|  | /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module | 
|  | * | 
|  | * This driver supports the memory controllers found on the Intel | 
|  | * processor family Sandy Bridge. | 
|  | * | 
|  | * This file may be distributed under the terms of the | 
|  | * GNU General Public License version 2 only. | 
|  | * | 
|  | * Copyright (c) 2011 by: | 
|  | *	 Mauro Carvalho Chehab | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci_ids.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/edac.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/math64.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/mce.h> | 
|  |  | 
|  | #include "edac_core.h" | 
|  |  | 
|  | /* Static vars */ | 
|  | static LIST_HEAD(sbridge_edac_list); | 
|  | static DEFINE_MUTEX(sbridge_edac_lock); | 
|  | static int probed; | 
|  |  | 
|  | /* | 
|  | * Alter this version for the module when modifications are made | 
|  | */ | 
|  | #define SBRIDGE_REVISION    " Ver: 1.1.1 " | 
|  | #define EDAC_MOD_STR      "sbridge_edac" | 
|  |  | 
|  | /* | 
|  | * Debug macros | 
|  | */ | 
|  | #define sbridge_printk(level, fmt, arg...)			\ | 
|  | edac_printk(level, "sbridge", fmt, ##arg) | 
|  |  | 
|  | #define sbridge_mc_printk(mci, level, fmt, arg...)		\ | 
|  | edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) | 
|  |  | 
|  | /* | 
|  | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | 
|  | */ | 
|  | #define GET_BITFIELD(v, lo, hi)	\ | 
|  | (((v) & GENMASK_ULL(hi, lo)) >> (lo)) | 
|  |  | 
|  | /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ | 
|  | static const u32 sbridge_dram_rule[] = { | 
|  | 0x80, 0x88, 0x90, 0x98, 0xa0, | 
|  | 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, | 
|  | }; | 
|  |  | 
|  | static const u32 ibridge_dram_rule[] = { | 
|  | 0x60, 0x68, 0x70, 0x78, 0x80, | 
|  | 0x88, 0x90, 0x98, 0xa0,	0xa8, | 
|  | 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, | 
|  | 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, | 
|  | }; | 
|  |  | 
|  | #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) | 
|  | #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3) | 
|  | #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1) | 
|  | #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0) | 
|  | #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26) | 
|  |  | 
|  | static char *get_dram_attr(u32 reg) | 
|  | { | 
|  | switch(DRAM_ATTR(reg)) { | 
|  | case 0: | 
|  | return "DRAM"; | 
|  | case 1: | 
|  | return "MMCFG"; | 
|  | case 2: | 
|  | return "NXM"; | 
|  | default: | 
|  | return "unknown"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const u32 sbridge_interleave_list[] = { | 
|  | 0x84, 0x8c, 0x94, 0x9c, 0xa4, | 
|  | 0xac, 0xb4, 0xbc, 0xc4, 0xcc, | 
|  | }; | 
|  |  | 
|  | static const u32 ibridge_interleave_list[] = { | 
|  | 0x64, 0x6c, 0x74, 0x7c, 0x84, | 
|  | 0x8c, 0x94, 0x9c, 0xa4, 0xac, | 
|  | 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, | 
|  | 0xdc, 0xe4, 0xec, 0xf4, 0xfc, | 
|  | }; | 
|  |  | 
|  | struct interleave_pkg { | 
|  | unsigned char start; | 
|  | unsigned char end; | 
|  | }; | 
|  |  | 
|  | static const struct interleave_pkg sbridge_interleave_pkg[] = { | 
|  | { 0, 2 }, | 
|  | { 3, 5 }, | 
|  | { 8, 10 }, | 
|  | { 11, 13 }, | 
|  | { 16, 18 }, | 
|  | { 19, 21 }, | 
|  | { 24, 26 }, | 
|  | { 27, 29 }, | 
|  | }; | 
|  |  | 
|  | static const struct interleave_pkg ibridge_interleave_pkg[] = { | 
|  | { 0, 3 }, | 
|  | { 4, 7 }, | 
|  | { 8, 11 }, | 
|  | { 12, 15 }, | 
|  | { 16, 19 }, | 
|  | { 20, 23 }, | 
|  | { 24, 27 }, | 
|  | { 28, 31 }, | 
|  | }; | 
|  |  | 
|  | static inline int sad_pkg(const struct interleave_pkg *table, u32 reg, | 
|  | int interleave) | 
|  | { | 
|  | return GET_BITFIELD(reg, table[interleave].start, | 
|  | table[interleave].end); | 
|  | } | 
|  |  | 
|  | /* Devices 12 Function 7 */ | 
|  |  | 
|  | #define TOLM		0x80 | 
|  | #define	TOHM		0x84 | 
|  | #define HASWELL_TOLM	0xd0 | 
|  | #define HASWELL_TOHM_0	0xd4 | 
|  | #define HASWELL_TOHM_1	0xd8 | 
|  |  | 
|  | #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff) | 
|  | #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) | 
|  |  | 
|  | /* Device 13 Function 6 */ | 
|  |  | 
|  | #define SAD_TARGET	0xf0 | 
|  |  | 
|  | #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11) | 
|  |  | 
|  | #define SAD_CONTROL	0xf4 | 
|  |  | 
|  | /* Device 14 function 0 */ | 
|  |  | 
|  | static const u32 tad_dram_rule[] = { | 
|  | 0x40, 0x44, 0x48, 0x4c, | 
|  | 0x50, 0x54, 0x58, 0x5c, | 
|  | 0x60, 0x64, 0x68, 0x6c, | 
|  | }; | 
|  | #define MAX_TAD	ARRAY_SIZE(tad_dram_rule) | 
|  |  | 
|  | #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) | 
|  | #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11) | 
|  | #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9) | 
|  | #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7) | 
|  | #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5) | 
|  | #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3) | 
|  | #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1) | 
|  |  | 
|  | /* Device 15, function 0 */ | 
|  |  | 
|  | #define MCMTR			0x7c | 
|  |  | 
|  | #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2) | 
|  | #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1) | 
|  | #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0) | 
|  |  | 
|  | /* Device 15, function 1 */ | 
|  |  | 
|  | #define RASENABLES		0xac | 
|  | #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0) | 
|  |  | 
|  | /* Device 15, functions 2-5 */ | 
|  |  | 
|  | static const int mtr_regs[] = { | 
|  | 0x80, 0x84, 0x88, | 
|  | }; | 
|  |  | 
|  | #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19) | 
|  | #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14) | 
|  | #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13) | 
|  | #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4) | 
|  | #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1) | 
|  |  | 
|  | static const u32 tad_ch_nilv_offset[] = { | 
|  | 0x90, 0x94, 0x98, 0x9c, | 
|  | 0xa0, 0xa4, 0xa8, 0xac, | 
|  | 0xb0, 0xb4, 0xb8, 0xbc, | 
|  | }; | 
|  | #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29) | 
|  | #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26) | 
|  |  | 
|  | static const u32 rir_way_limit[] = { | 
|  | 0x108, 0x10c, 0x110, 0x114, 0x118, | 
|  | }; | 
|  | #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) | 
|  |  | 
|  | #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31) | 
|  | #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29) | 
|  |  | 
|  | #define MAX_RIR_WAY	8 | 
|  |  | 
|  | static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { | 
|  | { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, | 
|  | { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, | 
|  | { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, | 
|  | { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, | 
|  | { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, | 
|  | }; | 
|  |  | 
|  | #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19) | 
|  | #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14) | 
|  |  | 
|  | /* Device 16, functions 2-7 */ | 
|  |  | 
|  | /* | 
|  | * FIXME: Implement the error count reads directly | 
|  | */ | 
|  |  | 
|  | static const u32 correrrcnt[] = { | 
|  | 0x104, 0x108, 0x10c, 0x110, | 
|  | }; | 
|  |  | 
|  | #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31) | 
|  | #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30) | 
|  | #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15) | 
|  | #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14) | 
|  |  | 
|  | static const u32 correrrthrsld[] = { | 
|  | 0x11c, 0x120, 0x124, 0x128, | 
|  | }; | 
|  |  | 
|  | #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30) | 
|  | #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14) | 
|  |  | 
|  |  | 
|  | /* Device 17, function 0 */ | 
|  |  | 
|  | #define SB_RANK_CFG_A		0x0328 | 
|  |  | 
|  | #define IB_RANK_CFG_A		0x0320 | 
|  |  | 
|  | /* | 
|  | * sbridge structs | 
|  | */ | 
|  |  | 
|  | #define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */ | 
|  | #define MAX_DIMMS		3	/* Max DIMMS per channel */ | 
|  | #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */ | 
|  |  | 
|  | enum type { | 
|  | SANDY_BRIDGE, | 
|  | IVY_BRIDGE, | 
|  | HASWELL, | 
|  | BROADWELL, | 
|  | }; | 
|  |  | 
|  | struct sbridge_pvt; | 
|  | struct sbridge_info { | 
|  | enum type	type; | 
|  | u32		mcmtr; | 
|  | u32		rankcfgr; | 
|  | u64		(*get_tolm)(struct sbridge_pvt *pvt); | 
|  | u64		(*get_tohm)(struct sbridge_pvt *pvt); | 
|  | u64		(*rir_limit)(u32 reg); | 
|  | const u32	*dram_rule; | 
|  | const u32	*interleave_list; | 
|  | const struct interleave_pkg *interleave_pkg; | 
|  | u8		max_sad; | 
|  | u8		max_interleave; | 
|  | u8		(*get_node_id)(struct sbridge_pvt *pvt); | 
|  | enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt); | 
|  | enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr); | 
|  | struct pci_dev	*pci_vtd; | 
|  | }; | 
|  |  | 
|  | struct sbridge_channel { | 
|  | u32		ranks; | 
|  | u32		dimms; | 
|  | }; | 
|  |  | 
|  | struct pci_id_descr { | 
|  | int			dev_id; | 
|  | int			optional; | 
|  | }; | 
|  |  | 
|  | struct pci_id_table { | 
|  | const struct pci_id_descr	*descr; | 
|  | int				n_devs; | 
|  | }; | 
|  |  | 
|  | struct sbridge_dev { | 
|  | struct list_head	list; | 
|  | u8			bus, mc; | 
|  | u8			node_id, source_id; | 
|  | struct pci_dev		**pdev; | 
|  | int			n_devs; | 
|  | struct mem_ctl_info	*mci; | 
|  | }; | 
|  |  | 
|  | struct sbridge_pvt { | 
|  | struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras; | 
|  | struct pci_dev		*pci_sad0, *pci_sad1; | 
|  | struct pci_dev		*pci_ha0, *pci_ha1; | 
|  | struct pci_dev		*pci_br0, *pci_br1; | 
|  | struct pci_dev		*pci_ha1_ta; | 
|  | struct pci_dev		*pci_tad[NUM_CHANNELS]; | 
|  |  | 
|  | struct sbridge_dev	*sbridge_dev; | 
|  |  | 
|  | struct sbridge_info	info; | 
|  | struct sbridge_channel	channel[NUM_CHANNELS]; | 
|  |  | 
|  | /* Memory type detection */ | 
|  | bool			is_mirrored, is_lockstep, is_close_pg; | 
|  |  | 
|  | /* Fifo double buffers */ | 
|  | struct mce		mce_entry[MCE_LOG_LEN]; | 
|  | struct mce		mce_outentry[MCE_LOG_LEN]; | 
|  |  | 
|  | /* Fifo in/out counters */ | 
|  | unsigned		mce_in, mce_out; | 
|  |  | 
|  | /* Count indicator to show errors not got */ | 
|  | unsigned		mce_overrun; | 
|  |  | 
|  | /* Memory description */ | 
|  | u64			tolm, tohm; | 
|  | }; | 
|  |  | 
|  | #define PCI_DESCR(device_id, opt)	\ | 
|  | .dev_id = (device_id),		\ | 
|  | .optional = opt | 
|  |  | 
|  | static const struct pci_id_descr pci_dev_descr_sbridge[] = { | 
|  | /* Processor Home Agent */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	}, | 
|  |  | 
|  | /* Memory controller */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	}, | 
|  |  | 
|  | /* System Address Decoder */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	}, | 
|  |  | 
|  | /* Broadcast Registers */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		}, | 
|  | }; | 
|  |  | 
|  | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } | 
|  | static const struct pci_id_table pci_dev_descr_sbridge_table[] = { | 
|  | PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), | 
|  | {0,}			/* 0 terminated list. */ | 
|  | }; | 
|  |  | 
|  | /* This changes depending if 1HA or 2HA: | 
|  | * 1HA: | 
|  | *	0x0eb8 (17.0) is DDRIO0 | 
|  | * 2HA: | 
|  | *	0x0ebc (17.4) is DDRIO0 | 
|  | */ | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc | 
|  |  | 
|  | /* pci ids */ | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79 | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c | 
|  | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d | 
|  |  | 
|  | static const struct pci_id_descr pci_dev_descr_ibridge[] = { | 
|  | /* Processor Home Agent */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		}, | 
|  |  | 
|  | /* Memory controller */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	}, | 
|  |  | 
|  | /* System Address Decoder */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			}, | 
|  |  | 
|  | /* Broadcast Registers */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			}, | 
|  |  | 
|  | /* Optional, mode 2HA */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		}, | 
|  | #if 0 | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	}, | 
|  | #endif | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	}, | 
|  | }; | 
|  |  | 
|  | static const struct pci_id_table pci_dev_descr_ibridge_table[] = { | 
|  | PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge), | 
|  | {0,}			/* 0 terminated list. */ | 
|  | }; | 
|  |  | 
|  | /* Haswell support */ | 
|  | /* EN processor: | 
|  | *	- 1 IMC | 
|  | *	- 3 DDR3 channels, 2 DPC per channel | 
|  | * EP processor: | 
|  | *	- 1 or 2 IMC | 
|  | *	- 4 DDR4 channels, 3 DPC per channel | 
|  | * EP 4S processor: | 
|  | *	- 2 IMC | 
|  | *	- 4 DDR4 channels, 3 DPC per channel | 
|  | * EX processor: | 
|  | *	- 2 IMC | 
|  | *	- each IMC interfaces with a SMI 2 channel | 
|  | *	- each SMI channel interfaces with a scalable memory buffer | 
|  | *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC | 
|  | */ | 
|  | #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */ | 
|  | #define HASWELL_HASYSDEFEATURE2 0x84 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9 | 
|  | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb | 
|  | static const struct pci_id_descr pci_dev_descr_haswell[] = { | 
|  | /* first item must be the HA */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	}, | 
|  | }; | 
|  |  | 
|  | static const struct pci_id_table pci_dev_descr_haswell_table[] = { | 
|  | PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell), | 
|  | {0,}			/* 0 terminated list. */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Broadwell support | 
|  | * | 
|  | * DE processor: | 
|  | *	- 1 IMC | 
|  | *	- 2 DDR3 channels, 2 DPC per channel | 
|  | * EP processor: | 
|  | *	- 1 or 2 IMC | 
|  | *	- 4 DDR4 channels, 3 DPC per channel | 
|  | * EP 4S processor: | 
|  | *	- 2 IMC | 
|  | *	- 4 DDR4 channels, 3 DPC per channel | 
|  | * EX processor: | 
|  | *	- 2 IMC | 
|  | *	- each IMC interfaces with a SMI 2 channel | 
|  | *	- each SMI channel interfaces with a scalable memory buffer | 
|  | *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC | 
|  | */ | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28 | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0 | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60 | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8 | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71 | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68 | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79 | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d | 
|  | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf | 
|  |  | 
|  | static const struct pci_id_descr pci_dev_descr_broadwell[] = { | 
|  | /* first item must be the HA */ | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	}, | 
|  |  | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	}, | 
|  | { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	}, | 
|  | }; | 
|  |  | 
|  | static const struct pci_id_table pci_dev_descr_broadwell_table[] = { | 
|  | PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell), | 
|  | {0,}			/* 0 terminated list. */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *	pci_device_id	table for which devices we are looking for | 
|  | */ | 
|  | static const struct pci_device_id sbridge_pci_tbl[] = { | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)}, | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)}, | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)}, | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)}, | 
|  | {0,}			/* 0 terminated list. */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /**************************************************************************** | 
|  | Ancillary status routines | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static inline int numrank(enum type type, u32 mtr) | 
|  | { | 
|  | int ranks = (1 << RANK_CNT_BITS(mtr)); | 
|  | int max = 4; | 
|  |  | 
|  | if (type == HASWELL || type == BROADWELL) | 
|  | max = 8; | 
|  |  | 
|  | if (ranks > max) { | 
|  | edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n", | 
|  | ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return ranks; | 
|  | } | 
|  |  | 
|  | static inline int numrow(u32 mtr) | 
|  | { | 
|  | int rows = (RANK_WIDTH_BITS(mtr) + 12); | 
|  |  | 
|  | if (rows < 13 || rows > 18) { | 
|  | edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", | 
|  | rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 1 << rows; | 
|  | } | 
|  |  | 
|  | static inline int numcol(u32 mtr) | 
|  | { | 
|  | int cols = (COL_WIDTH_BITS(mtr) + 10); | 
|  |  | 
|  | if (cols > 12) { | 
|  | edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", | 
|  | cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 1 << cols; | 
|  | } | 
|  |  | 
|  | static struct sbridge_dev *get_sbridge_dev(u8 bus) | 
|  | { | 
|  | struct sbridge_dev *sbridge_dev; | 
|  |  | 
|  | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | 
|  | if (sbridge_dev->bus == bus) | 
|  | return sbridge_dev; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct sbridge_dev *alloc_sbridge_dev(u8 bus, | 
|  | const struct pci_id_table *table) | 
|  | { | 
|  | struct sbridge_dev *sbridge_dev; | 
|  |  | 
|  | sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); | 
|  | if (!sbridge_dev) | 
|  | return NULL; | 
|  |  | 
|  | sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, | 
|  | GFP_KERNEL); | 
|  | if (!sbridge_dev->pdev) { | 
|  | kfree(sbridge_dev); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | sbridge_dev->bus = bus; | 
|  | sbridge_dev->n_devs = table->n_devs; | 
|  | list_add_tail(&sbridge_dev->list, &sbridge_edac_list); | 
|  |  | 
|  | return sbridge_dev; | 
|  | } | 
|  |  | 
|  | static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) | 
|  | { | 
|  | list_del(&sbridge_dev->list); | 
|  | kfree(sbridge_dev->pdev); | 
|  | kfree(sbridge_dev); | 
|  | } | 
|  |  | 
|  | static u64 sbridge_get_tolm(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* Address range is 32:28 */ | 
|  | pci_read_config_dword(pvt->pci_sad1, TOLM, ®); | 
|  | return GET_TOLM(reg); | 
|  | } | 
|  |  | 
|  | static u64 sbridge_get_tohm(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_sad1, TOHM, ®); | 
|  | return GET_TOHM(reg); | 
|  | } | 
|  |  | 
|  | static u64 ibridge_get_tolm(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_br1, TOLM, ®); | 
|  |  | 
|  | return GET_TOLM(reg); | 
|  | } | 
|  |  | 
|  | static u64 ibridge_get_tohm(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_br1, TOHM, ®); | 
|  |  | 
|  | return GET_TOHM(reg); | 
|  | } | 
|  |  | 
|  | static u64 rir_limit(u32 reg) | 
|  | { | 
|  | return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff; | 
|  | } | 
|  |  | 
|  | static enum mem_type get_memory_type(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  | enum mem_type mtype; | 
|  |  | 
|  | if (pvt->pci_ddrio) { | 
|  | pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr, | 
|  | ®); | 
|  | if (GET_BITFIELD(reg, 11, 11)) | 
|  | /* FIXME: Can also be LRDIMM */ | 
|  | mtype = MEM_RDDR3; | 
|  | else | 
|  | mtype = MEM_DDR3; | 
|  | } else | 
|  | mtype = MEM_UNKNOWN; | 
|  |  | 
|  | return mtype; | 
|  | } | 
|  |  | 
|  | static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  | bool registered = false; | 
|  | enum mem_type mtype = MEM_UNKNOWN; | 
|  |  | 
|  | if (!pvt->pci_ddrio) | 
|  | goto out; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_ddrio, | 
|  | HASWELL_DDRCRCLKCONTROLS, ®); | 
|  | /* Is_Rdimm */ | 
|  | if (GET_BITFIELD(reg, 16, 16)) | 
|  | registered = true; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_ta, MCMTR, ®); | 
|  | if (GET_BITFIELD(reg, 14, 14)) { | 
|  | if (registered) | 
|  | mtype = MEM_RDDR4; | 
|  | else | 
|  | mtype = MEM_DDR4; | 
|  | } else { | 
|  | if (registered) | 
|  | mtype = MEM_RDDR3; | 
|  | else | 
|  | mtype = MEM_DDR3; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return mtype; | 
|  | } | 
|  |  | 
|  | static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr) | 
|  | { | 
|  | /* there's no way to figure out */ | 
|  | return DEV_UNKNOWN; | 
|  | } | 
|  |  | 
|  | static enum dev_type __ibridge_get_width(u32 mtr) | 
|  | { | 
|  | enum dev_type type; | 
|  |  | 
|  | switch (mtr) { | 
|  | case 3: | 
|  | type = DEV_UNKNOWN; | 
|  | break; | 
|  | case 2: | 
|  | type = DEV_X16; | 
|  | break; | 
|  | case 1: | 
|  | type = DEV_X8; | 
|  | break; | 
|  | case 0: | 
|  | type = DEV_X4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return type; | 
|  | } | 
|  |  | 
|  | static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr) | 
|  | { | 
|  | /* | 
|  | * ddr3_width on the documentation but also valid for DDR4 on | 
|  | * Haswell | 
|  | */ | 
|  | return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8)); | 
|  | } | 
|  |  | 
|  | static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr) | 
|  | { | 
|  | /* ddr3_width on the documentation but also valid for DDR4 */ | 
|  | return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9)); | 
|  | } | 
|  |  | 
|  | static u8 get_node_id(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  | pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®); | 
|  | return GET_BITFIELD(reg, 0, 2); | 
|  | } | 
|  |  | 
|  | static u8 haswell_get_node_id(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); | 
|  | return GET_BITFIELD(reg, 0, 3); | 
|  | } | 
|  |  | 
|  | static u64 haswell_get_tolm(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®); | 
|  | return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; | 
|  | } | 
|  |  | 
|  | static u64 haswell_get_tohm(struct sbridge_pvt *pvt) | 
|  | { | 
|  | u64 rc; | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®); | 
|  | rc = GET_BITFIELD(reg, 26, 31); | 
|  | pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®); | 
|  | rc = ((reg << 6) | rc) << 26; | 
|  |  | 
|  | return rc | 0x1ffffff; | 
|  | } | 
|  |  | 
|  | static u64 haswell_rir_limit(u32 reg) | 
|  | { | 
|  | return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1; | 
|  | } | 
|  |  | 
|  | static inline u8 sad_pkg_socket(u8 pkg) | 
|  | { | 
|  | /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */ | 
|  | return ((pkg >> 3) << 2) | (pkg & 0x3); | 
|  | } | 
|  |  | 
|  | static inline u8 sad_pkg_ha(u8 pkg) | 
|  | { | 
|  | return (pkg >> 2) & 0x1; | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | Memory check routines | 
|  | ****************************************************************************/ | 
|  | static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id) | 
|  | { | 
|  | struct pci_dev *pdev = NULL; | 
|  |  | 
|  | do { | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev); | 
|  | if (pdev && pdev->bus->number == bus) | 
|  | break; | 
|  | } while (pdev); | 
|  |  | 
|  | return pdev; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_if_ecc_is_active() - Checks if ECC is active | 
|  | * @bus:	Device bus | 
|  | * @type:	Memory controller type | 
|  | * returns: 0 in case ECC is active, -ENODEV if it can't be determined or | 
|  | *	    disabled | 
|  | */ | 
|  | static int check_if_ecc_is_active(const u8 bus, enum type type) | 
|  | { | 
|  | struct pci_dev *pdev = NULL; | 
|  | u32 mcmtr, id; | 
|  |  | 
|  | switch (type) { | 
|  | case IVY_BRIDGE: | 
|  | id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA; | 
|  | break; | 
|  | case HASWELL: | 
|  | id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA; | 
|  | break; | 
|  | case SANDY_BRIDGE: | 
|  | id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA; | 
|  | break; | 
|  | case BROADWELL: | 
|  | id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA; | 
|  | break; | 
|  | default: | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pdev = get_pdev_same_bus(bus, id); | 
|  | if (!pdev) { | 
|  | sbridge_printk(KERN_ERR, "Couldn't find PCI device " | 
|  | "%04x:%04x! on bus %02d\n", | 
|  | PCI_VENDOR_ID_INTEL, id, bus); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pci_read_config_dword(pdev, MCMTR, &mcmtr); | 
|  | if (!IS_ECC_ENABLED(mcmtr)) { | 
|  | sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_dimm_config(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | struct dimm_info *dimm; | 
|  | unsigned i, j, banks, ranks, rows, cols, npages; | 
|  | u64 size; | 
|  | u32 reg; | 
|  | enum edac_type mode; | 
|  | enum mem_type mtype; | 
|  |  | 
|  | if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) | 
|  | pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®); | 
|  | else | 
|  | pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®); | 
|  |  | 
|  | pvt->sbridge_dev->source_id = SOURCE_ID(reg); | 
|  |  | 
|  | pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt); | 
|  | edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", | 
|  | pvt->sbridge_dev->mc, | 
|  | pvt->sbridge_dev->node_id, | 
|  | pvt->sbridge_dev->source_id); | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); | 
|  | if (IS_MIRROR_ENABLED(reg)) { | 
|  | edac_dbg(0, "Memory mirror is enabled\n"); | 
|  | pvt->is_mirrored = true; | 
|  | } else { | 
|  | edac_dbg(0, "Memory mirror is disabled\n"); | 
|  | pvt->is_mirrored = false; | 
|  | } | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); | 
|  | if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { | 
|  | edac_dbg(0, "Lockstep is enabled\n"); | 
|  | mode = EDAC_S8ECD8ED; | 
|  | pvt->is_lockstep = true; | 
|  | } else { | 
|  | edac_dbg(0, "Lockstep is disabled\n"); | 
|  | mode = EDAC_S4ECD4ED; | 
|  | pvt->is_lockstep = false; | 
|  | } | 
|  | if (IS_CLOSE_PG(pvt->info.mcmtr)) { | 
|  | edac_dbg(0, "address map is on closed page mode\n"); | 
|  | pvt->is_close_pg = true; | 
|  | } else { | 
|  | edac_dbg(0, "address map is on open page mode\n"); | 
|  | pvt->is_close_pg = false; | 
|  | } | 
|  |  | 
|  | mtype = pvt->info.get_memory_type(pvt); | 
|  | if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4) | 
|  | edac_dbg(0, "Memory is registered\n"); | 
|  | else if (mtype == MEM_UNKNOWN) | 
|  | edac_dbg(0, "Cannot determine memory type\n"); | 
|  | else | 
|  | edac_dbg(0, "Memory is unregistered\n"); | 
|  |  | 
|  | if (mtype == MEM_DDR4 || mtype == MEM_RDDR4) | 
|  | banks = 16; | 
|  | else | 
|  | banks = 8; | 
|  |  | 
|  | for (i = 0; i < NUM_CHANNELS; i++) { | 
|  | u32 mtr; | 
|  |  | 
|  | if (!pvt->pci_tad[i]) | 
|  | continue; | 
|  | for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | 
|  | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, | 
|  | i, j, 0); | 
|  | pci_read_config_dword(pvt->pci_tad[i], | 
|  | mtr_regs[j], &mtr); | 
|  | edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr); | 
|  | if (IS_DIMM_PRESENT(mtr)) { | 
|  | pvt->channel[i].dimms++; | 
|  |  | 
|  | ranks = numrank(pvt->info.type, mtr); | 
|  | rows = numrow(mtr); | 
|  | cols = numcol(mtr); | 
|  |  | 
|  | size = ((u64)rows * cols * banks * ranks) >> (20 - 3); | 
|  | npages = MiB_TO_PAGES(size); | 
|  |  | 
|  | edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | 
|  | pvt->sbridge_dev->mc, i/4, i%4, j, | 
|  | size, npages, | 
|  | banks, ranks, rows, cols); | 
|  |  | 
|  | dimm->nr_pages = npages; | 
|  | dimm->grain = 32; | 
|  | dimm->dtype = pvt->info.get_width(pvt, mtr); | 
|  | dimm->mtype = mtype; | 
|  | dimm->edac_mode = mode; | 
|  | snprintf(dimm->label, sizeof(dimm->label), | 
|  | "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u", | 
|  | pvt->sbridge_dev->source_id, i/4, i%4, j); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void get_memory_layout(const struct mem_ctl_info *mci) | 
|  | { | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | int i, j, k, n_sads, n_tads, sad_interl; | 
|  | u32 reg; | 
|  | u64 limit, prv = 0; | 
|  | u64 tmp_mb; | 
|  | u32 gb, mb; | 
|  | u32 rir_way; | 
|  |  | 
|  | /* | 
|  | * Step 1) Get TOLM/TOHM ranges | 
|  | */ | 
|  |  | 
|  | pvt->tolm = pvt->info.get_tolm(pvt); | 
|  | tmp_mb = (1 + pvt->tolm) >> 20; | 
|  |  | 
|  | gb = div_u64_rem(tmp_mb, 1024, &mb); | 
|  | edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", | 
|  | gb, (mb*1000)/1024, (u64)pvt->tolm); | 
|  |  | 
|  | /* Address range is already 45:25 */ | 
|  | pvt->tohm = pvt->info.get_tohm(pvt); | 
|  | tmp_mb = (1 + pvt->tohm) >> 20; | 
|  |  | 
|  | gb = div_u64_rem(tmp_mb, 1024, &mb); | 
|  | edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", | 
|  | gb, (mb*1000)/1024, (u64)pvt->tohm); | 
|  |  | 
|  | /* | 
|  | * Step 2) Get SAD range and SAD Interleave list | 
|  | * TAD registers contain the interleave wayness. However, it | 
|  | * seems simpler to just discover it indirectly, with the | 
|  | * algorithm bellow. | 
|  | */ | 
|  | prv = 0; | 
|  | for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { | 
|  | /* SAD_LIMIT Address range is 45:26 */ | 
|  | pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], | 
|  | ®); | 
|  | limit = SAD_LIMIT(reg); | 
|  |  | 
|  | if (!DRAM_RULE_ENABLE(reg)) | 
|  | continue; | 
|  |  | 
|  | if (limit <= prv) | 
|  | break; | 
|  |  | 
|  | tmp_mb = (limit + 1) >> 20; | 
|  | gb = div_u64_rem(tmp_mb, 1024, &mb); | 
|  | edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", | 
|  | n_sads, | 
|  | get_dram_attr(reg), | 
|  | gb, (mb*1000)/1024, | 
|  | ((u64)tmp_mb) << 20L, | 
|  | INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]", | 
|  | reg); | 
|  | prv = limit; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], | 
|  | ®); | 
|  | sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); | 
|  | for (j = 0; j < 8; j++) { | 
|  | u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j); | 
|  | if (j > 0 && sad_interl == pkg) | 
|  | break; | 
|  |  | 
|  | edac_dbg(0, "SAD#%d, interleave #%d: %d\n", | 
|  | n_sads, j, pkg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 3) Get TAD range | 
|  | */ | 
|  | prv = 0; | 
|  | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | 
|  | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | 
|  | ®); | 
|  | limit = TAD_LIMIT(reg); | 
|  | if (limit <= prv) | 
|  | break; | 
|  | tmp_mb = (limit + 1) >> 20; | 
|  |  | 
|  | gb = div_u64_rem(tmp_mb, 1024, &mb); | 
|  | edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", | 
|  | n_tads, gb, (mb*1000)/1024, | 
|  | ((u64)tmp_mb) << 20L, | 
|  | (u32)TAD_SOCK(reg), | 
|  | (u32)TAD_CH(reg), | 
|  | (u32)TAD_TGT0(reg), | 
|  | (u32)TAD_TGT1(reg), | 
|  | (u32)TAD_TGT2(reg), | 
|  | (u32)TAD_TGT3(reg), | 
|  | reg); | 
|  | prv = limit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 4) Get TAD offsets, per each channel | 
|  | */ | 
|  | for (i = 0; i < NUM_CHANNELS; i++) { | 
|  | if (!pvt->channel[i].dimms) | 
|  | continue; | 
|  | for (j = 0; j < n_tads; j++) { | 
|  | pci_read_config_dword(pvt->pci_tad[i], | 
|  | tad_ch_nilv_offset[j], | 
|  | ®); | 
|  | tmp_mb = TAD_OFFSET(reg) >> 20; | 
|  | gb = div_u64_rem(tmp_mb, 1024, &mb); | 
|  | edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", | 
|  | i, j, | 
|  | gb, (mb*1000)/1024, | 
|  | ((u64)tmp_mb) << 20L, | 
|  | reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 6) Get RIR Wayness/Limit, per each channel | 
|  | */ | 
|  | for (i = 0; i < NUM_CHANNELS; i++) { | 
|  | if (!pvt->channel[i].dimms) | 
|  | continue; | 
|  | for (j = 0; j < MAX_RIR_RANGES; j++) { | 
|  | pci_read_config_dword(pvt->pci_tad[i], | 
|  | rir_way_limit[j], | 
|  | ®); | 
|  |  | 
|  | if (!IS_RIR_VALID(reg)) | 
|  | continue; | 
|  |  | 
|  | tmp_mb = pvt->info.rir_limit(reg) >> 20; | 
|  | rir_way = 1 << RIR_WAY(reg); | 
|  | gb = div_u64_rem(tmp_mb, 1024, &mb); | 
|  | edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", | 
|  | i, j, | 
|  | gb, (mb*1000)/1024, | 
|  | ((u64)tmp_mb) << 20L, | 
|  | rir_way, | 
|  | reg); | 
|  |  | 
|  | for (k = 0; k < rir_way; k++) { | 
|  | pci_read_config_dword(pvt->pci_tad[i], | 
|  | rir_offset[j][k], | 
|  | ®); | 
|  | tmp_mb = RIR_OFFSET(reg) << 6; | 
|  |  | 
|  | gb = div_u64_rem(tmp_mb, 1024, &mb); | 
|  | edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", | 
|  | i, j, k, | 
|  | gb, (mb*1000)/1024, | 
|  | ((u64)tmp_mb) << 20L, | 
|  | (u32)RIR_RNK_TGT(reg), | 
|  | reg); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct mem_ctl_info *get_mci_for_node_id(u8 node_id) | 
|  | { | 
|  | struct sbridge_dev *sbridge_dev; | 
|  |  | 
|  | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | 
|  | if (sbridge_dev->node_id == node_id) | 
|  | return sbridge_dev->mci; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int get_memory_error_data(struct mem_ctl_info *mci, | 
|  | u64 addr, | 
|  | u8 *socket, u8 *ha, | 
|  | long *channel_mask, | 
|  | u8 *rank, | 
|  | char **area_type, char *msg) | 
|  | { | 
|  | struct mem_ctl_info	*new_mci; | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | struct pci_dev		*pci_ha; | 
|  | int			n_rir, n_sads, n_tads, sad_way, sck_xch; | 
|  | int			sad_interl, idx, base_ch; | 
|  | int			interleave_mode, shiftup = 0; | 
|  | unsigned		sad_interleave[pvt->info.max_interleave]; | 
|  | u32			reg, dram_rule; | 
|  | u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0; | 
|  | u32			tad_offset; | 
|  | u32			rir_way; | 
|  | u32			mb, gb; | 
|  | u64			ch_addr, offset, limit = 0, prv = 0; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Step 0) Check if the address is at special memory ranges | 
|  | * The check bellow is probably enough to fill all cases where | 
|  | * the error is not inside a memory, except for the legacy | 
|  | * range (e. g. VGA addresses). It is unlikely, however, that the | 
|  | * memory controller would generate an error on that range. | 
|  | */ | 
|  | if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { | 
|  | sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (addr >= (u64)pvt->tohm) { | 
|  | sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 1) Get socket | 
|  | */ | 
|  | for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { | 
|  | pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], | 
|  | ®); | 
|  |  | 
|  | if (!DRAM_RULE_ENABLE(reg)) | 
|  | continue; | 
|  |  | 
|  | limit = SAD_LIMIT(reg); | 
|  | if (limit <= prv) { | 
|  | sprintf(msg, "Can't discover the memory socket"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if  (addr <= limit) | 
|  | break; | 
|  | prv = limit; | 
|  | } | 
|  | if (n_sads == pvt->info.max_sad) { | 
|  | sprintf(msg, "Can't discover the memory socket"); | 
|  | return -EINVAL; | 
|  | } | 
|  | dram_rule = reg; | 
|  | *area_type = get_dram_attr(dram_rule); | 
|  | interleave_mode = INTERLEAVE_MODE(dram_rule); | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], | 
|  | ®); | 
|  |  | 
|  | if (pvt->info.type == SANDY_BRIDGE) { | 
|  | sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); | 
|  | for (sad_way = 0; sad_way < 8; sad_way++) { | 
|  | u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way); | 
|  | if (sad_way > 0 && sad_interl == pkg) | 
|  | break; | 
|  | sad_interleave[sad_way] = pkg; | 
|  | edac_dbg(0, "SAD interleave #%d: %d\n", | 
|  | sad_way, sad_interleave[sad_way]); | 
|  | } | 
|  | edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", | 
|  | pvt->sbridge_dev->mc, | 
|  | n_sads, | 
|  | addr, | 
|  | limit, | 
|  | sad_way + 7, | 
|  | !interleave_mode ? "" : "XOR[18:16]"); | 
|  | if (interleave_mode) | 
|  | idx = ((addr >> 6) ^ (addr >> 16)) & 7; | 
|  | else | 
|  | idx = (addr >> 6) & 7; | 
|  | switch (sad_way) { | 
|  | case 1: | 
|  | idx = 0; | 
|  | break; | 
|  | case 2: | 
|  | idx = idx & 1; | 
|  | break; | 
|  | case 4: | 
|  | idx = idx & 3; | 
|  | break; | 
|  | case 8: | 
|  | break; | 
|  | default: | 
|  | sprintf(msg, "Can't discover socket interleave"); | 
|  | return -EINVAL; | 
|  | } | 
|  | *socket = sad_interleave[idx]; | 
|  | edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", | 
|  | idx, sad_way, *socket); | 
|  | } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { | 
|  | int bits, a7mode = A7MODE(dram_rule); | 
|  |  | 
|  | if (a7mode) { | 
|  | /* A7 mode swaps P9 with P6 */ | 
|  | bits = GET_BITFIELD(addr, 7, 8) << 1; | 
|  | bits |= GET_BITFIELD(addr, 9, 9); | 
|  | } else | 
|  | bits = GET_BITFIELD(addr, 6, 8); | 
|  |  | 
|  | if (interleave_mode == 0) { | 
|  | /* interleave mode will XOR {8,7,6} with {18,17,16} */ | 
|  | idx = GET_BITFIELD(addr, 16, 18); | 
|  | idx ^= bits; | 
|  | } else | 
|  | idx = bits; | 
|  |  | 
|  | pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); | 
|  | *socket = sad_pkg_socket(pkg); | 
|  | sad_ha = sad_pkg_ha(pkg); | 
|  | if (sad_ha) | 
|  | ch_add = 4; | 
|  |  | 
|  | if (a7mode) { | 
|  | /* MCChanShiftUpEnable */ | 
|  | pci_read_config_dword(pvt->pci_ha0, | 
|  | HASWELL_HASYSDEFEATURE2, ®); | 
|  | shiftup = GET_BITFIELD(reg, 22, 22); | 
|  | } | 
|  |  | 
|  | edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n", | 
|  | idx, *socket, sad_ha, shiftup); | 
|  | } else { | 
|  | /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */ | 
|  | idx = (addr >> 6) & 7; | 
|  | pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); | 
|  | *socket = sad_pkg_socket(pkg); | 
|  | sad_ha = sad_pkg_ha(pkg); | 
|  | if (sad_ha) | 
|  | ch_add = 4; | 
|  | edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n", | 
|  | idx, *socket, sad_ha); | 
|  | } | 
|  |  | 
|  | *ha = sad_ha; | 
|  |  | 
|  | /* | 
|  | * Move to the proper node structure, in order to access the | 
|  | * right PCI registers | 
|  | */ | 
|  | new_mci = get_mci_for_node_id(*socket); | 
|  | if (!new_mci) { | 
|  | sprintf(msg, "Struct for socket #%u wasn't initialized", | 
|  | *socket); | 
|  | return -EINVAL; | 
|  | } | 
|  | mci = new_mci; | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* | 
|  | * Step 2) Get memory channel | 
|  | */ | 
|  | prv = 0; | 
|  | if (pvt->info.type == SANDY_BRIDGE) | 
|  | pci_ha = pvt->pci_ha0; | 
|  | else { | 
|  | if (sad_ha) | 
|  | pci_ha = pvt->pci_ha1; | 
|  | else | 
|  | pci_ha = pvt->pci_ha0; | 
|  | } | 
|  | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | 
|  | pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®); | 
|  | limit = TAD_LIMIT(reg); | 
|  | if (limit <= prv) { | 
|  | sprintf(msg, "Can't discover the memory channel"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if  (addr <= limit) | 
|  | break; | 
|  | prv = limit; | 
|  | } | 
|  | if (n_tads == MAX_TAD) { | 
|  | sprintf(msg, "Can't discover the memory channel"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ch_way = TAD_CH(reg) + 1; | 
|  | sck_way = TAD_SOCK(reg) + 1; | 
|  |  | 
|  | if (ch_way == 3) | 
|  | idx = addr >> 6; | 
|  | else | 
|  | idx = (addr >> (6 + sck_way + shiftup)) & 0x3; | 
|  | idx = idx % ch_way; | 
|  |  | 
|  | /* | 
|  | * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? | 
|  | */ | 
|  | switch (idx) { | 
|  | case 0: | 
|  | base_ch = TAD_TGT0(reg); | 
|  | break; | 
|  | case 1: | 
|  | base_ch = TAD_TGT1(reg); | 
|  | break; | 
|  | case 2: | 
|  | base_ch = TAD_TGT2(reg); | 
|  | break; | 
|  | case 3: | 
|  | base_ch = TAD_TGT3(reg); | 
|  | break; | 
|  | default: | 
|  | sprintf(msg, "Can't discover the TAD target"); | 
|  | return -EINVAL; | 
|  | } | 
|  | *channel_mask = 1 << base_ch; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_tad[ch_add + base_ch], | 
|  | tad_ch_nilv_offset[n_tads], | 
|  | &tad_offset); | 
|  |  | 
|  | if (pvt->is_mirrored) { | 
|  | *channel_mask |= 1 << ((base_ch + 2) % 4); | 
|  | switch(ch_way) { | 
|  | case 2: | 
|  | case 4: | 
|  | sck_xch = 1 << sck_way * (ch_way >> 1); | 
|  | break; | 
|  | default: | 
|  | sprintf(msg, "Invalid mirror set. Can't decode addr"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else | 
|  | sck_xch = (1 << sck_way) * ch_way; | 
|  |  | 
|  | if (pvt->is_lockstep) | 
|  | *channel_mask |= 1 << ((base_ch + 1) % 4); | 
|  |  | 
|  | offset = TAD_OFFSET(tad_offset); | 
|  |  | 
|  | edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", | 
|  | n_tads, | 
|  | addr, | 
|  | limit, | 
|  | (u32)TAD_SOCK(reg), | 
|  | ch_way, | 
|  | offset, | 
|  | idx, | 
|  | base_ch, | 
|  | *channel_mask); | 
|  |  | 
|  | /* Calculate channel address */ | 
|  | /* Remove the TAD offset */ | 
|  |  | 
|  | if (offset > addr) { | 
|  | sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", | 
|  | offset, addr); | 
|  | return -EINVAL; | 
|  | } | 
|  | addr -= offset; | 
|  | /* Store the low bits [0:6] of the addr */ | 
|  | ch_addr = addr & 0x7f; | 
|  | /* Remove socket wayness and remove 6 bits */ | 
|  | addr >>= 6; | 
|  | addr = div_u64(addr, sck_xch); | 
|  | #if 0 | 
|  | /* Divide by channel way */ | 
|  | addr = addr / ch_way; | 
|  | #endif | 
|  | /* Recover the last 6 bits */ | 
|  | ch_addr |= addr << 6; | 
|  |  | 
|  | /* | 
|  | * Step 3) Decode rank | 
|  | */ | 
|  | for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { | 
|  | pci_read_config_dword(pvt->pci_tad[ch_add + base_ch], | 
|  | rir_way_limit[n_rir], | 
|  | ®); | 
|  |  | 
|  | if (!IS_RIR_VALID(reg)) | 
|  | continue; | 
|  |  | 
|  | limit = pvt->info.rir_limit(reg); | 
|  | gb = div_u64_rem(limit >> 20, 1024, &mb); | 
|  | edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", | 
|  | n_rir, | 
|  | gb, (mb*1000)/1024, | 
|  | limit, | 
|  | 1 << RIR_WAY(reg)); | 
|  | if  (ch_addr <= limit) | 
|  | break; | 
|  | } | 
|  | if (n_rir == MAX_RIR_RANGES) { | 
|  | sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", | 
|  | ch_addr); | 
|  | return -EINVAL; | 
|  | } | 
|  | rir_way = RIR_WAY(reg); | 
|  |  | 
|  | if (pvt->is_close_pg) | 
|  | idx = (ch_addr >> 6); | 
|  | else | 
|  | idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */ | 
|  | idx %= 1 << rir_way; | 
|  |  | 
|  | pci_read_config_dword(pvt->pci_tad[ch_add + base_ch], | 
|  | rir_offset[n_rir][idx], | 
|  | ®); | 
|  | *rank = RIR_RNK_TGT(reg); | 
|  |  | 
|  | edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", | 
|  | n_rir, | 
|  | ch_addr, | 
|  | limit, | 
|  | rir_way, | 
|  | idx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | Device initialization routines: put/get, init/exit | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | *	sbridge_put_all_devices	'put' all the devices that we have | 
|  | *				reserved via 'get' | 
|  | */ | 
|  | static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | edac_dbg(0, "\n"); | 
|  | for (i = 0; i < sbridge_dev->n_devs; i++) { | 
|  | struct pci_dev *pdev = sbridge_dev->pdev[i]; | 
|  | if (!pdev) | 
|  | continue; | 
|  | edac_dbg(0, "Removing dev %02x:%02x.%d\n", | 
|  | pdev->bus->number, | 
|  | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | 
|  | pci_dev_put(pdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sbridge_put_all_devices(void) | 
|  | { | 
|  | struct sbridge_dev *sbridge_dev, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { | 
|  | sbridge_put_devices(sbridge_dev); | 
|  | free_sbridge_dev(sbridge_dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sbridge_get_onedevice(struct pci_dev **prev, | 
|  | u8 *num_mc, | 
|  | const struct pci_id_table *table, | 
|  | const unsigned devno) | 
|  | { | 
|  | struct sbridge_dev *sbridge_dev; | 
|  | const struct pci_id_descr *dev_descr = &table->descr[devno]; | 
|  | struct pci_dev *pdev = NULL; | 
|  | u8 bus = 0; | 
|  |  | 
|  | sbridge_printk(KERN_DEBUG, | 
|  | "Seeking for: PCI ID %04x:%04x\n", | 
|  | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
|  |  | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | dev_descr->dev_id, *prev); | 
|  |  | 
|  | if (!pdev) { | 
|  | if (*prev) { | 
|  | *prev = pdev; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (dev_descr->optional) | 
|  | return 0; | 
|  |  | 
|  | /* if the HA wasn't found */ | 
|  | if (devno == 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | sbridge_printk(KERN_INFO, | 
|  | "Device not found: %04x:%04x\n", | 
|  | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
|  |  | 
|  | /* End of list, leave */ | 
|  | return -ENODEV; | 
|  | } | 
|  | bus = pdev->bus->number; | 
|  |  | 
|  | sbridge_dev = get_sbridge_dev(bus); | 
|  | if (!sbridge_dev) { | 
|  | sbridge_dev = alloc_sbridge_dev(bus, table); | 
|  | if (!sbridge_dev) { | 
|  | pci_dev_put(pdev); | 
|  | return -ENOMEM; | 
|  | } | 
|  | (*num_mc)++; | 
|  | } | 
|  |  | 
|  | if (sbridge_dev->pdev[devno]) { | 
|  | sbridge_printk(KERN_ERR, | 
|  | "Duplicated device for %04x:%04x\n", | 
|  | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
|  | pci_dev_put(pdev); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | sbridge_dev->pdev[devno] = pdev; | 
|  |  | 
|  | /* Be sure that the device is enabled */ | 
|  | if (unlikely(pci_enable_device(pdev) < 0)) { | 
|  | sbridge_printk(KERN_ERR, | 
|  | "Couldn't enable %04x:%04x\n", | 
|  | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | edac_dbg(0, "Detected %04x:%04x\n", | 
|  | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
|  |  | 
|  | /* | 
|  | * As stated on drivers/pci/search.c, the reference count for | 
|  | * @from is always decremented if it is not %NULL. So, as we need | 
|  | * to get all devices up to null, we need to do a get for the device | 
|  | */ | 
|  | pci_dev_get(pdev); | 
|  |  | 
|  | *prev = pdev; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's | 
|  | *			     devices we want to reference for this driver. | 
|  | * @num_mc: pointer to the memory controllers count, to be incremented in case | 
|  | *	    of success. | 
|  | * @table: model specific table | 
|  | * | 
|  | * returns 0 in case of success or error code | 
|  | */ | 
|  | static int sbridge_get_all_devices(u8 *num_mc, | 
|  | const struct pci_id_table *table) | 
|  | { | 
|  | int i, rc; | 
|  | struct pci_dev *pdev = NULL; | 
|  |  | 
|  | while (table && table->descr) { | 
|  | for (i = 0; i < table->n_devs; i++) { | 
|  | pdev = NULL; | 
|  | do { | 
|  | rc = sbridge_get_onedevice(&pdev, num_mc, | 
|  | table, i); | 
|  | if (rc < 0) { | 
|  | if (i == 0) { | 
|  | i = table->n_devs; | 
|  | break; | 
|  | } | 
|  | sbridge_put_all_devices(); | 
|  | return -ENODEV; | 
|  | } | 
|  | } while (pdev); | 
|  | } | 
|  | table++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sbridge_mci_bind_devs(struct mem_ctl_info *mci, | 
|  | struct sbridge_dev *sbridge_dev) | 
|  | { | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | struct pci_dev *pdev; | 
|  | u8 saw_chan_mask = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sbridge_dev->n_devs; i++) { | 
|  | pdev = sbridge_dev->pdev[i]; | 
|  | if (!pdev) | 
|  | continue; | 
|  |  | 
|  | switch (pdev->device) { | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0: | 
|  | pvt->pci_sad0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1: | 
|  | pvt->pci_sad1 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_BR: | 
|  | pvt->pci_br0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0: | 
|  | pvt->pci_ha0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA: | 
|  | pvt->pci_ta = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS: | 
|  | pvt->pci_ras = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0: | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1: | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2: | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3: | 
|  | { | 
|  | int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0; | 
|  | pvt->pci_tad[id] = pdev; | 
|  | saw_chan_mask |= 1 << id; | 
|  | } | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO: | 
|  | pvt->pci_ddrio = pdev; | 
|  | break; | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n", | 
|  | pdev->vendor, pdev->device, | 
|  | sbridge_dev->bus, | 
|  | pdev); | 
|  | } | 
|  |  | 
|  | /* Check if everything were registered */ | 
|  | if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || | 
|  | !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta) | 
|  | goto enodev; | 
|  |  | 
|  | if (saw_chan_mask != 0x0f) | 
|  | goto enodev; | 
|  | return 0; | 
|  |  | 
|  | enodev: | 
|  | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
|  | return -ENODEV; | 
|  |  | 
|  | error: | 
|  | sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n", | 
|  | PCI_VENDOR_ID_INTEL, pdev->device); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int ibridge_mci_bind_devs(struct mem_ctl_info *mci, | 
|  | struct sbridge_dev *sbridge_dev) | 
|  | { | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | struct pci_dev *pdev; | 
|  | u8 saw_chan_mask = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sbridge_dev->n_devs; i++) { | 
|  | pdev = sbridge_dev->pdev[i]; | 
|  | if (!pdev) | 
|  | continue; | 
|  |  | 
|  | switch (pdev->device) { | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0: | 
|  | pvt->pci_ha0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA: | 
|  | pvt->pci_ta = pdev; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS: | 
|  | pvt->pci_ras = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0: | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1: | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2: | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3: | 
|  | { | 
|  | int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0; | 
|  | pvt->pci_tad[id] = pdev; | 
|  | saw_chan_mask |= 1 << id; | 
|  | } | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0: | 
|  | pvt->pci_ddrio = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0: | 
|  | pvt->pci_ddrio = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD: | 
|  | pvt->pci_sad0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0: | 
|  | pvt->pci_br0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1: | 
|  | pvt->pci_br1 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1: | 
|  | pvt->pci_ha1 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0: | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1: | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2: | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3: | 
|  | { | 
|  | int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4; | 
|  | pvt->pci_tad[id] = pdev; | 
|  | saw_chan_mask |= 1 << id; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", | 
|  | sbridge_dev->bus, | 
|  | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
|  | pdev); | 
|  | } | 
|  |  | 
|  | /* Check if everything were registered */ | 
|  | if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 || | 
|  | !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  || | 
|  | !pvt->pci_ta) | 
|  | goto enodev; | 
|  |  | 
|  | if (saw_chan_mask != 0x0f && /* -EN */ | 
|  | saw_chan_mask != 0x33 && /* -EP */ | 
|  | saw_chan_mask != 0xff)   /* -EX */ | 
|  | goto enodev; | 
|  | return 0; | 
|  |  | 
|  | enodev: | 
|  | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
|  | return -ENODEV; | 
|  |  | 
|  | error: | 
|  | sbridge_printk(KERN_ERR, | 
|  | "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL, | 
|  | pdev->device); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int haswell_mci_bind_devs(struct mem_ctl_info *mci, | 
|  | struct sbridge_dev *sbridge_dev) | 
|  | { | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | struct pci_dev *pdev; | 
|  | u8 saw_chan_mask = 0; | 
|  | int i; | 
|  |  | 
|  | /* there's only one device per system; not tied to any bus */ | 
|  | if (pvt->info.pci_vtd == NULL) | 
|  | /* result will be checked later */ | 
|  | pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC, | 
|  | NULL); | 
|  |  | 
|  | for (i = 0; i < sbridge_dev->n_devs; i++) { | 
|  | pdev = sbridge_dev->pdev[i]; | 
|  | if (!pdev) | 
|  | continue; | 
|  |  | 
|  | switch (pdev->device) { | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0: | 
|  | pvt->pci_sad0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1: | 
|  | pvt->pci_sad1 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0: | 
|  | pvt->pci_ha0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA: | 
|  | pvt->pci_ta = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL: | 
|  | pvt->pci_ras = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3: | 
|  | { | 
|  | int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0; | 
|  |  | 
|  | pvt->pci_tad[id] = pdev; | 
|  | saw_chan_mask |= 1 << id; | 
|  | } | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3: | 
|  | { | 
|  | int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4; | 
|  |  | 
|  | pvt->pci_tad[id] = pdev; | 
|  | saw_chan_mask |= 1 << id; | 
|  | } | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2: | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3: | 
|  | if (!pvt->pci_ddrio) | 
|  | pvt->pci_ddrio = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1: | 
|  | pvt->pci_ha1 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA: | 
|  | pvt->pci_ha1_ta = pdev; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", | 
|  | sbridge_dev->bus, | 
|  | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
|  | pdev); | 
|  | } | 
|  |  | 
|  | /* Check if everything were registered */ | 
|  | if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 || | 
|  | !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd) | 
|  | goto enodev; | 
|  |  | 
|  | if (saw_chan_mask != 0x0f && /* -EN */ | 
|  | saw_chan_mask != 0x33 && /* -EP */ | 
|  | saw_chan_mask != 0xff)   /* -EX */ | 
|  | goto enodev; | 
|  | return 0; | 
|  |  | 
|  | enodev: | 
|  | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int broadwell_mci_bind_devs(struct mem_ctl_info *mci, | 
|  | struct sbridge_dev *sbridge_dev) | 
|  | { | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | struct pci_dev *pdev; | 
|  | u8 saw_chan_mask = 0; | 
|  | int i; | 
|  |  | 
|  | /* there's only one device per system; not tied to any bus */ | 
|  | if (pvt->info.pci_vtd == NULL) | 
|  | /* result will be checked later */ | 
|  | pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC, | 
|  | NULL); | 
|  |  | 
|  | for (i = 0; i < sbridge_dev->n_devs; i++) { | 
|  | pdev = sbridge_dev->pdev[i]; | 
|  | if (!pdev) | 
|  | continue; | 
|  |  | 
|  | switch (pdev->device) { | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0: | 
|  | pvt->pci_sad0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1: | 
|  | pvt->pci_sad1 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0: | 
|  | pvt->pci_ha0 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA: | 
|  | pvt->pci_ta = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL: | 
|  | pvt->pci_ras = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0: | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1: | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2: | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3: | 
|  | { | 
|  | int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0; | 
|  | pvt->pci_tad[id] = pdev; | 
|  | saw_chan_mask |= 1 << id; | 
|  | } | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0: | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1: | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2: | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3: | 
|  | { | 
|  | int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4; | 
|  | pvt->pci_tad[id] = pdev; | 
|  | saw_chan_mask |= 1 << id; | 
|  | } | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0: | 
|  | pvt->pci_ddrio = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1: | 
|  | pvt->pci_ha1 = pdev; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA: | 
|  | pvt->pci_ha1_ta = pdev; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", | 
|  | sbridge_dev->bus, | 
|  | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
|  | pdev); | 
|  | } | 
|  |  | 
|  | /* Check if everything were registered */ | 
|  | if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 || | 
|  | !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd) | 
|  | goto enodev; | 
|  |  | 
|  | if (saw_chan_mask != 0x0f && /* -EN */ | 
|  | saw_chan_mask != 0x33 && /* -EP */ | 
|  | saw_chan_mask != 0xff)   /* -EX */ | 
|  | goto enodev; | 
|  | return 0; | 
|  |  | 
|  | enodev: | 
|  | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | Error check routines | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * While Sandy Bridge has error count registers, SMI BIOS read values from | 
|  | * and resets the counters. So, they are not reliable for the OS to read | 
|  | * from them. So, we have no option but to just trust on whatever MCE is | 
|  | * telling us about the errors. | 
|  | */ | 
|  | static void sbridge_mce_output_error(struct mem_ctl_info *mci, | 
|  | const struct mce *m) | 
|  | { | 
|  | struct mem_ctl_info *new_mci; | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | enum hw_event_mc_err_type tp_event; | 
|  | char *type, *optype, msg[256]; | 
|  | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); | 
|  | bool overflow = GET_BITFIELD(m->status, 62, 62); | 
|  | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | 
|  | bool recoverable; | 
|  | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | 
|  | u32 mscod = GET_BITFIELD(m->status, 16, 31); | 
|  | u32 errcode = GET_BITFIELD(m->status, 0, 15); | 
|  | u32 channel = GET_BITFIELD(m->status, 0, 3); | 
|  | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | 
|  | long channel_mask, first_channel; | 
|  | u8  rank, socket, ha; | 
|  | int rc, dimm; | 
|  | char *area_type = NULL; | 
|  |  | 
|  | if (pvt->info.type != SANDY_BRIDGE) | 
|  | recoverable = true; | 
|  | else | 
|  | recoverable = GET_BITFIELD(m->status, 56, 56); | 
|  |  | 
|  | if (uncorrected_error) { | 
|  | if (ripv) { | 
|  | type = "FATAL"; | 
|  | tp_event = HW_EVENT_ERR_FATAL; | 
|  | } else { | 
|  | type = "NON_FATAL"; | 
|  | tp_event = HW_EVENT_ERR_UNCORRECTED; | 
|  | } | 
|  | } else { | 
|  | type = "CORRECTED"; | 
|  | tp_event = HW_EVENT_ERR_CORRECTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * According with Table 15-9 of the Intel Architecture spec vol 3A, | 
|  | * memory errors should fit in this mask: | 
|  | *	000f 0000 1mmm cccc (binary) | 
|  | * where: | 
|  | *	f = Correction Report Filtering Bit. If 1, subsequent errors | 
|  | *	    won't be shown | 
|  | *	mmm = error type | 
|  | *	cccc = channel | 
|  | * If the mask doesn't match, report an error to the parsing logic | 
|  | */ | 
|  | if (! ((errcode & 0xef80) == 0x80)) { | 
|  | optype = "Can't parse: it is not a mem"; | 
|  | } else { | 
|  | switch (optypenum) { | 
|  | case 0: | 
|  | optype = "generic undef request error"; | 
|  | break; | 
|  | case 1: | 
|  | optype = "memory read error"; | 
|  | break; | 
|  | case 2: | 
|  | optype = "memory write error"; | 
|  | break; | 
|  | case 3: | 
|  | optype = "addr/cmd error"; | 
|  | break; | 
|  | case 4: | 
|  | optype = "memory scrubbing error"; | 
|  | break; | 
|  | default: | 
|  | optype = "reserved"; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Only decode errors with an valid address (ADDRV) */ | 
|  | if (!GET_BITFIELD(m->status, 58, 58)) | 
|  | return; | 
|  |  | 
|  | rc = get_memory_error_data(mci, m->addr, &socket, &ha, | 
|  | &channel_mask, &rank, &area_type, msg); | 
|  | if (rc < 0) | 
|  | goto err_parsing; | 
|  | new_mci = get_mci_for_node_id(socket); | 
|  | if (!new_mci) { | 
|  | strcpy(msg, "Error: socket got corrupted!"); | 
|  | goto err_parsing; | 
|  | } | 
|  | mci = new_mci; | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); | 
|  |  | 
|  | if (rank < 4) | 
|  | dimm = 0; | 
|  | else if (rank < 8) | 
|  | dimm = 1; | 
|  | else | 
|  | dimm = 2; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * FIXME: On some memory configurations (mirror, lockstep), the | 
|  | * Memory Controller can't point the error to a single DIMM. The | 
|  | * EDAC core should be handling the channel mask, in order to point | 
|  | * to the group of dimm's where the error may be happening. | 
|  | */ | 
|  | if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg) | 
|  | channel = first_channel; | 
|  |  | 
|  | snprintf(msg, sizeof(msg), | 
|  | "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d", | 
|  | overflow ? " OVERFLOW" : "", | 
|  | (uncorrected_error && recoverable) ? " recoverable" : "", | 
|  | area_type, | 
|  | mscod, errcode, | 
|  | socket, ha, | 
|  | channel_mask, | 
|  | rank); | 
|  |  | 
|  | edac_dbg(0, "%s\n", msg); | 
|  |  | 
|  | /* FIXME: need support for channel mask */ | 
|  |  | 
|  | if (channel == CHANNEL_UNSPECIFIED) | 
|  | channel = -1; | 
|  |  | 
|  | /* Call the helper to output message */ | 
|  | edac_mc_handle_error(tp_event, mci, core_err_cnt, | 
|  | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, | 
|  | 4*ha+channel, dimm, -1, | 
|  | optype, msg); | 
|  | return; | 
|  | err_parsing: | 
|  | edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, | 
|  | -1, -1, -1, | 
|  | msg, ""); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	sbridge_check_error	Retrieve and process errors reported by the | 
|  | *				hardware. Called by the Core module. | 
|  | */ | 
|  | static void sbridge_check_error(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct sbridge_pvt *pvt = mci->pvt_info; | 
|  | int i; | 
|  | unsigned count = 0; | 
|  | struct mce *m; | 
|  |  | 
|  | /* | 
|  | * MCE first step: Copy all mce errors into a temporary buffer | 
|  | * We use a double buffering here, to reduce the risk of | 
|  | * loosing an error. | 
|  | */ | 
|  | smp_rmb(); | 
|  | count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) | 
|  | % MCE_LOG_LEN; | 
|  | if (!count) | 
|  | return; | 
|  |  | 
|  | m = pvt->mce_outentry; | 
|  | if (pvt->mce_in + count > MCE_LOG_LEN) { | 
|  | unsigned l = MCE_LOG_LEN - pvt->mce_in; | 
|  |  | 
|  | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); | 
|  | smp_wmb(); | 
|  | pvt->mce_in = 0; | 
|  | count -= l; | 
|  | m += l; | 
|  | } | 
|  | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); | 
|  | smp_wmb(); | 
|  | pvt->mce_in += count; | 
|  |  | 
|  | smp_rmb(); | 
|  | if (pvt->mce_overrun) { | 
|  | sbridge_printk(KERN_ERR, "Lost %d memory errors\n", | 
|  | pvt->mce_overrun); | 
|  | smp_wmb(); | 
|  | pvt->mce_overrun = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MCE second step: parse errors and display | 
|  | */ | 
|  | for (i = 0; i < count; i++) | 
|  | sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sbridge_mce_check_error	Replicates mcelog routine to get errors | 
|  | *				This routine simply queues mcelog errors, and | 
|  | *				return. The error itself should be handled later | 
|  | *				by sbridge_check_error. | 
|  | * WARNING: As this routine should be called at NMI time, extra care should | 
|  | * be taken to avoid deadlocks, and to be as fast as possible. | 
|  | */ | 
|  | static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct mce *mce = (struct mce *)data; | 
|  | struct mem_ctl_info *mci; | 
|  | struct sbridge_pvt *pvt; | 
|  | char *type; | 
|  |  | 
|  | if (get_edac_report_status() == EDAC_REPORTING_DISABLED) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | mci = get_mci_for_node_id(mce->socketid); | 
|  | if (!mci) | 
|  | return NOTIFY_BAD; | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* | 
|  | * Just let mcelog handle it if the error is | 
|  | * outside the memory controller. A memory error | 
|  | * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | 
|  | * bit 12 has an special meaning. | 
|  | */ | 
|  | if ((mce->status & 0xefff) >> 7 != 1) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | if (mce->mcgstatus & MCG_STATUS_MCIP) | 
|  | type = "Exception"; | 
|  | else | 
|  | type = "Event"; | 
|  |  | 
|  | sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); | 
|  |  | 
|  | sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " | 
|  | "Bank %d: %016Lx\n", mce->extcpu, type, | 
|  | mce->mcgstatus, mce->bank, mce->status); | 
|  | sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); | 
|  | sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); | 
|  | sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); | 
|  |  | 
|  | sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " | 
|  | "%u APIC %x\n", mce->cpuvendor, mce->cpuid, | 
|  | mce->time, mce->socketid, mce->apicid); | 
|  |  | 
|  | smp_rmb(); | 
|  | if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { | 
|  | smp_wmb(); | 
|  | pvt->mce_overrun++; | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | /* Copy memory error at the ringbuffer */ | 
|  | memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); | 
|  | smp_wmb(); | 
|  | pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; | 
|  |  | 
|  | /* Handle fatal errors immediately */ | 
|  | if (mce->mcgstatus & 1) | 
|  | sbridge_check_error(mci); | 
|  |  | 
|  | /* Advice mcelog that the error were handled */ | 
|  | return NOTIFY_STOP; | 
|  | } | 
|  |  | 
|  | static struct notifier_block sbridge_mce_dec = { | 
|  | .notifier_call      = sbridge_mce_check_error, | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | EDAC register/unregister logic | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) | 
|  | { | 
|  | struct mem_ctl_info *mci = sbridge_dev->mci; | 
|  | struct sbridge_pvt *pvt; | 
|  |  | 
|  | if (unlikely(!mci || !mci->pvt_info)) { | 
|  | edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); | 
|  |  | 
|  | sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | edac_dbg(0, "MC: mci = %p, dev = %p\n", | 
|  | mci, &sbridge_dev->pdev[0]->dev); | 
|  |  | 
|  | /* Remove MC sysfs nodes */ | 
|  | edac_mc_del_mc(mci->pdev); | 
|  |  | 
|  | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | 
|  | kfree(mci->ctl_name); | 
|  | edac_mc_free(mci); | 
|  | sbridge_dev->mci = NULL; | 
|  | } | 
|  |  | 
|  | static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct edac_mc_layer layers[2]; | 
|  | struct sbridge_pvt *pvt; | 
|  | struct pci_dev *pdev = sbridge_dev->pdev[0]; | 
|  | int rc; | 
|  |  | 
|  | /* Check the number of active and not disabled channels */ | 
|  | rc = check_if_ecc_is_active(sbridge_dev->bus, type); | 
|  | if (unlikely(rc < 0)) | 
|  | return rc; | 
|  |  | 
|  | /* allocate a new MC control structure */ | 
|  | layers[0].type = EDAC_MC_LAYER_CHANNEL; | 
|  | layers[0].size = NUM_CHANNELS; | 
|  | layers[0].is_virt_csrow = false; | 
|  | layers[1].type = EDAC_MC_LAYER_SLOT; | 
|  | layers[1].size = MAX_DIMMS; | 
|  | layers[1].is_virt_csrow = true; | 
|  | mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, | 
|  | sizeof(*pvt)); | 
|  |  | 
|  | if (unlikely(!mci)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | edac_dbg(0, "MC: mci = %p, dev = %p\n", | 
|  | mci, &pdev->dev); | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  | memset(pvt, 0, sizeof(*pvt)); | 
|  |  | 
|  | /* Associate sbridge_dev and mci for future usage */ | 
|  | pvt->sbridge_dev = sbridge_dev; | 
|  | sbridge_dev->mci = mci; | 
|  |  | 
|  | mci->mtype_cap = MEM_FLAG_DDR3; | 
|  | mci->edac_ctl_cap = EDAC_FLAG_NONE; | 
|  | mci->edac_cap = EDAC_FLAG_NONE; | 
|  | mci->mod_name = "sbridge_edac.c"; | 
|  | mci->mod_ver = SBRIDGE_REVISION; | 
|  | mci->dev_name = pci_name(pdev); | 
|  | mci->ctl_page_to_phys = NULL; | 
|  |  | 
|  | /* Set the function pointer to an actual operation function */ | 
|  | mci->edac_check = sbridge_check_error; | 
|  |  | 
|  | pvt->info.type = type; | 
|  | switch (type) { | 
|  | case IVY_BRIDGE: | 
|  | pvt->info.rankcfgr = IB_RANK_CFG_A; | 
|  | pvt->info.get_tolm = ibridge_get_tolm; | 
|  | pvt->info.get_tohm = ibridge_get_tohm; | 
|  | pvt->info.dram_rule = ibridge_dram_rule; | 
|  | pvt->info.get_memory_type = get_memory_type; | 
|  | pvt->info.get_node_id = get_node_id; | 
|  | pvt->info.rir_limit = rir_limit; | 
|  | pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); | 
|  | pvt->info.interleave_list = ibridge_interleave_list; | 
|  | pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list); | 
|  | pvt->info.interleave_pkg = ibridge_interleave_pkg; | 
|  | pvt->info.get_width = ibridge_get_width; | 
|  | mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx); | 
|  |  | 
|  | /* Store pci devices at mci for faster access */ | 
|  | rc = ibridge_mci_bind_devs(mci, sbridge_dev); | 
|  | if (unlikely(rc < 0)) | 
|  | goto fail0; | 
|  | break; | 
|  | case SANDY_BRIDGE: | 
|  | pvt->info.rankcfgr = SB_RANK_CFG_A; | 
|  | pvt->info.get_tolm = sbridge_get_tolm; | 
|  | pvt->info.get_tohm = sbridge_get_tohm; | 
|  | pvt->info.dram_rule = sbridge_dram_rule; | 
|  | pvt->info.get_memory_type = get_memory_type; | 
|  | pvt->info.get_node_id = get_node_id; | 
|  | pvt->info.rir_limit = rir_limit; | 
|  | pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule); | 
|  | pvt->info.interleave_list = sbridge_interleave_list; | 
|  | pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list); | 
|  | pvt->info.interleave_pkg = sbridge_interleave_pkg; | 
|  | pvt->info.get_width = sbridge_get_width; | 
|  | mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); | 
|  |  | 
|  | /* Store pci devices at mci for faster access */ | 
|  | rc = sbridge_mci_bind_devs(mci, sbridge_dev); | 
|  | if (unlikely(rc < 0)) | 
|  | goto fail0; | 
|  | break; | 
|  | case HASWELL: | 
|  | /* rankcfgr isn't used */ | 
|  | pvt->info.get_tolm = haswell_get_tolm; | 
|  | pvt->info.get_tohm = haswell_get_tohm; | 
|  | pvt->info.dram_rule = ibridge_dram_rule; | 
|  | pvt->info.get_memory_type = haswell_get_memory_type; | 
|  | pvt->info.get_node_id = haswell_get_node_id; | 
|  | pvt->info.rir_limit = haswell_rir_limit; | 
|  | pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); | 
|  | pvt->info.interleave_list = ibridge_interleave_list; | 
|  | pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list); | 
|  | pvt->info.interleave_pkg = ibridge_interleave_pkg; | 
|  | pvt->info.get_width = ibridge_get_width; | 
|  | mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx); | 
|  |  | 
|  | /* Store pci devices at mci for faster access */ | 
|  | rc = haswell_mci_bind_devs(mci, sbridge_dev); | 
|  | if (unlikely(rc < 0)) | 
|  | goto fail0; | 
|  | break; | 
|  | case BROADWELL: | 
|  | /* rankcfgr isn't used */ | 
|  | pvt->info.get_tolm = haswell_get_tolm; | 
|  | pvt->info.get_tohm = haswell_get_tohm; | 
|  | pvt->info.dram_rule = ibridge_dram_rule; | 
|  | pvt->info.get_memory_type = haswell_get_memory_type; | 
|  | pvt->info.get_node_id = haswell_get_node_id; | 
|  | pvt->info.rir_limit = haswell_rir_limit; | 
|  | pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); | 
|  | pvt->info.interleave_list = ibridge_interleave_list; | 
|  | pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list); | 
|  | pvt->info.interleave_pkg = ibridge_interleave_pkg; | 
|  | pvt->info.get_width = broadwell_get_width; | 
|  | mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx); | 
|  |  | 
|  | /* Store pci devices at mci for faster access */ | 
|  | rc = broadwell_mci_bind_devs(mci, sbridge_dev); | 
|  | if (unlikely(rc < 0)) | 
|  | goto fail0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Get dimm basic config and the memory layout */ | 
|  | get_dimm_config(mci); | 
|  | get_memory_layout(mci); | 
|  |  | 
|  | /* record ptr to the generic device */ | 
|  | mci->pdev = &pdev->dev; | 
|  |  | 
|  | /* add this new MC control structure to EDAC's list of MCs */ | 
|  | if (unlikely(edac_mc_add_mc(mci))) { | 
|  | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | 
|  | rc = -EINVAL; | 
|  | goto fail0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail0: | 
|  | kfree(mci->ctl_name); | 
|  | edac_mc_free(mci); | 
|  | sbridge_dev->mci = NULL; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	sbridge_probe	Probe for ONE instance of device to see if it is | 
|  | *			present. | 
|  | *	return: | 
|  | *		0 for FOUND a device | 
|  | *		< 0 for error code | 
|  | */ | 
|  |  | 
|  | static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id) | 
|  | { | 
|  | int rc = -ENODEV; | 
|  | u8 mc, num_mc = 0; | 
|  | struct sbridge_dev *sbridge_dev; | 
|  | enum type type = SANDY_BRIDGE; | 
|  |  | 
|  | /* get the pci devices we want to reserve for our use */ | 
|  | mutex_lock(&sbridge_edac_lock); | 
|  |  | 
|  | /* | 
|  | * All memory controllers are allocated at the first pass. | 
|  | */ | 
|  | if (unlikely(probed >= 1)) { | 
|  | mutex_unlock(&sbridge_edac_lock); | 
|  | return -ENODEV; | 
|  | } | 
|  | probed++; | 
|  |  | 
|  | switch (pdev->device) { | 
|  | case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA: | 
|  | rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table); | 
|  | type = IVY_BRIDGE; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0: | 
|  | rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table); | 
|  | type = SANDY_BRIDGE; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0: | 
|  | rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table); | 
|  | type = HASWELL; | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0: | 
|  | rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table); | 
|  | type = BROADWELL; | 
|  | break; | 
|  | } | 
|  | if (unlikely(rc < 0)) { | 
|  | edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device); | 
|  | goto fail0; | 
|  | } | 
|  |  | 
|  | mc = 0; | 
|  |  | 
|  | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | 
|  | edac_dbg(0, "Registering MC#%d (%d of %d)\n", | 
|  | mc, mc + 1, num_mc); | 
|  |  | 
|  | sbridge_dev->mc = mc++; | 
|  | rc = sbridge_register_mci(sbridge_dev, type); | 
|  | if (unlikely(rc < 0)) | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION); | 
|  |  | 
|  | mutex_unlock(&sbridge_edac_lock); | 
|  | return 0; | 
|  |  | 
|  | fail1: | 
|  | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | 
|  | sbridge_unregister_mci(sbridge_dev); | 
|  |  | 
|  | sbridge_put_all_devices(); | 
|  | fail0: | 
|  | mutex_unlock(&sbridge_edac_lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	sbridge_remove	destructor for one instance of device | 
|  | * | 
|  | */ | 
|  | static void sbridge_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct sbridge_dev *sbridge_dev; | 
|  |  | 
|  | edac_dbg(0, "\n"); | 
|  |  | 
|  | /* | 
|  | * we have a trouble here: pdev value for removal will be wrong, since | 
|  | * it will point to the X58 register used to detect that the machine | 
|  | * is a Nehalem or upper design. However, due to the way several PCI | 
|  | * devices are grouped together to provide MC functionality, we need | 
|  | * to use a different method for releasing the devices | 
|  | */ | 
|  |  | 
|  | mutex_lock(&sbridge_edac_lock); | 
|  |  | 
|  | if (unlikely(!probed)) { | 
|  | mutex_unlock(&sbridge_edac_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | 
|  | sbridge_unregister_mci(sbridge_dev); | 
|  |  | 
|  | /* Release PCI resources */ | 
|  | sbridge_put_all_devices(); | 
|  |  | 
|  | probed--; | 
|  |  | 
|  | mutex_unlock(&sbridge_edac_lock); | 
|  | } | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); | 
|  |  | 
|  | /* | 
|  | *	sbridge_driver	pci_driver structure for this module | 
|  | * | 
|  | */ | 
|  | static struct pci_driver sbridge_driver = { | 
|  | .name     = "sbridge_edac", | 
|  | .probe    = sbridge_probe, | 
|  | .remove   = sbridge_remove, | 
|  | .id_table = sbridge_pci_tbl, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *	sbridge_init		Module entry function | 
|  | *			Try to initialize this module for its devices | 
|  | */ | 
|  | static int __init sbridge_init(void) | 
|  | { | 
|  | int pci_rc; | 
|  |  | 
|  | edac_dbg(2, "\n"); | 
|  |  | 
|  | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
|  | opstate_init(); | 
|  |  | 
|  | pci_rc = pci_register_driver(&sbridge_driver); | 
|  | if (pci_rc >= 0) { | 
|  | mce_register_decode_chain(&sbridge_mce_dec); | 
|  | if (get_edac_report_status() == EDAC_REPORTING_DISABLED) | 
|  | sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", | 
|  | pci_rc); | 
|  |  | 
|  | return pci_rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	sbridge_exit()	Module exit function | 
|  | *			Unregister the driver | 
|  | */ | 
|  | static void __exit sbridge_exit(void) | 
|  | { | 
|  | edac_dbg(2, "\n"); | 
|  | pci_unregister_driver(&sbridge_driver); | 
|  | mce_unregister_decode_chain(&sbridge_mce_dec); | 
|  | } | 
|  |  | 
|  | module_init(sbridge_init); | 
|  | module_exit(sbridge_exit); | 
|  |  | 
|  | module_param(edac_op_state, int, 0444); | 
|  | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Mauro Carvalho Chehab"); | 
|  | MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); | 
|  | MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - " | 
|  | SBRIDGE_REVISION); |