct spi_message *msg, | 
|  | struct spi_transfer *xfer_first, | 
|  | size_t remove, | 
|  | size_t insert, | 
|  | spi_replaced_release_t release, | 
|  | size_t extradatasize, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct spi_replaced_transfers *rxfer; | 
|  | struct spi_transfer *xfer; | 
|  | size_t i; | 
|  |  | 
|  | /* Allocate the structure using spi_res */ | 
|  | rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, | 
|  | struct_size(rxfer, inserted_transfers, insert) | 
|  | + extradatasize, | 
|  | gfp); | 
|  | if (!rxfer) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* The release code to invoke before running the generic release */ | 
|  | rxfer->release = release; | 
|  |  | 
|  | /* Assign extradata */ | 
|  | if (extradatasize) | 
|  | rxfer->extradata = | 
|  | &rxfer->inserted_transfers[insert]; | 
|  |  | 
|  | /* Init the replaced_transfers list */ | 
|  | INIT_LIST_HEAD(&rxfer->replaced_transfers); | 
|  |  | 
|  | /* | 
|  | * Assign the list_entry after which we should reinsert | 
|  | * the @replaced_transfers - it may be spi_message.messages! | 
|  | */ | 
|  | rxfer->replaced_after = xfer_first->transfer_list.prev; | 
|  |  | 
|  | /* Remove the requested number of transfers */ | 
|  | for (i = 0; i < remove; i++) { | 
|  | /* | 
|  | * If the entry after replaced_after it is msg->transfers | 
|  | * then we have been requested to remove more transfers | 
|  | * than are in the list. | 
|  | */ | 
|  | if (rxfer->replaced_after->next == &msg->transfers) { | 
|  | dev_err(&msg->spi->dev, | 
|  | "requested to remove more spi_transfers than are available\n"); | 
|  | /* Insert replaced transfers back into the message */ | 
|  | list_splice(&rxfer->replaced_transfers, | 
|  | rxfer->replaced_after); | 
|  |  | 
|  | /* Free the spi_replace_transfer structure... */ | 
|  | spi_res_free(rxfer); | 
|  |  | 
|  | /* ...and return with an error */ | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the entry after replaced_after from list of | 
|  | * transfers and add it to list of replaced_transfers. | 
|  | */ | 
|  | list_move_tail(rxfer->replaced_after->next, | 
|  | &rxfer->replaced_transfers); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create copy of the given xfer with identical settings | 
|  | * based on the first transfer to get removed. | 
|  | */ | 
|  | for (i = 0; i < insert; i++) { | 
|  | /* We need to run in reverse order */ | 
|  | xfer = &rxfer->inserted_transfers[insert - 1 - i]; | 
|  |  | 
|  | /* Copy all spi_transfer data */ | 
|  | memcpy(xfer, xfer_first, sizeof(*xfer)); | 
|  |  | 
|  | /* Add to list */ | 
|  | list_add(&xfer->transfer_list, rxfer->replaced_after); | 
|  |  | 
|  | /* Clear cs_change and delay for all but the last */ | 
|  | if (i) { | 
|  | xfer->cs_change = false; | 
|  | xfer->delay.value = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set up inserted... */ | 
|  | rxfer->inserted = insert; | 
|  |  | 
|  | /* ...and register it with spi_res/spi_message */ | 
|  | spi_res_add(msg, rxfer); | 
|  |  | 
|  | return rxfer; | 
|  | } | 
|  |  | 
|  | static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, | 
|  | struct spi_message *msg, | 
|  | struct spi_transfer **xferp, | 
|  | size_t maxsize) | 
|  | { | 
|  | struct spi_transfer *xfer = *xferp, *xfers; | 
|  | struct spi_replaced_transfers *srt; | 
|  | size_t offset; | 
|  | size_t count, i; | 
|  |  | 
|  | /* Calculate how many we have to replace */ | 
|  | count = DIV_ROUND_UP(xfer->len, maxsize); | 
|  |  | 
|  | /* Create replacement */ | 
|  | srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); | 
|  | if (IS_ERR(srt)) | 
|  | return PTR_ERR(srt); | 
|  | xfers = srt->inserted_transfers; | 
|  |  | 
|  | /* | 
|  | * Now handle each of those newly inserted spi_transfers. | 
|  | * Note that the replacements spi_transfers all are preset | 
|  | * to the same values as *xferp, so tx_buf, rx_buf and len | 
|  | * are all identical (as well as most others) | 
|  | * so we just have to fix up len and the pointers. | 
|  | * | 
|  | * This also includes support for the depreciated | 
|  | * spi_message.is_dma_mapped interface. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The first transfer just needs the length modified, so we | 
|  | * run it outside the loop. | 
|  | */ | 
|  | xfers[0].len = min_t(size_t, maxsize, xfer[0].len); | 
|  |  | 
|  | /* All the others need rx_buf/tx_buf also set */ | 
|  | for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { | 
|  | /* Update rx_buf, tx_buf and DMA */ | 
|  | if (xfers[i].rx_buf) | 
|  | xfers[i].rx_buf += offset; | 
|  | if (xfers[i].rx_dma) | 
|  | xfers[i].rx_dma += offset; | 
|  | if (xfers[i].tx_buf) | 
|  | xfers[i].tx_buf += offset; | 
|  | if (xfers[i].tx_dma) | 
|  | xfers[i].tx_dma += offset; | 
|  |  | 
|  | /* Update length */ | 
|  | xfers[i].len = min(maxsize, xfers[i].len - offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We set up xferp to the last entry we have inserted, | 
|  | * so that we skip those already split transfers. | 
|  | */ | 
|  | *xferp = &xfers[count - 1]; | 
|  |  | 
|  | /* Increment statistics counters */ | 
|  | SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, | 
|  | transfers_split_maxsize); | 
|  | SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, | 
|  | transfers_split_maxsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_split_transfers_maxsize - split spi transfers into multiple transfers | 
|  | *                               when an individual transfer exceeds a | 
|  | *                               certain size | 
|  | * @ctlr:    the @spi_controller for this transfer | 
|  | * @msg:   the @spi_message to transform | 
|  | * @maxsize:  the maximum when to apply this | 
|  | * | 
|  | * This function allocates resources that are automatically freed during the | 
|  | * spi message unoptimize phase so this function should only be called from | 
|  | * optimize_message callbacks. | 
|  | * | 
|  | * Return: status of transformation | 
|  | */ | 
|  | int spi_split_transfers_maxsize(struct spi_controller *ctlr, | 
|  | struct spi_message *msg, | 
|  | size_t maxsize) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Iterate over the transfer_list, | 
|  | * but note that xfer is advanced to the last transfer inserted | 
|  | * to avoid checking sizes again unnecessarily (also xfer does | 
|  | * potentially belong to a different list by the time the | 
|  | * replacement has happened). | 
|  | */ | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | if (xfer->len > maxsize) { | 
|  | ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, | 
|  | maxsize); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * spi_split_transfers_maxwords - split SPI transfers into multiple transfers | 
|  | *                                when an individual transfer exceeds a | 
|  | *                                certain number of SPI words | 
|  | * @ctlr:     the @spi_controller for this transfer | 
|  | * @msg:      the @spi_message to transform | 
|  | * @maxwords: the number of words to limit each transfer to | 
|  | * | 
|  | * This function allocates resources that are automatically freed during the | 
|  | * spi message unoptimize phase so this function should only be called from | 
|  | * optimize_message callbacks. | 
|  | * | 
|  | * Return: status of transformation | 
|  | */ | 
|  | int spi_split_transfers_maxwords(struct spi_controller *ctlr, | 
|  | struct spi_message *msg, | 
|  | size_t maxwords) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  |  | 
|  | /* | 
|  | * Iterate over the transfer_list, | 
|  | * but note that xfer is advanced to the last transfer inserted | 
|  | * to avoid checking sizes again unnecessarily (also xfer does | 
|  | * potentially belong to a different list by the time the | 
|  | * replacement has happened). | 
|  | */ | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | size_t maxsize; | 
|  | int ret; | 
|  |  | 
|  | maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); | 
|  | if (xfer->len > maxsize) { | 
|  | ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, | 
|  | maxsize); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Core methods for SPI controller protocol drivers. Some of the | 
|  | * other core methods are currently defined as inline functions. | 
|  | */ | 
|  |  | 
|  | static int __spi_validate_bits_per_word(struct spi_controller *ctlr, | 
|  | u8 bits_per_word) | 
|  | { | 
|  | if (ctlr->bits_per_word_mask) { | 
|  | /* Only 32 bits fit in the mask */ | 
|  | if (bits_per_word > 32) | 
|  | return -EINVAL; | 
|  | if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_set_cs_timing - configure CS setup, hold, and inactive delays | 
|  | * @spi: the device that requires specific CS timing configuration | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | static int spi_set_cs_timing(struct spi_device *spi) | 
|  | { | 
|  | struct device *parent = spi->controller->dev.parent; | 
|  | int status = 0; | 
|  |  | 
|  | if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { | 
|  | if (spi->controller->auto_runtime_pm) { | 
|  | status = pm_runtime_get_sync(parent); | 
|  | if (status < 0) { | 
|  | pm_runtime_put_noidle(parent); | 
|  | dev_err(&spi->controller->dev, "Failed to power device: %d\n", | 
|  | status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | status = spi->controller->set_cs_timing(spi); | 
|  | pm_runtime_mark_last_busy(parent); | 
|  | pm_runtime_put_autosuspend(parent); | 
|  | } else { | 
|  | status = spi->controller->set_cs_timing(spi); | 
|  | } | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_setup - setup SPI mode and clock rate | 
|  | * @spi: the device whose settings are being modified | 
|  | * Context: can sleep, and no requests are queued to the device | 
|  | * | 
|  | * SPI protocol drivers may need to update the transfer mode if the | 
|  | * device doesn't work with its default.  They may likewise need | 
|  | * to update clock rates or word sizes from initial values.  This function | 
|  | * changes those settings, and must be called from a context that can sleep. | 
|  | * Except for SPI_CS_HIGH, which takes effect immediately, the changes take | 
|  | * effect the next time the device is selected and data is transferred to | 
|  | * or from it.  When this function returns, the SPI device is deselected. | 
|  | * | 
|  | * Note that this call will fail if the protocol driver specifies an option | 
|  | * that the underlying controller or its driver does not support.  For | 
|  | * example, not all hardware supports wire transfers using nine bit words, | 
|  | * LSB-first wire encoding, or active-high chipselects. | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_setup(struct spi_device *spi) | 
|  | { | 
|  | unsigned	bad_bits, ugly_bits; | 
|  | int		status = 0; | 
|  |  | 
|  | /* | 
|  | * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO | 
|  | * are set at the same time. | 
|  | */ | 
|  | if ((hweight_long(spi->mode & | 
|  | (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || | 
|  | (hweight_long(spi->mode & | 
|  | (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { | 
|  | dev_err(&spi->dev, | 
|  | "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ | 
|  | if ((spi->mode & SPI_3WIRE) && (spi->mode & | 
|  | (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | | 
|  | SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * Help drivers fail *cleanly* when they need options | 
|  | * that aren't supported with their current controller. | 
|  | * SPI_CS_WORD has a fallback software implementation, | 
|  | * so it is ignored here. | 
|  | */ | 
|  | bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | | 
|  | SPI_NO_TX | SPI_NO_RX); | 
|  | ugly_bits = bad_bits & | 
|  | (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | | 
|  | SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); | 
|  | if (ugly_bits) { | 
|  | dev_warn(&spi->dev, | 
|  | "setup: ignoring unsupported mode bits %x\n", | 
|  | ugly_bits); | 
|  | spi->mode &= ~ugly_bits; | 
|  | bad_bits &= ~ugly_bits; | 
|  | } | 
|  | if (bad_bits) { | 
|  | dev_err(&spi->dev, "setup: unsupported mode bits %x\n", | 
|  | bad_bits); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!spi->bits_per_word) { | 
|  | spi->bits_per_word = 8; | 
|  | } else { | 
|  | /* | 
|  | * Some controllers may not support the default 8 bits-per-word | 
|  | * so only perform the check when this is explicitly provided. | 
|  | */ | 
|  | status = __spi_validate_bits_per_word(spi->controller, | 
|  | spi->bits_per_word); | 
|  | if (status) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (spi->controller->max_speed_hz && | 
|  | (!spi->max_speed_hz || | 
|  | spi->max_speed_hz > spi->controller->max_speed_hz)) | 
|  | spi->max_speed_hz = spi->controller->max_speed_hz; | 
|  |  | 
|  | mutex_lock(&spi->controller->io_mutex); | 
|  |  | 
|  | if (spi->controller->setup) { | 
|  | status = spi->controller->setup(spi); | 
|  | if (status) { | 
|  | mutex_unlock(&spi->controller->io_mutex); | 
|  | dev_err(&spi->controller->dev, "Failed to setup device: %d\n", | 
|  | status); | 
|  | return status; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = spi_set_cs_timing(spi); | 
|  | if (status) { | 
|  | mutex_unlock(&spi->controller->io_mutex); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { | 
|  | status = pm_runtime_resume_and_get(spi->controller->dev.parent); | 
|  | if (status < 0) { | 
|  | mutex_unlock(&spi->controller->io_mutex); | 
|  | dev_err(&spi->controller->dev, "Failed to power device: %d\n", | 
|  | status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We do not want to return positive value from pm_runtime_get, | 
|  | * there are many instances of devices calling spi_setup() and | 
|  | * checking for a non-zero return value instead of a negative | 
|  | * return value. | 
|  | */ | 
|  | status = 0; | 
|  |  | 
|  | spi_set_cs(spi, false, true); | 
|  | pm_runtime_mark_last_busy(spi->controller->dev.parent); | 
|  | pm_runtime_put_autosuspend(spi->controller->dev.parent); | 
|  | } else { | 
|  | spi_set_cs(spi, false, true); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&spi->controller->io_mutex); | 
|  |  | 
|  | if (spi->rt && !spi->controller->rt) { | 
|  | spi->controller->rt = true; | 
|  | spi_set_thread_rt(spi->controller); | 
|  | } | 
|  |  | 
|  | trace_spi_setup(spi, status); | 
|  |  | 
|  | dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", | 
|  | spi->mode & SPI_MODE_X_MASK, | 
|  | (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", | 
|  | (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", | 
|  | (spi->mode & SPI_3WIRE) ? "3wire, " : "", | 
|  | (spi->mode & SPI_LOOP) ? "loopback, " : "", | 
|  | spi->bits_per_word, spi->max_speed_hz, | 
|  | status); | 
|  |  | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_setup); | 
|  |  | 
|  | static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, | 
|  | struct spi_device *spi) | 
|  | { | 
|  | int delay1, delay2; | 
|  |  | 
|  | delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); | 
|  | if (delay1 < 0) | 
|  | return delay1; | 
|  |  | 
|  | delay2 = spi_delay_to_ns(&spi->word_delay, xfer); | 
|  | if (delay2 < 0) | 
|  | return delay2; | 
|  |  | 
|  | if (delay1 < delay2) | 
|  | memcpy(&xfer->word_delay, &spi->word_delay, | 
|  | sizeof(xfer->word_delay)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __spi_validate(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  | struct spi_transfer *xfer; | 
|  | int w_size; | 
|  |  | 
|  | if (list_empty(&message->transfers)) | 
|  | return -EINVAL; | 
|  |  | 
|  | message->spi = spi; | 
|  |  | 
|  | /* | 
|  | * Half-duplex links include original MicroWire, and ones with | 
|  | * only one data pin like SPI_3WIRE (switches direction) or where | 
|  | * either MOSI or MISO is missing.  They can also be caused by | 
|  | * software limitations. | 
|  | */ | 
|  | if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || | 
|  | (spi->mode & SPI_3WIRE)) { | 
|  | unsigned flags = ctlr->flags; | 
|  |  | 
|  | list_for_each_entry(xfer, &message->transfers, transfer_list) { | 
|  | if (xfer->rx_buf && xfer->tx_buf) | 
|  | return -EINVAL; | 
|  | if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) | 
|  | return -EINVAL; | 
|  | if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set transfer bits_per_word and max speed as spi device default if | 
|  | * it is not set for this transfer. | 
|  | * Set transfer tx_nbits and rx_nbits as single transfer default | 
|  | * (SPI_NBITS_SINGLE) if it is not set for this transfer. | 
|  | * Ensure transfer word_delay is at least as long as that required by | 
|  | * device itself. | 
|  | */ | 
|  | message->frame_length = 0; | 
|  | list_for_each_entry(xfer, &message->transfers, transfer_list) { | 
|  | xfer->effective_speed_hz = 0; | 
|  | message->frame_length += xfer->len; | 
|  | if (!xfer->bits_per_word) | 
|  | xfer->bits_per_word = spi->bits_per_word; | 
|  |  | 
|  | if (!xfer->speed_hz) | 
|  | xfer->speed_hz = spi->max_speed_hz; | 
|  |  | 
|  | if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) | 
|  | xfer->speed_hz = ctlr->max_speed_hz; | 
|  |  | 
|  | if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * SPI transfer length should be multiple of SPI word size | 
|  | * where SPI word size should be power-of-two multiple. | 
|  | */ | 
|  | if (xfer->bits_per_word <= 8) | 
|  | w_size = 1; | 
|  | else if (xfer->bits_per_word <= 16) | 
|  | w_size = 2; | 
|  | else | 
|  | w_size = 4; | 
|  |  | 
|  | /* No partial transfers accepted */ | 
|  | if (xfer->len % w_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (xfer->speed_hz && ctlr->min_speed_hz && | 
|  | xfer->speed_hz < ctlr->min_speed_hz) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (xfer->tx_buf && !xfer->tx_nbits) | 
|  | xfer->tx_nbits = SPI_NBITS_SINGLE; | 
|  | if (xfer->rx_buf && !xfer->rx_nbits) | 
|  | xfer->rx_nbits = SPI_NBITS_SINGLE; | 
|  | /* | 
|  | * Check transfer tx/rx_nbits: | 
|  | * 1. check the value matches one of single, dual and quad | 
|  | * 2. check tx/rx_nbits match the mode in spi_device | 
|  | */ | 
|  | if (xfer->tx_buf) { | 
|  | if (spi->mode & SPI_NO_TX) | 
|  | return -EINVAL; | 
|  | if (xfer->tx_nbits != SPI_NBITS_SINGLE && | 
|  | xfer->tx_nbits != SPI_NBITS_DUAL && | 
|  | xfer->tx_nbits != SPI_NBITS_QUAD) | 
|  | return -EINVAL; | 
|  | if ((xfer->tx_nbits == SPI_NBITS_DUAL) && | 
|  | !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) | 
|  | return -EINVAL; | 
|  | if ((xfer->tx_nbits == SPI_NBITS_QUAD) && | 
|  | !(spi->mode & SPI_TX_QUAD)) | 
|  | return -EINVAL; | 
|  | } | 
|  | /* Check transfer rx_nbits */ | 
|  | if (xfer->rx_buf) { | 
|  | if (spi->mode & SPI_NO_RX) | 
|  | return -EINVAL; | 
|  | if (xfer->rx_nbits != SPI_NBITS_SINGLE && | 
|  | xfer->rx_nbits != SPI_NBITS_DUAL && | 
|  | xfer->rx_nbits != SPI_NBITS_QUAD) | 
|  | return -EINVAL; | 
|  | if ((xfer->rx_nbits == SPI_NBITS_DUAL) && | 
|  | !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) | 
|  | return -EINVAL; | 
|  | if ((xfer->rx_nbits == SPI_NBITS_QUAD) && | 
|  | !(spi->mode & SPI_RX_QUAD)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (_spi_xfer_word_delay_update(xfer, spi)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | message->status = -EINPROGRESS; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * spi_split_transfers - generic handling of transfer splitting | 
|  | * @msg: the message to split | 
|  | * | 
|  | * Under certain conditions, a SPI controller may not support arbitrary | 
|  | * transfer sizes or other features required by a peripheral. This function | 
|  | * will split the transfers in the message into smaller transfers that are | 
|  | * supported by the controller. | 
|  | * | 
|  | * Controllers with special requirements not covered here can also split | 
|  | * transfers in the optimize_message() callback. | 
|  | * | 
|  | * Context: can sleep | 
|  | * Return: zero on success, else a negative error code | 
|  | */ | 
|  | static int spi_split_transfers(struct spi_message *msg) | 
|  | { | 
|  | struct spi_controller *ctlr = msg->spi->controller; | 
|  | struct spi_transfer *xfer; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If an SPI controller does not support toggling the CS line on each | 
|  | * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO | 
|  | * for the CS line, we can emulate the CS-per-word hardware function by | 
|  | * splitting transfers into one-word transfers and ensuring that | 
|  | * cs_change is set for each transfer. | 
|  | */ | 
|  | if ((msg->spi->mode & SPI_CS_WORD) && | 
|  | (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { | 
|  | ret = spi_split_transfers_maxwords(ctlr, msg, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | /* Don't change cs_change on the last entry in the list */ | 
|  | if (list_is_last(&xfer->transfer_list, &msg->transfers)) | 
|  | break; | 
|  |  | 
|  | xfer->cs_change = 1; | 
|  | } | 
|  | } else { | 
|  | ret = spi_split_transfers_maxsize(ctlr, msg, | 
|  | spi_max_transfer_size(msg->spi)); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __spi_optimize_message - shared implementation for spi_optimize_message() | 
|  | *                          and spi_maybe_optimize_message() | 
|  | * @spi: the device that will be used for the message | 
|  | * @msg: the message to optimize | 
|  | * | 
|  | * Peripheral drivers will call spi_optimize_message() and the spi core will | 
|  | * call spi_maybe_optimize_message() instead of calling this directly. | 
|  | * | 
|  | * It is not valid to call this on a message that has already been optimized. | 
|  | * | 
|  | * Return: zero on success, else a negative error code | 
|  | */ | 
|  | static int __spi_optimize_message(struct spi_device *spi, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  | int ret; | 
|  |  | 
|  | ret = __spi_validate(spi, msg); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = spi_split_transfers(msg); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (ctlr->optimize_message) { | 
|  | ret = ctlr->optimize_message(msg); | 
|  | if (ret) { | 
|  | spi_res_release(ctlr, msg); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | msg->optimized = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized | 
|  | * @spi: the device that will be used for the message | 
|  | * @msg: the message to optimize | 
|  | * Return: zero on success, else a negative error code | 
|  | */ | 
|  | static int spi_maybe_optimize_message(struct spi_device *spi, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | if (msg->pre_optimized) | 
|  | return 0; | 
|  |  | 
|  | return __spi_optimize_message(spi, msg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_optimize_message - do any one-time validation and setup for a SPI message | 
|  | * @spi: the device that will be used for the message | 
|  | * @msg: the message to optimize | 
|  | * | 
|  | * Peripheral drivers that reuse the same message repeatedly may call this to | 
|  | * perform as much message prep as possible once, rather than repeating it each | 
|  | * time a message transfer is performed to improve throughput and reduce CPU | 
|  | * usage. | 
|  | * | 
|  | * Once a message has been optimized, it cannot be modified with the exception | 
|  | * of updating the contents of any xfer->tx_buf (the pointer can't be changed, | 
|  | * only the data in the memory it points to). | 
|  | * | 
|  | * Calls to this function must be balanced with calls to spi_unoptimize_message() | 
|  | * to avoid leaking resources. | 
|  | * | 
|  | * Context: can sleep | 
|  | * Return: zero on success, else a negative error code | 
|  | */ | 
|  | int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = __spi_optimize_message(spi, msg); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * This flag indicates that the peripheral driver called spi_optimize_message() | 
|  | * and therefore we shouldn't unoptimize message automatically when finalizing | 
|  | * the message but rather wait until spi_unoptimize_message() is called | 
|  | * by the peripheral driver. | 
|  | */ | 
|  | msg->pre_optimized = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_optimize_message); | 
|  |  | 
|  | /** | 
|  | * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() | 
|  | * @msg: the message to unoptimize | 
|  | * | 
|  | * Calls to this function must be balanced with calls to spi_optimize_message(). | 
|  | * | 
|  | * Context: can sleep | 
|  | */ | 
|  | void spi_unoptimize_message(struct spi_message *msg) | 
|  | { | 
|  | __spi_unoptimize_message(msg); | 
|  | msg->pre_optimized = false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_unoptimize_message); | 
|  |  | 
|  | static int __spi_async(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  | struct spi_transfer *xfer; | 
|  |  | 
|  | /* | 
|  | * Some controllers do not support doing regular SPI transfers. Return | 
|  | * ENOTSUPP when this is the case. | 
|  | */ | 
|  | if (!ctlr->transfer) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); | 
|  | SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); | 
|  |  | 
|  | trace_spi_message_submit(message); | 
|  |  | 
|  | if (!ctlr->ptp_sts_supported) { | 
|  | list_for_each_entry(xfer, &message->transfers, transfer_list) { | 
|  | xfer->ptp_sts_word_pre = 0; | 
|  | ptp_read_system_prets(xfer->ptp_sts); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ctlr->transfer(spi, message); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_async - asynchronous SPI transfer | 
|  | * @spi: device with which data will be exchanged | 
|  | * @message: describes the data transfers, including completion callback | 
|  | * Context: any (IRQs may be blocked, etc) | 
|  | * | 
|  | * This call may be used in_irq and other contexts which can't sleep, | 
|  | * as well as from task contexts which can sleep. | 
|  | * | 
|  | * The completion callback is invoked in a context which can't sleep. | 
|  | * Before that invocation, the value of message->status is undefined. | 
|  | * When the callback is issued, message->status holds either zero (to | 
|  | * indicate complete success) or a negative error code.  After that | 
|  | * callback returns, the driver which issued the transfer request may | 
|  | * deallocate the associated memory; it's no longer in use by any SPI | 
|  | * core or controller driver code. | 
|  | * | 
|  | * Note that although all messages to a spi_device are handled in | 
|  | * FIFO order, messages may go to different devices in other orders. | 
|  | * Some device might be higher priority, or have various "hard" access | 
|  | * time requirements, for example. | 
|  | * | 
|  | * On detection of any fault during the transfer, processing of | 
|  | * the entire message is aborted, and the device is deselected. | 
|  | * Until returning from the associated message completion callback, | 
|  | * no other spi_message queued to that device will be processed. | 
|  | * (This rule applies equally to all the synchronous transfer calls, | 
|  | * which are wrappers around this core asynchronous primitive.) | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_async(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  | int ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | ret = spi_maybe_optimize_message(spi, message); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); | 
|  |  | 
|  | if (ctlr->bus_lock_flag) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | ret = __spi_async(spi, message); | 
|  |  | 
|  | spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); | 
|  |  | 
|  | spi_maybe_unoptimize_message(message); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_async); | 
|  |  | 
|  | static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) | 
|  | { | 
|  | bool was_busy; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&ctlr->io_mutex); | 
|  |  | 
|  | was_busy = ctlr->busy; | 
|  |  | 
|  | ctlr->cur_msg = msg; | 
|  | ret = __spi_pump_transfer_message(ctlr, msg, was_busy); | 
|  | if (ret) | 
|  | dev_err(&ctlr->dev, "noqueue transfer failed\n"); | 
|  | ctlr->cur_msg = NULL; | 
|  | ctlr->fallback = false; | 
|  |  | 
|  | if (!was_busy) { | 
|  | kfree(ctlr->dummy_rx); | 
|  | ctlr->dummy_rx = NULL; | 
|  | kfree(ctlr->dummy_tx); | 
|  | ctlr->dummy_tx = NULL; | 
|  | if (ctlr->unprepare_transfer_hardware && | 
|  | ctlr->unprepare_transfer_hardware(ctlr)) | 
|  | dev_err(&ctlr->dev, | 
|  | "failed to unprepare transfer hardware\n"); | 
|  | spi_idle_runtime_pm(ctlr); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&ctlr->io_mutex); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Utility methods for SPI protocol drivers, layered on | 
|  | * top of the core.  Some other utility methods are defined as | 
|  | * inline functions. | 
|  | */ | 
|  |  | 
|  | static void spi_complete(void *arg) | 
|  | { | 
|  | complete(arg); | 
|  | } | 
|  |  | 
|  | static int __spi_sync(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(done); | 
|  | unsigned long flags; | 
|  | int status; | 
|  | struct spi_controller *ctlr = spi->controller; | 
|  |  | 
|  | if (__spi_check_suspended(ctlr)) { | 
|  | dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); | 
|  | return -ESHUTDOWN; | 
|  | } | 
|  |  | 
|  | status = spi_maybe_optimize_message(spi, message); | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); | 
|  | SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); | 
|  |  | 
|  | /* | 
|  | * Checking queue_empty here only guarantees async/sync message | 
|  | * ordering when coming from the same context. It does not need to | 
|  | * guard against reentrancy from a different context. The io_mutex | 
|  | * will catch those cases. | 
|  | */ | 
|  | if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { | 
|  | message->actual_length = 0; | 
|  | message->status = -EINPROGRESS; | 
|  |  | 
|  | trace_spi_message_submit(message); | 
|  |  | 
|  | SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); | 
|  | SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); | 
|  |  | 
|  | __spi_transfer_message_noqueue(ctlr, message); | 
|  |  | 
|  | return message->status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are messages in the async queue that could have originated | 
|  | * from the same context, so we need to preserve ordering. | 
|  | * Therefor we send the message to the async queue and wait until they | 
|  | * are completed. | 
|  | */ | 
|  | message->complete = spi_complete; | 
|  | message->context = &done; | 
|  |  | 
|  | spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); | 
|  | status = __spi_async(spi, message); | 
|  | spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); | 
|  |  | 
|  | if (status == 0) { | 
|  | wait_for_completion(&done); | 
|  | status = message->status; | 
|  | } | 
|  | message->context = NULL; | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_sync - blocking/synchronous SPI data transfers | 
|  | * @spi: device with which data will be exchanged | 
|  | * @message: describes the data transfers | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may only be used from a context that may sleep.  The sleep | 
|  | * is non-interruptible, and has no timeout.  Low-overhead controller | 
|  | * drivers may DMA directly into and out of the message buffers. | 
|  | * | 
|  | * Note that the SPI device's chip select is active during the message, | 
|  | * and then is normally disabled between messages.  Drivers for some | 
|  | * frequently-used devices may want to minimize costs of selecting a chip, | 
|  | * by leaving it selected in anticipation that the next message will go | 
|  | * to the same chip.  (That may increase power usage.) | 
|  | * | 
|  | * Also, the caller is guaranteeing that the memory associated with the | 
|  | * message will not be freed before this call returns. | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_sync(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&spi->controller->bus_lock_mutex); | 
|  | ret = __spi_sync(spi, message); | 
|  | mutex_unlock(&spi->controller->bus_lock_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_sync); | 
|  |  | 
|  | /** | 
|  | * spi_sync_locked - version of spi_sync with exclusive bus usage | 
|  | * @spi: device with which data will be exchanged | 
|  | * @message: describes the data transfers | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may only be used from a context that may sleep.  The sleep | 
|  | * is non-interruptible, and has no timeout.  Low-overhead controller | 
|  | * drivers may DMA directly into and out of the message buffers. | 
|  | * | 
|  | * This call should be used by drivers that require exclusive access to the | 
|  | * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must | 
|  | * be released by a spi_bus_unlock call when the exclusive access is over. | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_sync_locked(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | return __spi_sync(spi, message); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_sync_locked); | 
|  |  | 
|  | /** | 
|  | * spi_bus_lock - obtain a lock for exclusive SPI bus usage | 
|  | * @ctlr: SPI bus master that should be locked for exclusive bus access | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may only be used from a context that may sleep.  The sleep | 
|  | * is non-interruptible, and has no timeout. | 
|  | * | 
|  | * This call should be used by drivers that require exclusive access to the | 
|  | * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the | 
|  | * exclusive access is over. Data transfer must be done by spi_sync_locked | 
|  | * and spi_async_locked calls when the SPI bus lock is held. | 
|  | * | 
|  | * Return: always zero. | 
|  | */ | 
|  | int spi_bus_lock(struct spi_controller *ctlr) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | mutex_lock(&ctlr->bus_lock_mutex); | 
|  |  | 
|  | spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); | 
|  | ctlr->bus_lock_flag = 1; | 
|  | spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); | 
|  |  | 
|  | /* Mutex remains locked until spi_bus_unlock() is called */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_bus_lock); | 
|  |  | 
|  | /** | 
|  | * spi_bus_unlock - release the lock for exclusive SPI bus usage | 
|  | * @ctlr: SPI bus master that was locked for exclusive bus access | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may only be used from a context that may sleep.  The sleep | 
|  | * is non-interruptible, and has no timeout. | 
|  | * | 
|  | * This call releases an SPI bus lock previously obtained by an spi_bus_lock | 
|  | * call. | 
|  | * | 
|  | * Return: always zero. | 
|  | */ | 
|  | int spi_bus_unlock(struct spi_controller *ctlr) | 
|  | { | 
|  | ctlr->bus_lock_flag = 0; | 
|  |  | 
|  | mutex_unlock(&ctlr->bus_lock_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_bus_unlock); | 
|  |  | 
|  | /* Portable code must never pass more than 32 bytes */ | 
|  | #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES) | 
|  |  | 
|  | static u8	*buf; | 
|  |  | 
|  | /** | 
|  | * spi_write_then_read - SPI synchronous write followed by read | 
|  | * @spi: device with which data will be exchanged | 
|  | * @txbuf: data to be written (need not be DMA-safe) | 
|  | * @n_tx: size of txbuf, in bytes | 
|  | * @rxbuf: buffer into which data will be read (need not be DMA-safe) | 
|  | * @n_rx: size of rxbuf, in bytes | 
|  | * Context: can sleep | 
|  | * | 
|  | * This performs a half duplex MicroWire style transaction with the | 
|  | * device, sending txbuf and then reading rxbuf.  The return value | 
|  | * is zero for success, else a negative errno status code. | 
|  | * This call may only be used from a context that may sleep. | 
|  | * | 
|  | * Parameters to this routine are always copied using a small buffer. | 
|  | * Performance-sensitive or bulk transfer code should instead use | 
|  | * spi_{async,sync}() calls with DMA-safe buffers. | 
|  | * | 
|  | * Return: zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_write_then_read(struct spi_device *spi, | 
|  | const void *txbuf, unsigned n_tx, | 
|  | void *rxbuf, unsigned n_rx) | 
|  | { | 
|  | static DEFINE_MUTEX(lock); | 
|  |  | 
|  | int			status; | 
|  | struct spi_message	message; | 
|  | struct spi_transfer	x[2]; | 
|  | u8			*local_buf; | 
|  |  | 
|  | /* | 
|  | * Use preallocated DMA-safe buffer if we can. We can't avoid | 
|  | * copying here, (as a pure convenience thing), but we can | 
|  | * keep heap costs out of the hot path unless someone else is | 
|  | * using the pre-allocated buffer or the transfer is too large. | 
|  | */ | 
|  | if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { | 
|  | local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), | 
|  | GFP_KERNEL | GFP_DMA); | 
|  | if (!local_buf) | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | local_buf = buf; | 
|  | } | 
|  |  | 
|  | spi_message_init(&message); | 
|  | memset(x, 0, sizeof(x)); | 
|  | if (n_tx) { | 
|  | x[0].len = n_tx; | 
|  | spi_message_add_tail(&x[0], &message); | 
|  | } | 
|  | if (n_rx) { | 
|  | x[1].len = n_rx; | 
|  | spi_message_add_tail(&x[1], &message); | 
|  | } | 
|  |  | 
|  | memcpy(local_buf, txbuf, n_tx); | 
|  | x[0].tx_buf = local_buf; | 
|  | x[1].rx_buf = local_buf + n_tx; | 
|  |  | 
|  | /* Do the I/O */ | 
|  | status = spi_sync(spi, &message); | 
|  | if (status == 0) | 
|  | memcpy(rxbuf, x[1].rx_buf, n_rx); | 
|  |  | 
|  | if (x[0].tx_buf == buf) | 
|  | mutex_unlock(&lock); | 
|  | else | 
|  | kfree(local_buf); | 
|  |  | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_write_then_read); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_OF_DYNAMIC) | 
|  | /* Must call put_device() when done with returned spi_device device */ | 
|  | static struct spi_device *of_find_spi_device_by_node(struct device_node *node) | 
|  | { | 
|  | struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); | 
|  |  | 
|  | return dev ? to_spi_device(dev) : NULL; | 
|  | } | 
|  |  | 
|  | /* The spi controllers are not using spi_bus, so we find it with another way */ | 
|  | static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) | 
|  | { | 
|  | struct device *dev; | 
|  |  | 
|  | dev = class_find_device_by_of_node(&spi_master_class, node); | 
|  | if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) | 
|  | dev = class_find_device_by_of_node(&spi_slave_class, node); | 
|  | if (!dev) | 
|  | return NULL; | 
|  |  | 
|  | /* Reference got in class_find_device */ | 
|  | return container_of(dev, struct spi_controller, dev); | 
|  | } | 
|  |  | 
|  | static int of_spi_notify(struct notifier_block *nb, unsigned long action, | 
|  | void *arg) | 
|  | { | 
|  | struct of_reconfig_data *rd = arg; | 
|  | struct spi_controller *ctlr; | 
|  | struct spi_device *spi; | 
|  |  | 
|  | switch (of_reconfig_get_state_change(action, arg)) { | 
|  | case OF_RECONFIG_CHANGE_ADD: | 
|  | ctlr = of_find_spi_controller_by_node(rd->dn->parent); | 
|  | if (ctlr == NULL) | 
|  | return NOTIFY_OK;	/* Not for us */ | 
|  |  | 
|  | if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { | 
|  | put_device(&ctlr->dev); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the flag before adding the device so that fw_devlink | 
|  | * doesn't skip adding consumers to this device. | 
|  | */ | 
|  | rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; | 
|  | spi = of_register_spi_device(ctlr, rd->dn); | 
|  | put_device(&ctlr->dev); | 
|  |  | 
|  | if (IS_ERR(spi)) { | 
|  | pr_err("%s: failed to create for '%pOF'\n", | 
|  | __func__, rd->dn); | 
|  | of_node_clear_flag(rd->dn, OF_POPULATED); | 
|  | return notifier_from_errno(PTR_ERR(spi)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OF_RECONFIG_CHANGE_REMOVE: | 
|  | /* Already depopulated? */ | 
|  | if (!of_node_check_flag(rd->dn, OF_POPULATED)) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | /* Find our device by node */ | 
|  | spi = of_find_spi_device_by_node(rd->dn); | 
|  | if (spi == NULL) | 
|  | return NOTIFY_OK;	/* No? not meant for us */ | 
|  |  | 
|  | /* Unregister takes one ref away */ | 
|  | spi_unregister_device(spi); | 
|  |  | 
|  | /* And put the reference of the find */ | 
|  | put_device(&spi->dev); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block spi_of_notifier = { | 
|  | .notifier_call = of_spi_notify, | 
|  | }; | 
|  | #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ | 
|  | extern struct notifier_block spi_of_notifier; | 
|  | #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_ACPI) | 
|  | static int spi_acpi_controller_match(struct device *dev, const void *data) | 
|  | { | 
|  | return ACPI_COMPANION(dev->parent) == data; | 
|  | } | 
|  |  | 
|  | struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) | 
|  | { | 
|  | struct device *dev; | 
|  |  | 
|  | dev = class_find_device(&spi_master_class, NULL, adev, | 
|  | spi_acpi_controller_match); | 
|  | if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) | 
|  | dev = class_find_device(&spi_slave_class, NULL, adev, | 
|  | spi_acpi_controller_match); | 
|  | if (!dev) | 
|  | return NULL; | 
|  |  | 
|  | return container_of(dev, struct spi_controller, dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); | 
|  |  | 
|  | static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) | 
|  | { | 
|  | struct device *dev; | 
|  |  | 
|  | dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); | 
|  | return to_spi_device(dev); | 
|  | } | 
|  |  | 
|  | static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, | 
|  | void *arg) | 
|  | { | 
|  | struct acpi_device *adev = arg; | 
|  | struct spi_controller *ctlr; | 
|  | struct spi_device *spi; | 
|  |  | 
|  | switch (value) { | 
|  | case ACPI_RECONFIG_DEVICE_ADD: | 
|  | ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); | 
|  | if (!ctlr) | 
|  | break; | 
|  |  | 
|  | acpi_register_spi_device(ctlr, adev); | 
|  | put_device(&ctlr->dev); | 
|  | break; | 
|  | case ACPI_RECONFIG_DEVICE_REMOVE: | 
|  | if (!acpi_device_enumerated(adev)) | 
|  | break; | 
|  |  | 
|  | spi = acpi_spi_find_device_by_adev(adev); | 
|  | if (!spi) | 
|  | break; | 
|  |  | 
|  | spi_unregister_device(spi); | 
|  | put_device(&spi->dev); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block spi_acpi_notifier = { | 
|  | .notifier_call = acpi_spi_notify, | 
|  | }; | 
|  | #else | 
|  | extern struct notifier_block spi_acpi_notifier; | 
|  | #endif | 
|  |  | 
|  | static int __init spi_init(void) | 
|  | { | 
|  | int	status; | 
|  |  | 
|  | buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | status = -ENOMEM; | 
|  | goto err0; | 
|  | } | 
|  |  | 
|  | status = bus_register(&spi_bus_type); | 
|  | if (status < 0) | 
|  | goto err1; | 
|  |  | 
|  | status = class_register(&spi_master_class); | 
|  | if (status < 0) | 
|  | goto err2; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_SPI_SLAVE)) { | 
|  | status = class_register(&spi_slave_class); | 
|  | if (status < 0) | 
|  | goto err3; | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_OF_DYNAMIC)) | 
|  | WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); | 
|  | if (IS_ENABLED(CONFIG_ACPI)) | 
|  | WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err3: | 
|  | class_unregister(&spi_master_class); | 
|  | err2: | 
|  | bus_unregister(&spi_bus_type); | 
|  | err1: | 
|  | kfree(buf); | 
|  | buf = NULL; | 
|  | err0: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A board_info is normally registered in arch_initcall(), | 
|  | * but even essential drivers wait till later. | 
|  | * | 
|  | * REVISIT only boardinfo really needs static linking. The rest (device and | 
|  | * driver registration) _could_ be dynamically linked (modular) ... Costs | 
|  | * include needing to have boardinfo data structures be much more public. | 
|  | */ | 
|  | postcore_initcall(spi_init); |